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Abstract: The paper examines the relative performance of Stochastic Volatility (SV) and Generalised
Autoregressive Conditional Heteroscedasticity (GARCH) (1,1) models fitted to ten years of daily data
for FTSE. As a benchmark, we used the realized volatility (RV) of FTSE sampled at 5 min intervals
taken from the Oxford Man Realised Library. Both models demonstrated comparable performance
and were correlated to a similar extent with RV estimates when measured by ordinary least squares
(OLS). However, a crude variant of Corsi’s (2009) Heterogeneous Autoregressive (HAR) model,
applied to squared demeaned daily returns on FTSE, appeared to predict the daily RV of FTSE
better than either of the two models. Quantile regressions suggest that all three methods capture tail
behaviour similarly and adequately. This leads to the question of whether we need either of the two
standard volatility models if the simple expedient of using lagged squared demeaned daily returns
provides a better RV predictor, at least in the context of the sample.

Keywords: stochastic volatility; GARCH (1,1); FTSE; RV 5 min; HAR model; demeaned daily
squared returns

JEL Classification: C22; G12

1. Introduction

The paper explores the performance of Stochastic Volatility (SV) and Generalised Autoregressive
Conditional Heteroscedasticity (GARCH) (1,1) models as estimators of the volatility of the FTSE Index.
The volatilities estimated by these models are compared with realised volatility estimates for FTSE,
obtained from the Oxford Man Realised Library and sampled at 5 min intervals, as described in
Heber et al. (2009). Their volatility forecasts were further compared with those derived from a simple
historical volatility model.

We used the stochvol R package, which uses Markov chain Monte Carlo (MCMC) samplers,
to conduct inference by obtaining draws from the posterior distribution of parameters and latent
variables, which could then be used for predicting future volatilities. This is done within the context of
a fully Bayesian implementation of heteroscedasticity modelling within the framework of stochastic

Risks 2020, 8, 12; doi:10.3390/risks8010012 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
https://orcid.org/0000-0001-7782-0865
https://orcid.org/0000-0003-2707-3835
http://dx.doi.org/10.3390/risks8010012
http://www.mdpi.com/journal/risks
https://www.mdpi.com/2227-9091/8/1/12?type=check_update&version=2


Risks 2020, 8, 12 2 of 20

volatility. For more information, see the discussion of the method by Kastner and Frühwirth-Schnatter
(2014), and of the stochvol package by Kastner (2016).

Taylor (1982) suggested probabilistically modelling volatility, in effect through a state-space model
where the logarithm of the squared volatilities, the latent states, follows an autoregressive process of
order one. Over time, this specification became known as the SV model. A series of early papers by
Jacquier et al. (1994), Ghysels et al. (1996), and Kim et al. (1998) provided evidence in support of the
application of stochastic-volatility models, but their practical use has been infrequent. The reasons for
this were considered by Bos (2012), who suggested that the empirical application of SV models was
limited by two major factors: the variety (and potential incompatibility) of estimation methods for SV
models and the lack of standard software packages for implementing these methods. The situation for
multivariate SV is even more problematic.

Taylor (1994) provides a review of both stochastic volatility and the ARCH/GARCH literature.
More recent reviews of the use of inference in the context of this literature were provided
by McAleer (2005), and a review of multivariate stochastic-volatility models was provided by
Asai et al. (2006). Granger and Poon (2003, p. 485), in their review of volatility-forecasting methods,
noted the difficulties in the application of the SV model: “the SV model has no closed form,
and hence cannot be estimated directly by maximum likelihood”. They also noted that the
quasimaximum-likelihood method may also be inefficient if the volatility proxies are non-Gaussian.
The advantage of the stochvol R package is that it incorporates an efficient MCMC estimation scheme
for SV models, as discussed by Kastner and Frühwirth-Schnatter (2014). This facilitated analysis in
this paper, which features a direct comparison of the volatility predictions of a SV model, a GARCH
(1,1) model, and a simple application of a historical-volatility-based estimation method, as applied to
the FTSE index.

The paper is divided into four sections: Section 2 reviews the literature and employed econometric
method. Section 3 presents the results, and Section 4 concludes the paper.

2. Previous Work and Econometric Models

2.1. Stochastic Volatility

There have been numerous empirical studies of changes in volatility in various stock, currency,
and commodity markets. Findings in volatility research have implications for option pricing, volatility
estimation, and the degree to which volatility shocks persist. These research questions have been
approached by means of different models and methodologies.

