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Abstract: This paper provides a discrete-time approach for evaluating financial and actuarial products
characterized by path-dependent features in a regime-switching risk model. In each regime, a binomial
discretization of the asset value is obtained by modifying the parameters used to generate the lattice
in the highest-volatility regime, thus allowing a simultaneous asset description in all the regimes.
The path-dependent feature is treated by computing representative values of the path-dependent
function on a fixed number of effective trajectories reaching each lattice node. The prices of the
analyzed products are calculated as the expected values of their payoffs registered over the lattice
branches, invoking a quadratic interpolation technique if the regime changes, and capturing the
switches among regimes by using a transition probability matrix. Some numerical applications are
provided to support the model, which is also useful to accurately capture the market risk concerning
path-dependent financial and actuarial instruments.

Keywords: regime-switching risk; market risk; path-dependent derivatives; insurance policies;
binomial lattices; discrete-time models

1. Introduction

With the aim of providing an accurate evaluation of the risks affecting financial markets,
a wide range of empirical research evidences that asset returns show stochastic volatility patterns
and fatter tails with respect to the standard normal model. Consequently, many extensions and
modifications of the Black and Scholes (1973) framework have been proposed in order to describe
better the dynamics of financial returns, thus modelling more appropriately the market risks and
avoiding the biases in option prices produced by the Black and Scholes (1973) model. Among others,
Hamilton (1989), (1990) introduces regime-switching models that represent simple tools to capture
the stochastic volatility behaviour and, hence, fat tails. These models overcome the problems affecting
the Black and Scholes (1973) framework, characterized by a constant volatility level, by allowing
the financial parameters to assume different values in different time periods following a process
that generates switches among regimes. Empirical evidence supporting these models shows that
they capture more accurately the stylized facts of financial returns and provide a useful and more
precise instrument for risk management, a fundamental activity in the modern financial and actuarial
world. To name just a few, examples are provided firstly in Bollen et al. (2000) and, later, in
Hardy (2001), (2003), who propose a regime-switching model characterized by normally distributed
log-returns with mean and volatility varying according to the regime variable. In this framework,
we develop an algorithm to evaluate financial and actuarial products characterized by path-dependent
features and manage the market risk concerning such products.

The financial literature on option pricing under regime-switching is quite large. If on one hand
many papers have been proposed for standard option pricing by considering the regime risk not
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diversifiable (see Naik (1993), Di Masi et al. (1994), Guo (2001), Mamon and Rodrigo (2005),
and Elliott et al. (2005), to name just a few), on the other hand many others have been developed by
considering the regime risk as a diversifiable risk and using different pricing methodologies for option
pricing (see Buffington and Elliott (2002), Yao et al. (2006), Khaliq and Liu (2009), Liu et al. (2006),
Bollen (1998), Aingworth et al. (2006), Liu (2010), Yuen and Yang (2009), and Costabile et al. (2014),
among others).

While the pricing and the risk management of standard options under regime-switching models
have been widely studied in finance, there are few contributions developed for path-dependent
contingent claims. The importance of such derivatives is well recognized not only in the financial
field but also in the actuarial one because, in the last decades, they have become commonplace in
life insurance policies like variable annuities and equity-indexed annuities. In many cases, the main
difficulties faced when developing evaluation methods or when deriving analytical formulas for
such derivatives are due to their complex path-dependent structures, which deeply influence the
pricing problem tractability. For instance, one of the first attempts to provide an evaluation method for
path-dependent options under regime-switching is due to Boyle and Draviam (2007) who, starting
from the work of Di Masi et al. (1994), obtain the partial differential equations governing the dynamics
of a wide range of exotic options and provide two test cases based on Asian options and lookback
options. The method has been recently improved by Ma and Zhou (2016), who evidence that
Boyle and Draviam (2007) develop an implicit scheme with an exponential interpolation based on
fixed meshes and propose alternative implicit moving mesh methods then applied for evaluating
arithmetic average Asian options with fixed strikes in continuous time.

Useful tools to manage the path-dependent feature are represented by lattice methodologies
that have become popular methods to calculate option prices due to their simplicity, efficiency and
ease of implementation. Moreover, lattice-based models are useful for pricing both European and
American-style path-dependent contingent claims with continuous or discrete monitoring of the
contract. The latter aspect is of crucial importance when evaluating path-dependent derivatives.
Indeed, it is well recognized that, for instance, the valuation of lookback options changes drastically
when varying the observation frequency of the maximum (or minimum) value of the asset price.
Even considering a realistic daily observation frequency, the values of lookback options differ
significantly from those calculated with analytical models that are developed assuming a continuous
monitoring of the contract (see Cheuk and Vorst (1997) and the references therein). Another
aspect to look at, when developing a pricing algorithm for path-dependent derivatives using
tree methodologies, is relative to the number of trajectories that must be analyzed. For example,
by considering an arithmetic average Asian option, the number of arithmetic averages computed
on the tree trajectories increases with an exponential rate when increasing the number of steps used
to calculate the option price. As a consequence, the evaluation problem becomes computationally
burdensome and, when embedding a regime-switching dynamics in the price process, it further
complicates. In this framework, among others, Yuen and Yang (2010) propose an extension of their
trinomial tree method for pricing options under regime-switching that is useful to price Asian options
and equity-indexed annuities. They establish a unique lattice for the asset price and modify the
jump probabilities in each regime in order to ensure that the first two order discrete moments match
the corresponding continuous time ones. The path-dependency is treated by applying the Hull and
White (1993) model coupled with a modified quadratic interpolation scheme. The Yuen and Yang
(2010) model is able to manage easily more than two regimes and reduces the computational problem
complexity, but it may present some drawbacks. The first one is relative to the fact that, in a two-regime
economy, the option price in the low-volatility regime may present a worsening convergence rate
when the volatilities in the two regimes are significantly different, as reported in Yuen and Yang (2009).
The second one is relative to the fact that, as stated in Costabile et al. (2014), it is not guaranteed that
the transition probabilities are legitimate probabilities in all the regimes. Finally, the application of
the forward shooting grid method of Hull and White (1993) to manage the path-dependent feature
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may produce the lack of convergence of the Yuen and Yang (2010) model, whenever the spanning
function parameter h is not chosen as established in Forsyth et al. (2002).1 These authors shows
that, to ensure the convergence of the forward shooting grid method, the parameter h must be chosen
proportional to ∆t. Yuen and Yang (2010) use fixed values for the parameter h as Hull and White
(1993), for which a numerical example showing the lack of convergence has been already reported
in Costabile et al. (2006).

This paper contributes to the literature in three main ways: it presents a simple binomial lattice
algorithm when the underlying asset dynamics is described by a regime-switching model, which is
useful for practitioners to evaluate financial and actuarial products characterized by path-dependent
features and to manage the market risk concerning such products; the model reduces the computational
complexity by working on actual paths of a binomial lattice and overcomes the drawbacks evidenced
above for the Yuen and Yang (2010) method; the proposed lattice approach is characterized by the
relevant feature of being flexible in that different specifications of the path-dependent function may
be easily managed in the developed model, and it is clearly suitable for managing both European
and American-style products under regime-switching. The model is based on a one-dimensional
Cox et al. (1979) (CRR) lattice established independently for each volatility regime, starting from the
one discretizing the asset dynamics in the highest-volatility regime. Then, the lattices discretizing the
asset value in the other regimes are obtained by modifying the CRR parameters used to generate the
lattice in the highest-volatility regime. In this way, the jump probabilities in each regime are of the
CRR type, hence they are always legitimate (i.e., they belong to the interval [0, 1]) and guarantee that
the first and the second order local discrete moments match the corresponding continuous time ones.
Working on the lattice established in each regime, we select a fixed number of effective trajectories
for each node where computing the values of the path-dependent function governing the derivative
price. This selection process allows us to work with path-dependent function values realized on the
tree, without resorting to simulated values as it happens, for example, in the Yuen and Yang (2010)
model where the arithmetic averages for Asian options are computed using the Hull and White (1993)
spanning function. Furthermore, it allows to reduce the computational complexity of the pricing
problem and ensures the convergence of the discrete time model to the continuous time one.
The path-dependent function values computed on the selected paths form a set of representative values
that is associated to the proper node of the lattice. A transition probability matrix is used to describe
the switches among regimes and the values of contingent claims are obtained as the expected values
of their payoffs registered over the lattice branches. A quadratic interpolation scheme is invoked to
calculate the derivative price in case of a regime change and, when necessary, to identify the successors
of a given path-dependent function value. Indeed, it may happen that, by considering the selected
subset of effective values for the path-dependent function at a given node, the successors could be in
the sets associated with the linked nodes at the next time step and, consequently, the option price would
be immediately available. Anyway, other more complex interpolation techniques may be easily used in
the proposed framework. To show the performance of the proposed model, we present three test cases.
The first one considers continuously sampled Asian options of European and American type due to
their increasing relevance in the financial and actuarial field and reports comparisons with the Boyle
and Draviam (2007), Yuen and Yang (2010), and Ma and Zhou (2016) models. To provide an actuarial
application, the second test case analyzes point to point equity-indexed annuities characterized
by an Asian-style feature, in that the policy return depends upon the arithmetic average of the
underlying equity-index values registered from the contract inception to its maturity, and reports
comparisons with the Yuen and Yang (2010) model. Finally, the third test case is conducted on
discretely monitored currency lookback options because such options are popular with internationally

