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Abstract: This article is concerned with the study of the tail correlation among equity indices by means
of dynamic copula functions. The main idea is to consider the impact of the use of copula functions
in the accuracy of the model’s parameters and in the computation of Value-at-Risk (VaR). Results
show that copulas provide more sophisticated results in terms of the accuracy of the forecasted VaR,
in particular, if they are compared with the results obtained from Dynamic Conditional Correlation
(DCC) model.
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1. Introduction

One common mistake in portfolio theory is to assume that multivariate financial returns are
normally distributed. In practice, this assumption does not hold given that financial returns are usually
found to be leptokurtic and asymmetric: they exhibit greater dependence during market downturns
or upturns.

For this reason, we will assume that the joint distribution of log-returns on the FTSE (Financial
Times Stock Exchange) MIB (Milano Indice di Borsa) pairwise with the DAX 30 (German Exchange
Index) and the IBEX 35 (Spanish Exchange Index), respectively, is described by a copula function,
defined as

C(u, v) : [0, 1]2 7→ [0, 1],

where u and v are the uniform transforms of the marginals.1

The use of copulas is straightforward because of the theorem by Sklar (1959): It assesses that
given F, joint distribution function, and given the marginal distributions F1, F2, then there exists a
copula function C : [0, 1]2 7→ [0, 1] such that, for all x, y in R = [−∞,+∞],

F(x, y) = C(F1(x1), F2(y)) = C(u, v),

meaning that any multivariate cumulative distribution function can be written in terms of a copula
C, which describes the joint structure of the risk factors, and in terms of the cumulative distribution
functions of the single risk factors.

The parameters characterizing the copula are assumed to be time-varying. An interesting
approach in the context of copula theory is the one proposed by Patton (2006); he extended Sklar’s
theorem, allowing the dependence parameter to be conditional and time varying.

1 Uniform transforms can be defined in the following way: if x has cumulative distribution function F1 and y has cumulative
distribution function F2, then u = F1(x) and v = F2(y) are standard uniform distributed.
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In a further work, Oh and Patton (2018) improved the time-varying equation for copulas via the
so-called generalized autoregressive score (GAS) model.

Another interesting methodology combines regime Markov switching models and copulas. It has
been introduced by Hamilton (1989) and assumes that a time series’ evolution is influenced by two
different states of the economy, i.e., by a Markov chain with two states. Jondeau and Rockinger (2006)
suggest that the time-varying parameter, i.e., the copula parameter, is driven by the following equation:

δt = δ0(1− St) + δ1St,

where δ0 is the value assumed by the dependence parameter during a low-dependence regime, δ1 the
value assumed during high-dependence regime, and St is the unobserved regime at time t. In this
study, we will consider only the dynamics proposed by Patton (2006) and Oh and Patton (2018).

We want to introduce an approach to modeling dependence between financial returns allowing for
two time-varying structures: we keep fixed one copula function across the two regimes characterizing
equity markets, choosing between two copula forms.

An alternative to this approach is the one proposed by Rodriguez (2007), which assumes time
variation in the functional form of the copula. We do not consider this possibility here.

The significance tests for the copula parameters are mainly settled on the Cramér–von Mises test
statistic (t.s.). As in (Genest et al. 2009), we simulate from the hypothesized copula structure to get a
distribution of fitted parameter from which we will obtain the desired error measure. Simulated pairs
of observations from a given copula function are easy to obtain once the analytical form of the copula
is known. As suggested by McNeil et al. (2015), we just need to rely on the inverse function of the
copula density.

We are interested in comparing different dynamic copula models in terms of their ability to:

1. Describe the evolution of the dependence in the tails via the computation of tail indices2.
2. Forecast capital losses, computing and then forecasting one popular risk measure,

like Value-at-Risk (VaR).

Given the importance of extreme events for risk management purposes, we select the best
model according to VaR forecasts tests proposed by Kupiec (1995) and Christoffersen (1998),
for equally-weighted portfolios composed by the returns of the DAX 30 and IBEX 35 indices in
pair with the FTSE MIB returns.

As will be seen later, given that the distribution of the portfolio is unknown, being that the portfolio
itself a sum of Generalized Autoregressive Conditional Heteroscedasticity (GARCH)-distributed risk
factors, we rely on Monte Carlo simulation technique to obtain such risk measures (Christoffersen 2011).

Once several simulated statuses of the portfolio for each time step t are computed, we test the
goodness of the VaR forecasts considering the two aforementioned tests: the Unconditional Coverage
Test introduced by Kupiec (1995) and the Conditional Coverage Test by Christoffersen (1998).

