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Abstract: We present general conditions for the weak convergence of a discrete-time additive scheme
to a stochastic process with memory in the space D[0, T]. Then we investigate the convergence
of the related multiplicative scheme to a process that can be interpreted as an asset price with
memory. As an example, we study an additive scheme that converges to fractional Brownian motion,
which is based on the Cholesky decomposition of its covariance matrix. The second example is
a scheme converging to the Riemann–Liouville fractional Brownian motion. The multiplicative
counterparts for these two schemes are also considered. As an auxiliary result of independent interest,
we obtain sufficient conditions for monotonicity along diagonals in the Cholesky decomposition of
the covariance matrix of a stationary Gaussian process.

Keywords: weak convergence; fractional Brownian motion; asset price model with memory; binary
market model; Cholesky decomposition

1. Introduction

The question of approximating prices in financial markets with continuous time using prices
in markets with discrete time goes back to the approximation of Black–Scholes prices with
prices changing in discrete time. For an initial acquaintance with the subject, we recommend
a book, Föllmer and Schied (2011), that starts with the central limit theorem for approximation of
the Black–Scholes model by the Cox–Ross–Rubinstein model. However, this area of research is
immeasurably wider, since there are many more market models. Of course, they are functioning in
discrete time, but their analytical research is easier to carry out in continuous time. Therefore, we need
various theorems on the convergence of random sequences to random processes with continuous
time, and it is also desirable to produce the convergence of some connected functionals. For example,
functional limit theorems make it possible to go to a limit in stochastic integrals and stochastic
differential equations. Such equations are widely used for modeling in physics, biology, finance and
other fields. Concerning finance, functional limit theorems allow us to investigate how the convergence
of stock prices affects the convergence of option prices. The last of these questions is widely considered
in many papers; we mention now only Hubalek and Schachermayer (1998). Concerning the weak
limit theorems for financial market we mention the book Prigent (2003). Diffusion approximation
of financial markets was described, in particular, in the papers Mishura (2015a, 2015b, 2015c),
see references therein. All the above-mentioned works relate to the case when the ultimate stochastic
process and the corresponding market model are Markov, that is, they have no memory. However,
the presence of memory in financial markets has already been so convincingly recorded that for
many years models have been studied that could well model this memory, and the question of
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approximation of non-Markov asset prices and other components of financial market processes
by the discrete-time random sequences is also studied. As regards purely theoretical results on
functional limit theorems in which the limit process is not Markov, we cite the papers Davydov (1970),
where the limit process is stationary, and Gorodetskii (1977), where the limit process is semi-stable
and Gaussian. In turn, with regard to memory modeling, considering the processes with short- or
long-range dependence, it is easiest to use fractional Brownian motion that is a Gaussian self-similar
process with stationary correlated increments. There are two approaches to the problem: To model
prices themselves using processes with memory, in particular, to consider the models involving fBm,
or to concentrate the model’s memory in stochastic volatility. The first approach has the peculiarity
that an ultimate market with memory allows arbitrage, while prelimit markets can be arbitrage-free.
The existence of arbitrage was first established in the paper Rogers (1997) and discussed in detail in
the book Mishura (2008). However, such an approach has the right to exist, if only because regardless
of possible financial applications, it is reasonable to prove functional limit theorems in which the
limit process is a fractional Brownian motion or some related process. For the first time, a discrete
approximation of fractional Brownian motion by a binomial market model was considered in the
paper Sottinen (2001), and a fairly thorough analysis of the number of arbitrage points in such a market
was made in the paper Cordero et al. (2016). However, even fractional Black–Scholes model can be
approximated by various discrete-time sequences, and the purpose of this article is to formulate and
illustrate by examples the functional limit theorem and its multiplicative version, in which both the
prelimit sequence of processes and the limiting process are quite general, but simple to consider.
Moreover, the fractional binomial market considered by Sottinen (2001) is a special case of our model.

Thus, the main objectives of this article and its novelty are as follows. To start with, we consider
an additive stochastic sequence that is based on the sequence of iid random variables and has the
coefficients that allow for this stochastic sequence to be dependent on the past. For such a sequence,
we formulate the conditions of the weak convergence to some limit process in terms of coefficients and
the characteristic function of any basic random variable. These conditions are stated in Theorem 1.
This theorem is of course a special case of general functional limit theorems, but it has the advantages
that it is formulated in terms of coefficients, that the coefficients are such that they immediately show
the dependence on the past, and that the limit process in it is not required to have any special properties
with respect to distribution, self-similarity etc. However, then, in order to apply our general theorem
to more practical situations, in Theorem 2 we adapt the general conditions to the case where the
limit process is Gaussian. Then we go to the multiplicative scheme in order to get the almost surely
positive limit process that can model the asset price on the financial market. So, we assume that all
multipliers in the prelimit multiplicative scheme are positive, and this imposes additional restrictions
on the coefficients, and in addition, we consider only Bernoulli basic random variables. The next
goal is to apply these general results to the case, where the limit processes in the additive scheme are
fractional Brownian motion (fBm) and Riemann–Liouville fBm. In the case of the limit fBm we consider
the prelimit processes that are constructed regarding to Cholesky decomposition of the covariance
function of fBm. The result concerning fBm is new in the sense that nobody before considered the
multiplicative scheme with exponent of fBm in the limit, and the result concerning Riemann–Liouville
fBm is new in the sense that nobody before considered Riemann–Liouville fBm itself and in exponent
as the limiting process. In both cases we were lucky in the sense that such coefficients are suitable
also for the multiplicative scheme. Our proofs require deep study of the properties of the Cholesky
decomposition for the covariance matrix of fBm. It turns out that all elements of the upper-triangular
matrix in this decomposition are positive and moreover, the rows of this matrix are increasing. We also
suppose that the columns of this matrix are decreasing. This conjecture is confirmed by numeric
results, however its proof remains an interesting open problem. For the moment, we can only prove
the uniform upper bound for the elements in each column, which is sufficient for our purposes.

As for stochastic volatility with memory, it is not considered in the present paper, but we can refer
the reader to Gatheral et al. (2018) and Bezborodov et al. (2019), among many others.
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The paper is organized as follows. In Section 2 we establish sufficient conditions for the weak
convergence of continuous-time random walks of rather general form to some limit in the space
D[0, T]. The case of Gaussian limit is studied in more detail. Multiplicative version of this result is also
obtained. Sections 3 and 5 are devoted to two particular examples of the general scheme investigated
in Section 2. In Section 3 we consider a discrete process that converges to fractional Brownian motion.
This example is based on Cholesky decomposition of the covariance matrix of fractional Brownian
motion. In Section 4 we investigate possible perturbations of the coefficients in the scheme, studied
in Section 3. Moreover, Section 4 contains a numerical example, which illustrates the results of
Section 3; moreover, we discuss there some our conjectures and open problems. Section 5 is devoted
to another example, where the limit process is a so-called Riemann–Liouville fractional Brownian
motion. In Appendix A we establish auxiliary results concerning the Cholesky decomposition of the
covariance matrix of a stationary Gaussian process. In particular, we explore the connection between
this decomposition and time series prediction problems.

2. General Conditions of Weak Convergence

Let T > 0, (Ω,F ,F = (Ft)t∈[0,T],P) be a stochastic basis, i.e., a complete probability space
(Ω,F , P) with a filtration F satisfying standard assumptions.

2.1. Convergence of Sums

For any N ≥ 1 consider the uniform partition
{

tN
k = kT/N, 0 ≤ k ≤ N

}
of [0, T]. Let {ξi, i ≥ 1}

be a sequence of iid random variables with E [ ξi ] = 0 and E
[

ξ2
i
]
= 1.

Assume we are given for each N ≥ 1 a triangular array of real numbers
{

cN
j,k, 1 ≤ j ≤ k ≤ N

}
.

Define a stochastic process

XN(tN
k ) =

k

∑
j=1

cN
j,kξ j, k = 0, 1, . . . , N;

let XN(t) = XN(tN
k−1) for t ∈ [tN

k−1, tN
k ), k = 1, . . . , N. Because of the dependence of the coefficients cN

j,k

on k, the increments of XN may depend on the past, and the dependence may be strong.
Let us first establish general conditions of weak convergence of the sequence

{
XN , N ≥ 1

}
in

terms of coefficients cN
j,k and characteristic function ϕ(λ) = E

[
eiλξ1

]
of the underlying noise. We use

the Skorokhod topology in the space of càdlàg functions D([0, T]). A detailed discussion of the
selection of topology can be found in D([0, T]) (Billingsley 1999, Chapter 13).

