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Abstract: We consider the Sparre Andersen risk process with interclaim times that belong to the class
of distributions with rational Laplace transform. We construct error bounds for the ruin probability
based on the Pollaczek–Khintchine formula, and develop an efficient algorithm to approximate the
ruin probability for completely monotone claim size distributions. Our algorithm improves earlier
results and can be tailored towards achieving a predetermined accuracy of the approximation.

Keywords: Sparre Andersen model; heavy tails; completely monotone distributions; error bounds;
hyperexponential distribution

1. Introduction

The Sparre Andersen model is a classical object of study in insurance risk theory, see e.g., Labbé
and Sendova (2009); Li and Garrido (2005); Temnov (2004, 2014); Willmot (2007); and Asmussen
and Albrecher (2010) for an overview. In this model, claims occur according to a renewal process,
which generalises the Cramér–Lundberg model, where claims arrive according to a Poisson process.
Ruin probabilities in such a general setting are typically expressed as solutions of defective renewal
equations, differential equations, the so-called Wiener–Hopf factorisation, etc., but the latter are
typically inadequate to be used for numerical computations. However, if either the interclaim times or
the claim sizes belong to the class of phase-type distributions, then ruin-related quantities can be found
in an explicit form; see, e.g., Albrecher and Boxma (2005); Dickson (1998); Li and Garrido (2005) and
Landriault and Willmot (2008), respectively.

However, in many relevant situations in practice, the behaviour of the claim sizes is
better captured by heavy-tailed distributions (Embrechts et al. 1997); however, in that case,
explicit expressions are hard or impossible to evaluate even in terms of Laplace transforms.
Under a heavy-tailed setting, a standard approach is hence to seek for asymptotic approximations
(Albrecher et al. 2012; Dong and Liu 2013; Wei et al. 2008), for initial capital levels being very large.
At the same time, this capital level typically has to be very large, so as to be reasonably accurate, when
actual magnitudes matter. One mathematically appealing solution is then to look for higher-order
approximations (see e.g., Albrecher et al. 2010); but, then an actual error bound for fixed values also
cannot be given. Another alternative is to approximate the actual heavy-tailed claim distribution by
a tractable light-tailed one and control the introduced error in some way. Spectral approximations in
this spirit were recently developed in Vatamidou et al. (2014) for the classical Cramér–Lundberg model.

The present paper proposes an extension of techniques in Vatamidou et al. (2014) to the more
general Sparre Andersen model, and at the same time improves the bound derived there and the
efficiency of the algorithm to establish it. Using the geometric compound tail representation of the ruin
probability, we derive our error bound in terms of the ladder height distribution, which is explicitly
available when the distribution of the interclaim times has a rational Laplace transform. We focus on
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heavy-tailed claim sizes, where numerical evaluations of ruin probabilities are typically challenging,
and we develop an algorithm for the class of completely monotone distributions. Concretely, we
approximate the ladder height distribution by a hyperexponential distribution, and we are able to
prescribe the number of required phases for a desired resulting accuracy for the ruin probability.

The rest of the paper is organised as follows. In Section 2, we introduce the model and provide the
exact formula for the ladder height distribution. As a next step, we derive, in Section 3, the error bound
for the ruin probability, and we construct our approximation algorithm. In Section 4, we compare our
approximations with existing asymptotic approximations. In Section 5, we then perform an extensive
numerical analysis to check the tightness of the bound and the quality of the derived approximations.
Finally, we conclude in Section 6.

2. Model Description

Consider the Sparre Andersen risk model for an insurance surplus process defined as

R(t) = u + ct−
N(t)

∑
i=1

Xi, t ≥ 0, (1)

where u ≥ 0 is the initial capital, c > 0 is the constant premium rate and the i.i.d. positive random
variables {Xi}i≥1 with distribution function FX represent the claim sizes. The counting process
{N(t), t ≥ 0} denotes the number of claims within [0, t] and is defined as N(t) = max{n ∈ N : W1 +

W2 + . . . Wn ≤ t}, where the interclaim times Wi are assumed to be i.i.d. with common distribution
function K, independent of the claim sizes; see, e.g., Asmussen and Albrecher (2010). We also assume
cEW > EX, providing a positive safety loading condition.

Now, let T = inf{t ≥ 0 : R(t) < 0} be the time of ultimate ruin. Then, the ruin probability is
defined as

ψ(u) = P(T < ∞ | R(0) = u). (2)

The ruin probability satisfies the defective renewal equation

ψ(u) = φ
∫ u

0
ψ(u− x)dH(x) + φH(u), u ≥ 0, (3)

where φ = ψ(0), H(u) is the distribution of the ascending ladder height associated with the surplus
process S(t) := u− R(t) and H(u) = 1− H(u), for u ≥ 0; see, e.g., Willmot et al. (2001). The solution
to Equation (3) is the Pollaczek–Khintchine-type formula

ψ(u) =
∞

∑
n=1

(1− φ)φnH∗n(u), (4)

i.e., ψ(u) is a geometric compound tail with geometric parameter φ; see Section 1.2.3 in
Willmot and Woo (2017) for details.