We want to prove that dynamic copula models are a better specification in covering capital losses
with respect to “traditional” models, like the Dynamic Conditional Correlation (DCC), which takes
into account only the linear correlation coefficient as the dependence measure describing the joint
behaviour of the single risk factors.

Our work proceeds as follows. In Section 2, we describe the copula models adopted and the
method for the computation of VaR; then, in Section 3, the results of the performed tests are provided.
Section 4 contains a discussion of the results.

2 We make use of the classical tail dependence indices for simplicity; as will be seen later, they can be easily obtained using a
closed form formula, once a particular copula function is settled, but the reader should be aware of the shortcomings in the
use of classical tail indices when moving apart from the "Gaussian world". For details, see Furman et al. (2016), where the
authors urge that the classical measures of tail dependence may underestimate the level of tail dependence in copulas.
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2. Model

2.1. Data Description

We consider daily log-returns of the stock indices IBEX 35, DAX 30, and FTSE MIB from 1 March
2006 to 8 June 2017. The data were downloaded from the Yahoo Finance website. The total number of
observations is 2850: The first 2300 are used to fit the in-sample model, and the residual 550 are used
for forecasting purposes. The daily returns we consider are those observed for simultaneous trading
days occurring in all the Italian, German, and Spanish stock markets. For this reason, we dropped
from the original data set all Italian, German, and Spanish closing days of the corresponding National
Stock Exchange markets.

The period covered by our data sample comprises some main stock market crashes: first, the
subprime crisis, during the period 2008–2009; and second, the explosion of the European debt crisis,
from middle 2011 up to 2012, which was mainly driven by the Italian economic and political instability.
For this reason, the period January–March 2013 will also be of particular interest, given the occurrence
of the Italian Parliamentary election.

A few descriptive statistics of the returns are provided in Table 1.

Table 1. Descriptive statistics of the three stock indexes, FTSE (Financial Times Stock Exchange) MIB
(Milano Indice di Borsa), IBEX 35 (Spanish Exchange Index), and DAX 30 (German Exchange Index).

FTSE MIB IBEX 35 DAX 30

Mean −0.08599 −0.00012 0.00020
Median 0.00028 0.00062 0.00089

Maximum 0.10874 0.13484 0.10797
Minimum −0.08599 −0.09586 −0.07433

St. Deviation 0.016844 0.01601 0.01463
Skewness −0.06100 0.01222 0.01011
Kurtosis 6.83680 8.4853 8.65864

2.2. Estimation

The copula estimation method adopted will be the Inference For Margins (IFM) method.
As suggested in Joe (1997), we first make an assumption on the marginal distributions of the single risk
factors. Once the marginal distributions’ set of parameters is fitted, we assume a particular analytic
form for the copula describing their joint behaviour. This straightforward procedure is possible because
of the particular structure of the copula likelihood

L(θ) =
T

∑
t=1

log c(F1(xt), F2(yt)) +
T

∑
t=1

(log f1(xt) + log f2(yt)), (1)

where f1 is the marginal density of x, f2 the marginal density of y, and c is the copula density defined as

c(u, v) =
∂2C(u, v)

∂u∂v
.

In Equation (1), the first sum refers to the joint distribution, whereas the second sum depends only
on the marginals, meaning that IFM method consists of a two-steps optimization: first, two separate
optimizations of the univariate likelihoods and then a maximization of the multivariate likelihood
as a function of the dependence parameter vector. This procedure is computationally simpler than
estimating all parameters simultaneously.
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2.3. Marginal Distributions

In Table 1, there is evidence of sign of excess kurtosis. For this reason, we assume that the errors
have a Student-t distribution. To capture the leverage effect, we also consider asymmetric GARCH
specifications, such as the eGARCH model.

We selected an autoregressive moving average model (ARMA)(2,3)—eGARCH(1,1) with Student-t
errors for FTSE MIB returns and an ARMA(2,2)—eGARCH(1,1) with Student-t errors for DAX 30 and
IBEX 35 returns.

Yt =
p

∑
i=1

θiYt−i +
q

∑
i=1

φizt−i + σtεt

log σ2
t = ω + α

(
zt−1√
σ2

t−1

−
√

2
π

)
+ β log σ2

t−1 + γ
zt−1√
σ2

t−1

vt =

√
ν

σ2
t (ν− 2)

· εt ∼ Tν, zt = σtεt,

where Yt is the log-return at time t, zt the residual at time t, and Tν is a Student-t random variable with
ν degrees of freedom.