1 We recall that the spanning function used in the Hull and White (1993) method is of the form Semh, where m assumes all the
integer values in a certain interval and h is a fixed parameter governing the fineness of the grid.
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operating firms. Since the financial literature on discretely monitored currency lookback options under
regime-switching is rather scarce, we preliminary validate the results providing a comparison with the
Cheuk and Vorst (1997) model in the Black and Scholes (1973) framework and, then, we report the
results generated under a regime-switching model.

The paper is hereafter structured as follows. Section 2 provides the presentation of the
regime-switching risk model in which the lattice algorithm is developed. Section 3 describes the
method for pricing financial and actuarial products characterized by path-dependent features and, to
assess the goodness of the proposed approach, Section 4 reports some test cases in which comparisons
with the existing models are provided. Finally, Section 5 draws the conclusions.

2. The Regime-Switching Framework

The regime-switching framework where we develop the proposed lattice method is based on
a continuous time economy characterized by a risk-free asset with dynamics described by

dB(t) = rε(t)B(t)dt,

where rε(t) is the instantaneous rate of return applied to one unit of the risk-free asset, B(t), at time t,
and by an asset with price described by the risk-neutral dynamics

dS(t) = rε(t)S(t)dt + σε(t)S(t)dWt, (1)

where S(t) indicates the asset price at time t, σε(t) is the instantaneous volatility of the risky asset,
and dWt is the increment of a Brownian motion. The instantaneous rate of return and volatility vary
according to a hidden Markov process, ε(t), independent of the Brownian motion, that may assume
all the integer values in the interval [0, L− 1], in correspondence of which the instantaneous rate of
return has value rl , and the instantaneous volatility has value σl , l = 0, . . . , L− 1.

We suppose that ε(t) is generated by the following matrix

A =


a0,0 a0,1 . . . a0,L−1

a1,0 a1,1 . . . a1,L−1
...

...
. . .

...
aL−1,0 aL−1,1 . . . aL−1,L−1

 , (2)

in order to describe the transition probabilities in an L-regime economy. Here, we denote by
al,l = −∑L−1

w=0,w 6=l al,w, l = 0, . . . , L− 1, the regime persistence parameter identifying the probability
that the regime does not change when moving from one observation at a generic time t, to the next at
time t+∆t. The positive parameters al,w, w 6= l, are used to compute the probability of a transition from
regime l to regime w in a small interval of time ∆t. For instance, being in the l-th regime characterized
by rε(t) = rl and σε(t) = σl at time t, there will be a switch to regime w, where the risk-free rate is rw

and the volatility is σw, at time t + ∆t with probability al,w∆t; the probability of staying in regime l is
1−∑L−1

w=0,w 6=l al,w∆t = 1 + al,l∆t.

3. The Lattice-Based Model

This section presents the lattice-based model useful for evaluating financial and actuarial products
characterized by path-dependent features under regime-switching and for managing the market risk
concerning these products. The model is able to work upon an arbitrary number of regimes and
can be applied for pricing European and American-style instruments, so that it provides an active
contribution for practitioners given the wide trading volume of such contingent claims both in financial
and actuarial markets. The regime risk is assumed to be not priced and the regime to be observable.
Hence, we compute the derivative price in all the regimes. To detail the model, we split this section
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into three parts. In the first part, we establish the binomial lattice discretizing the asset dynamics in
each regime. In the second part, we detail the algorithm to select the effective trajectories where the
path-dependent function values are computed to form the set of representative values associated with
each node of the tree. Finally, the third part presents the backward induction scheme coupled with the
quadratic interpolation technique used to calculate the path-dependent derivative price on the lattice
for the observed regime.

3.1. The Discretization in Each Regime

We apply the lattice approach already presented in Costabile et al. (2014) to develop the discrete
version of the continuous time framework detailed in Section 2. The proposed model takes into account
the fact that the interest rate and the volatility may switch among L possible states where they assume
the values rl and σl , l = 0, . . . , L− 1, by establishing a CRR binomial tree in each regime.

To present the discretization, we order the L-volatilities in a decreasing order so that σl > σw,
for l < w; l, w = 0, . . . , L − 1. In this way, regime 0 is identified as the highest-volatility regime,
regime 1 represents the second highest-volatility regime, and so on; finally, the (L − 1)-th regime
results as the lowest-volatility regime. The CRR approach is initially applied to establish the lattice
discretizing the asset dynamics in regime 0. Then, the lattice discretizing the asset value in the l-th
regime, l = 1, . . . , L− 1, is obtained by a simple transformation of the parameters identifying the CRR
tree in the highest-volatility regime.

To detail the discretization of the risky asset in regime 0, we label by n the number of tree steps of
length ∆t = T/n, where T is the option maturity. The asset price increases by the factor u = eσ0

√
∆t, if

an up step takes place, or decreases by d = 1/u, if a down step occurs in each time interval [t, t + ∆t].
The probability of an up step is p0 = er0∆t−d

u−d , while the probability of a down step is q0 = 1− p0, and
r0 is the risk-free rate in regime 0. Supposing S is the initial asset price, S0(i, j) = Sujdi−j represents
the asset value at node (i, j), with i = 0, . . . , n, and j = 0, . . . , i, reached after j up steps and i− j down
steps in the lattice for regime 0.

To establish the lattice discretizing the asset dynamics under the l-th regime characterized by
an interest rate equal to rl and a volatility level equal to σl, we define the parameter ςl = σl/σ0 so that
the asset value at each time step increases by the factor uςl = eσl

√
∆t in case of an upward movement

or decreases by the factor dςl = 1/uςl in case of a downward movement in the interval [t, t + ∆t]
(see Figure 1). As a result, we obtain a tree that is still of the CRR type where Sl(i, j) = Sujςl d(i−j)ςl is the
asset value in the l-th regime at node (i, j), the probability of an up step is given by pl =

erl∆t−dςl
uςl−dςl , while

ql = 1− pl is the probability of a down step. In this way, we guarantee the matching between the first
and the second order local discrete moments and the corresponding continuous time ones in each regime.

highest-volatility lattice l-th volatility lattice
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Figure 1. The one-dimensional Cox et al. (1979) (CRR) lattice in the l-th volatility regime obtained as
a transformation of the CRR lattice parameters in regime 0. For the sake of simplicity, we set S = 1.
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3.2. The Path-Dependent Function Values

The essential feature of the proposed approach is to work on the lattice established in each regime
where, for each node, we select a fixed number of actual trajectories to compute the values of the
path-dependent function governing the price of the analyzed derivative. In this way, the algorithm
presents the following features:

• to work with effective values for the path-dependent function that we call representative values;
• not to resort to simulated values as in Yuen and Yang (2010);
• to reduce the computational complexity of the evaluation problem;
• to guarantee that the discrete time model converges to the continuous time one.