Taylor (1982) suggested a novel SV approach, and Taylor (1994) implemented the SV model as
follows: if Pt denotes the prices of an asset at time t,, and assuming no dividend payments, returns on
the asset can be defined, in the context of discrete time periods, as:

Xt = ln[Pt/Pt−1]. (1)

Volatility is customarily indicated by σ, and prices are described by a stochastic
differential equation:

d(lnP) = µdt + σdW, (2)

with W being a standard Weiner process. If µ and σ are constants, Xt has normal distribution, and

Xt = µ + σUt, (3)

with Ut being independent and identically distributed (i.i.d).
Equation (3) can be generalised by replacing σ with positive random variable σt to give:

Xt = µ + σtUt, (4)
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where Ut ∼ N(0, 1).
In circumstances where returns process {Xt} can be presented by Equation (4), Taylor (1994)

called σt the stochastic volatility for period t. His definition assumed that (Xt − µ)/σt follows
normal distribution.

Stochastic process {σt} generates realised volatilities {σ∗t } that, in general, are not observable.
For any realisation, σ∗t

Xt | σt = σ∗t ∼ N(µ, σ∗2t ). (5)

The mixture of these conditional normal distributions defines the unconditional distribution of Xt,
which has excess kurtosis whenever σt has positive variance and is independent of Ut.

In the empirical section that follows, we used the RV of the FTSE sampled at 5 min intervals,
provided by Oxford Man, as a proxy for true realised volatility. We then compared the estimates of
volatility obtained from the SV and GARCH (1,1) models by using the RV estimates as a benchmark.

Taylor (1994, p. 3) suggested using “capital letters to represent random variables and lowercase
letters to represent outcomes”, and we follow that convention. Given the observed returns of It−1 =

{x1, x2, .....xt−1}, the conditional variance for period t is:

ht = var(Xt | It−1). (6)

Taylor (1994) notes that, in general, random variable Ht, which generates observed conditional
variance ht, is not, in general, equal to σ2

t . A convenient way to use economic theory to motivate
changes in volatility is to assume that returns are generated by a number of intraperiod price revisions,
as in the manner of Clark (1973) and Tauchen and Pitts (1983), to mention two of many studies.

It is assumed that there are Nt price revisions during trading day t, each caused by unpredictable
information. Let event i on day t change the logarithmic price by ωit, with

Xt = µ +
Nt

∑
i=1

ωit. (7)

If we assume that ωit ∼ i.i.d. and is independent of random variable Nt, with ωit ∼ N(0, σ2
ω), then

σ2
t = σ2

ω Nt and Ht = σ2
ωE[Nt | It−1]. (8)

The above model suggests that squared volatility is proportional to the amount of price information.
The lack of standard software to estimate such a model is addressed by Kastner and

Frühwirth-Schnatter (2014), who proposed an efficient MCMC estimation scheme that is implemented
in the R stochvol package (Kastner (2016)). Kastner (2016, p. 2) proceeded by “letting y = (y1, y2, .....yn)|

be a vector of returns, with mean zero. An intrinsic feature of the SV model is that each observation yt

is assumed to have its ’own’ contemporaneous variance, eht , which relaxes the usual assumption of
homoscedasticity”. It was assumed that the logarithm of this variance follows an autoregressive process
of order one. This assumption is fundamentally different to GARCH models, where time-varying
conditional volatility is assumed to follow deterministic instead of stochastic evolution.

The centered parameterization of the SV model can be given as:

yt | ht ∼ N(0, expht), (9)

ht | ht−1, µ, φ, σn ∼ N(µ,+φ(ht−1 − µ), σ2
n), (10)

h0 | µ, φ, σn ∼ N(µ, σ2
n/(1− φ2), (11)

where N(µ, σ2
n), denotes normal distribution with mean µ and variance σ2

n . θ = (µ, φ, σn)| is the
vector of parameters that consists of the level of log variance µ, the persistence of log variance, φ,
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and volatility of log variance σn. Process h = (h0, h1, ......, hn)|, which features in Equations (10) and (11),
is the unobserved or latent time-varying volatility process.

Kastner (2016, p. 4) remarked that: “A novel and crucial feature of the algorithm implemented
in stochvol is the usage of a variant of the “ancillarity–sufficiency interweaving strategy” (ASIS)
which has been brought forward in the general context of state-space models by Yu and Meng (2011).
ASIS exploits the fact that, for certain parameter constellations, sampling efficiency improves
substantially when considering a non-centered version of a state-space model”.

Another key feature of the algorithm used in stochvol is the joint sampling of all instantaneous
volatilities “all without a loop” (AWOL), a technique with links to Rue (2001) that is discussed in
McCausland et al. (2011). The combination of these features enables the stochvol R package to efficiently
estimate SV models even when large datasets are involved.