Theorem 1. Assume that the following assumptions hold:

(A1) There exists a stochastic process {X(t), t ∈ [0, T]} such that XN → X, N → ∞, in the sense of
finite-dimensional distributions, that is for any l ≥ 1,

0 = t0 < t1 < t2 < · · · < tl ≤ T, and λ1, . . . , λl ∈ R,

l

∏
n=1

[Ntn/T]

∏
p=[Ntn−1/T]+1

ϕ
( l

∑
m=n

λmcN
p,[Ntm/T]

)
→ E

[
exp

{
i

l

∑
n=1

λnX(tn)

}]
, N → ∞. (1)

(A2) There exist positive constants K and α such that for all integer N ≥ 1 and 0 ≤ j < k ≤ N

j

∑
n=1

(
cN

n,k − cN
n,j

)2
+

k

∑
n=j+1

(
cN

n,k

)2
≤ K

(
k− j

N

)1+α

. (2)

Then the weak convergence of measures holds: XN ⇒ X, N → ∞ in D([0, T]).
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Proof. First, note that

E

[
exp

{
i

l

∑
m=1

λmXN(tm)

}]
= E

[
exp

{
i

l

∑
m=1

λm

[Ntm/T]

∑
p=1

ξpcN
p,[Ntm/T]

}]

= E

 exp

i
l

∑
m=1

λm

m

∑
n=1

[Ntn/T]

∑
p=[Ntn−1/T]+1

ξpcN
p,[Ntm/T]




= E

 exp

i
l

∑
n=1

[Ntn/T]

∑
p=[Ntn−1/T]+1

ξp

l

∑
m=n

λmcN
p,[Ntm/T]




=
l

∏
n=1

[Ntn ]/T

∏
p=[Ntn−1/T]+1

ϕ
( l

∑
m=n

λmcN
p,[Ntm/T]

)
. (3)

Therefore, the convergence of finite-dimensional distributions is equivalent to Condition (1).
In order to prove the weak convergence, it suffices to establish the tightness of the sequence{

XN , N ≥ 1
}

. To start with, let us mention that for 0 ≤ t1 < t2 ≤ T,

E

[ (
XN(t2)− XN(t1)

)2
]

= E

([Nt1/T]

∑
n=1

(
cN

n,[Nt2/T] − cN
n,[Nt1/T]

)
ξn

)2 + E


 [Nt2/T]

∑
n=[Nt1/T]+1

cN
n,[Nt2/T] ξn

2


=
[Nt1/T]

∑
n=1

(
cN

n,[Nt2/T] − cN
n,[Nt1/T]

)2
+

[Nt2/T]

∑
n=[Nt1/T]+1

(
cN

n,[Nt2/T]

)2
=: AN(t1, t2). (4)

Further, let us prove that there exists C > 0 such that

AN(t1, t2)AN(t2, t3) ≤ C(t3 − t1)
2+2α (5)

for all N ≥ 1 and for all 0 ≤ t1 < t2 < t3 ≤ T. We consider two cases.
Case 1: t3 − t1 < T/N. In this case we have that [Nt3/T]− [Nt1/T] < N(t3 − t1)/T + 1 < 2,

which means that [Nt3/T]− [Nt1/T] ≤ 1. This implies that at least one of the following equalities
is true: [Nt1/T] = [Nt2/T] or [Nt2/T] = [Nt3/T]. If [Nt1/T] = [Nt2/T], then AN(t1, t2) = 0
and Inequality (5) holds for any C > 0. Similarly, it holds in the case [Nt2/T] = [Nt3/T], because
AN(t2, t3) = 0.

Case 2: t3 − t1 ≥ T/N. In this case

[Nt2/T]− [Nt1/T]
N

≤ t2 − t1

T
+

1
N
≤ 2(t3 − t1)

T
.

Then Condition (2) implies that

AN(t1, t2) ≤ K
(
[Nt2/T]− [Nt1/T]

N

)1+α

≤ K
(

2
T

)1+α

(t3 − t1)
1+α.

The same bound holds for AN(t2, t3). Therefore, we have

AN(t1, t2)AN(t2, t3) ≤ K2
(

2
T

)2+2α

(t3 − t1)
2+2α,

that is (5) holds with C = K2(2/T)2+2α.
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Thus, (5) is proved in both cases. Now using Inequalities (4) and (5), we may write

E
[ ∣∣∣XN(t2)− XN(t1)

∣∣∣ ∣∣∣XN(t3)− XN(t2)
∣∣∣ ]

≤
(
E

[ ∣∣∣XN(t2)− XN(t1)
∣∣∣2 ]E [ ∣∣∣XN(t3)− XN(t2)

∣∣∣2 ])1/2

=
(

AN(t1, t2)AN(t2, t3)
)1/2 ≤ C1/2(t3 − t1)

1+α.

Consequently, the sequence of processes is tight (Billingsley 1999, Theorem 13.5). Hence,
the statement follows.

If X is a Gaussian process, we can formulate the sufficient conditions for the convergence of
finite-dimensional distributions in terms of the covariance function.

Theorem 2. Assume that there exists a stochastic process X = {X(t), t ∈ [0, 1]} such that the following
conditions hold:

(C1) X is Gaussian and centered.
(C2) For all t, s ∈ [0, 1],

[Nt]∧[Ns]

∑
j=1

cN
j,[Nt]c

N
j,[Ns] → cov

(
X(t), X(s)

)
, as N → ∞.

(C3) max
1≤j≤k≤N

∣∣∣cN
j,k

∣∣∣→ 0, as N → ∞.

Then the finite-dimensional distributions of XN converge to those of X as N → ∞.

Proof. Let us consider the characteristic function of l-dimensional distribution:

E

[
exp

{
i

l

∑
m=1

λmXN(tm)

}]
, 0 = t0 < t1 < t2 < · · · < tl ≤ 1, λ1, . . . , λl ∈ R.

According to (3),

ZN :=
l

∑
m=1

λmXN(tm) =
[Ntl ]

∑
p=1

αN,pξp,

where for 1 ≤ n ≤ l, [Ntn−1] + 1 ≤ p ≤ [Ntn], N ≥ 1, we define

αN,p :=
l

∑
m=n

λmcN
p,[Ntm ].

For every N ≥ 1, the random variables ηN,p := αN,pξp, p ≥ 1, are independent. We will apply

Lindeberg’s CLT (see Billingsley 1995, Theorem 27.2) for the scheme of series
{

ηN,1, . . . , ηN,[Ntl ]

}
.

Let us calculate the variance:



Risks 2020, 8, 11 6 of 29

σ2
N := Var

(
[Ntl ]

∑
p=1

ηN,p

)
=

[Ntl ]

∑
p=1

α2
N,p =

l

∑
n=1

[Ntn ]

∑
p=[Ntn−1]+1

(
l

∑
m=n

λmcN
p,[Ntm ]

)2

=
l

∑
n=1

[Ntn ]

∑
p=[Ntn−1]+1

l

∑
m=n

l

∑
q=n

λmλqcN
p,[Ntm ]c

N
p,[Ntq ]

=
l

∑
m=1

l

∑
q=1

λmλq

m∧q

∑
n=1

[Ntn ]

∑
p=[Ntn−1]+1

cN
p,[Ntm ]c

N
p,[Ntq ]

=
l

∑
m=1

l

∑
q=1

λmλq

[Ntm ]∧[Ntq ]

∑
p=1

cN
p,[Ntm ]c

N
p,[Ntq ]

.

Hence, by the assumption (C2), we have

σ2
N →

l

∑
m=1

l

∑
q=1

λmλq cov
(
X(tm), X(tq)

)
, N → ∞. (6)

Now we are ready to verify Lindeberg’s condition. We have for any ε > 0

LN(ε) :=
1

σ2
N

[Ntl ]

∑
p=1

E
[

η2
N,p1{|ηN,p|≥εσN}

]
=

1
σ2

N

[Ntl ]

∑
p=1

α2
N,pE

 ξ2
p1
{
|ξp|≥ εσN

|αN,p|

}
 .

We can estimate
∣∣αN,p

∣∣ for [Ntn−1] + 1 ≤ p ≤ [Ntn] as follows

∣∣αN,p
∣∣ = ∣∣∣∣∣ l

∑
m=n

λmcN
p,[Ntm ]

∣∣∣∣∣ ≤ max
1≤j≤k≤N

∣∣∣cN
j,k

∣∣∣ l

∑
m=1
|λm| .

Therefore,
σN∣∣αN,p
∣∣ ≥ σN

max1≤j≤k≤N

∣∣∣cN
j,k

∣∣∣∑l
m=1 |λm|

=: aN .

Note that due to (C3) and (6), aN → +∞, N → ∞. Hence,

LN(ε) ≤
1

σ2
N

[Ntl ]

∑
p=1

α2
N,pE

[
ξ2

p1{|ξp|≥εaN}
]
=

1
σ2

N

(
[Ntl ]

∑
p=1

α2
N,p

)
E
[

ξ2
11{|ξ1|≥εaN}

]
,

because ξp, p ≥ 1, are iid. Since σ2
N = ∑

[Ntl ]
p=1 α2

N,p, we see that

LN(ε) ≤ E
[

ξ2
11{|ξ1|≥εaN}

]
→ 0, N → ∞,

by the dominated convergence theorem.
According to Lindeberg’s CLT, ZN → N(0, σ2), where

σ2 = lim
N→∞

σ2
N =

l

∑
m=1

l

∑
q=1

λmλq cov
(
X(tm), X(tq)

)
,
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see (6). Thus,

E

[
exp

{
i

l

∑
m=1

λmXN(tm)

}]
= E [ exp {iZN} ]→ exp

{
−σ2

2

}

= exp

{
−1

2

l

∑
m=1

l

∑
q=1

λmλq cov
(
X(tm), X(tq)

)}
= E

[
exp

{
i

l

∑
m=1

λmX(tm)

}]
.

2.2. Multiplicative Scheme

Consider now a multiplicative counterpart of the process considered above. Namely,
let
{

bN
j,k, 1 ≤ j ≤ k ≤ N

}
be a triangular array of real numbers. Define

SN(t) =
[Nt/T]

∏
k=1

(1 + ZN
k ), t ∈ [0, T],

where

ZN
k =

k

∑
j=1

bN
j,kξ j, k = 1, . . . , N.

To assure that the values of SN are positive, we assume that {ξn, n ≥ 1} are iid Rademacher
variables, i.e., P(ξn = 1) = P(ξn = −1) = 1/2, and that bN

j,k satisfy the following assumption:

k

∑
j=1

∣∣∣bN
j,k

∣∣∣ < 1, k = 1, . . . , N.

Our aim is to investigate the weak convergence of SN to some positive process S. It is more
convenient to work with logarithms, i.e. to consider

log SN(t) =
[Nt/T]

∑
k=1

log(1 + ZN
k ), t ∈ [0, T].

We will need a uniform version of the above boundedness assumption:

(B1) sup
N≥1,k=1,...,N

k

∑
j=1

∣∣∣bN
j,k

∣∣∣ < 1.