Although Equation (4) provides a closed-form formula for the ruin probability, it is impractical,
because the ladder height distribution H(u) is not available in most cases of interest. However, when
the distribution K of the interclaim times has a rational Laplace transform, H(u) has an explicit form
(Li and Garrido 2005), which we recall in the next subsection. In the sequel, we will then use this as
a starting point for developing highly accurate approximations for ψ(u), which is of particular interest
for heavy-tailed claim sizes.
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The Ladder Height Distribution with Interclaim Times of Rational Laplace Transform

We assume now that the Laplace transform of the interclaim times is a rational function of the form

k̃(s) =
µ∗ + sβ(s)

∏N
n=1(s + µn)

, (5)

where µn > 0, ∀n = 1, . . . , N, µ∗ = ∏N
n=1 µn and β(s) is a polynomial of degree N− 2 or less. Obviously,

EW = −k̃
′
(0) = ∑N

n=1
1

µn
− β(0)

µ∗ . If f̃X(s) =
∫ +∞

0 e−sxdFX(x) is the Laplace–Stieltjes transform (LST)
of the claim sizes, it is shown in Li and Garrido (2005) that the generalised Lundberg equation

∏N
n=1(µn − cs)

µ∗ − csβ(−cs)
= f̃X(s), s ∈ C, (6)

has exactly N roots ρ1, ρ2,. . . , ρN , with ρN = 0 and <(ρn) > 0, n = 1, 2, . . . , N − 1. These roots play
an important role in the evaluation of the ladder height distribution and the geometric parameter
φ. Denote with FX(x) the complementary cumulative distribution function (ccdf) of the claim sizes,
and consider the Dickson–Hipp operator

Tr f (x) :=
∫ ∞

x
e−r(y−x) f (y)dy =

∫ ∞

0
e−ry f (y + x)dy, (7)

for a function f (x) (see Dickson and Hipp 2001). Moreover, let ρ∗ = ∏N−1
n=1 ρn. Then, as shown in

Li and Garrido (2005), the ccdf of the ascending ladder heights is calculated via the formula

H(u) =
1

φcN

N

∑
n=1

µ∗ − cρnβ(−cρn)

∏N
k=1
k 6=n

(ρk − ρn)
Tρn FX(u), (8)

where

φ = 1− µ∗(cEW−EX)

ρ∗
< 1. (9)

Although the ladder height distribution in this model has an explicit formula, it is difficult to
evaluate ψ(u) either via Equation (4) or by taking Laplace transforms (an equivalent formula to the
Pollaczek–Khinchine in the Cramér–Lundberg model). In particular, this is the case when the claim
sizes follow a heavy-tailed distribution, as already mentioned in Section 1. As a result, in such cases,
opting for approximations seems a natural solution.

In the next section, we will study error bounds for ψ(u) when the ladder height distribution
is approximated by a phase-type distribution. In particular, we will provide an efficient
algorithm to construct approximations for ψ(u) when approximating H(u) by the subclass of
hyperexponential distributions.

3. Spectral Approximation for the Ruin Probability

The starting point for the approximation of ψ(u) is its geometric compound tail representation
in Equation (4). Note that this representation is similar to the Pollaczek–Khintchine formula for ψ(u)
in the Cramér–Lundberg model where φ is replaced by the average amount of claim per unit time
ρ < 1 and the ladder height distribution is equal to the stationary excess claim size distribution.
Therefore, following the reasoning in Vatamidou et al. (2014), we will approximate the ladder height
distribution by a hyperexponential distribution (which has a rational Laplace transform), to construct
approximations for the ruin probability.
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3.1. Error Bound for the Ruin Probability

Let Ĥ(u) be an approximation of the ladder height distribution H(u) and ψ̂(u) be the exact result
we obtain from (4) when we use Ĥ(u). From Equation (4) and the triangle inequality, the error between
the ruin probability and its approximation then is

∣∣ψ(u)− ψ̂(u)
∣∣ ≤ ∞

∑
n=1

(1− φ)φn
∣∣∣H∗n(u)− Ĥ

∗n
(u)
∣∣∣ . (10)

If we define the sup norm distance between two distribution functions F1 and F2 as
D(F1, F2) := supx |F1(x)− F2(x)|, x ≥ 0 (also referred to as Kolmogorov metric), the following
result holds.