2.2. ARCH and GARCH

Engle (1982) developed the Autoregressive Conditional Heteroscedasticity (ARCH) model that
incorporates all past error terms. It was generalised to GARCH by Bollerslev (1986) to include lagged
term conditional volatility. In other words, GARCH predicts that the best indicator of future variance
is a weighted average of long-run variance, the predicted variance for the current period, and any new
information in this period, as captured by the squared residuals.

The framework was developed as follows: consider a time series yt = Et−1(yt) + εt,
where Et−1(yt) is the conditional expectation of yt at time t− 1, and εt is the error term. The basic
GARCH model has the following specification:

εt =
√

htηt , ηt ∼ N(0, 1) (12)

ht = ω +
p

∑
j=1

αjε
2
t−j +

q

∑
j=1

β jht−j (13)

in which ω > 0, αj ≥ 0 and β j ≥ 0 (usually a positive fraction), to ensure a positive conditional
variance, ht ≥ 0 (see Tsay (1987)). The ARCH effect is captured by parameter αj , which represents
the short-run persistence of shocks to returns, β j captures the GARCH effect that contributes to
long-run persistence, and αj + β j measures the persistence of the impact of shocks to returns to
long-run persistence. A GARCH (1,1) process is weakly stationary if αj + β j ≤ 1 (see the discussion in
Allen et al. (2013)).

We contrasted the estimates of volatility from the SV model with those from a GARCH (1,1) model,
and assessed which better explained the behaviour of the RV of FTSE sampled at 5 min intervals.

2.3. Realised Volatility

We used the 5 min RV estimates from Oxford Man for FTSE as the RV benchmark (see: https:
//realized.oxford-man.ox.ac.uk/data). Their database contains “daily (close-to-close) financial returns,
and a corresponding sequence of daily realised measures rm1, rm2, ....., rmT . Realised measures are
theoretically sound, high-frequency, nonparametric-based estimators of the variation of the price path
of an asset during the times in which the asset trades frequently on an exchange. Realised measures
ignore the overnight variation of prices, and sometimes the variation in the first few minutes of
the trading day, when recorded prices may contain large errors”. The metrics were developed by
Andersen et al. (2001), Andersen et al. (2003), and Barndorff-Nielsen and Shephard (2002). Shephard
and Sheppard (2010) provide an account of RV measures used in the Oxford Man Realised Library.

The simplest realised metric is realised variance (RV):

RVt = ∑ x2
j,t, (14)

https://realized.oxford-man.ox.ac.uk/data
https://realized.oxford-man.ox.ac.uk/data
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where xj,t = Xtj,t − Xtj−1,t . The tj,t are the times of trades or quotes on the t-th day. The theoretical
justification of this measure is that, if prices are observed without noise, then, as min j | tj,t − tj−1,t |↓ 0,
it consistently estimates the quadratic variation of the price process on the t-th day. If sampling is
reduced to very small time intervals, market-microstructure noise may become a contaminant. In order
to avoid this issue, we used RV estimates from Oxford Man, sampled at 5 min intervals, hereafter RV5.

2.4. Historical-Volatility Model

Poon and Granger (2005) discussed various practical issues encountered in attempts to forecast
volatility. They suggested that the HISVOL model has the following form:

σ̂t = φ1σt−1 + φ2σt−2 + .. + φτσt−τ , (15)

where σ̂t is the expected standard deviation at time t, φ is the weight parameter, and σ is the historical
standard deviation for periods indicated by the subscripts. Poon and Granger (2005) suggested that
this group of models include random walk, historical averages, autoregressive (fractionally integrated)
moving average, and various forms of exponential smoothing that depend on weight parameter φ.

We used a simple form of this model in which the estimate of σ is the previous day’s demeaned
squared return. Poon and Granger (2005) noted that, in a review of 66 previous studies, implied
standard deviations appeared to perform best, followed by historical volatility and GARCH, which
have roughly equal performance. They also noted that, at the time of writing, there were insufficient
studies of SV models to come to any conclusions about this class of models. This is a motivation for
the current study that assesses the performance of all three classes of models.

Barndorff-Nielsen and Shephard (2003) pointed out that taking the sums of squares of
increments of log prices has a long tradition in the financial economics literature. Early examples are
Poterba and Summers (1986), Schwert (1989), Taylor and Xu (1997), Christensen and Prabhala (1998),
Dacorogna et al. (1998), and Andersen et al. (2001). Shephard and Sheppard (2010, p. 200, footnote 4)
noted that: “Of course, the most basic realised measure is the squared daily return”. We utilised this
approach as the basis of our historical-volatility model.