We will also need the following assumption

(B2)
N

∑
k=1

k

∑
j=1

(
bN

j,k

)2
→ 0, N → ∞.

Theorem 3. Assume (B1) and (B2). Let also the assumptions (A1) and (A2) hold for

cN
j,k =

k

∑
i=j

bN
j,i, 1 ≤ j ≤ k ≤ N,

with some process X. Then
{

SN(t), t ∈ [0, T]
}

converges in D([0, T]) to
{

S(t) = eX(t), t ∈ [0, T]
}

.

Proof. Let supN≥1,k=1,...,N ∑k
j=1

∣∣∣bN
j,k

∣∣∣ = a ∈ (0, 1).
By the Taylor formula, for x ∈ (−a, a),

log(1 + x) = x− θ(x)x2,
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where 0 < θ(x) ≤ C(a). Therefore,

log SN(t) =
[Nt/T]

∑
k=1

log(1 + ZN
k ) =

[Nt/T]

∑
k=1

ZN
k −

[Nt/T]

∑
k=1

θ(ZN
k )
(

ZN
k

)2
=: XN

1 (t) + XN
2 (t).

Write

XN
1 (t) =

[Nt/T]

∑
k=1

k

∑
j=1

bN
j,kξ j =

[Nt/T]

∑
j=1

ξ j

[Nt/T]

∑
k=j

bN
j,k =

[Nt/T]

∑
j=1

cN
j,kξ j.

By Theorem 1, XN
1 ⇒ X in D([0, T]). Further,

E

[
sup

t∈[0,T]

∣∣∣XN
2 (t)

∣∣∣ ] ≤ C(a)
N

∑
k=1

E

[ (
ZN

k

)2
]
= C(a)

N

∑
k=1

k

∑
j=1

∣∣∣bN
j,k

∣∣∣2 → 0, N → ∞.

Therefore, supt∈[0,T]
∣∣XN

2 (t)
∣∣ P→ 0, N → ∞, so XN

2 ⇒ 0, N → ∞, in D([0, T]). By Slutsky’s theorem
(see, e.g., Grimmett and Stirzaker 2001, p. 318), we get log SN ⇒ X, N → ∞, in D([0, T]), whence the
claim follows.

Remark 1. The statement of Theorem 3 remains valid, if we replace Rademacher random variables by any other
sequence {ξn, n ≥ 1} of iid random variables such that E[ξn] = 0, E[ξ2

n] = 1, and |ξn| ≤ 1 for all n ≥ 1.
The latter condition along with the assumption (B1) ensures that ZN

k > −1 for all 1 ≤ k ≤ N, and consequently,
the values of SN are positive.

3. Fractional Brownian Motion as a Limit Process and Prelimit Coefficients Taken from Cholesky
Decomposition of its Covariance Function

Let H ∈ ( 1
2 , 1), T = 1. Let BH =

{
BH

t , t ∈ [0, 1]
}

be a fractional Brownian motion, i.e., a centered
Gaussian process with covariance function

R(s, t) =
1
2

(
s2H + t2H − |t− s|2H

)
. (7)

For N ≥ 1 we define the triangular array
{

dj,k, 1 ≤ j ≤ k ≤ N
}

by the following relation:

p∧r

∑
j=1

dj,pdj,r = R(p, r). (8)

It is known that such sequence
{

dj,k, 1 ≤ j ≤ k ≤ N
}

exists and it is unique, since (8) is the
Cholesky decomposition of positively definite matrix (the covariance matrix of fBm).

Define

cN
j,k =

dj,k

NH . (9)

Theorem 4. Let {ξi, i ≥ 1} be a sequence of iid random variables with E [ ξi ] = 0 and E
[

ξ2
i
]
= 1. Assume

that
{

cN
j,k, 1 ≤ j ≤ k ≤ N

}
are defined by (9) and

XN(t) =
[Nt]

∑
j=1

cN
j,[Nt]ξ j, t ∈ [0, 1].

Then XN → BH , N → ∞, weakly in D([0, 1]).
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In order to prove Theorem 4, we need to verify the conditions of Theorem 1 in the particular case
X = BH . Since fractional Brownian motion is a Gaussian process, we will use Theorem 2 in order to
prove the convergence of finite-dimensional distributions. Let us start with assumption (A2).

Lemma 1. Let
{

cj,k, 1 ≤ j ≤ k ≤ N
}

be defined by (9). Then for all 1 ≤ j < k ≤ N,

j

∑
n=1

(
cN

n,k − cN
n,j

)2
+

k

∑
n=j+1

(
cN

n,k

)2
=

(k− j)2H

N2H .

Proof. By applying successively (9), (8) and (7), we get

j

∑
n=1

(
cN

n,k − cN
n,j

)2
+

k

∑
n=j+1

(
cN

n,k

)2

=
1

N2H

(
j

∑
n=1

(
dn,k − dn,j

)2
+

k

∑
n=j+1

(dn,k)
2

)

=
1

N2H

(
j

∑
n=1

(dn,j)
2 +

k

∑
n=1

(dn,k)
2 − 2

j

∑
n=1

dn,jdn,k

)

=
1

N2H (R(j, j) + R(k, k)− 2R(j, k))

=
(k− j)2H

N2H .

Thus the assumption (A2) holds. In order to check the condition (A1), we will use Theorem 2.
First, we will establish some further properties of the coefficients dj,k. Let us consider the discrete-time
stochastic process Gk := BH

k − BH
k−1, k ≥ 1. It is a stationary process with covariance

γk = E [ G1Gk+1 ] = E
[

BH
1

(
BH

k+1 − BH
k

) ]
=

1
2

(
|k + 1|2H + |k− 1|2H − 2 |k|2H

)
. (10)

In other words, (G1, G2, . . . , GN)
> is a centered Gaussian vector with covariance matrix

ΓN =



γ0 γ1 γ2 . . . γN−2 γN−1

γ1 γ0 γ1 . . . γN−3 γN−2

γ2 γ1 γ0 . . . γN−4 γN−3
...

...
...

. . .
...

...
γN−2 γN−3 γN−4 . . . γ0 γ1

γN−1 γN−2 γN−3 . . . γ1 γ0


. (11)

Lemma 2. The Cholesky decomposition of ΓN , given by

ΓN =


`1,1 0 0 . . . 0
`1,2 `2,2 0 . . . 0
`1,3 `2,3 `3,3 . . . 0

...
...

...
. . .

...
`1,N `2,N `3,N . . . `N,N




`1,1 `1,2 `1,3 . . . `1,N
0 `2,2 `2,3 . . . `2,N
0 0 `3,3 . . . `3,N
...

...
...

. . .
...

0 0 0 . . . `N,N


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has the following properties

`i,j ≥ 0, 1 ≤ i ≤ j ≤ N, (12)√
2− 22H−1 ≤ `i,i ≤ 1 = `1,1, 1 ≤ i ≤ N. (13)

Remark 2. Similarly to (8), we can write the Cholesky decomposition of ΓN coordinatewise as follows

p∧r

∑
j=1

`j,p`j,r = γp−r p, r ∈ {1, . . . , N} . (14)

Proof. In order to prove (12), we will apply (Berenhaut and Bandyopadhyay 2005, Theorem 1). To this
end we need to verify the following conditions on the sequence {γ0, γ1, . . . , γN}:

(a) Monotonicity and positivity:

γ0 ≥ γ1 ≥ γ2 ≥ · · · ≥ γN ≥ 0; (15)

(b) Convexity:
γ0 − γ1 ≥ γ1 − γ2 ≥ · · · ≥ γN−1 − γN ≥ 0. (16)

Note that by (10),
γ0 = 1 and γ1 = 22H−1 − 1, (17)

hence, γ1 ≤ γ0 (recall that 1/2 < H < 1). For k ≥ 1, we have

γk = H(2H − 1)
∫ 1

0

∫ 1

0
(z− y + k)2H−2 dz dy

≥ H(2H − 1)
∫ 1

0

∫ 1

0
(z− y + k + 1)2H−2 dz dy = γk+1,

(18)

whence (15) follows.
Now let us prove (16). By (17), γ0 − γ1 = 2− 22H−1. Applying (18), we may write

γ1 − γ2 = H(2H − 1)
∫ 1

0

∫ 1

0

(
(z− y + 1)2H−2 − (z− y + 2)2H−2

)
dz dy

= H(2H − 1)(2− 2H)
∫ 1

0

∫ 1

0

∫ 1

0
(z− y + 1 + u)2H−3 du dz dy

≤ H(2H − 1)(2− 2H)
∫ 1

0

∫ 1

0

∫ 1

0
(z + u)2H−3 du dz dy

= H(2H − 1)
∫ 1

0

(
z2H−2 − (z + 1)2H−2

)
dz

= H
(

2− 22H−1
)
≤ 2− 22H−1 = γ0 − γ1, (19)

here we have used that the function y 7→ (z − y + 1 + u)2H−3 is increasing for any z, u ∈ (0, 1).
Similarly, for k ≥ 2, we have

γk − γk+1 = H(2H − 1)(2− 2H)
∫ 1

0

∫ 1

0

∫ 1

0
(z− y + k + u)2H−3 du dz dy

≤ H(2H − 1)(2− 2H)
∫ 1

0

∫ 1

0

∫ 1

0
(z− y + k− 1 + u)2H−3 du dz dy = γk−1 − γk.

Hence, (16) is proved.
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Then by applying (Berenhaut and Bandyopadhyay 2005, Theorem 1) we get (12). Further,
by (Berenhaut and Bandyopadhyay 2005, Corollary 1), we have the following lower bound

`i,i ≥
√

γ0 − γ1 + γj−1(γj−2 − γj−1), 2 ≥ i ≥ N,

whence
`i,i ≥

√
γ0 − γ1 =

√
2− 22H−1, 2 ≥ i ≥ N.