The principal issue to look at when evaluating path-dependent contingent claims is represented
by the large number of possible values of the path-dependent function associated with each node
of the lattice. Indeed, in general, each trajectory reaching node (i, j) might produce a different value
for the path-dependent function. To make an example, consider an arithmetic average Asian option.
The arithmetic average of the underlying asset values does not recombine on the CRR lattice so
that, when the number of time steps n increases, the model computational complexity grows up
exponentially. The proposed approach reduces the computational cost of the evaluation problem
by associating with each node (i, j) of the lattice in each regime a set of representative values of the
path-dependent function, computed on actual paths reaching that node. To do this, we adapt the

algorithm reported in Costabile et al. (2006) and select 1 + j(i− j) trajectories among all the

(
i
j

)
trajectories that reach a given node (i, j) of the CRR lattice discretizing the asset dynamics in each
regime. As a result, we associate a set made up of 1 + j(i− j) effective values to each lattice node.

To detail the procedure allowing us to construct the set of the representative path-dependent
function values, we consider a generic node (i, j) of the tree discretizing the asset value in regime 0
reached after j upward movements and i− j downward movements. The procedure is similar when
applied to the lattice established for the generic l-th regime with l = 1, . . . , L− 1. At first, we compute
the maximum path-dependent function value associated with node (i, j) in regime 0, which is produced
by the trajectory τmax(i, j) with j upward jumps followed by i− j downward jumps (Figure 2 depicts
the path τmax for node (4, 2) by thick lines marked with terminal arrows), and label it by f0(i, j; 1)
because it is the first element in the set.

��
��*
��

��*HHHHj
H
HHHj

H
HHH

H
HHH

H
HHH

��
��

HH
HH

��
��

��
��

H
HHH

�
��
�

HH
HH

��
��

��
��

�
��
�

HH
HH

�
��
�

HH
HH

(4, 2)
S

S

Su

Su2

Su

Figure 2. Trajectory τmax(4, 2) for node (4, 2) of the tree discretizing the asset value in regime 0.

The minimum path-dependent function value associated with node (i, j) in regime 0, is obtained
by considering the path τmin(i, j) with i− j downward jumps followed by j upward jumps (Figure 3
depicts the path τmin for node (4, 2) by thick lines marked with terminal arrows) and it is denoted by
f0(i, j; 1 + j(i− j)) because it is the last element in the set.
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Figure 3. Trajectory τmin(4, 2) for node (4, 2) of the tree discretizing the asset value in regime 0.

The other representative path-dependent function values for node (i, j) in regime 0, f0(i, j; k),
k = 2, . . . , j(i − j), are calculated recursively. Consider a given path reaching node (i, j), τ(i, j) =

{(s, js), s = 0, . . . , i; ji = j}, not coinciding with τmin(i, j), characterized by the asset values S0(s, js) that
produce the k-th representative path-dependent function value, f0(i, j; k), for that node. To compute
the (k + 1)-th representative path-dependent function value, f0(i, j; k + 1), we proceed as follows:

Step 1: among nodes (s, js) belonging to τ(i, j), we consider only the ones where the asset has
registered the maximum value, S0max(s, js);

Step 2: among them, we select the node in correspondence of the minimum value assumed by s, smin

(i.e., node (smin, jsmin)), in a way that the new trajectory obtained by substituting node (smin, jsmin)

with node (smin, jsmin − 1) in τ(i, j) still reaches node (i, j);
Step 3: f0(i, j; k + 1) is computed on this new trajectory.

These iterations are repeated as long as the last trajectory, τmin(i, j), is reached, i.e., starting
from τmax(i, j), j(i − j) substitutions need to reach τmin(i, j) so that a set made up of 1 + j(i − j)
representative path-dependent function values is associated with node (i, j) of the tree in regime 0.
The path-dependent function values, fl(i, j; k), k = 1, . . . , 1 + j(i− j), associated with a generic node
(i, j), i = 0, . . . , n; j = 0, . . . , i, of the lattice established in the generic l-th regime, with l = 1, . . . , L− 1,
are computed similarly.

The following example details the selection procedure for the representative trajectories. Figure 4
depicts the binomial evolution of the asset price in regime 0 with n = 4 steps. Consider, for instance,
node (4, 2). The first path-dependent function value, f0(4, 2; 1), is computed by using the values
(S, Su, Su2, Su, S). The maximum on this path is S0max(2, 2) = Su2, so that the second path-dependent
function value, f0(4, 2; 2), is calculated following the trajectory (S, Su, S, Su, S) obtained by substituting
S0max(2, 2) with S0max(2, 2)d2 = S in the previous one. The maximum value on the latter path is
reached two times, S0max(1, 1) = S0max(3, 2) = Su, but the algorithm selects only S0max(1, 1) and
substitutes it with S0max(1, 1)d2 = Sd. Consequently, the third representative path-dependent function
value f0(4, 2; 3) is computed on the path (S, Sd, S, Su, S). The other path-dependent function values
associated with node (4, 2) are calculated on (S, Sd, S, Sd, S) and (S, Sd, Sd2, Sd, S). In this way, the set
of the representative path-dependent function values associated with node (4, 2) does not contain
the only value generated by the path (S, Su, S, Sd, S) depicted in Figure 4 by thick lines marked with
terminal arrows.
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3.3. The Evaluation Scheme in a Two-Regime Economy

Once a lattice for each regime has been established to describe the asset dynamics and a set of
representative values for the path-dependent function has been associated with each lattice node,
path-dependent derivatives may be evaluated by computing the expected values of their payoffs over
the lattice branches, taking properly into consideration the possible regime switches.

The regime persistence or transition is modelled through the probabilities reported in matrix (2) in
which, for ease of exposition, we limit the attention to only two regimes obtaining the following matrix(

1− a0,1∆t a0,1∆t
a1,0∆t 1− a1,0∆t

)
.

Regime 0 identifies the high-volatility regime and, to simplify notation, we define the quantity
ς = σ1/σ0 that allows us to obtain the lattice in regime 1 being the low-volatility regime.
In a two-regime economy, we need to compute two contingent claim prices to choose the one in
correspondence of the observed regime. We detail the valuation procedure only for the price in the
high-volatility regime, c0(i, j; k), at the lattice node (i, j), i = 0, . . . , n; j = 0, . . . , i, in correspondence
with the k-th value of the path-dependent function, f0(i, j; k), with k = 1, . . . , 1+ j(i− j). The derivative
value, c1(i, j; k), in the low-volatility regime may be calculated similarly.

We start by detailing the asset evolution starting from a generic node (i, j) of the CRR tree
discretizing the risky asset in the high-volatility regime. In the next time interval [i∆t, (i + 1)∆t],
regime 0 may persist with probability 1− a0,1∆t, or may transit to regime 1 with probability a0,1∆t.
Assuming that the regime switches instantaneously at the end of a time interval, starting from S0(i, j),
the asset at the end of the interval [i∆t, (i + 1)∆t] may jump to (see Figure 5):

Suj+1di−j with probability (1− a0,1∆t)p0

or
Sujdi+1−j with probability (1− a0,1∆t)q0

 in case of persistence in regime 0;

Suj+1di−j with probability (a0,1∆t)p0

or
Sujdi+1−j with probability (a0,1∆t)q0

 in case of a switch to regime 1.

If a regime switch occurs, the latter two values must be searched for among the asset values
at the (i + 1)-th step of the lattice discretizing the low-volatility regime. In general, they do
not coincide with anyone of these values, S1(i + 1, j), j = 0, . . . , i + 1, so that we substitute
them with approximations computed through quadratic interpolation techniques, as suggested by
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Costabile et al. (2014), in order to obtain the iterative backward formula. For instance, the quadratic
approximation is obtained by operating on the nearest three lattice values to Suj+1di−j chosen among
the values S1(i+ 1, j), j = 0, . . . , i+ 1 (see the Appendix reported in the paper of Costabile et al. (2014)
for further details). The asset evolution starting from a generic node (i, j) of the low-volatility lattice
may be obtained in the same way.