2.5. Heterogeneous Autoregressive Model (HAR)

Corsi (2009, p. 174) suggested “an additive cascade model of volatility components defined over
different time periods. The volatility cascade leads to a simple AR-type model in the realized volatility
with the feature of considering different volatility components realized over different time horizons
and which he termed as a Heterogeneous Autoregressive model of Realized Volatility.” Corsi (2009)
suggested that the model successfully achieves the purpose of reproducing the main empirical features
of financial returns (long memory, fat tails, and self-similarity) in a parsimonious way. He wrote his
model as:

σ
(d)
t+1d = c + β(d)RV(d)

t + β(w)RV(w)
t + β(m)RV(m)

t + ω̃
(d)
t+1d, (16)

where σ(d) is daily integrated volatility, and RV(d)
t , RV(w)

t and RV(m)
t are the daily, weekly, and monthly

(ex post) observed realized volatilities, respectively.
We appealed to Corsi (2009) to inspire our HISVOL model, which uses lags of historical RV

estimates, but we used lags of squared demeaned daily returns.

2.6. Quantile Regression

We used the RV5 estimates as a benchmark to assess how the SV and GARCH(1,1) models
performed. We were interested in behaviour in the extreme tails as well as in the centre of distribution.
We therefore used quantile regression to assess behaviour in the tails.

Koenker and Hallock (2001, p. 145) provided an introduction to quantile regression, and noted that
“quantiles seem inseparably linked to the operations of ordering and sorting the sample observations
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that are usually used to define them”. They added: “The symmetry of the piecewise linear absolute
value function implies that the minimization of the sum of absolute residuals must equate the number
of positive and negative residuals, thus assuring that there are the same number of observations above
and below the median”.

They asked: What about the other quantiles? As the symmetry of the absolute value yields the
median, it follows that minimising the sum of asymmetrically weighted absolute residuals by simply
giving differing weights to positive and negative residuals provides the other quantiles. The solution to

Min
ξ∈R ∑ ρτ(yi − ξ), (17)

where function ρτ(·) is the titled absolute value function, shown in Figure 1, gives the τth sample
quantile function.

Figure 1. Quantile regression ρ function.

An estimate of the conditional median function can be obtained by replacing scalar ξ in Equation
(10) by parametric function ξ(xi, β), and setting τ to 1/2. Estimates of the other conditional quantile
functions can be obtained by replacing absolute values by ρτ(·), and solving Expression (11) by linear
programming:

min
β∈Rp

∑ ρτ(yi − ξ(xi, β). (18)

We applied quantile regression to investigate the relationship between RV5 estimates on the FTSE
Index and risk values predicted by the SV and GARCH(1,1) models.

3. Analysis Results

3.1. Preliminary Analysis

The sample dataset consisted of approximately 10 years of daily data of adjusted continuously
compounded returns for FTSE, from 24 April 2009 through to 16 April 2019, sourced from Yahoo
Finance via the R quantmod library. However, we retained the last 20 observations from the series for
forecast purposes, leaving a total of 2454 observations. A matching set of daily RV5 estimates for FTSE
was obtained from the Oxford Man Realised Library. Summary statistics for the two series is provided
in Table 1 and plots of the two series in Figure 2.

FTSE has a mean daily return of 0.02% and a standard deviation of 0.97%. It has positive excess
kurtosis and does not conform to Gaussian distribution, as can be seen from the QQ plot in Figure 3.
RV5 has a mean of 8.6261 × 10−5 and a standard deviation of 0.00016097. However, it is measured
as a variance, and if we take the square root of its value and multiply it by 100, it is on a common
scale with the FTSE returns. We undertook this transformation in some of the comparison plots in
subsequent figures. It has very high skewness and kurtosis, which is also evident in the QQ plots
in Figure 3.
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3.2. SV and GARCH Estimates

We used R library stochvol to fit a stochastic-volatility model to the FTSE return series, and used
Gaussian distributions to fit the SV model. Some of the initial parameters for SV model estimation
are shown in Table 2. The SV model applied to FTSE produced the volatility estimates shown in
Figure 4, while Figure 5 displays a kernel-density estimate for parameters contained in θ, producing
posterior-density estimates. Figure 4 plots the estimated volatilities produced by the SV model at the
5%, 50%, and 95% posterior quantiles.

We also estimated GARCH (1,1) to obtain conditional volatilities. Coefficients are shown in
Figure 3. The diagnostic tests suggested that there were no ARCH effects in the residuals, but rejected
the null hypothesis that residuals conform to normal distribution. Plots of the volatilities obtained
from both the SV and GARCH (1,1) estimates are shown in Figure 6.