Finally, Equality (14) implies that

p

∑
j=1

`2
j,p = γ0 = 1, 1 ≤ p ≤ N.

Therefore, `1,1 = 1 and `p,p ≤ 1 for all 1 ≤ p ≤ N.

It is not hard to see that the sequences
{

dj,k, 1 ≤ j ≤ k ≤ N
}

and
{
`j,k, 1 ≤ j ≤ k ≤ N

}
are related

as follows

`j,k =

{
dj,k − dj,k−1, j < k,

dj,j, j = k.
(20)

Indeed, by (8) we have

γp−r = cov(BH
p − BH

p−1, BH
r − BH

r−1)

=
p∧r

∑
j=1

dj,pdj,r −
p∧(r−1)

∑
j=1

dj,pdj,r−1 −
(p−1)∧r

∑
j=1

dj,p−1dj,r +
(p−1)∧(r−1)

∑
j=1

dj,p−1dj,r−1

=
p∧r

∑
j=1

(
dj,p − dj,p−1

) (
dj,r − dj,r−1

)
(here dp,p−1 := 0), and comparing this expression with (14), we see that (20) holds. From (20) and
Lemma 2, we immediately obtain the following result.

Lemma 3. The coefficients di,j, 1 ≤ i ≤ j ≤ N are increasing with respect to j and are positive:

0 <
√

2− 22H−1 ≤ di,i ≤ di,i+1 ≤ · · · ≤ di,N , 1 ≤ i ≤ N; (21)

moreover,

di,i ≤ 1 = d1,1, 1 ≤ i ≤ N. (22)

Lemma 4. For all r ≥ 1,
max
1≤j≤r

dj,r ≤ CHr2H−1, (23)

where CH = H·22−2H
√

2−22H−1 .

Proof. By (8), for 1 < j < r we have
j

∑
i=1

di,jdi,r = R(j, r).
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Therefore, taking into account Inequality (21), we get

dj,jdj,r = R(j, r)−
j−1

∑
i=1

di,jdi,r ≤ R(j, r)−
j−1

∑
i=1

di,j−1di,r = R(j, r)− R(j− 1, r)

=
1
2

(
j2H − (r− j)2H − (j− 1)2H + (r− j + 1)2H

)
= H

∫ j

j−1

(
x2H−1 + (r− x)2H−1

)
dx.

Note that the maximal value of the function f (x) = x2H−1 + (r− x)2H−1, x ∈ [0, r], is attained at
the point x = r

2 and equals f ( r
2 ) = 2 · ( r

2 )
2H−1 = 22−2Hr2H−1. Therefore

dj,jdj,r ≤ H · 22−2Hr2H−1.

Using (21), we get

dj,r ≤
H · 22−2Hr2H−1

dj,j
≤ H · 22−2Hr2H−1
√

2− 22H−1
.

Similarly, in the case j = 1 we have

d1,r = R(1, r) =
1
2

(
1 + r2H − (r− 1)2H

)
= H

∫ 1

0

(
x2H−1 + (r− x)2H−1

)
dx

≤ H · 22−2Hr2H−1 ≤ CHr2H−1. (24)

Finally, if j = r, then using (21), (22) and (24), we obtain

dr,r ≤ d1,1 ≤ d1,r ≤ CHr2H−1.

Remark 3. Lemma 4 claims that max1≤j≤r dj,r = O(r2H−1), as r → ∞. Note that the asymptotic rate of
convergence O(r2H−1) is exact, since

max
1≤j≤r

dj,r ≥ d1,r =
1
2

(
1 + r2H − (r− 1)2H

)
= Hr2H−1 + O(r2H−2), r → ∞.

Moreover, we suppose that max1≤j≤r dj,r = d1,r, however, the proof of this equality remains an open
problem, Section 4 for further details.

Lemma 5. Let XN be the process defined in Theorem 4. Then the finite-dimensional distributions of XN

converge to those of BH .

Proof. Let us check the conditions of Theorem 2. Evidently, the assumption (C1) holds, because
fractional Brownian motion is a centered Gaussian process.

The verification of (C2) is straightforward. Applying (8), we get

[Nt]∧[Ns]

∑
j=1

cN
j,[Nt]c

N
j,[Ns] =

1
N2H

[Nt]∧[Ns]

∑
j=1

dj,[Nt]dj,[Ns] =
1

N2H R([Nt], [Ns])

= R
(
[Nt]

N
,
[Ns]

N

)
→ R (t, s) , N → ∞. (25)
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Finally, using Lemma 4, we can estimate

max
1≤j≤k≤N

∣∣∣cN
j,k

∣∣∣ = 1
NH max

1≤j≤k≤N
dj,k ≤

CH

NH max
1≤k≤N

k2H−1 =
CH

NH max
1≤k≤N

k2H−1 = CH NH−1 → 0, N → ∞.

(26)
Hence, the assumption (C3) also holds.
Thus, the result follows from Theorem 2.

Multiplicative Scheme

Now let us verify the conditions of Theorem 3 for the sequence

bN
j,k =


dj,k−dj,k−1

NH , j < k,
dj,j
NH , j = k.

(27)

Evidently
k

∑
i=j

bN
j,i =

dj,k

NH = cN
j,k, (28)

where the coefficients cN
j,k are defined by (9). Hence, the conditions of Theorem 1 for cN

j,k are satisfied.
In the following Lemmas 6 and 7 we check the assumptions (B2) and (B1), respectively.

Lemma 6. Let
{

bj,k, 1 ≤ j ≤ k ≤ N
}

be defined by (27). Then

N

∑
k=1

k

∑
j=1

(
bN

j,k

)2
→ 0, as N → ∞.

Proof. It follows from (27), (8) and (7) that for all 1 ≤ k ≤ N,

k

∑
j=1

(
bN

j,k

)2
=

1
N2H

(
k−1

∑
j=1

(
dj,k − dj,k−1

)2
+ (dk,k)

2

)

=
1

N2H

(
k

∑
j=1

(
dj,k

)2
+

k−1

∑
j=1

(
dj,k−1

)2
− 2

k−1

∑
j=1

dj,kdj,k−1

)

=
1

N2H (R(k, k) + R(k− 1, k− 1)− 2R(k, k− 1))

=
1

N2H

(
k2H + (k− 1)2H − k2H − (k− 1)2H + 1

)
=

1
N2H . (29)

Therefore
N

∑
k=1

k

∑
j=1

(
bN

j,k

)2
= N1−2H → 0, as N → ∞.

Lemma 7. Let
{

bj,k, 1 ≤ j ≤ k ≤ N
}

be defined by (27). Then

sup
N≥2,1≤k≤N

k

∑
j=1

∣∣∣bN
j,k

∣∣∣ < 1.
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Proof. Using the Cauchy–Schwarz inequality and equality (29), we obtain that for N≥ 2 and 1≤ k≤N,

k

∑
j=1

∣∣∣bN
j,k

∣∣∣ ≤
√√√√k

k

∑
j=1

(
bN

j,k

)2
=

√
k

NH ≤ N
1
2−H < 1. (30)

Thus, we have proved that all assumptions of Theorem 3 are satisfied. As a consequence, we obtain
the following result.

Theorem 5. Assume that
{

bN
j,k, 1 ≤ j ≤ k ≤ n

}
is a triangular array of real numbers defined by (27) and{

ξ j, j ≥ 1
}

are iid Rademacher random variables. Then the sequence of stochastic processes{
SN(t) =

[Nt]

∏
k=1

(
1 +

k

∑
j=1

bN
j,kξ j

)
, t ∈ [0, 1]

}

converge in D[0, 1] to
{

S(t) = eBH(t), t ∈ [0, 1]
}

.

Remark 4. Theorems 4 and 5 suggest one of possible ways to approximate fractional Brownian motion by
a discrete model. Another scheme was proposed by Sottinen (2001). It worth noting that his approximation is
also a particular case of the general scheme described in Section 2, but with the following coefficients:

cN
j,k =

√
N
∫ j

N

j−1
N

z
(

k
N

, s
)

ds,

where

z(t, s) =

√√√√ 2HΓ( 3
2 − H)

Γ(H + 1
2 )Γ(2− 2H)

(
H − 1

2

)
s

1
2−H

∫ t

s
uH− 1

2 (u− s)H− 3
2 du.

Note that assumptions (A1) and (A2) for such cN
j,k are verified in the proof of (Sottinen 2001, Theorem 1);

in particular, the tightness condition (A2) is established in (Sottinen 2001, Equation (8)).
The coefficients bN

j,k of the corresponding multiplicative scheme are equal to

bN
j,k =


cN

j,k − cN
j,k−1 =

√
N
∫ j

N
j−1
N

(
z
(

k
N , s

)
− z

(
k−1

N , s
))

ds, j ≤ k− 1,

cN
k,k =

√
N
∫ k

N
k−1

N
z
(

k
N , s

)
ds, j = k.

Then, by the Cauchy–Schwarz inequality, we have

k

∑
j=1

(
bN

j,k

)2
= N

k−1

∑
j=1

(∫ j
N

j−1
N

(
z
(

k
N

, s
)
− z

(
k− 1

N
, s
))

ds

)2

+ N

(∫ k
N

k−1
N

z
(

k
N

, s
)

ds

)2

≤
k−1

∑
j=1

∫ j
N

j−1
N

(
z
(

k
N

, s
)
− z

(
k− 1

N
, s
))2

ds +
∫ k

N

k−1
N

z
(

k
N

, s
)2

ds

=
∫ k−1

N

0
z
(

k− 1
N

, s
)2

ds +
∫ k

N

0
z
(

k
N

, s
)2

ds− 2
∫ k−1

N

0
z
(

k
N

, s
)

z
(

k− 1
N

, s
)

ds. (31)
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The function z(t, s) is the kernel of the following Molchan–Golosov representation of the fractional Brownian
motion as an integral with respect to Wiener process W = {Wt, t ≥ 0}:

BH =
∫ t

0
z(t, s) dWs.