Sujdi−j �
�
�
�
��

Suj+1di−j

Q
Q
Q
Q
QQ Sujdi+1−j

(1− a0,1∆t)q0

(1− a0,1∆t)p0

Persistence in regime 0

Sujdi−j �
�
�
�
��

Suj+1di−j

Q
Q
Q
Q
QQ Sujdi+1−j

(a0,1∆t)p0

(a0,1∆t)q0



S1(i + 1, i + 1)

.

.

.
?
.

.

.

.
?
.

.

S1(i + 1, 0)



-

-

Asset values at the (i + 1)-th
step on the regime 1 lattice

Switching from regime 0 to regime 1

Figure 5. The asset evolution starting from a generic node (i, j) of the high-volatility lattice.

A similar situation is faced when considering a generic path-dependent function value, f0(i, j; k),
associated with node (i, j) in the lattice for regime 0. Suppose, for instance, that f0(i, j; k) is
the arithmetic average of the underlying asset price registered on the k-th trajectory reaching
node (i, j). The successors for f0(i, j; k) are [(i + 1) f0(i, j; k) + uS0(i, j)]/(i + 2), in case of an up
step, and [(i + 1) f0(i, j; k) + dS0(i, j)]/(i + 2), in case of a down step. If regime 0 persists,
the quantity [(i + 1) f0(i, j; k) + uS0(i, j)]/(i + 2) must be searched for among the representative
path-dependent function values associated with node (i + 1, j + 1) in the lattice established for regime
0, while [(i + 1) f0(i, j; k) + dS0(i, j)]/(i + 2) must be searched for among the representative values
associated with node (i + 1, j), respectively. If they do not appear among the mentioned representative
values, they are substituted by approximations computed through a quadratic interpolation technique.
In case of a regime change, the successors of f0(i, j; k) must be searched for among the representative
path-dependent function values associated with the successors of S0(i, j) = Sujdi−j in regime 1 at the
(i + 1)-th step of the lattice, which have been already computed by approximations as detailed above.
As a consequence, in case of a regime change, a double quadratic interpolation technique needs to be
applied in the backward formula.

We note that, to compute the path-dependent contingent claim price at inception in each regime,
we need to calculate its price in correspondence of all the representative values of the path-dependent
function. Consequently, as usual in lattice methods, the pricing procedure operates backward starting
from the option maturity coinciding with the n-th step of the tree. Here, by still operating in regime
0 for illustrative purposes, we compute the payoff of a European path-dependent option, c0(n, j; k),
in correspondence of f0(n, j; k) on the ending node (n, j). Similarly, we may compute the option



Risks 2020, 8, 9 10 of 22

value c1(n, j; k), i.e., the European path-dependent option payoff in correspondence of f1(n, j; k) on the
ending node (n, j) for the low-volatility regime.2

To detail the backward induction scheme that allows us to compute the option price in each
regime, we consider three test cases represented by the structure of the products used in the next
section to provide numerical evidence of the algorithm performance: a European fixed strike arithmetic
average Asian call option, an equity-indexed annuity with an Asian-style feature, and a European
floating strike currency lookback call option.

Case 1: European arithmetic average Asian call option

The first test case is based on a European arithmetic average Asian call option, where the
path-dependent function is identified by the arithmetic average of the underlying asset prices registered
on each trajectory starting from inception and reaching a given lattice node. As a consequence, working
under regime 0 and following the procedure detailed in Section 3.2, the representative path-dependent
function values, hereafter referred also as averages in this section, are computed as follows: the greatest
one produced by the trajectory τmax(i, j), being the first element in the set associated with node (i, j),
is computed as

f0(i, j; 1) =
1

i + 1

(
j

∑
h=0

Suh +
i−j−1

∑
h=0

Suh+2j−i

)
;

the smallest average for node (i, j) produced by the trajectory τmin(i, j), being the last element in the
set, is computed as

f0(i, j; 1 + j(i− j)) =
1

i + 1

(
i−j

∑
h=0

Sdh +
j−1

∑
h=0

Sdi−2j+h

)
;

the other representative averages, f0(i, j; k), k = 2, . . . , j(i− j), are computed recursively as

f0(i, j; k + 1) = f0(i, j; k)− 1
i + 1

[
S0max(smin, jsmin)− S0max(smin, jsmin)d

2
]

.

A similar procedure is followed to compute the average values f1(i, j; k) in regime 1.
Once the representative averages have been computed for the lattice nodes in each regime, we can

compute the option values starting from maturity and proceeding backward. Denoting by K the option
strike price, we compute the option payoff at maturity as

c0(n, j; k) = max( f0(n, j; k)− K, 0), with j = 0, . . . , n, and k = 1, . . . , 1 + j(n− j).

To compute the Asian option price, c0(i, j; k), in correspondence with the k-th representative
average f0(i, j; k) at node (i, j) of the lattice in regime 0, we discount the option values at the (i + 1)-th
time step in regime 0 and regime 1 in correspondence of the successors identified for the asset value
S0(i, j) and, consequently, for the average value f0(i, j; k). This is done by applying the following
backward formula step by step:

c0(i, j; k) = e−r0∆t
{
[1− a0,1∆t][p0c0(i + 1, j + 1; ku) + q0c0(i + 1, j; kd)]+

a0,1∆t[p0c1(i + 1, ju; ku) + q0c1(i + 1, jd; kd)]
}

. (3)

If regime 0 persists, c0(i+ 1, j+ 1; ku) and c0(i+ 1, j; kd) are associated respectively with f0(i+ 1, j+
1; ku) = [(i + 1) f0(i, j; k) + uS0(i, j)]/(i + 2) and f0(i + 1, j; kd) = [(i + 1) f0(i, j; k) + dS0(i, j)]/(i + 2).

2 By considering an economy based on L regimes, cl(n, j; k), l = 0, . . . , L− 1, is the European path-dependent option payoff in
correspondence of fl(n, j; k) on the ending node (n, j) for the l-th volatility regime.
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Indeed, the k-th average value at node (i, j) in regime 0, f0(i, j; k), leads to the ku-th average value at
node (i + 1, j + 1), f0(i + 1, j + 1; ku), and to the kd-th average value at node (i + 1, j), f0(i + 1, j; kd).
Since we compute actual averages for each node, f0(i + 1, j + 1; ku) and f0(i + 1, j; kd) may be part
of the representative average sets associated with nodes (i + 1, j + 1) and (i + 1, j) in the lattice for
regime 0, respectively. In the other cases, c0(i + 1, j + 1; ku) is computed by a quadratic interpolation
technique operating on the option values at node (i + 1, j + 1) computed in correspondence with the
three nearest representative averages to f0(i + 1, j + 1; ku). The quantity c0(i + 1, j; kd) is computed
similarly. The use of a quadratic interpolation scheme instead of a simpler linear one, when evaluating
Asian options through lattice models, allows to speed up the algorithm convergence and reduces the
well known overestimation effect induced by linear interpolation. Indeed, the Asian option price is
a convex function of the arithmetic average of the asset values and the use of a linear interpolation
technique may produce an overestimation of the option price.

Whenever the regime switches from regime 0 to regime 1, the quantities c1(i + 1, ju; ku) and
c1(i + 1, jd; kd) are computed by a double quadratic interpolation scheme. The first interpolation
intervenes on the asset prices since, in general, there is not correspondence between the evolution
of the asset value S0(i, j) at the next time step and the asset values at the (i + 1)-th time step in the
low-volatility lattice, S1(i + 1, j), j = 0, . . . , i + 1. The second interpolation works on the average values
as detailed for regime 0, but we have to take into account the representative averages associated
with the three lattice nodes of the (i + 1)-th time step in regime 1 used to compute the quadratic
approximation of the evolution of the asset value S0(i, j).3

The backward induction scheme is applied from maturity T = n∆t to time ∆t. Then, to compute
the option prices at inception, c0(0, 0; 1), we need to modify the backward induction scheme on the
first time interval [0, ∆t] because at time ∆t the CRR lattice presents only two values. Consequently,
a linear interpolation technique rather than a quadratic one has to be applied. Similarly, it happens
when computing c1(0, 0; 1).

American-style contracts may be evaluated through the lattice algorithm described above by
simply embedding in Equation (3) the maximum between the option continuation value and its early
exercise value.