Table 1. Summary Statistics of FTSE Continuously Compounded Returns and RV5.

Summary statistics using 27 April 2009–16 April 2019 observations
for FTSERET variable (2454 valid observations)

Mean Median Minimum Maximum
0.00022266 0.00050198 −0.047798 0.050323
Std. Dev. C.V. Skewness Ex. kurtosis
0.0097220 43.663 −0.13603 2.1367

5% 95% IQ Range Missing obs.
−0.015687 0.016056 0.010418 0

Summary Statistics, using27 April 2009–16 April 2019 observations
for RV5 variable (2454 valid observations)

Mean Median Minimum Maximum
8.6261 × 10−5 5.1600 × 10−5 1.3300 × 10−6 0.0057390

Std. Dev. C.V. Skewness Ex. kurtosis
0.00016097 1.8661 19.805 633.01

5% 95% IQ Range Missing obs.
1.4275 × 10−5 0.00025567 6.8100 × 10−5 0

Table 2. Stochastic-volatility estimates.

Summary of 1000 Markov chain Monte Carlo (MCMC) draws after burn-in of 1000

Prior distributions

mu ∼ normal mean = 0 S.D. = 100

(phi + 1)/2 ∼ beta a0 = 5 b0 = 1.5

sigma2 ∼ 1 ∗ Chisq(d f = 1)

Posterior draws thinning = 1

Mean S.D. 5% 50% 95%

mu −9.5938 0.11914 −9.7831 −9.5944 −9.3963

phi 0.9577 0.01051 0.9389 0.9586 0.9734

sigma 0.2342 0.02868 0.1915 0.2321 0.2851

exp(mu/2) 0.0083 0.00049 0.0075 0.0083 0.0091

sigma2 0.0557 0.01378 0.0367 0.0539 0.0813
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Figure 2. Series plots.
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Figure 3. QQ plots.
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Figure 4. SV estimates.

Figure 5. Posterior-density plots of parameters in θ.

Figure 6. Conditional volatilities: SV and GARCH (1,1).

Table 3 confirms that SV estimates were slightly lower than GARCH(1,1) estimates. Mean SV
estimate was 0.87152, while mean GARCH(1,1) volatility estimate was 0.92405. This difference is
significant, as revealed by a nonparametric sign test, the results of which are available from the authors
on request. The interquartile range for the SV model is 0.38324, while that for GARCH(1,1) was
slightly smaller with a value of 0.32905. This is reflected in the standard deviations of the estimates,
with a value of 0.32600 for the SV model, and 0.30490 for the GARCH(1,1). (Details of the GARCH
model fitted are provided in Table 4).

The third panel in Table 3 provides summary statistics for SQRV5L which is the square root
of realised volatility series RV5, scaled by 100, to transform it into the same dimension as the
two conditional-volatility series. Mean value was markedly greater at 0.81989, standard deviation was
also larger at 0.43644, while the interquartile range was 0.44676. Excess kurtosis was much greater,
with a value of 29.966, given that the SV and GARCH(1,1) models had excess kurtosis of 1.9519 and
3.3669, respectively.
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Table 3. Summary statistics: conditional volatilities from SV and GARCH(1,1) models plus SQRV5L.

Summary statistics using 27 April 2009–16 April 2019 observations
for SV variable (2454 valid observations)

Mean Median Minimum Maximum
0.87152 0.80112 0.37146 2.1388
Std. Dev. C.V. Skewness Ex. kurtosis
0.32600 0.37405 1.2754 1.9519

5% 95% IQ Range Missing obs.
0.45723 1.5217 0.38324 0

Summary statistics using 27 April 2009–16 April 2019 observations
for garchh variable_t (2454 valid observations)

Mean Median Minimum Maximum
0.92405 0.84738 0.51430 2.3305
Std. Dev. C.V. Skewness Ex. kurtosis
0.30490 0.32996 1.6654 3.3669

5% 95% IQ Range Missing obs.
0.59248 1.5934 0.32905 0

Summary statistics using 27 April 2009–16 April 2019 observations
for SQRV5L variable (2454 valid observations)

Mean Median Minimum Maximum
0.81989 0.71837 0.11543 7.5756
Std. Dev. C.V. Skewness Ex. kurtosis
0.43644 0.53231 3.3736 29.966

5% 95% IQ Range Missing obs.
0.37737 1.5990 0.44676 0

Table 4. Generalised Autoregressive Conditional Heteroscedasticity (GARCH) (1,1) fitted to
FTSE returns.