Therefore the covariance function of BH equals

R(t, s) =
∫ t∧s

0
z(t, u)z(s, u) du,

and we obtain from (31) that

k

∑
j=1

(
bN

j,k

)2
≤ R

(
k− 1

N
,

k− 1
N

)
+ R

(
k
N

,
k
N

)
− 2R

(
k− 1

N
,

k
N

)
=

1
N2H . (32)

Conditions (B2) and (B1) are derived from the bound (32) similarly to the derivation of Lemmas 6 and 7
from Equality (29).

4. Possible Perturbations of the Coefficients in Cholesky Decomposition. Numerical Example
and Discussion of Open Problems

4.1. Possible Perturbations of the Coefficients in Cholesky Decomposition

We now discuss the question how it is possible to perturb the coefficients (8) and (9) in the
pre-limit sequence so that the convergence to fractional Brownian motion is preserved. In this sense,
we estimate the rate of convergence of the perturbations to zero, sufficient to preserve the convergence.

Theorem 6. 1. Let the coefficients
{

cN
j,k, 1 ≤ j ≤ k ≤ N

}
and the random variables {ξi, i ≥ 1} be the same as

in Theorem 4. Consider the perturbed coefficients

c̃N
j,k = cN

j,k + εN
j ,

where a sequence {εN
j , 1 ≤ j ≤ N} satisfies the following conditions:

(i) There exist positive constants C and α such that

k

∑
n=j+1

(
εN

n

)2
≤ C

(
k− j

N

)1+α

for all 0 ≤ j < k ≤ N;

(ii)
N

∑
j=1

(
εN

j

)2
→ 0, as N → ∞.

Then the processes

XN(t) =
[Nt]

∑
j=1

c̃N
j,[Nt]ξ j, t ∈ [0, 1],

converge to BH , as N → ∞, weakly in D([0, 1]).
2. Assume, additionally, that the following assumption holds:

(iii) There exists N0 > 0 such that for all N ≥ N0,

∣∣∣εN
j

∣∣∣ < 1− j1/2

NH ,
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and
{

ξ j, j ≥ 1
}

are iid Rademacher random variables. Let

b̃N
j,k =

c̃N
j,k − c̃N

j,k−1, j < k,

c̃N
j,j, j = k.

Then the sequence of stochastic processes{
SN(t) =

[Nt]

∏
k=1

(
1 +

k

∑
j=1

b̃N
j,kξ j

)
, t ∈ [0, 1], N ≥ N0

}

converge in D[0, 1] to
{

S(t) = eBH(t), t ∈ [0, 1]
}

.

Proof. 1. Let us prove that the conditions (A2), (C2) and (C3) remain valid, if we replace the coefficients
cN

j,k by c̃N
j,k. Applying (i) and Lemma 1, we get

j

∑
n=1

(
c̃N

n,k − c̃N
n,j

)2
+

k

∑
n=j+1

(
c̃N

n,k

)2
=

j

∑
n=1

(
cN

n,k − cN
n,j

)2
+

k

∑
n=j+1

(
cN

n,k + εN
n

)2

≤ 2
j

∑
n=1

(
cN

n,k − cN
n,j

)2
+ 2

k

∑
n=j+1

(
cN

n,k

)2
+ 2

k

∑
n=j+1

(
εN

n

)2

≤ 2
(

k− j
N

)2H
+ 2C

(
k− j

N

)1+α

,

whence (A2) follows.
Further, for 0 ≤ s ≤ t ≤ 1, we have

[Nt]∧[Ns]

∑
j=1

c̃N
j,[Nt] c̃

N
j,[Ns] =

[Ns]

∑
j=1

(
cN

j,[Nt] + εN
j

) (
cN

j,[Ns] + εN
j

)

=
[Ns]

∑
j=1

cN
j,[Nt]c

N
j,[Ns] +

[Ns]

∑
j=1

(
εN

j

)2
+

[Ns]

∑
j=1

εN
j cN

j,[Ns] +
[Ns]

∑
j=1

εN
j cN

j,[Nt]. (33)

The first term in the right-hand side of (33) converges to R(t, s) by (25), as N → ∞. The second term

is bounded by the sum ∑N
j=1

(
εN

j

)2
, which tends to zero according to assumption (ii). Using the

Cauchy–Schwarz and (7), we can bound the third term as follows:

∣∣∣∣∣[Ns]

∑
j=1

εN
j cN

j,[Ns]

∣∣∣∣∣ ≤
√√√√[Ns]

∑
j=1

(
εN

j

)2 [Ns]

∑
j=1

(
cN

j,[Ns]

)2
≤

√√√√ N

∑
j=1

(
εN

j

)2
R
(
[Ns]

N
,
[Ns]

N

)
→ 0, as N → ∞,

by (ii), since R
(
[Ns]

N , [Ns]
N

)
=
(
[Ns]

N

)2H
→ s2H , as N → ∞. Similarly, for the forth term we have

∣∣∣∣∣[Ns]

∑
j=1

εN
j cN

j,[Nt]

∣∣∣∣∣ ≤
√√√√[Ns]

∑
j=1

(
εN

j

)2 [Ns]

∑
j=1

(
cN

j,[Nt]

)2
≤

√√√√ N

∑
j=1

(
εN

j

)2 [Nt]

∑
j=1

(
cN

j,[Nt]

)2
→ 0, as N → ∞.

Thus, ∑
[Nt]∧[Ns]
j=1 c̃N

j,[Nt] c̃
N
j,[Ns] → R(t, s), as N → ∞, i. e. the assumption (C2) is verified.
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Finally, the assumption (C3) also holds true, since

max
1≤j≤k≤N

∣∣∣c̃N
j,k

∣∣∣ ≤ max
1≤j≤k≤N

∣∣∣cN
j,k

∣∣∣+ max
1≤j≤N

∣∣∣εN
j

∣∣∣ ,

max1≤j≤k≤N

∣∣∣cN
j,k

∣∣∣→ 0, N → ∞, by (26), and max1≤j≤N

∣∣∣εN
j

∣∣∣ ≤ √∑N
j=1

(
εN

j

)2
→ 0, N → ∞, by (ii).

2. Now let us verify the conditions (B1) and(B2) for the convergence of the corresponding
multiplicative scheme. Note that

b̃N
j,k =

c̃N
j,k − c̃N

j,k−1, j < k,

c̃N
j,j, j = k.

=

cN
j,k − cN

j,k−1, j < k,

c̃N
j,j + εN

j , j = k.
=

bN
j,k, j < k,

bN
j,j + εN

j , j = k.
(34)

Therefore,

k

∑
j=1

(
b̃N

j,k

)2
=

k−1

∑
j=1

(
bN

j,k

)2
+
(

bN
k,k + εN

k

)2
≤ 2

k

∑
j=1

(
bN

j,k

)2
+ 2

(
εN

k

)2
.

Consequently, using (ii) and Lemma 6 we get

N

∑
k=1

k

∑
j=1

(
b̃N

j,k

)2
≤ 2

N

∑
k=1

k

∑
j=1

(
bN

j,k

)2
+ 2

N

∑
k=1

(
εN

k

)2
→ 0, as N → ∞,

i. e., (B2) holds. Applying successively (34), (30), and (iii), we get

k

∑
j=1

∣∣∣b̃N
j,k

∣∣∣ ≤ k

∑
j=1

∣∣∣bN
j,k

∣∣∣+ ∣∣∣εN
k

∣∣∣ ≤ k1/2

NH +
∣∣∣εN

k

∣∣∣ < 1,

for all N ≥ N0 and all 1 ≤ k ≤ N. Hence, the assumption (B1) is also satisfied, and the convergence of
the multiplicative scheme follows from Theorem 3.

Example 1. The following sequences of εN
j satisfy the conditions (i)–(iii) of Theorem 6:

• εN
j = 1

Nβ , β > 1
2 ,

• εN
j = jγ

Nβ , γ ≥ 0, β− γ > 1
2 .

4.2. Numerical Example and Discussion of Open Problems

First, let us illustrate the results of Section 3 with a numerical example. Take H = 0.75, N = 10. In
this case the covariance matrix of fractional Brownian motion

{
R(j, k) = cov(BH

j , BH
k ), j, k = 1, . . . , 10

}
equals

1.00000 1.41421 1.68386 1.90192 2.09017 2.25830 2.41166 2.55358 2.68629 2.81139
1.41421 2.82843 3.51229 4.00000 4.40631 4.76268 5.08417 5.37945 5.65408 5.91189
1.68386 3.51229 5.19615 6.09808 6.77403 7.34847 7.85821 8.32161 8.74961 9.14933
1.90192 4.00000 6.09808 8.00000 9.09017 9.93426 10.6621 11.3137 11.9098 12.4629
2.09017 4.40631 6.77403 9.09017 11.1803 12.4386 13.4361 14.3058 15.0902 15.8114
2.25830 4.76268 7.34847 9.93426 12.4386 14.6969 16.1086 17.248 18.2504 19.1599
2.41166 5.08417 7.85821 10.6621 13.4361 16.1086 18.5203 20.0738 21.3459 22.4734
2.55358 5.37945 8.32161 11.3137 14.3058 17.248 20.0738 22.6274 24.3137 25.7109
2.68629 5.65408 8.74961 11.9098 15.0902 18.2504 21.3459 24.3137 27.0000 28.8114
2.81139 5.91189 9.14933 12.4629 15.8114 19.1599 22.4734 25.7109 28.8114 31.6228