Case 2: Equity-indexed annuities with an Asian-style feature

To provide an actuarial application, the second test case analyzes point to point equity-indexed
annuities showing an Asian-style feature, in that the policy return depends upon the arithmetic
average of the underlying equity-index values registered from the contract inception to its maturity.
The attractive feature of equity-indexed annuities relies on the fact that they protect investors whenever
the reference asset drops down and, at the same time, allow to realize a profit whenever the index
increases. As a consequence, such products are really appreciated by people aiming at creating
a financial support after job-retirement because they allow investors to avoid the exposition to the
high risk characterizing the investments in stock market and, contemporaneously, may ensure them
a greater return with respect to investments in bonds. The valuation of equity-indexed annuities in
a regime-switching model has the appealing feature of taking into account a real world situation,

3 In an L regime economy, we have to take into account every possible pair (l, w), l, w = 0, 1, . . . , L− 1, l 6= w, of regimes to
calculate the option values. The option price in correspondence with the k-th average, fl(i, j; k) for each node (i, j), of the
lattice in the l-th regime, is computed as follows

cl(i, j; k) = e−rl ∆t

{[
1−

L−1

∑
w=0,w 6=l

al,w∆t

]
[plcl(i + 1, j + 1; ku) + qlcl(i + 1, j; kd)]+

L−1

∑
w=0,w 6=l

al,w∆t[plcw(i + 1, ju; ku) + qlcw(i + 1, jd; kd)]

}
.
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especially whenever they are characterized by long-term maturities. Indeed, in the latter case, it is
more realistic to model the return rates and the volatility through stochastic processes rather than
considering constant values, as it happens in the Black and Scholes (1973) model, which may lead
to biases in the equity-indexed annuity valuations. In this sense, the considered regime-switching
model represents one of the simplest way to include stochasticity in the return rates and volatility thus
avoiding the cited biases.

In what follows, we take into account a point to point equity-indexed annuity with return
depending upon the arithmetic average of the underlying equity-index values registered from the
contract inception to maturity. As a consequence, we treat the asset value in Equation (1) as the
equity-index process and the path-dependent function is identified by the arithmetic average of the
underlying equity-index values registered on each trajectory starting from inception and reaching
a given lattice node. The representative path-dependent function values are computed as reported
above when we have considered the case of an arithmetic average Asian option.

We can compute the equity-indexed annuity values starting from maturity and proceeding
backward. Working under regime 0, at maturity, we compute the equity-indexed annuity values as

c0(n, j; k) = max
[
min

[
1 + αR0(n, j; k), (1 + ζ)n∆t

]
, (1 + g)n∆t

]
,

where the quantity R0(n, j; k) =
f0(n, j; k)

S
− 1, with j = 0, . . . , n, and k = 1, . . . , 1 + j(n− j), represents

the average return of the equity-index values registered from time 0 to time T = n∆t, under regime 0,
S represents the initial equity-index value, α is the participation rate allowing for extra return received
by the investors per each unit of the average return, ζ is the ceiling rate treated as the maximum
annual return that investors can receive, and g is the guarantee rate that is the minimum annual
return ensured by the equity-indexed annuity contract.4 To compute the equity-indexed annuity value,
c0(i, j; k), in correspondence with the k-th representative average, f0(i, j; k), at node (i, j) of the lattice in
regime 0, we discount the policy values at the (i + 1)-th time step in regime 0 and regime 1 as reported
in Equation (3), resorting to approximations when it is necessary as detailed above for the case of
arithmetic average Asian options.

Case 3: European floating strike currency lookback call option

The third test case is based on a European floating strike currency lookback call option with payoff
depending upon the minimum value registered by the underlying asset value in a certain monitoring
window. For the sake of simplicity, we suppose that the monitoring window starts at inception and
ends at the time the option has to be evaluated. As a consequence, the path-dependent function is
identified by the minimum of the underlying asset prices registered over each trajectory starting from
inception and reaching a given lattice node. An additional aspect to look at when evaluating currency
options is the presence of a domestic and a foreign interest rate instead of a unique rate in each regime
as it appears in (1). Working in a two-regime economy, we denote by rD

0 and rF
0 the domestic and

foreign interest rate in regime 0 and by rD
1 and rF

1 the domestic and foreign interest rate in regime
1, respectively. The only lattice parameter reported in Section 3.1 that needs to be modified to treat
currency options is the probability of an upward movement that, in regime 0, results to be equal to

p0 = e(rD
0 −rF

0 )∆t−d
u−d . Clearly, q0 = 1− p0 is still the probability of a downward movement.5

4 In an L-regime economy, the quantity Rl(n, j; k) =
fl(n, j; k)

S
− 1, with j = 0, . . . , n, and k = 1, . . . , 1+ j(n− j), represents the

average return of the equity-index values registered from time 0 to time T = n∆t, under the l-th regime with l = 0, . . . , L− 1.
5 Generally, rD

l and rF
l are the domestic and foreign interest rates in the l-th regime with l = 1, . . . , L− 1. Consequently, in the

l-th regime, the probability of an upward movement is computed as pl =
e(rD

l −rF
l )∆t−dςl

uςl−dςl , while ql = 1− pl .
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For each node (i, j) in the lattice for regime 0, the representative path-dependent function values,
f0(i, j; k), with k = 1, . . . , 1 + j(i− j), are computed following the procedure detailed in Section 3.2.
Hence, by considering the generic k-th path reaching node (i, j), τ(i, j) = {(s, js), s = 0, . . . , i; ji = j},
we have f0(i, j; k) = min

(s,js)∈τ(i,j)
S0(s, js).

Working under regime 0 and starting from maturity, where the European floating strike currency
lookback call option presents the following payoff

c0(n, j; k) = max(S0(n, j)− f0(n, j; k), 0), with j = 0, . . . , n, and k = 1, . . . , 1 + j(n− j),

we proceed backward and compute the option price in correspondence with the k-th value f0(i, j; k) at
node (i, j), c0(i, j; k), by discounting at the domestic rate rD

0 the option prices at the (i + 1)-th time step
in regime 0 and regime 1 in correspondence of the successors identified for the asset value S0(i, j) and,
consequently, for the path-dependent function value f0(i, j; k). This is done by applying the following
backward formula step by step:

c0(i, j; k) = e−rD
0 ∆t

{
[1− a0,1∆t][p0c0(i + 1, j + 1; ku) + q0c0(i + 1, j; kd)]+

a0,1∆t[p0c1(i + 1, ju; ku) + q0c1(i + 1, jd; kd)]
}

.

In case of persistence of regime 0, c0(i + 1, j + 1; ku) and c0(i + 1, j; kd) are the option values
in correspondence of f0(i + 1, j + 1; ku) = min( f0(i, j; k), uS0(i, j)), in case of an up step of the asset
price, and f0(i + 1, j; kd) = min( f0(i, j; k), dS0(i, j)), in case of a down step of the asset price. Again,
such values may appear in the sets of the representative path-dependent function values associated
with nodes (i + 1, j + 1) and (i + 1, j) in the lattice for regime 0, respectively. In the other cases,
c0(i + 1, j + 1; ku) is computed by a quadratic interpolation technique operating on the option values
at node (i + 1, j + 1) associated with the nearest three representative values of the path-dependent
function to f0(i + 1, j + 1; ku). The quantity c0(i + 1, j; kd) is computed similarly. When the regime
switches to regime 1, the quantities c1(i + 1, ju; ku) and c1(i + 1, jd; kd) are computed by a double
quadratic interpolation scheme. The first interpolation intervenes on the asset prices since, in general,
there is not correspondence between the evolution of the asset value S0(i, j) at the next time step and
the asset values considered at the (i + 1)-th step in the lattice for regime 1, S1(i + 1, j), j = 0, . . . , i + 1.
The second interpolation works on the path-dependent function values at the (i + 1)-th time step in
regime 1, particularly taking into account the representative values associated with the three lattice
nodes used to compute the quadratic approximation of the evolution of S0(i, j). The general case of L
regimes or the valuation of the American counterpart of the analyzed contract may be easily obtained
as explained before.