Coefficients Standard Error T Statistic

mu 1.360 × 10−4 1.601 × 10−4 0.850
omega 3.406 × 10−6 8.087 × 10−7 4.211 ***
alpha1 1.199 × 10−1 1.728 × 10−2 6.939 ***
beta1 8.443 × 10−1 2.240 × 10−2 37.688 ***

Note: *** significance at 1% level.

These statistics suggest that the modelfree estimate of volatility, provided by RV5, was more
volatile and had larger spikes than the conditional volatilities produced by the two models.

We also estimated some regressions to explore the linear correlations between the estimates of the
two volatility models and our base RV5 volatility estimates. In order to keep the values in the same
dimension, we used the SQRV5L values. Results are shown in Table 5. If we used the RV5 values in the
form of SQRV5L as the benchmark dependent variable, then conditional volatilities from the SV model
had an adjusted R-square of 0.193842, and a highly significant slope coefficient with a value of 0.589930
and t-statistic of 24.31. The GARCH(1,1) model performs slightly better, with an adjusted R-squared of
0.202789 and a slope coefficient of 0.645116, with a t statistic of 25. The Durbin–Watson statistic for
both models was around 1, suggesting that there iswasa borderline problem of serial correlation in
the residuals.

As a further cross-check of the effectiveness of the two models, we used a further crude estimate of
volatility with the demeaned squared daily returns on FTSE in the context of a HISVOL model, which
was motivated by Corsi’s (2009) Heterogeneous Autoregressive model of Realized Volatility (HAR-RV).
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Table 5. Regression analysis of three volatility models: SV, GARCH(1,1), and lagged demeaned squared
returns.

Ordinary least squares (OLS) using 27 April 2009–16 April 2019 observations (T = 2454). Dependent variable: SQRV5L.

Coefficient Std. Error t-ratio p-value
const 0.305752 0.0225825 13.54 0.0000
SV 0.589930 0.0242700 24.31 0.0000

Mean dependent var 0.819888 S.D. dependent var 0.436435
Sum squared resid 376.5133 S.E. of regression 0.391859
R2 0.194171 Adjusted R2 0.193842
F(1, 2452) 590.8287 p-value(F) 4.1 × 10−117

Log-likelihood −1182.037 Akaike criterion 2368.075
Schwarz criterion 2379.686 Hannan–Quinn 2372.294
ρ̂ 0.503365 Durbin–Watson 0.991133

OLS using 27 April 2009–16 April 2019 observations (T = 2454). Dependent variable: SQRV5L.

Coefficient Std. Error t-ratio p-value
const 0.223766 0.0251093 8.912 0.0000
garchh_t 0.645116 0.0258051 25.00 0.0000

Mean dependent var 0.819888 S.D. dependent var 0.436435
Sum squared resid 372.3346 S.E. of regression 0.389678
R2 0.203114 Adjusted R2 0.202789
F(1, 2452) 624.9784 p-value(F) 4.6 × 10−123

Log-likelihood −1168.344 Akaike criterion 2340.687
Schwarz criterion 2352.298 Hannan–Quinn 2344.906
ρ̂ 0.490865 Durbin–Watson 1.015052

OLS using 4 June 2009–16 April 2019 observations (T = 2426). Dependent variable: SQRV5L.