2.4. Joint Distribution

We consider two particular copula forms from the class of parametric copulas. These copula
functions have the willing property of being completely described by a vector of parameters and by a
generator function, like

CA
φ (u, v; θ) = φ−1(φ(u) + φ(v)),

with φ : I 7→ R+
called the generator function and θ the vector of the parameters.

The two functional forms for the copula are: a BB1 copula, as defined in Joe (1997), like

CBB1(u, v; k, γ) = (1 + ((u−k − 1)γ + (v−k − 1)γ)1/γ)−1/k, (2)

with k > 0 and γ ≥ 1 and a Symmetrized Joe-Clayton (SJC) copula,

CSJC(u, v; k, γ) = 0.5
(

CBB7(u, v; k, γ) + CBB7(1− u, 1− v; k, γ) + u + v− 1
)

, (3)

with k ≥ 1 and γ > 0. CBB7 is the BB7 Joe-Clayton copula defined as

CBB7(u, v; k, γ) = 1− (1− ((1− (1− u)k)−γ + (1− (1− v)k)−γ − 1)−1/γ)1/k.

The interesting feature of copula functions is the possibility to calculate upper and lower tail
indices through closed formulas. In particular, the expressions for the upper and lower tail indices,
for the BB1 copula, are given by

λU = 2− 21/γ λL = 2−1/γk, (4)

and in the case of the SJC copula, by

λU = 2− 21/k λL = 2−1/γ. (5)
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The parameters are assumed to be time-varying. The first dynamic we consider is the one
proposed by Patton (2006): {

δt = ω + β ∑10
i=1 |ut−i − vt−i|+ αδt−1

θt = Λ(δt),
(6)

where θt is the parameter of the copula under analysis and Λ is a given transformation. To keep the
parameters in the right domain, we consider the following transformations:

• If θt ∈ [1,+∞), then we will set Λ(x) = x2 + 1.
• If θt ∈ (0,+∞), we will set Λ(x) = exp(x).

Equation (6) contains an autoregressive term, αθt−1, and a forcing variable with coefficient β.
The identification of a forcing variable for a time-varying copula parameter is somewhat difficult:
Patton (2006) suggests the use of the mean absolute difference between ut and vt over the previous
10 observations.

An alternative definition for the dynamic equation of the copula parameters is the GAS model,
proposed by Oh and Patton (2018).

The evolution equation for the copula parameter is given by

δt = ω + Bst−1 + Aδt−1, (7)

where
st−1 = St−1∇t−1,

with

∇t−1 =
∂ log c(ut−1; δt−1)

∂δt−1
(8)

being the score of the log-copula density function and St−1 a scaling factor, i.e.,

St−1 = Hp
t−1,

with Ht−1 as the Hessian matrix and p = {0, 1, 1
2}. For simplicity, we will consider p = 0.

As stated in Creal et al. (2013), the reason for using the score as a forcing variable is that it depends
on the complete density, and not only on the first- or second-order moments of the observations ut, so
it may provide a more complete information about the improvement of the model’s local fit in terms of
the likelihood.

2.5. Value-at-Risk

The computation of VaR will be performed on an equally weighted portfolio, like

Π = 0.5R1 + 0.5R2,

with R1 and R2 the returns on the assets under analysis; in our case, R1 is the return on FTSE MIB, and
R2 the return on DAX 30 and IBEX 35, respectively.

For the computation of portfolio VaR from copula models, we need to rely on Monte Carlo
simulation techniques, given that the distribution of Π is hard to obtain, being itself a sum of
GARCH-distributed risk factors. As suggested by Christoffersen (2011), Monte Carlo simulation
essentially reverses the steps taken in model building:

1. First, generate a random sample (ui,t, vi,t) from the selected copula Cθ .
2. Second, create shocks from the copula probabilities using the marginal inverse cumulative

distribution functions zi,t = T−1
ν (ui,t) on each asset.

3. Third, create returns xi,t, yi,t from shocks using the dynamic volatility models.
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Random samples in copula theory can be obtained considering the conditional probability
distribution, defined as

cu(v) = CV|U(v|u) = P(V ≤ v|U = u) = lim
∆u→0

C(u + ∆u, v)
∆u

=
∂C(u, v)

∂u
.

The simulation algorithm goes through the following steps:

1. Generate two independent uniform (0, 1) rvs u and s.
2. Set v = c−1

u (s), where c−1
u is the inverse of cu.