4. Numerical Results

The model presented in Section 3 is tested by treating European and American-style financial and
actuarial products in a two-regime economy. To provide comparisons with the existing models
and show the goodness and the flexibility of the proposed approach, we choose two types of
path-dependent options and an insurance policy among the ones already treated in the literature. In
detail, we analyze continuously monitored arithmetic average Asian options, due to their increasing
relevance in financial and actuarial fields, for which we provide comparisons with the Boyle and
Draviam (2007), Yuen and Yang (2010), and Ma and Zhou (2016) models. Then, to provide an actuarial
application, we analyze point to point equity-indexed annuities characterized by an Asian-style feature,
in that the policy return depends upon the arithmetic average of the underlying equity-index values
registered from the contract inception to its maturity, and report comparisons with the Yuen and
Yang (2010) model. Finally, for the sake of completeness, we analyze discretely monitored currency
lookback options, due to their popularity with internationally operating firms, for which preliminarily
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we validate the results providing a comparison with the Cheuk and Vorst (1997) model in the Black
and Scholes (1973) framework, and then we report the option prices generated in the hypothesized
two-regime economy.

4.1. Asian Options

We start by analyzing Asian options depending upon the arithmetic average of the underlying
asset price. In Table 1, we report the results for European Asian call options with maturity T = 1
year in a two-regime economy when the risk-free rate is the same in both the regimes, r0 = r1 = 0.05,
while the high-volatility parameter is σ0 = 0.25 and the low-volatility one is σ1 = 0.15. We vary the
initial underlying asset value S and the strike price K, while the parameters governing the regime
transition or persistence are a0,1 = a1,0 = 1 (1/year). For both regimes, we report the option prices
computed by the proposed model (B) with a number of time steps equal to n = 200, and the ones
provided by the PDE approach proposed by Boyle and Draviam (2007) (BD), and by the trinomial tree
method of Yuen and Yang (2010) (YY), as reported in their papers.

Table 1. European Asian call option prices in a two-regime economy with a0,1 = a1,0 = 1 (1/year).

S Method Regime 0 : r0 = 0.05, σ0 = 0.25 Regime 1 : r1 = 0.05, σ1 = 0.15

K = 90 K = 100 K = 110 K = 90 K = 100 K = 110

90
B 4.6288 1.1238 0.1979 5.8834 2.1773 0.6613

BD 4.6204 1.1172 0.1966 5.8747 2.1808 0.6694
YY 4.5964 1.0970 0.1899 5.8655 2.1688 0.6600

95
B 8.1034 2.6274 0.5882 9.1608 3.9879 1.4210

BD 8.1132 2.6288 0.5809 9.1475 3.9850 1.4281
YY 8.0937 2.6014 0.5668 9.1380 3.9731 1.4165

100
B 12.3322 5.1387 1.4592 13.0469 6.5339 2.7008

BD 12.3374 5.1338 1.4574 13.0381 6.5274 2.7010
YY 12.3253 5.1071 1.4331 13.0294 6.5172 2.6876

105
B 16.9559 8.5702 3.1007 17.3633 9.7703 4.6079

BD 16.9523 8.5831 3.0956 17.3580 9.7659 4.6041
YY 16.9453 8.5608 3.0651 17.3506 9.7554 4.5911

110
B 21.7454 12.7266 5.6185 21.9580 13.5841 7.1908

BD 21.7353 12.7242 5.5472 21.9435 13.5774 7.1802
YY 21.7306 12.7091 5.6179 21.9372 13.5675 7.1689

The table presents a comparison among the European Asian call option prices provided by the lattice
model (B) proposed in Section 3 with n = 200 and the ones appearing in Boyle and Draviam (2007) (BD),
and Yuen and Yang (2010) (YY), in a two-regime economy with σ0 = 0.25 and σ1 = 0.15.

In Table 2, we present the results for the same European Asian call options treated in Table 1
when varying the parameters governing the regime transition or persistence in each one of the
two regimes. As a consequence, we set a0,1 = a1,0 = λ (1/year), and fix the initial asset value at level
S = 100. For comparison, we report the option values calculated by our model (B) with n = 200
time steps and the ones provided by Boyle and Draviam (2007) (BD), Yuen and Yang (2010) (YY),
and Ma and Zhou (2016) (MZ).
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Table 2. European Asian call option prices in a two-regime economy with a0,1 = a1,0 = λ (1/year).

λ Method Regime 0 : r0 = 0.05, σ0 = 0.25 Regime 1 : r1 = 0.05, σ1 = 0.15

K = 90 K = 100 K = 110 K = 90 K = 100 K = 110

0.5

B 12.2671 4.9673 1.3068 13.1136 6.6570 2.8194
BD 12.2651 4.9609 1.3053 13.1165 6.6669 2.8325
YY 12.2538 4.9340 1.2817 13.1073 6.6559 2.8183
MZ 12.2545 4.9351 1.2844 13.1049 6.6493 2.8160

1

B 12.3322 5.1387 1.4592 13.0469 6.5339 2.7008
BD 12.3374 5.1338 1.4574 13.0381 6.5274 2.7010
YY 12.3253 5.1071 1.4331 13.0294 6.5172 2.6876
MZ 12.3267 5.1092 1.4369 13.0265 6.5093 2.6841

The table reports a comparison among the European Asian call option prices provided by the lattice model
(B) proposed in Section 3 with n = 200 and the ones appearing in Boyle and Draviam (2007) (BD),
Yuen and Yang (2010) (YY), and Ma and Zhou (2016) (MZ), in a two-regime economy with σ0 = 0.25 and σ1 = 0.15.

For a more exhaustive treatment of the evaluation problem, in Table 3, we calculate the price
of the American counterpart of the option contracts analyzed in Table 1 in a two-regime economy.
Again, we vary the initial value of the underlying asset S and of the strike price K, while the parameters
governing the regime transition or persistence in each one of the two regimes are a0,1 = a1,0 = 1
(1/year). For both regimes, we report the option prices computed by our model (B) with n = 200 time
step, and the ones provided by the trinomial tree method of Yuen and Yang (2010) (YY).

Table 3. American Asian call option prices in a two-regime economy with a0,1 = a1,0 = 1 (1/year).

S Method Regime 0 : r0 = 0.05, σ0 = 0.25 Regime 1 : r1 = 0.05, σ1 = 0.15

K = 90 K = 100 K = 110 K = 90 K = 100 K = 110

90 B 5.0704 1.1689 0.1999 6.5118 2.2839 0.6760
YY 5.0370 1.1333 0.1921 6.5067 2.2815 0.6757

95 B 9.2362 2.7858 0.5997 10.4983 4.2901 1.4711
YY 9.2197 2.7548 0.5787 10.4824 4.2813 1.4694

100 B 14.2030 5.6172 1.5106 15.2987 7.2308 2.8437
YY 14.1980 5.5967 1.4861 15.2867 7.2297 2.8385

105 B 19.2812 9.7365 3.2841 20.4216 11.1607 4.9672
YY 19.2790 9.7214 3.2542 20.4078 11.1561 4.9590

110 B 24.3732 14.6667 6.1838 25.5736 15.8847 7.9644
YY 24.3641 14.6491 6.1563 25.5604 15.8711 7.9526

The table presents a comparison between the prices of the American counterpart of the European Asian
call options analyzed in Table 1 generated by the lattice model (B) proposed in Section 3 with n = 200
and by the Yuen and Yang (2010) (YY) model.