Coefficient Std. Error t-ratio p-value
const 0.544629 0.0111890 48.68 0.0000
LSQDMFTSE_1 0.433934 0.414977 1.046 0.2958
LSQDMFTSE_2 0.515250 0.419102 1.229 0.2190
LSQDMFTSE_3 1.18029 0.420051 2.810 0.0050
LSQDMFTSE_4 0.839649 0.421807 1.991 0.0466
LSQDMFTSE_5 1.35951 0.423013 3.214 0.0013
LSQDMFTSE_6 0.102526 0.422970 0.2424 0.8085
LSQDMFTSE_7 0.663505 0.423177 1.568 0.1170
LSQDMFTSE_8 0.242477 0.421954 0.5747 0.5656
LSQDMFTSE_9 1.58351 0.423249 3.741 0.0002
LSQDMFTSE_10 0.715148 0.422994 1.691 0.0910
LSQDMFTSE_11 1.72472 0.421790 4.089 0.0000
LSQDMFTSE_12 2.43111 0.422496 5.754 0.0000
LSQDMFTSE_13 2.11699 0.422470 5.011 0.0000
LSQDMFTSE_14 0.667181 0.422379 1.580 0.1143
LSQDMFTSE_15 2.04957 0.422271 4.854 0.0000
LSQDMFTSE_16 0.438659 0.422071 1.039 0.2988
LSQDMFTSE_17 0.994273 0.421786 2.357 0.0185
LSQDMFTSE_18 0.430727 0.420974 1.023 0.3063
LSQDMFTSE_19 1.06033 0.420799 2.520 0.0118
LSQDMFTSE_20 0.0170270 0.421031 0.04044 0.9677
LSQDMFTSE_21 1.03750 0.419658 2.472 0.0135
LSQDMFTSE_22 0.303899 0.420813 0.7222 0.4703
LSQDMFTSE_23 0.842299 0.420028 2.005 0.0450
LSQDMFTSE_24 1.12694 0.419905 2.684 0.0073
LSQDMFTSE_25 0.834749 0.418637 1.994 0.0463
LSQDMFTSE_26 0.746605 0.416243 1.794 0.0730
LSQDMFTSE_27 1.92539 0.415125 4.638 0.0000
LSQDMFTSE_28 2.02831 0.411577 4.928 0.0000
Mean dependent var 0.812434 S.D. dependent var 0.432184
Sum squared resid 312.0871 S.E. of regression 0.360831
R2 0.310989 Adjusted R2 0.302940
F(28, 2397) 38.63918 p-value(F) 6.2 × 10−171

Log-likelihood −954.8254 Akaike criterion 1967.651
Schwarz criterion 2135.677 Hannan–Quinn 2028.745
ρ̂ 0.429918 Durbin–Watson 1.139917
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In the third panel, we used the attribute that the squared demeaned returns on the FTSE are
highly persistent, or have long memory, and regressed the square root of RV5 scaled by 100 on 28 lags
of the squared demeaned FTSE return, also scaled by 100.

This crude model produced better results than those using SV and GARCH(1,1) conditional
volatilities as explanatory variables. The adjusted R-squared value was 0.302940, and coefficients on
lags of 3, 4, 5, 9, 11, 12, 13, 15, 17, 19, 21, 23, 24, 25, 27, and 28 of LSQDMFTSE were highly significant.
The F statistic was highly significant, and the Durbin Watson statistic was slightly improved at 1.1399.

Plots of the volatility series are shown in Figure 7. In the upper panel of Figure 7, SQRV5 is plotted
on a different scale to the two conditional volatilities so they were not superimposed on each other.
In the lower panel, correspondence between RV5 and the crude measure of demeaned squared daily
returns on the FTSE is evident.

Figure 8 provides a plot of actual versus fitted values when SQRV5L was regressed on 28 lags of
LSQDMFTSE. Again, the effectiveness of the model is apparent. Figure 9 shows the predicted values
of the conditional volatilities from the SV and GARCH, indexed on the L.H.S. of Figure 9, and the
lagged values DMSQFTSERET plus the actual RV5 value for the day. The latter two series are indexed
on the R.H.S. of Figure 9. If we rescaled the values of the latter two variables, it is apparent that there
was closer proximity between them than from the predictions of SV and GARCH, even in the case of
the first observation in the graph.

Figure 7. Plots of volatility estimates.
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Figure 8. Plots of actual and fitted volatilities using lagged DMSQFTSERET as explanator.

Figure 9. Tau plots of quantile-regression coefficients.
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A potential issue was whether the relationship was significant in the quantiles, as this is an issue
for risk measurement. In Table 6, we report the results of estimating quantile regressions for the
same series.

Table 6. Quantile-regression results of SQRV5L regression on lagged SV, lagged GARCH and lagged
DMSQFTSERET Quantile estimates, using 27 April 2009–16 April 2019 observations (T = 2454).
Asymptotic standard errors assuming independent and identically distributed (IID) errors.

Variable Tau Coefficient Std. Error t-Ratio

SV(-1) 0.05 0.00179384 0.000194807 9.20827 ***
SV(-1) 0.25 0.00386922 0.000179883 21.5097 ***
SV(-1) 0.50 0.00558958 0.000199581 28.0066 ***
SV(-1) 0.75 0.00746445 0.000279415 26.7146 ***
SV(-1) 0.95 0.0117519 0.000798124 14.7245 ***

GARCHh_t(-1) 0.05 0.00159755 0.000195806 8.15884 ***
GARCHh_t(-1) 0.25 0.00420579 0.000191819 21.9259 ***
GARCHh_t(-1) 0.50 0.00627205 0.000204113 30.7283 ***
GARCHh_t(-1) 0.75 0.00873417 0.000334193 26.1351 ***
GARCHh_t(-1) 0.95 0.0135944 0.000860269 15.8025 ***

DMSQFTSERET(-1) 0.05 0.0132912 0.00310350 4.28266 ***
DMSQFTSERET(-1) 0.25 0.0322416 0.00350232 9.20578 ***
DMSQFTSERET(-1) 0.50 0.0402209 0.00311836 12.8981 ***
DMSQFTSERET(-1) 0.75 0.0522737 0.00566966 9.21991 ***
DMSQFTSERET(-1) 0.95 0.0737864 0.0140149 5.26486 ***

Note: *** significance at 1% level.