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Then the upper-triangular matrix of its Cholesky decomposition is given by

1 1.41421 1.68386 1.90192 2.09017 2.2583 2.41166 2.55358 2.68629 2.81139
0 0.91018 1.24256 1.43958 1.59349 1.7238 1.83873 1.94263 2.03816 2.12704
0 0 0.90378 1.22457 1.41016 1.55336 1.67362 1.77909 1.87406 1.96107
0 0 0 0.90040 1.21504 1.39427 1.53132 1.6457 1.74555 1.83513
0 0 0 0 0.89857 1.20967 1.38511 1.51842 1.62917 1.72551
0 0 0 0 0 0.89741 1.20618 1.37909 1.50985 1.61811
0 0 0 0 0 0 0.89661 1.20373 1.37483 1.50375
0 0 0 0 0 0 0 0.89603 1.20192 1.37165
0 0 0 0 0 0 0 0 0.89558 1.20053
0 0 0 0 0 0 0 0 0 0.89523


We see that this example confirms the results of Lemmas 3 and 4. In particular, all elements of this

matrix are non-negative and its rows are increasing. Moreover, all diagonal elements are less or equal
than 1, and are bigger than

√
2− 22H−1 = 0.76537. Furthermore, the bound (23) also holds. Indeed, for

H = 0.75, CH = H·22−2H
√

2−22H−1 = 1.38582. For example, for r = 10 we have that max1≤j≤10 dj,10 = 2.81139

is less than CH · 102H−1 = 4.38235.
We suppose that the columns of the above matrix are decreasing. More precisely, our conjecture

can be formulated as follows.

Conjecture A1. For all r ≥ 1,
d1,r > d2,r > · · · > dr,r.

However, the proof of this fact is an open problem.

Further, the corresponding covariance matrix of the increments process BH
k − BH

k−1, k = 1, . . . , 10,
is equal to

1.00000 0.41421 0.26965 0.21806 0.18825 0.16813 0.15336 0.14192 0.13271 0.12510
0.41421 1.00000 0.41421 0.26965 0.21806 0.18825 0.16813 0.15336 0.14192 0.13271
0.26965 0.41421 1.00000 0.41421 0.26965 0.21806 0.18825 0.16813 0.15336 0.14192
0.21806 0.26965 0.41421 1.00000 0.41421 0.26965 0.21806 0.18825 0.16813 0.15336
0.18825 0.21806 0.26965 0.41421 1.00000 0.41421 0.26965 0.21806 0.18825 0.16813
0.16813 0.18825 0.21806 0.26965 0.41421 1.00000 0.41421 0.26965 0.21806 0.18825
0.15336 0.16813 0.18825 0.21806 0.26965 0.41421 1.00000 0.41421 0.26965 0.21806
0.14192 0.15336 0.16813 0.18825 0.21806 0.26965 0.41421 1.00000 0.41421 0.26965
0.13271 0.14192 0.15336 0.16813 0.18825 0.21806 0.26965 0.41421 1.00000 0.41421
0.12510 0.13271 0.14192 0.15336 0.16813 0.18825 0.21806 0.26965 0.41421 1.00000


and the upper-triangular matrix of the corresponding Cholesky decomposition has the following form:

1 0.41421 0.26965 0.21806 0.18825 0.16813 0.15336 0.14192 0.13271 0.12510
0 0.91018 0.33238 0.19702 0.15391 0.13031 0.11493 0.10391 0.09553 0.08888
0 0 0.90378 0.32080 0.18559 0.14319 0.12027 0.10547 0.09496 0.08702
0 0 0 0.90040 0.31464 0.17923 0.13705 0.11438 0.09985 0.08958
0 0 0 0 0.89857 0.31109 0.17545 0.13331 0.11075 0.09634
0 0 0 0 0 0.89741 0.30877 0.17291 0.13077 0.10825
0 0 0 0 0 0 0.89661 0.30712 0.17110 0.12892
0 0 0 0 0 0 0 0.89603 0.30590 0.16973
0 0 0 0 0 0 0 0 0.89558 0.30495
0 0 0 0 0 0 0 0 0 0.89523


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We observe that the values along all diagonals of this matrix decrease. These numerical results
allows us to formulate the following conjecture.

Conjecture A2. For all 1 ≤ j ≤ k,
`j,k > `j+1,k+1.

Remark 5.

1. For the moment, we can proof only non-strict inequality for the case j = k, i.e., the monotonicity along the
main diagonal, see Remark A2 below.

2. Conjecture A2 implies Conjecture A1. This becomes clear, if we rewrite the relation (20) between dj,k and
`j,k as follows

dj,k = `j,j + `j,j+1 + `j,j+2 + · · ·+ `j,k, 1 ≤ j ≤ k.

3. In Appendix A.3 below we formulate Conjecture A3, which is a sufficient condition for Conjecture A2.

5. Riemann–Liouville Fractional Brownian Motion as a Limit Process

Let H ∈ ( 1
2 , 1), T = 1. Let us define

ZH(t) =
∫ t

0
(t− u)H−1/2 dWu, t ∈ [0, 1], (35)

where W = {Wu, u ∈ [0, 1]} is a Wiener process. The process X is known as
Riemann–Liouville fractional Brownian motion or type II fractional Brownian motion,
see, e.g., Davidson and Hashimzade (2009); Marinucci and Robinson (1999).

Define

bN
j,k =

H − 1
2

NH (k− j + 1)H−3/2, 1 ≤ j ≤ k ≤ N. (36)

cN
j,k =

k

∑
i=j

bN
j,i =

H − 1
2

NH

k

∑
i=j

(i− j + 1)H−3/2 =
H − 1

2
NH

k−j+1

∑
l=1

lH−3/2, 1 ≤ j ≤ k ≤ N. (37)

Theorem 7. Let {ξi, i ≥ 1} be a sequence of iid random variables with E [ ξi ] = 0 and E
[

ξ2
i
]
= 1. Assume

that
{

cN
j,k, 1 ≤ j ≤ k ≤ N

}
are defined by (37) and

XN(t) =
[Nt]

∑
j=1

cN
j,[Nt]ξ j, t ∈ [0, 1].

Then XN ⇒ ZH , N → ∞ weakly in D([0, 1]).

First, let us prove the convergence of finite-dimensional distributions.

Lemma 8. Under assumptions of Theorem 7, the finite-dimensional distributions of XN converge to those
of ZH .

Proof. In order to prove the lemma, we will verify the conditions of Theorem 2. Let us start with
proving that the covariance function of XN converges to the covariance function of ZH as N → ∞.
Indeed, for s ≤ t we have

[Ns]

∑
j=1

cN
j,[Nt]c

N
j,[Ns] =

(H − 1
2 )

2

N2H

[Ns]

∑
j=1

[Nt]−j+1

∑
l=1

lH−3/2
[Ns]−j+1

∑
k=1

kH−3/2.
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By the Euler–Maclaurin formula,

N

∑
l=1

lH−3/2 =
NH−1/2

H − 1
2

+ O(1), as N → ∞. (38)

Therefore

[Ns]

∑
j=1

cN
j,[Nt]c

N
j,[Ns] ∼

1
N2H

[Ns]

∑
j=1

([Nt]− j + 1)H−1/2([Ns]− j + 1)H−1/2

=
[Ns]2H

N2H

[Ns]

∑
j=1

(
[Nt]
[Ns]

− j− 1
[Ns]

)H−1/2 (
1− j− 1

[Ns]

)H−1/2 1
[Ns]

→ s2H
∫ 1

0

(
t
s
− y
)H−1/2

(1− y)H−1/2 dy =
∫ s

0
(t− u)H−1/2 (s− u)H−1/2 du

= E

[ ∫ t

0
(t− u)H−1/2 dWu

∫ s

0
(s− u)H−1/2 dWu

]
= cov

(
ZH(t), ZH(s)

)
,

hence, the condition (C2) is satisfied.
Note that by (37) and (38),

max
1≤j≤k≤N

∣∣∣cN
j,k

∣∣∣ = H − 1
2

NH max
1≤j≤k≤N

k−j+1

∑
l=1

lH−3/2 =
H − 1

2
NH

N

∑
l=1

lH−3/2 = O
(

N−1/2
)

, N → ∞, (39)

and the condition (C3) also holds.
Thus the assumptions of Theorem 2 are satisfied. This concludes the proof.

Now let us verify the tightness condition (A2).

Lemma 9. Let the numbers
{

cN
j,k, 1 ≤ j ≤ k ≤ n

}
be defined by (37). Then there exists a constant C > 0 such

that for all 1 ≤ j < k ≤ N,

j

∑
n=1

(
cN

n,k − cN
n,j

)2
+

k

∑
n=j+1

(
cN

n,k

)2
≤ C

(
k− j

N

)H+1/2
. (40)

Proof. We estimate each of the sums in the left-hand side of (40). Using (37), we get

j

∑
n=1

(
cN

n,k − cN
n,j

)2
=

(H − 1
2 )

2

N2H

j

∑
n=1

(
k−n+1

∑
l=j−n+2

lH−3/2

)2

=
(H − 1

2 )
2

N2H

j

∑
i=1

(
i+k−j

∑
l=i+1

lH−3/2

)2

.