Numerical results confirm the accuracy of the proposed model in that it provides really close
prices to the ones supplied by the PDE methods of Boyle and Draviam (2007) and Ma and Zhou (2016),
and by the trinomial tree approach suggested by Yuen and Yang (2010) in all the analyzed cases.
Indeed, it is evident that the four models provide really close results. The advantage of choosing
our approach consists primary on the fact that it is useful to evaluate American Asian option as
it happens for the Yuen and Yang (2010) model but, with respect to the latter, it presents the
additional feature of overcoming the drawbacks evidenced in the introduction. The numerical
tests reported above for comparisons are based on the same parameter values already used in the
existing models so that they do not seem to give evidence of notably differences in option prices. To
prove the advantages of our model with respect to Yuen and Yang (2010), it suffices to change the
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parameter values. For instance, the first drawback evidenced in the introduction for the Yuen and
Yang (2010) model is relative to the fact that the option price in the low-volatility regime may
present a worsening convergence rate when the volatilities in the two regimes are significantly
different. This aspect may be addressed with the fact that, as stated in Costabile et al. (2014),
it is not guaranteed that the transition probabilities computed by Yuen and Yang (2010) in the
low-volatility regime are legitimate. Indeed, if we vary the volatility parameters as σ0 = 0.5 and
σ1 = 0.05 and choose n = 100 in the example reported in Table 1, the Yuen and Yang (2010) trinomial
tree in the low-volatility regime presents a negative probability for the downward step equal to
−0.000377. This is just an example to prove that the Yuen and Yang (2010) model may be affected
by negative probabilities that may lead to biases in option prices, while the probabilities of the
proposed model are all legitimate being them of the CRR-type in all the regimes. A second aspect
to look at is relative to the fact that Yuen and Yang (2010) apply the forward shooting grid method
of Hull and White (1993) to manage the path-dependent feature. To ensure the convergence of such
a method, the parameter h governing the fineness of the grid generated by the spanning function Semh

suggested by Hull and White (1993), where m assumes all integer values in a certain interval, must be
chosen as established in Forsyth et al. (2002). Contrary, Yuen and Yang (2010) use fixed values for the
parameter h as Hull and White (1993),6 and in their paper they provide an initial sensitivity analysis
of the Asian option prices in a Black and Scholes (1973) framework when varying the value of the
parameter h (cfr., Tables 1 and 2 in the Yuen and Yang (2010) paper). Having a look to such analysis, it
is evident that Asian option prices are really sensitive upon the values assumed by h showing that the
prices increase when h increases. Furthermore, when h decreases the number of averages generated
by the spanning function deeply increases being the latter of the exponential type. As a consequence,
the computational cost of the Yuen and Yang (2010) algorithm is strictly dependent upon the parameter
value h, while this aspect does not occur in the proposed method because it is based on a fixed number
of representative averages associated with each node. To detail the latter observation concerning the
algorithm complexity, we recall that, at node (i, j), we consider 1 + j(i− j) representative averages so
that the number of representative averages at the i-th time step is given by

i

∑
j=0

(1 + j(i− j)) = 1 +
i3 + 5i

6
.

By considering a binomial tree with n time steps in each regime, the total number of representative
averages analyzed on each lattice is computed as

n

∑
i=0

(
1 +

i3 + 5i
6

)
= 1 +

n4 + 2n3 + 11n2 + 34n
24

.

Since the use of the quadratic interpolation allows us to define a backward induction procedure
based on a number of option values equal to the number of representative averages considered in
each regime, we can conclude that the number of claim values needed to evaluate an Asian option in
an L-regime economy is proportional to Ln4/24 + O(n3). To sum up, our model does not suffer of any
drawback evidenced above and presents itself as a theoretically correct alternative with respect to the
Yuen and Yang (2010) model for evaluating Asian options under regime-switching.

In order to further assess the goodness of the proposed model and show its numerical
convergence,7 we show the behavior of Asian option values in a two-regime economy reporting,

6 A numerical example showing the lack of convergence of the Hull and White (1993) model has been already reported in
Costabile et al. (2006).

7 The convergence of the proposed algorithm to the continuous time model is guaranteed if both the truncation error and the
interpolation error tend to zero as the time step of the lattice ∆t→ 0. To evaluate the truncation error affecting the solution
of the valuation problem when the backward scheme in (3) is used, Jiang and Dai (2004) provide useful findings for what
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in Table 4, the pattern followed by the option prices when increasing the number of time steps n in
the lattice. We consider the same test cases analyzed in Table 2, and compute the absolute value of
the differences between two consecutive option prices that, in each case in both the regimes, decrease
showing how the changes in option prices are closer and closer to zero as the number of time steps
is doubled. Clearly, when computing the ratios between two consecutive differences, they results to
be close to 0.5 even if they are different in the two regimes due to the approximation errors. Finally,
for the sake of completeness, we report the computational times to compute Asian option prices in
both the regimes that result to be equal to 2.64 seconds for n = 50, 40.18 seconds for n = 100 and
649.29 seconds for n = 200, when running on a laptop equipped with a 2.2 GHz Intel i7 Processor,
16 GB RAM, working under Windows 10.

Table 4. Numerical convergence in a two-regime economy with a0,1 = a1,0 = λ (1/year).

K = 90 Regime 0 Regime 1

λ n Price Difference Price Difference

0.5
50 12.2498 0.0114 12.9910 0.0814
100 12.2612 0.0059 13.0724 0.0412
200 12.2671 13.1136

1
50 12.3059 0.0173 12.8326 0.1428
100 12.3232 0.0090 12.9754 0.0715
200 12.3322 13.0469

K = 100 Regime 0 Regime 1

λ n Price Difference Price Difference

0.5
50 4.9429 0.0164 6.5645 0.0613
100 4.9593 0.0080 6.6258 0.0312
200 4.9673 6.6570

1
50 5.1172 0.0141 6.3693 0.1105
100 5.1313 0.0074 6.4798 0.0541
200 5.1387 6.5339

K = 110 Regime 0 Regime 1

λ n Price Difference Price Difference

0.5
50 1.2767 0.0204 2.7542 0.0433
100 1.2971 0.0097 2.7975 0.0219
200 1.3068 2.8194

1
50 1.4322 0.0171 2.5902 0.0741
100 1.4493 0.0099 2.6643 0.0365
200 1.4592 2.7008

The table reports a numerical analysis to show the convergence of the proposed approach, showing the pattern
followed by European Asian call option prices when doubling the number of time steps n in a two-regime economy
with σ0 = 0.25 and σ1 = 0.15.

4.2. Equity-Indexed Annuities

To provide an actuarial application of the proposed approach, we analyze a point to point
Asian-style equity-indexed annuity with return depending upon the arithmetic average of the
underlying equity-index values registered from the contract inception to its maturity. In Table 5,
we report the policy value for an equity-indexed annuity with maturity T = 1 year in a two-regime
economy when the risk-free rate is r0 = 0.05 in regime 0 and r1 = 0.07 in regime 1, while the

concerns the convergence of CRR models for pricing path-dependent options that may be applied to our algorithm. To
evaluate the interpolation error, the Forsyth et al. (2002) methodology may be easily adapted.
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high-volatility parameter is σ0 = 0.25 and the low-volatility one is σ1 = 0.15. We vary the ceiling rate ζ

and the guarantee rate g, while we fix the participation rate α = 1 and the parameters governing the
regime transition or persistence a0,1 = a1,0 = 1 (1/year). For both regimes, we report the equity-indexed
annuity values computed by the proposed model (B) with a number of time steps equal to n = 200,
and the ones provided by the trinomial tree method of Yuen and Yang (2010) (YY), as reported in
their paper.

Table 5. Equity-indexed annuity fair values in a two-regime economy with a0,1 = a1,0 = 1 (1/year).

g Method Regime 0 : r0 = 0.05, σ0 = 0.25 Regime 1 : r1 = 0.07, σ1 = 0.15

ζ = 5% ζ = 10% ζ = 15% ζ = 5% ζ = 10% ζ = 15%

0 B 0.97522 0.99995 1.02035 0.97243 0.98652 0.99963
YY 0.96885 0.98307 0.99085 0.96079 0.97747 0.98880

1% B 0.97837 1.00311 1.02351 0.97449 0.98942 1.00099
YY 0.97294 0.98716 0.99494 0.96500 0.98168 0.99301

2% B 0.98173 1.00646 1.02686 0.97675 0.99548 1.00103
YY 0.97743 0.99165 0.99943 0.96949 0.98617 0.99750

3% B 0.98528 1.01001 1.03041 0.97921 1.00072 1.00349
YY 0.98230 0.99652 1.00430 0.97425 0.99093 1.00227

The table presents a comparison between the fair values of point to point Asian-style equity-indexed
annuities generated by the lattice model (B) proposed in Section 3 with n = 200 and the ones
computed by Yuen and Yang (2010) (YY) when varying the ceiling rate, ζ, and the guarantee rate, g.
The participation rate is fixed at level α = 1, the policy maturity is T = 1, while r0 = 0.05 and σ0 = 0.25
in regime 0, and r1 = 0.07 and σ1 = 0.15 in regime 1.