3. The desired pair is (u, v).

Once we have simulated N vectors of returns from the model, it is easy to compute the simulated
portfolio returns using a given portfolio allocation. We consider a “rolling window” approach to
compute one-step ahead forecasted VaR for the period February 2015–June 2017, just taking the
α-quantile on each vector of simulated states of the portfolio for each time step t. In particular, we will
consider α = 1%.

3. Results

The results of the estimation procedure are reported in Table 2.

Table 2. Fitted coefficients and standard errors.

FTSE MIB IBEX 35 DAX 30 FTSE MIB IBEX 35 DAX 30

θ1 −0.043168 0.044679 −0.026672 ω −0.094826 −0.166808 −0.169652
(0.004125) (0.041526) (0.005380) (0.001587) (0.005469) (0.002550)

θ2 0.944940 0.845535 0.955586 α −0.144421 −0.152084 −0.178421
(0.001412) ( 0.074948) (0.005338) (0.013629) (0.018368) (0.018107)

φ1 0.020101 −0.009836 0.056801 β 0.989424 0.980849 0.980906
(0.008237) (0.044879) (0.000259) (0.000032) (0.0008379) (0.000058)

φ2 −0.921542 −0.848789 −0.939253 γ 0.094497 0.111731 0.118315
(0.000008) (0.083562) (0.000007) (0.014279) (0.0173419) (0.008174)

φ3 0.053048 - - ν 9.392484 8.374261 7.671721
(0.008330) - - (1.641448) (0.901715) (1.226093)

The choice of an eGARCH model with Student-t distribution for the marginals is justified by the
results of Kolmogorov-Smirnov (KS) test, which are reported in Table 3.

Table 3. Kolmogorov-Smirnov (KS) test results.

FTSE MIB IBEX 35 DAX 30

KS statistic 0.022156 0.015969 0.018821
p-value 0.2089 0.6005 0.3891

We tested for the null of uniform distribution for the probability transforms

Ut = Tν(vt),

where vt are standardized residuals and Tν(·) is the cumulative distribution function (cdf) of a Student-t
distribution with ν degrees of freedom.

We do not reject the null of uniform distribution for the probability transforms of standardized
residuals at all common significance levels.

The significance test adopted for the copulas is based on the Cramér–von Mises t.s., defined as:

Sn =
∫

I
n{Cn(Û)− Cθn(Û)}2dCn(Û) =



Risks 2019, 7, 116 7 of 14

=
n

∑
i=1
{Cn(Ûi)− Cθn(Ûi)}2,

with n being the sample size, I = [0, 1]2, Ûi ∈ I uniform transform of log-returns, and θn the estimated
vector of parameters of the copula to be tested. The Cramér–von Mises t.s. is a measure of the mean
squared difference between the empirical copula, defined as

Cn(·) =
1
T

T

∑
t=1

1(ut ≤ ·),

and the hypothesized copula; one criterion is to select the copula Cθ that minimizes this quadratic
distance between C

θ̂
, the estimated copula, and Cn.

A significance test suggested by Genest et al. (2009), and based on the Cramér–von Mises statistic,
is then performed. We want to test the null

H0 : C ∈ Cθ ,

with Cθ being the family of parametric copula under analysis.
The structure of the test is summarized in the following algorithm.

1. Compute Cn, the empirical copula, from the uniform transforms Ûi and estimate the vector of
copula parameters θ, say θn, via maximum likelihood.

2. Compute the t.s. Sn.
3. For some large N, repeat the following steps, k = {1, . . . , N}.

(a) Generate a random sample Ŷ1
(k)

, . . . , Ŷn
(k)

from copula Cθn , then compute their

associated rank vectors R̂1
(k)

, . . . , R̂n
(k)

, i = 1, . . . , n.

(b) Compute Ûi
(k)

= R̂ i
(k)/

(n + 1) and let

C(k)
n (u) =

1
n

n

∑
i=1

1(Ûi
(k) ≤ u) u ∈ [0, 1]2

be the empirical copula. Compute an estimate θ
(k)
n of θ from Û1, . . . , Ûn via maximum

likelihood.
(c) Compute an approximate realization of Sn by

S(k)
n =

n

∑
i=1
{C(k)

n (Ûi
(k)

)− C
θ
(k)
n
(Ûi

(k)
)}2.

4. An approximation for the p-value of the test is given by

pvalue =
1
N

N

∑
i=1

1(S(k)
n ≥ Sn).