Theorem 1. A bound for the approximation error of the ruin probability is

∣∣ψ(u)− ψ̂(u)
∣∣ ≤ D(H, Ĥ)(1− φ)φ(

1− φH(u)
)(

1− φĤ(u)
) , ∀u > 0.

Proof. The result is a direct application of Theorem 4.1 of Peralta et al. (2018) by (i) choosing
the functions F̂1 and F̂2 to be H and Ĥ, respectively; (ii) taking ρ = φ; and (iii) recognising that
supy<u

{∣∣H(y)− Ĥ(y)
∣∣} ≤ D(H, Ĥ).

Remark 1. As limu→+∞ H(u) = limu→+∞ Ĥ(u) = 1, it is immediately obvious that the bound converges to
D(H, Ĥ)φ/(1− φ), which means that the bound is asymptotically uniform in u.

To sum up, when the ladder height distribution is approximated with some desired accuracy,
a bound for the ruin probability is guaranteed by Theorem 1. Although this result holds for any
approximation Ĥ of H, we will in the sequel focus on hyperexponential approximations, as these
lead to very tractable expressions and at the same time are sufficiently accurate for the purpose.
Consequently, our next goal is to construct an algorithm to approximate the ladder height distribution
by a hyperexponential distribution.

3.2. Completely Monotone Claim Sizes

We are mostly interested in evaluating ruin probabilities when the claim sizes follow a heavy-
tailed distribution, such as Pareto or Weibull. These two distributions belong to the class of completely
monotone distributions.

Definition 1. A pdf f is said to be completely monotone (c.m.) if all derivatives of f exist and if

(−1)n f (n)(u) ≥ 0 for all u > 0 and n ≥ 1.

Completely monotone distributions can be approximated arbitrarily closely by hyperexponentials;
see, e.g., Feldmann and Whitt (1998). Here, we provide a method to approximate a completely
monotone ladder height distribution with a hyperexponential one to achieve any desired accuracy for
the ruin probability. The following result is standard; see Feller (1971).

Theorem 2. A ccdf F is completely monotone if and only if it is the Laplace–Stieltjes transform of some
probability distribution S defined on the positive half-line, i.e.,

F(u) =
∫ ∞

0
e−yudS(y). (11)

We call S the spectral cdf.
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Remark 2. With a slight abuse of terminology, we will say that a function S is the spectral cdf of a distribution
if it is the spectral cdf of its ccdf.

Note that Theorem 2 also extends to the case where S(y) is not a distribution but simply a finite
measure on the positive half-line, i.e., a function f is completely monotone if and only if it can be
expressed as the Laplace–Stieltjes integral of such a finite measure S(y). We will show that under
the assumption that the claim size distribution is c.m. and the ladder height distribution is c.m. too.
We first need the following intermediate result.

Lemma 1. If the ccdf FX(u) is c.m., then Tρn FX(u) is a c.m. function, ∀n = 1, . . . , N.

Proof. Assume that the claim sizes are completely monotone, i.e., FX(u) =
∫ ∞

0 e−uydS(y), for some
spectral cdf S(y). In this case, it holds that

Tρn FX(u) =
∫ ∞

t=0
e−ρntFX(t + u)dt =

∫ ∞

t=0
e−ρnt

∫ ∞

y=0
e−(t+u)ydS(y)dt

=
∫ ∞

y=0
e−uydS(y)

∫ ∞

t=0
e−(y+ρn)tdt =

∫ ∞

0
e−uy dS(y)

y + ρn
=
∫ ∞

0
e−uydSTρn

(y),

where dSTρn
(y) = dS(y)

y+ρn
, n = 1, . . . , N, is a finite measure on the positive half-line with

STρn
(+∞) = (1− f̃X(ρn))/ρn, n = 1, . . . , N − 1, and ST0(+∞) = EX.

We can now state the following result.

Proposition 1. If the ccdf FX(u) is c.m., i.e., FX(u) =
∫ ∞

0 e−uydS(y), for some spectral cdf S(y), then the
ladder height distribution is c.m. too, i.e., H(u) =

∫ ∞
0 e−uydSH(y), where SH(y) is a spectral cdf such that

dSH(y) =
1

φcN

N

∑
n=1

µ∗ − cρnβ(−cρn)

(y + ρn)∏N
k=1
k 6=n

(ρk − ρn)
dS(y).

Proof. It was proven in Chiu and Yin (2014) that the ascending ladder height distribution in the Sparre
Andersen model is c.m. if the claim size distribution is c.m, meaning that H(u) can be represented as
the Laplace–Stieltjes transform of some spectal cdf SH(y). Due to the uniqueness of Laplace transforms,
it, therefore, suffices to find the formula of the spectral cdf SH(y) by applying Lemma 1 to (8).