The inner sum can be bounded as follows

i+k−j

∑
l=i+1

lH−3/2 ≤ i
H
2 −

3
4

i+k−j

∑
l=i+1

l
H
2 −

3
4 ≤ i

H
2 −

3
4

i+k−j

∑
l=i+1

∫ l

l−1
x

H
2 −

3
4 dx = i

H
2 −

3
4

∫ i+k−j

i
x

H
2 −

3
4 dx

= i
H
2 −

3
4
(i + k− j)

H
2 + 1

4 − i
H
2 + 1

4

H
2 + 1

4
≤ i

H
2 −

3
4
(k− j)

H
2 + 1

4

H
2 + 1

4
,

where we used the inequality xβ − yβ ≤ (x− y)β for x > y > 0 and 0 < β ≤ 1. Then

j

∑
n=1

(
cN

n,k − cN
n,j

)2
≤

(H − 1
2 )

2

(H
2 + 1

4 )
2

(k− j)H+ 1
2

N2H

j

∑
i=1

iH− 3
2 .
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Since iH−3/2 ≤ xH−3/2 for x ∈ [i− 1, i], we see that

j

∑
i=1

iH−3/2 ≤
j

∑
i=1

∫ i

i−1
xH−3/2 dx =

∫ j

0
xH−3/2 dx =

jH−1/2

H − 1
2

. (41)

Consequently, we have

j

∑
n=1

(
cN

n,k − cN
n,j

)2
≤

H − 1
2

(H
2 + 1

4 )
2

(
j

N

)H− 1
2
(

k− j
N

)H+ 1
2
≤

H − 1
2

(H
2 + 1

4 )
2

(
k− j

N

)H+ 1
2

. (42)

Now we estimate the second sum in (40). By the change of variables m = k− n + 1, we get

k

∑
n=j+1

(
cN

n,k

)2
=

(H − 1
2 )

2

N2H

k

∑
n=j+1

(
k−n+1

∑
l=1

lH−3/2

)2

=
(H − 1

2 )
2

N2H

k−j

∑
m=1

(
m

∑
l=1

lH−3/2

)2

.

We bound the inner sum using (41) and estimate m2H−1 ≤ (k− j)2H−1. We obtain

k

∑
n=j+1

(
cN

n,k

)2
≤ 1

N2H

k−j

∑
m=1

m2H−1 ≤ (k− j)2H

N2H =

(
k− j

N

)H− 1
2
(

k− j
N

)H+ 1
2
≤
(

k− j
N

)H+ 1
2

. (43)

Combining (42) and (43), we conclude the proof.

Now let us verify the conditions of Theorem 3. We start with condition (B1).

Lemma 10. Let
{

bN
j,k, 1 ≤ j ≤ k ≤ n

}
be a triangular array of non-negative numbers defined by (36). Then

for all N ≥ 1 and for all k = 1, . . . , N,
k

∑
j=1

bN
j,k ≤

1√
2

. (44)

Proof. It follows from (36) and (41) that

k

∑
j=1

bN
j,k =

H − 1
2

NH

k

∑
j=1

(k− j + 1)H−3/2 =
H − 1

2
NH

k

∑
l=1

lH−3/2 ≤ kH−1/2

NH . (45)

If k ≥ 2, then kH−1/2

NH =
(

k
N

)H 1√
k
≤ 1√

2
and (44) is valid. In the remaining case k = 1 we have

k

∑
j=1

bN
j,k = bN

1,1 =
H − 1

2
NH ≤ H − 1

2
<

1
2
<

1√
2

,

and (44) also holds.

Now let us verify the condition (B2).

Lemma 11. The numbers
{

bN
j,k, 1 ≤ j ≤ k ≤ n

}
defined by (36) satisfy the condition (B2).
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Proof. We have

N

∑
k=1

k

∑
j=1

(
bN

j,k

)2
=

(
H − 1

2

)2

N2H

N

∑
k=1

k

∑
j=1

(k− j + 1)2H−3 =

(
H − 1

2

)2

N2H

N

∑
k=1

k

∑
l=1

l2H−3

=

(
H − 1

2

)2

N2H

N

∑
l=1

N

∑
k=l

l2H−3 =

(
H − 1

2

)2

N2H

N

∑
l=1

l2H−3(N − l + 1)

≤

(
H − 1

2

)2

N2H−1

N

∑
l=1

l2H−3 → 0, as N → ∞,

since H ∈ (1/2, 1) and ∑N
l=1 l2H−3 < ∞.

Thus, we have proved that all assumptions of Theorem 3 are satisfied. As a consequence, we
obtain the following result.

Theorem 8. Assume that
{

bN
j,k, 1 ≤ j ≤ k ≤ n

}
is a triangular array of real numbers defined by (36),{

ξ j, j ≥ 1
}

are iid Rademacher random variables, the process ZH is given by (35). Then the sequence of
stochastic processes {

SN(t) =
[Nt]

∏
k=1

(
1 +

k

∑
j=1

bN
j,kξ j

)
, t ∈ [0, 1]

}

converge in D[0, 1] to
{

S(t) = eZH(t), t ∈ [0, 1]
}

.
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Appendix A. Monotonicity Along the Diagonal of a Triangular Matrix in the Cholesky
Decomposition of a Positive Definite Toeplitz Matrix

In this appendix we establish the connection between the prediction of a stationary Gaussian
process and the Cholesky decomposition of its covariance matrix. It turns out that the positivity of
the coefficients of predictor implies the monotonicity along the diagonals of a triangular matrix in the
Cholesky decomposition.

Let X = {Xn, n ∈ Z} be a centered stationary Gaussian discrete-time process with the known
autocovariance function:

γ(k) = cov(Xn+k, Xn) = E [Xn+kXn] .

Assume that all finite-dimensional distributions of X are non-degenerate multivariate normal
distributions. In other words, we assume that for all n ∈ N, the symmetric covariance matrix of n
subsequent values of X,

Γn = cov


X1

X2
...

Xn

 =


γ(0) γ(1) . . . γ(n− 1)
γ(1) γ(0) . . . γ(n− 2)

. . . . . . . . . . . . . . . . . .
γ(n− 1) γ(n− 2) . . . γ(0)

 , (A1)
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is non-degenerate.

Appendix A.1. Prediction of a Stationary Stochastic Process

Let us construct the predictor of Xn by the observations X1, . . . , Xm. Since the joint distribution
X1, . . . , Xm, Xn is Gaussian, we see that the conditional distribution Xn | (X1, . . . , Xm) is also Gaussian.
(Anderson 2003, Section 2.5). The parameters of this distribution are given by

E[Xn | X1, . . . , Xm] = cov

Xn,

X1
...

Xm



cov

X1
...

Xm



−1X1

...
Xm



=
(

γ(n− 1) . . . γ(n−m)
)

Γ−1
m

X1
...

Xm

 ,

Var[Xn | X1, . . . , Xm]

= Var(Xn)− cov

Xn,

X1
...

Xm



cov

X1
...

Xm



−1

cov


X1

...
Xm

, Xn



= γ(0)−
(

γ(n− 1) . . . γ(n−m)
)

Γ−1
m

γ(n− 1)
...

γ(n−m)

 .

Denote αn,m,1
...

αn,m,m

 = Γ−1
m

γ(n− 1)
...

γ(n−m)

 , (A2)

σ2
n,m = γ(0)−

(
γ(n− 1) . . . γ(n−m)

)
Γ−1

m

γ(n− 1)
...

γ(n−m)

 .

Then

Xn | (X1, . . . , Xm) ∼ N
(

m

∑
k=1

αn,m,kXk, σ2
n,m

)
. (A3)

The following theorem claims that if the coefficients of the one-step-ahead predictor are positive,
then the coefficients of the multi-step-ahead predictor are also positive.

Theorem A1. Assume that the inequality αm+1,m,k > 0 holds for all 1 ≤ k ≤ m. Then for all 1 ≤ k ≤ m < n,

αn,m,k > 0, (A4)

αn,m,k > αn+1,m+1,k+1. (A5)

Proof. For a discrete-time stochastic process, the coefficients of the multi-step-ahead predictor are
evaluated by the following recursive formula:

αn+1,m,k = αn+1,n,k +
n

∑
i=m+1

αn+1,n,iαi,m,k, 1 ≤ k ≤ m ≤ n. (A6)
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(Here, by convention, ∑n
i=n+1 . . . = 0.)

Fix m and k, 1 ≤ k ≤ m. By assumption, αm+1,m,k > 0. According to (A6), if αi,m,k > 0 for all
i = m + 1, . . . , n, then αn+1,m,k > 0. Hence, by induction, αn+1,m,k > 0 for all n ≥ m + 1. Inequality
(A4) is proved.

Now let us establish Inequality (A5). Again, we prove it by induction. We use the following
recursive formula from the Levinson–Durbin algorithm (Shumway and Stoffer 2017; Subba Rao 2018):

αm+2,m+1,k+1 = αm+1,m,k − αm+2,m+1,1αm+1,m,m+1−k, 1 ≤ k ≤ m. (A7)

It implies that
αm+2,m+1,k+1 < αm+1,m,k, 1 ≤ k ≤ m.

The induction hypothesis is the following: For all m and k, 1 ≤ k ≤ m, and for all j = 1, . . . , J

αm+j+1,m+1,k+1 < αm+j,m,k.

Hence, we need to prove the inequality

αm+J+2,m+1,k+1 < αm+J+1,m,k, 1 ≤ k ≤ m. (A8)

Using (A6), we obtain

αm+J+2,m+1,k+1 = αm+J+2,m+J+1,k+1 +
m+J+1

∑
i=m+2

αm+J+2,m+J+1,iαi,m+1,k+1

= αm+J+2,m+J+1,k+1 +
m+J

∑
i=m+1

αm+J+2,m+J+1,i+1αi+1,m+1,k+1

< αm+J+1,m+J,k +
m+J

∑
i=m+1

αm+J+1,m+J,iαi,m,k = αm+J+1,m,k.

Thus, Inequality (A8) is proved. Hence, αm+j+1,m+1,k+1 < αm+j,m,k for all m and k, 1 ≤ k ≤ m,
and for all j ∈ N. Equivalently, Inequality (A5) holds for all n, m and k such that 1 ≤ k ≤ m < n.