Kojadinovic et al. (2010) suggest using the following formula for the computation of p-values:

pvalue =
1

N + 1

( N

∑
i=1

1(S(k)
n ≥ Sn) +

1
2

)
,

in order to ensure that they are in the open interval I = (0, 1).
The results of the previous procedure are shown in Tables 4 and 5.
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Table 4. Fitted coefficients, Cramér–von Mises test statistic (t.s.), and log-likelihood for the BB1, and for
the Symmetrized Joe-Clayton (SJC) copulas with dynamic as in Equation (6).

BB1 SJC

FTSE MIB–IBEX 35 FTSE MIB–DAX 30 FTSE MIB–IBEX 35 FTSE MIB–DAX 30

ωU −0.30000567 0.40884762 ωU 0.24838033 0.09810473
(0.03716655) (−0.28192092) (0.24721904) (0.2551627)

αU 0.03950425 −0.94995981 αU 0.85179066 0.96073183
(0.29152632) (−0.19627552) ) (0.85034764) (0.8588131)

βU −4.94732447 −16.59315866 βU 0.02490790 −0.31265168
(3.35765376) (7.20800344) (0.02766444) (−0.4735605)

ωL 1.28118967 0.01167368 ωL −0.04173219 −0.07179274
(1.09177413) (0.30021851) (−0.04417824) (−0.1359612)

αL 0.17951749 0.99249420 αL 0.84924889 0.80251885
(0.46726049) (0.83081313) (0.84873280) (0.5257496)

βL −2.58514184 −0.03026523 βL 0.03121317 0.14441369
(−2.39938572) (−0.06393856) (0.02994828) (−0.1443658)

Sn 0.2059648 0.2754048 Sn 0.01920454 0.3144344
p-value 0.0004995 0.0004995 p-value 0.6728272 0.2442557

Log-Lik 1576.834 1387.445 Log-Lik 1512.259 1343.717

Table 5. Fitted coefficients, Cramér–von Mises t.s., and log-likelihood for the BB1, and for the SJC
copulas with generalized autoregressive score model (GAS) dynamic as in Equation (7).

BB1–GAS SJC–GAS

FTSE MIB–IBEX 35 FTSE MIB–DAX 30 FTSE MIB–IBEX 35 FTSE MIB–DAX 30

ωU −1.31443861 −0.003463384 ωU 0.25368733 0.28971776
(-0.89944562) (−0.46987585) (0.24816560) (0.29316496)

αU −0.26458349 0.996577947 αU 0.84285325 0.81958206
(0.05733857) (0.26361708) (0.84930233) (0.80452288)

βU 0.66099308 0.066533564 βU 0.10302827 0.04663823
(0.48235972) (0.01623878) (0.03045566) (0.04545464)

ωL 0.06892752 0.080316329 ωL −0.03158979 −0.03777936
(0.08599858) (0.08656701) (−0.04297152) (−0.05679195)

αL 0.94315204 0.926766139 αL 0.85087467 0.79993059
(0.93582273) (0.92903208) (0.84992074) (0.80080747)

βL 0.05274755 0.068472429 βL 0.03762481 0.03008048
(0.05108619) (0.06695990) (0.01961471) (0.04271727)

Sn 0.2372009 0.4471988 Sn 0.08591551 0.03982476
p-value 0.00075 0.000487 p-value 0.02147852 0.7787213

Log-Lik 1584.072 1413.833 Log-Lik 1542.525 1319.508

Small p-values can be observed in the case of a BB1 specification of the copula for both FTSE–IBEX
and FTSE–DAX indices, whereas the null of an SJC copula distribution is accepted at all significance
levels, provided that p-values in this case are equal to 0.67 for FTSE–IBEX indices (0.24 for FTSE–DAX,
respectively). A similar result is obtained if a GAS dynamic is assumed for the copula parameters:
the SJC–GAS copula specification is significant at 10% level in the case of the FTSE–IBEX and only
at 1% level in the case of the FTSE–DAX. The null hypothesis of a BB1–GAS copula is rejected at all
significance levels for both FTSE–DAX and FTSE-IBEX indices.

Value in brackets in Tables 4 and 5 refer to an error measure of the fitted coefficients obtained via
Monte Carlo simulation technique; once we fitted the coefficients via maximum likelihood, we have
simulated from the selected copula 1000 times with parameters equal to the fitted ones, and then we
re-fitted the coefficients from the simulated pairs of observations. We collected all the “simulated
parameters” to get the desired confidence intervals. In particular, the values in brackets represent the



Risks 2019, 7, 116 9 of 14

mean of all the 1000 simulated parameters. A schematic representation of this procedure is given in
the following algorithm:

1. Estimate the vector of parameters θ, say θn, via maximum likelihood.

2. For some large N, say N = 1000, repeat the following three steps, k = {1, . . . , N}.

• Generate a random sample Û1
(k)

, . . . , Ûn
(k)

from copula Cθn .