3.3. Quantile-Regression Results

The results of SQRV5L quantile regression on the lags of the three explanatory series are shown in
Table 6. All three quantile regressions used SQRV5L as the dependent variable, adopting the modelfree
RV5 estimation as the benchmark. We adopted tau values of 0.05, 0.25, 0.50, 0.75, and 0.95. Our concern
was whether there was evidence of significant relationships across quantiles. All t statistics were
significant at the 1% level across all quantiles. In the case of the third panel in Table 6, we only used
one lag of the squared demeaned FTSE return, rather than the full model, to avoid excessive numbers
of entries in the Tables. Even so, coefficients on all quantiles were significant at the 1% level.

Plots of these relationships are provided in Figure 10. The horizontal blue lines in the panels
in Figure 10 depict least-squares regression coefficients, and the dotted lines above and below them
depict the error bands. The black line links the coefficients estimated by quantile regression, and the
grey area around the line shows the error bands. An interesting feature of the quantile-regression
coefficients was that all three black lines in Figure 10 have positive slopes. This is consistent with
the existence of more elastic responses to estimates in higher quantiles of RV5 volatility, in all three
cases of SV, GARCH(1,1), and squared demeaned returns on FTSE, as predictors of volatility. Results
suggested that none of these models was fully successful in capturing volatility peaks in RV5 in the
higher quantiles.

3.4. Rolling-Regression Analysis

As a further check, we ran some rolling regressions of our three daily volatility estimates from the
three models of STOCHVOL, GARCH (1,1) and HISVOL as the explanatory variable for the realised
RV5 estimates, using window sizes of 60 and 500 days.These window sizes were chosen to approximate
three months and two years of daily returns. Graphs of the coefficient estimates from these three
regressions, plus error bands of plus and minus two standard deviations, are shown in the Appendix A.

These plots suggest that, when we used the longer windows of 500 observations, the three models
were significant around 50% of the time, in that the error bands did not span zero. None of the three
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models performed well in the 60 observation windows, and spanned zero for the majority of the
considered period. The HISVOL model performed poorly in these short windows.

Figure 10. Prediction plots for last 20 observations by SV and GARCH, and values of lagged
DMSQFTSERET and RV5.

4. Conclusions

The paper featured an examination of the effectiveness of SV and GARCH(1,1) models as
explainers of modelfree estimates of FTSE volatility using RV samples at 5 min intervals as a benchmark,
as provided by Oxford Man Institute’s Realised Library. In order to provide further contrast, we also
used lags of squared demeaned daily returns on FTSE to provide a simple alternative estimate
of daily volatility. The effectiveness of these three methods was explored via the application of
ordinary-least-squares (OLS) regression and quantile-regression analysis. Poon and Granger (2005)
provided motivation in their analysis of 66 studies of this topic in which they noted that, at that time,
there were an insufficient number of SV studies to provide a comparison between the GARCH and
HISVOL models. Our intention was to address this sparsity in the literature.

We used vanilla estimates of SV and GARCH(1,1) by adopting Gaussian distributions. If measured
by adjusted R-squared values, GARCH(1,1) appeared to produce slightly better OLS predictions than
the SV model. However, both performed relatively poorly as compared with the simple expedient of
using squared demeaned daily returns on FTSE to predict RV5 volatility. Our results support Poon and
Granger (2005), in that neither the GARCH nor the SV model outperformed a simple form of a HISVOL
model on this FTSE sample when RV samples at 5 min intervals were used as a benchmark. However,
all three models performed poorly within short 60 observation windows in the rolling regressions.
This suggests that the HISVOL model performs better over a longer observation window and is likely
to be of more practical applications over longer holding periods.
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funding acquisition, M.M.A. All authors have read and agreed to the published version of the manuscript.
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Appendix A

Note: Diagram middle line is regression-coefficient estimate; upper and lower lines are two standard error bands.

Figure A1. Rolling-regression—window size 500.
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Note: Diagram middle line is regression-coefficient estimate; upper and lower lines are two standard error bands.

Figure A2. Rolling-regression—window size 60.
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