Appendix A.2. Cholesky Decomposition of the Covariance Matrix

Fix N. Recall that, by assumption, the covariance matrix ΓN of the random vector (X1, . . . , XN)
>

is non-degenerate. In this case the matrix ΓN can be uniquely represented as a product

ΓN = LN L>N =


`1,1 0 . . . 0
`1,2 `2,2 . . . 0

. . . . . . . . . . .
`1,N `2,N . . . `N,N



`1,1 `1,2 . . . `1,N
0 `2,2 . . . `2,N

. . . . . . . . . . .
0 0 . . . `N,N

 , (A9)

where LN is a lower-triangular matrix with positive diagonal elements. This representation is called
Cholesky decomposition.

Remark A1. The numbers `k,n do not depend on N:

`k,n(N1) = `k,n(N2) for all k ≤ n ≤ min(N1, N2),

where `k,n(N) denotes an element of the matrix LN in Decomposition (A9) for a certain value of N.
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Since L−1
N 0N×1 = 0N×1 is a zero vector and L−1

N ΓN(L−1
N )> = IN is an identity matrix, we see that

the random vector  ζ1
...

ζN

 = L−1
N

X1
...

XN

 (A10)

has N-dimensional standard normal distribution,(
ζ1 . . . ζN

)>
∼ N (0N×1, IN).

We have X1
...

XN

 = LN

 ζ1
...

ζN

 . (A11)

Hence, the values of the stochastic process {Xn, n = 1, . . . , N} can be represented as follows:

Xn =
n

∑
k=1

`k,nζk, (A12)

where ζk, k = 1, 2, . . . , N, are independent standard normal random variables.
Taking into account Remark A1, Equalities (A10) and (A11) can be generalized for all k:ζ1

...
ζk

 = L−1
k

X1
...

Xk

 ,

X1
...

Xk

 = Lk

ζ1
...

ζk

 ,

where for 1 ≤ k ≤ N the matrix Lk is a sub-matrix of LN ,

Lk =

`1,1 . . . 0
. . . . . . .

`1,k . . . `k,k

 .

For all k the matrix Lk is non-degenerate, and LkL>k = Γk is the covariance matrix of the vector
(X1, . . . , Xk)

>. This implies that the σ-algebra, generated by the random variables X1, . . . , Xk coincides
with σ-algebra, generated by the random variables ζ1, . . . , ζk:

Fk = σ(X1, . . . , Xk) = σ(ζ1, . . . , ζk).

Theorem A2. Assume that the condition of Theorem A1 is satisfied: For all k and m such that 1 ≤ k ≤ m, the
inequality αm+1,m,k > 0 holds. Then for all 1 ≤ k ≤ n,

`k,n > 0, (A13)

`k,n > `k+1,n+1. (A14)

Proof. Equation (A3) implies that for 1 ≤ m < n

E[Xn | Fm] =
m

∑
k=1

αn,m,kXk, (A15)

Var[Xn | Fm] = σ2
n,m. (A16)
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The standard Gaussian random variables ζk are measurable with respect to σ-algebra Fm for
k ≤ m and independent of σ-algebra Fm for k > m. Therefore

E[ζk | Fm] =

{
ζk for k ≤ m,

0 for k > m.

Hence,

E[Xn | Fm] = E

[
n

∑
k=1

`k,nζk

∣∣∣∣ Fm

]
=

n

∑
k=1

`k,nE[ζk | Fm] =
m

∑
k=1

`k,nζk. (A17)

It follows from (A15) and (A17) that

m

∑
k=1

`k,nζk =
m

∑
k=1

αn,m,kXk. (A18)

We apply (A12) and (A18) with n = m + 1 We obtain

Xm+1 =
m

∑
k=1

αm+1,m,kXk + `m+1,m+1ζm+1.

Further,

σ2
m+1,m = Var[Xm+1 | Fm] = E

[
(Xm+1 − E[Xm+1 | Fm])

2 ∣∣ Fm]

= E

(Xm+1 −
m

∑
k=1

αm+1,m,kXk

)2
 = E

[
(`m+1,m+1ζm+1)

2
]
= `2

m+1,m+1.

Here we have used that

Var[Xm+1 | Fm] = E[ξ | Fm] is deterministic,

Var[Xm+1 | Fm] = E[Var[Xm+1 | Fm]] = E[E[ξ | Fm]] = E[ξ],

where ξ = (Xm+1 − E[Xm+1 | Fm])2. Hence,

σ2
m+1,m = `2

m+1,m+1. (A19)

Moreover, note that
γ(0) = EX2

1 = E(`1,1ζ1)
2 = `2

1,1. (A20)

In the Levinson–Durbin method the conditional variance of one-step-ahead predictor is calculated
as follows (Shumway and Stoffer 2017; Subba Rao 2018):

σ2
2,1 = γ(0)(1− α2

2,1,1); (A21)

σ2
m+1,m = σ2

m,m−1(1− α2
m+1,m,1), m = 2, 3, . . . (A22)

Taking into account Equalities (A19) and (A20) with (A21) and (A22), we obtain

`2
m+1,m+1 = `2

m,m(1− α2
m+1,m,1), m ∈ N. (A23)

Since `m,m > 0 and αm+1,m,1 > 0 for all m, we get

`2
1,1 > `2

2,2 > `2
3,3 > . . . ,

`1,1 > `2,2 > `3,3 > . . . (A24)
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Inequality (A14) is proved in the case n = k.
It follows from orthonormality of the random variables ζk and from the representation (A12) that

E[ζkζm] =

{
1 if k ≥ m,

0 if k < m;
E[Xkζm] =

{
`m,k if k ≥ m,

0 if k < m.
(A25)

Transform Equality (A18):

E

[
m

∑
k=1

`k,nζk

]
= E

[
m

∑
k=1

αn,m,kXkζm

]
,

m

∑
k=1

`k,nE[ζkζm] =
m

∑
k=1

αn,m,kE[Xkζm],

and taking into account (A25), we get

`m,n = αn,m,m`m,m. (A26)

Since `m,m > 0 (as a diagonal element of the triangular matrix in the Cholesky decomposition)
and αn,m,m > 0 (by Theorem A1), we see that `m,n > 0. Hence, Inequality (A13) is proved.

By Theorem A1, Inequality (A24) and Equality (A26) we get that for k < n

`k+1,n+1 = αn+1,k+1,k+1`k+1,k+1 < αn,k,k`k,k = `k,n.

Thus Inequality (A14) is proved in the case n > k. This completes the proof.

Remark A2. It follows from (A23) that the following non-strict inequalities for the elements of the main diagonal

`1,1 ≥ `2,2 ≥ `3,3 ≥ . . .

can be proved without the assumption αm+1,m,k > 0 for all 1 ≤ k ≤ m.

Appendix A.3. Application to Fractional Brownian Motion

In order to prove Conjecture A2, it suffices to apply Theorem A2 to stationary Gaussian process
Gk = BH

k+1 − BH
k with covariance matrix ΓN given by (11) (its Cholesky decomposition is considered

in Lemma 2). To this end, we need to prove the positivity of the coefficients
{

αm+1,m,k, 1 ≤ k ≤ m
}

of
the corresponding one-step-ahead predictor. According to (A2), these coefficients are given byαm+1,m,1

...
αm+1,m,m

 = Γ−1
m

γm
...

γ1

 , m ≥ 1.

Consequently, in order to verify Conjecture A2, it suffices to establish the following result.

Conjecture A3. For any m ≥ 1, a solution x ∈ Rm to the linear system of equations

Γmx =

γm
...

γ1


is positive.
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For m = 1, we have an equation γ0x1 = γ1 with the positive solution x1 = γ1/γ0 = 22H−1 − 1,
see (17). Below we show that the above conjecture holds also in the particular case m = 2. The proof in
the general case is an open problem.

Proof of Conjecture A3 for the particular case m = 2. We have the following system:{
x1 + γ1x2 = γ2,

γ1x1 + x2 = γ1,

where γ1 = 22H−1 − 1 and γ2 = 1
2
(
32H + 1− 2 · 22H), see (10). The determinant

∆ := det Γ2 =

∣∣∣∣∣ 1 γ1

γ1 1

∣∣∣∣∣ = 1− γ2
1 > 0,

since γ1 = 22H−1 − 1 < 1. The solution is given by

x1 =

∣∣∣∣∣γ2 γ1

γ1 1

∣∣∣∣∣
∆

=
γ2 − γ2

1
∆

, x2 =

∣∣∣∣∣ 1 γ2

γ1 γ1

∣∣∣∣∣
∆

=
γ1(1− γ2)

∆
.

By (15), 0 ≤ γ2 ≤ γ1 ≤ γ0 = 1. Therefore, x2 > 0. In order to prove that x1 > 0, we need to
establish the inequality γ2 > γ2

1, which is equivalent to

1
2

(
32H + 1− 2 · 22H

)
>
(

22H−1 − 1
)2

.

This inequality can be simplified to

24H − 2 · 32H + 2 < 0.

Let x = 2H ∈ (1, 2). We need to prove that

f (x) := 4x − 2 · 3x + 2 < 0, x ∈ (1, 2).

Note that f (1) = f (2) = 0. The first and second derivatives are equal to

f ′(x) := 4x log 4− 2 · 3x log 3, f ′′(x) := 4x log2 4− 2 · 3x log2 3.

Hence, we need to prove that 4x log2 4 > 2 · 3x log2 3, which is equivalent to
( 4

3
)x

>
2 log2 3
log2 4

.

Therefore, it suffices to show that 4
3 >

2 log2 3
log2 4

, which is true and can be checked by straightforward

calculation.
Thus, we have proved that f ′′(x) > 0 for x ∈ (1, 2), i. e., the function f is convex for x ∈ (1, 2).

Then f is negative for x ∈ (1, 2), since f (1) = f (2) = 1. Consequently, we have that x1 > 0.1
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