• Estimate θ
(k)
n of θ from Û1, . . . , Ûn via maximum likelihood.

• Collect θ
(k)
n .

The mean values of simulated parameters are close to the fitted values in the case of SJC copula,
whereas in the case of BB1 copula, this happens only for few parameters. In the case of the SJC–GAS
copula, a significant distance between fitted and mean value is observed only in the case of βU for the
FTSE–IBEX pair of indices. For the BB1–GAS parameters, only fitted values for ωL, αL, βU , and βL are
close to the mean values of simulated parameters, for both pairs of indices.

The time evolution patterns of upper and lower correlations are provided in Figures 1–4, where the
blue line refers to the tail indices computed considering a static copula approach (i.e., only a particular
copula structure is selected without allowing for the parameters to be time-varying). We recall that the
computation of tail indices uses formulas in Equations (4) and (5).

(a) (b)
Figure 1. Upper and lower tail indices of FTSE MIB–DAX 30. (a) BB1 with dynamic Equation (6);
(b) BB1 copula with dynamic Equation (7).

(a) (b)
Figure 2. Upper and lower tail indices of FTSE MIB–IBEX 35; (a) BB1 copula with dynamic Equation (6);
(b) BB1 copula with dynamic Equation (7).
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(a) (b)
Figure 3. Upper and lower tail indices of FTSE MIB–DAX 30; (a) SJC copula with dynamic Equation (6);
(b) SJC copula with dynamic Equation (7).

(a) (b)
Figure 4. Upper and lower tail indices of FTSE MIB–IBEX 35; (a) SJC copula with dynamic Equation (6);
(b) SJC copula with dynamic Equation (7).

The symmetric behaviour between upper and lower tail indices is evident in the case of a BB1
copula specification with dynamic Equation (6) for the Italian-Spanish pair of indices, as shown in
Figure 2a; there are peaks in the lower tail index—and, consequently, drops in the upper tail index—in
the last part of 2007 and from middle 2009 up to the beginning of 2011. The upward trend in the lower
tail index starts again in the middle of 2011, just before the explosion of the European debt crisis, and
continues until 2013, where it reaches another maximum level.

In the case of tail indices obtained from SJC copula, it can be observed, as shown in Figures 3a
and 4a, that the values for the lower and for the upper tail indices are, in the case of the FTSE–IBEX
pair, systematically above the values obtained from static SJC copula, meaning that the static approach
seems to be more “conservative” with respect to the dynamic structure of Equation (6). Lower weight
is given to lower tail indices in the case of SJC copula, with average values of 0.37 for the FTSE–IBEX
pair and 0.38 for the FTSE–DAX pair.

Relevant peaks can be observed during periods of political instability in Italy: in particular, the
period December 2011–January 2012, due to the beginning of president Monti’s technical government
and during February 2013, on the occasion of the Italian Parliamentary election.

It is interesting to underline the joint behaviour of the two tail indices: in the case of the FTSE–IBEX
pair, we get the same pattern in the upper and in the lower tail indices, meaning that the correlation
between Italian and Spanish equity markets moves in the same way in both the right and the left tail.
Instead, from Figure 3a, it can be observed that an increase in the lower tail index corresponds to a
decrease in the upper tail index for the FTSE–DAX pair, and vice versa. In this case, we would say that
Italian and German tail correlation behave in a symmetric way during shock periods.

We now analyse the time evolution patterns of the tail indices, considering a BB1 copula and an
SJC copula with dynamic equation as in (7).

The SJC–GAS model tends to provide more stable results: in particular, in Figure 3b it can be
observed that the upper tail index for FTSE–DAX is flat around 0.8 with one only exception at the
beginning of 2007, where the index reaches the minimum value of 0.15. Greater variability is provided
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by the BB1–GAS model, as shown in Figures 1b and 2a; the minimum value for lower tail index for
the FTSE–DAX is reached in the second half of 2008, with a subsequent sudden jump. Another shock
is observed just before the beginning of 2011, with a persistent trend around the static value of 0.89.
At some points in time, particularly during the second half of 2008, the upper tail index reaches values
close to 0 for the FTSE–DAX pair, meaning that asymptotic independence in the right tail is observed
during severe economic crashes, as in September 2008. The trend is more stable in the case of the
FTSE–IBEX pair, considering always a BB1–GAS specification, with values always greater than 0.7 for
the lower tail index and 0.3 for the upper t.i.