Numerical results confirm the accuracy of the proposed model when applied to an actuarial
product like an equity-indexed annuity in that it provides really close values to the ones supplied by
the trinomial tree approach suggested by Yuen and Yang (2010) in all the analyzed cases. However,
the numerical analysis reported in Table 5 is based on the same parameter values already used
by Yuen and Yang (2010) to provide comparisons. As a consequence, it does not evidence notably
differences in the equity-indexed annuities values as already observed for Asian option prices
reported in the previous section. Clearly, when varying the parameters values the drawbacks of
the Yuen and Yang (2010) model may persist and this aspect supports the proposed approach.

4.3. Currency Lookback Options

To further assess the goodness and the flexibility of the lattice model, we provide an additional
test case by considering European and American floating strike currency lookback call options.

A first aspect to look at when evaluating lookback options concerns the observation frequency of
the path-dependent function governing the option price, i.e., the minimum of the underlying asset
prices in our test case. Indeed, it is well known in financial literature that the lookback price is really
sensitive with the number of points in time where the underlying asset is observed. In reality, asset
prices may be only observed at a finite number of points in time, hence we focus our test cases on
discretely monitored floating strike currency lookback options. To simplify matters in the evaluation
process, we suppose that the asset price is monitored at each lattice step so that, up to time i∆t, with
i = 0, . . . , n, we consider i + 1 observation points, but we are worth noting that more complex rules to
identify the observation points in time may be easily managed in the proposed framework.

While the pricing of lookback options under regime-switching when the asset price is continuously
monitored is well established (see, for instance, Boyle and Draviam (2007) and the references therein),
the financial literature on the specific topic of this section (i.e., discretely monitored currency lookback
options under regime-switching) is rather scarce. As a consequence, we preliminary validate the
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results providing a comparison with the Cheuk and Vorst (1997) model in the Black and Scholes (1973)
framework as reported in Table 6 and, then, we provide results when making the evaluation in the
hypothesized two-regime economy as reported in Table 7.

In Table 6, we present the results for European floating strike currency lookback call options with
maturity T = 0.5 years when S = 100, the domestic and foreign risk-free rates are equal to rD = 0.04
and rF = 0.07 and the volatility is set to the constant level reported in the table. The evaluation of
options in the Black and Scholes (1973) model may be obtained in our framework by imposing that the
parameters governing the regime transition or persistence are equal to 0, i.e., a0,1 = a1,0 = 0. We report
the option prices computed by our model (B) when varying the number of time steps n and compare
them with the ones computed by Cheuk and Vorst (1997) (CV) with the same number of time steps in
order to have the same number of observation points for the asset value. The experiments is useful to
validate the model in that, in all the analyzed cases, the two methods provide really close results.

Table 6. European floating strike currency lookback option prices in the Black–Scholes framework.

n σ = 0.1 σ = 0.2 σ = 0.3

B CV B CV B CV

50 4.2449 4.24 8.9693 8.97 13.5217 13.52
100 4.3673 4.37 9.2007 9.20 13.8501 13.85
500 4.5371 4.54 9.5216 9.52 14.3051 14.31
1000 4.5784 4.58 9.5997 9.60 14.4157 14.42

The table presents a comparison, under the Black and Scholes (1973) framework, between the European floating
strike currency lookback option prices computed by the lattice model proposed in Section 3, when varying the
number of time steps n, and the ones generated by the Cheuk and Vorst (1997) (CV) model.

Once the model has been validated in a Black–Scholes framework, we work under a two-regime
economy to provide an additional application of the proposed lattice model aimed at pricing European
and American floating strike currency lookback options. In Table 7, we present the results by
considering an option with maturity T = 0.5 years in a two-regime economy where the domestic and
foreign risk-free rate are rD

0 = rD
1 = 0.04 and rF

0 = rF
1 = 0.07, while the high-volatility parameter is

σ0 = 0.3 and the low-volatility one is σ1 = 0.1. We set the initial underlying asset value to S = 100,
while the parameters governing the regime transition or persistence are a0,1 = a1,0 = 1 (1/year).
The results confirm the model coherence when applied to European and American options of the same
kind in that American prices are greater than European prices in all the analyzed cases, as expected.

Table 7. Floating strike currency lookback option prices under regime-switching.

n Regime 0 : σ0 = 0.3 Regime 1 : σ1 = 0.1

European American European American

50 9.4592 11.0479 4.2636 4.6337
100 9.8685 11.4756 4.4764 4.8401
500 10.3854 12.0330 4.7531 5.1122
1000 10.4948 12.1482 4.8171 5.1750

The table presents European and American floating strike currency lookback option prices computed by the
lattice model proposed in Section 3, when varying the numbers of time steps n, in a two-regime economy where
rD

0 = rD
1 = 0.04 and rF

0 = rF
1 = 0.07, while σ0 = 0.3 and σ1 = 0.1. We set S = 100 and T = 0.5 years, while the

parameters governing the regime transition or persistence are a0,1 = a1,0 = 1 (1/year).

5. Conclusions

We have proposed a flexible lattice-based approach for pricing a wide range of financial and
actuarial products characterized by path-dependent features when the underlying asset parameters
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obey to a regime-switching model. The latter represent a simple tool to capture the stochastic volatility
behaviour and, hence, fat tails by allowing the financial parameters to assume different values in
different periods following a process that generates switches among regimes.

The motivations behind this research are based on three main aspects:

• while the pricing of standard options under regime-switching models has been widely studied in
finance, few are the contributions developed for pricing path-dependent derivatives;

• the increasing importance of such derivatives, which are widely used not only in the financial
field but also in the actuarial one;

• the difficulties encountered when managing the complex path-dependent structures of these
derivatives that deeply influence the pricing problem tractability.

The proposed model contributes to the literature in the following main ways:

• by providing a simple and flexible binomial lattice algorithm, useful for practitioners, because
different specifications of the path-dependent function may be easily managed and both
European and American-style contingent claims or insurance policies may be evaluated in the
developed model;

• by reducing the problem computational complexity and overcoming the drawbacks evidenced
for the Yuen and Yang (2010) model.

The algorithm is based on a CRR lattice established in each regime, starting from the one
discretizing the asset dynamics in the highest-volatility regime and obtaining the lattices for the
other regimes by operating a simple modification of the CRR parameters. Working on the lattice
established in each regime, we select a fixed number of effective trajectories for each node, where
computing the values of the path-dependent function governing the derivative price, in order to reduce
the computational cost of the pricing problem. A transition probability matrix is used to capture the
switches among regimes and path-dependent derivative prices are obtained as the expected values of
their payoffs over the lattice branches. A quadratic interpolation scheme is invoked when the regime
changes and, when necessary, to identify the successors of a given path-dependent function value.

Numerical experiments conducted on European and American path-dependent options and
equity-indexed annuities show the algorithm efficiency and accuracy in that it provides really close
values with respect to the ones supplied by the existing pricing models.

Future research will address the valuation of ratchet equity-indexed annuities that are
characterized by a certain number of monitoring windows where the policy return needs to be
evaluated. In this sense, the evaluation problem complicates a bit because we have to detect the
trajectories in each monitoring window instead of considering the trajectories reaching a given node
starting from the lattice inception, as it happens for point to point equity-indexed annuities. Additional
interesting applications, in the same regime-switching framework, may concern variable annuities
characterized by different guaranteed benefits, which represent a hot topic in actuarial literature.
In particular, the managing of the risk affecting such products, as reported in several papers on this
subject, is not trivial. The idea is to start from the analyses of the existing approaches, like the ones of
Feng and Volkmer (2012), (2014), Feng and Vecer (2017), and Privault and Wei (2018), to investigate if
the proposed model is suitable for describing the path-dependent features of the considered guaranteed
benefits and, eventually, to provide extensions or modifications of the proposed approach that may
support its versatility.
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