Fluctuations of the upper and lower tail indices are observed in the case of the BB1–GAS copula:
as shown in Figure 1b, during the fall of 2008 for the FTSE–DAX and, particularly, at the beginning of
2013 for both FTSE–DAX and FTSE–IBEX pairs, there is a considerable shock in the upper and lower
tail correlations.

The results for the p-values shown in Tables 4 and 5 suggest that the best copula specification
is an SJC copula instead of a BB1 copula. For this reason, the SJC copula with dynamics given by
Equations (6) and (7) will be taken into account for the computation of VaR.

In Figure 5, a graphical representation of the one-step-ahead forecasted VaR is provided.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Value-at-Risk (VaR) forecasts time patterns considering an SJC copula with dynamic Equation
(6) (a,b), an SJC–GAS copula (c,d), and a DCC model (e,f). (a,c,e) refer to the FTSE MIB–DAX 30
portfolio VaR, while (b,d,f) to the FTSE MIB–IBEX 35 portofolio.

To evaluate the VaR forecasts, we use the Unconditional Coverage test proposed by Kupiec (1995)
and the Conditional Coverage test by Christoffersen (1998). It is possible to construct an indicator
sequence It, t = 1, ..., T, defined as

It =

{
0 if rt > VaRα,t

1 otherwise
,
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with rt being the return of the portfolio at time t; this is a straightforward way to count the number
of violations.

The Unconditional Coverage test is a test for the null that the fraction of violations πobs is
significantly different from the assumed fraction πexp. The t.s. is a likelihood ratio statistic given by

LRuc = −2 log

(
πn1

exp(1− πexp)n0

πn1
obs(1− πobs)n0

)
∼ χ2

1,

where πexp = α, n1 is the observed number of violations, and n0 = T − n1 is the number of returns
with indicator 0.

We can easily estimate πobs from π̂obs = n1/T. χ2
1 is a chi-square distribution with one degree

of freedom.
We do not want the VaR violations to come in clusters; if the VaR violations are clustered, then we

can predict that if today is a violation, then tomorrow is more than α · 100% likely to be a violation.
Christoffersen (1998) proposed a combined test for both unconditional coverage and independence in
the sequence It, with H0 being the null hypothesis of serial independence and a violation rate of α of
the violations It. The test statistic in this case is given by

LRcc = −2 log

(
πn1

exp(1− πexp)n0

π
n01
01 (1− π01)n00 πn11

11 (1− π11)n10

)
∼ χ2

2,

where nij is the number of returns with indicator i followed by returns with indicator j, with i, j = 0, 1
and πij = P(It = j|It−1 = i) = nij/ ∑j nij. In this case, the chi-square distribution χ2

2 has two degrees
of freedom.

Under H0, π01 = π11 = α, meaning that, if the exceedances are independent, the probability of
observing a new violation of the VaR at t is the same, independent of what happened in the earlier instant.

The two tests were performed on three multivariate models: an SJC copula with dynamic equation
as in (6), an SJC copula with GAS dynamic, and a DCC model. Results are provided in Table 6. P-values
are always equal to 0 if we consider a DCC model describing the joint behaviour of FTSE MIB and
DAX 30, IBEX 35, respectively.

Table 6. Test statistic (t.s.) and, in brackets, p-values for Kupiec test and Christoffersen test, considering
1%–VaR on an equally weighted portfolio.

FTSE MIB—IBEX 35

Kupiec Test Christoffersen Test
(Unconditional Coverage) (Conditional Coverage)

SJC 1.006591 3.670008
(0.3157209) (0.1596129)

SJC - GAS 0.3804048 3.774803
(0.5373867) (0.1514649)

DCC 72.16992 77.56573
(0) (0)

FTSE MIB—DAX 30

Kupiec Test Christoffersen Test
(Unconditional Coverage) (Conditional Coverage)

SJC 4.304982 5.927579
(0.03800091) (0.05162293)

SJC—GAS 5.80171 7.142801
(0.0160106) (0.02811646)

DCC 64.669 74.18366
(0) (0)
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4. Concluding Remarks

In Tables 4 and 5, small p-values can be observed in the case of a BB1 specification of the copula
for both FTSE–IBEX and FTSE–DAX indices, whereas the null of an SJC copula distribution with the
same dynamic is accepted at all significance levels, provided that p-values in this case are equal to 0.67
for FTSE–IBEX indices (0.24 for FTSE–DAX, respectively), considering the dynamic as in Equation (6).
p-values for the SJC–GAS copula are significant at 10% level in the case of the FTSE–IBEX and only
at 1% level in the case of the FTSE–DAX. The null hypothesis of a BB1–GAS copula is rejected at all
significance levels for both FTSE–DAX and FTSE–IBEX indices.

SJC copula always provides higher p-values, meaning that it should be considered as the best
specification in terms of the goodness of the fitted parameters.

The results of the Kupiec test and of the Christoffersen test are provided in Table 6: for the 1%–VaR
the null of the expected number of violations close to 1% is not rejected at all common significance
levels for the FTSE–IBEX portfolio and at 1% level for the FTSE–DAX, considering both dynamic
copulas under analysis. The null hypothesis of the Kupiec test is rejected at all common significance
levels for 1%–VaR if it is computed considering a DCC dynamic.

P-values for the conditional coverage test are always equal to 0 considering a DCC dynamic,
whereas they are greater than 10% for the FTSE–IBEX portfolio with both the SJC–GAS copula and SJC
copula with dynamic as in (6). In the case of the FTSE–DAX portfolio, we get a p-value for the SJC–GAS
copula, greater than 1% and a p-value greater than 5% for the SJC copula with dynamic as in (6).

The DCC joint structure should be rejected if the 1%–VaR is considered, whereas both the SJC copula
with dynamic as in (6) and the SJC–GAS copula perform well in the VaR forecasts tests considered.

We conclude saying that dynamic copulas, in comparison with the DCC model, not only provide
a more sophisticated measure of the correlation (providing a specific measure for the dependence in
the left and in the right tail), but they are also preferable in covering capital losses.
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Abbreviations

The following abbreviations are used in this manuscript:

rv random variable
SJC Symmetrized Joe-Clayton
GAS Generalized Autoregressive Score
t.i. tail index
cdf cumulative distribution function
t.s. test statistic
DCC Dynamic Conditional Correlation
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Furman, Edward, Alexey Kuznetsov, Jianxi Su, and Ričardas Zitikis. 2016. Tail dependence of the gaussian copula

revisited. Insurance: Mathematics and Economics 69: 97–103.
Genest, Christian, Bruno Rémillard, and David Beaudoin. 2009. Goodness-of-fit tests for copulas: A review and a

power study. Insurance: Mathematics and Economics 44: 199–213. [CrossRef]
Hamilton, James D. 1989. A new approach to the economic analysis of nonstationary time series and the business

cycle. Econometrica: Journal of the Econometric Society 57: 357–84. [CrossRef]
Joe, Harry. 1997. Multivariate Models and Multivariate Dependence Concepts. Boca Raton: CRC Press.

http://dx.doi.org/10.2307/2527341
http://dx.doi.org/10.1002/jae.1279
http://dx.doi.org/10.1016/j.insmatheco.2007.10.005
http://dx.doi.org/10.2307/1912559


Risks 2019, 7, 116 14 of 14

Jondeau, Eric, and Michael Rockinger. 2006. The copula-garch model of conditional dependencies: An
international stock market application. Journal of International Money and Finance 25: 827–53. [CrossRef]

Kojadinovic, Ivan, and Jun Yan. 2010. Modeling multivariate distributions with continuous margins using the
copula r package. Journal of Statistical Software 34: 1–20. [CrossRef]

Kupiec, Paul. 1995. Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives 3: 2.
[CrossRef]

McNeil, Alexander J., Rüdiger Frey, and Paul Embrechts. 2015. Quantitative Risk Management: Concepts, Techniques
and Tools-Revised Edition. Princeton: Princeton University Press.

Oh, Dong Hwan, and Andrew J Patton. 2018. Time-varying systemic risk: Evidence from a dynamic copula model
of cds spreads. Journal of Business & Economic Statistics 36: 181–95.

Patton, Andrew J. 2006. Modelling asymmetric exchange rate dependence. International Economic Review 47:
527–56. [CrossRef]

Rodriguez, Juan Carlos. 2007. Measuring financial contagion: A copula approach. Journal of Empirical Finance 14:
401–23. [CrossRef]

Sklar, A. 1959. Fonctions dé repartition à n dimension et leurs marges. Université Paris 8: 1–3.

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jimonfin.2006.04.007
http://dx.doi.org/10.18637/jss.v034.i09
http://dx.doi.org/10.3905/jod.1995.407942
http://dx.doi.org/10.1111/j.1468-2354.2006.00387.x
http://dx.doi.org/10.1016/j.jempfin.2006.07.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model
	Data Description
	Estimation
	Marginal Distributions
	Joint Distribution
	Value-at-Risk

	Results
	Concluding Remarks
	References