We show in the next section how to utilise the above results to construct approximations for the
ruin probability ψ(u) that have a guaranteed error bound given by Theorem 1.

3.3. Approximation Algorithm

Following the proof of Lemma 2 in Vatamidou et al. (2014), we can directly deduce the
following result.

Lemma 2. Let SH be the spectral cdf of the c.m. ladder height distribution H and ŜH a step function such that
D(SH , ŜH) ≤ ε. Consequently, D(H, Ĥ) ≤ ε, where Ĥ is the c.m. approximate ladder height distribution with
spectral cdf ŜH .

The above lemma states that if we want to approximate a c.m. ladder height distribution with
a hyperexponential one with some fixed accuracy ε, it suffices to approximate its spectral cdf with
a step function with the same accuracy. As pointed out in Remark 1 of Vatamidou et al. (2014),
we could approximate SH with a step function having k jumps that occur at the quantiles λi, such
that SH(λi) = i/(k + 1), i = 1, . . . , k and are all of size 1/k to achieve D(H, Ĥ) ≤ ε = 1/(k + 1).
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Another possibility is to use the step function in Step 4d of our Algorithm 1; see also Figure 1 for a
graphical representation of the approximate step function and its corresponding hyperexponential
distribution. Clearly, this new step function leads to D(H, Ĥ) ≤ ε = 1/2(k− 1).

The error bound for the approximate ruin probability ψ̂(u) can be calculated afterwards through
Theorem 1. An interesting question in this context is how many phases k for the approximate ladder
height distribution suffice to guarantee an error bound

∣∣ψ(u)− ψ̂(u)
∣∣ ≤ δ for some predetermined

δ > 0. We answer this question in the next lemma.

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10
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0.4

0.6

0.8

1.0

Figure 1. Approximating the ladder height distribution with a hyperexponential one with 6 phases
to achieve accuracy ε = 0.1, under Pareto(2, 3) claim sizes. On the left graph, the purple dashed line
corresponds to the spectral cdf SH and the red solid line to its approximate step function ŜH , whereas
on the right graph we see H and Ĥ, respectively.

Lemma 3. To achieve
∣∣ψ(u)− ψ̂(u)

∣∣ ≤ δ for some predetermined δ > 0, the ladder height distribution H(u)
must be approximated by a hyperexponential one with at least k phases, such that

k = k(u) =

min

{
φ
(

1− φ + δ
(
1− φH(u)

))
2δ
(
1− φH(u)

)2 ,
φ

2δ
(
1− φ

) }
+ 1, (12)

where dxe is the integer that is greater than or equal to x but smaller than x + 1.

Proof. Observe that the error bound in Theorem 1 depends on the approximate hyperexponential
distribution Ĥ(u), which means that one should first determine Ĥ(u) and then calculate the error
bound. However, when D(H, Ĥ) ≤ ε, this translates to H(u)− ε ≤ Ĥ(u) ≤ H(u) + ε. Therefore, the
worst-case scenario for the bound is when Ĥ(u) = H(u) + ε and consequently D(H, Ĥ) = ε. As a
result, if we want to achieve

∣∣ψ(u)− ψ̂(u)
∣∣ ≤ δ for all possible scenarios of Ĥ(u), we should solve

the inequality
ε(1− φ)φ(

1− φH(u)
)(

1− φH(u)− φε
) ≤ δ,

with respect to ε. By substituting ε = 1/2(k− 1), we calculate

k ≥
φ
(

1− φ + δ
(
1− φH(u)

))
2δ
(
1− φH(u)

)2 + 1.

In addition, the bound is asymptotically equal to εφ/(1− φ) according to Remark 1. Consequently,
it must also hold that

εφ

1− φ
≤ δ ⇒ k ≥ φ

2δ(1− φ)
+ 1.

Finally, as the number of phases k must be an integer, the smallest possible integer that satisfies at
least one of the inequalities is the one described in Equation (12).
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After this, we present our algorithm under the setting that we fix the desired accuracy δ for the
approximation of the ruin probability ψ̂(u).

Algorithm 1. Spectral Approximation
Steps:

1. Calculate the roots ρn, n = 1, . . . , N − 1 using Equation (6).
2. Find the spectral cdf S(y) of FX(x).
3. Use Proposition 1 to calculate the spectral cdf SH(y) of H(u).
4. Approximate H(u) by a hyperexponential distribution with k phases.

(a) Choose the accuracy of the ruin probability δ for a fixed u > 0.
(b) Calculate k required to achieve this accuracy using Lemma 3 and set ε =

1
2(k− 1)

.
(c) Define k quantiles such that SH(λ1) = ε, SH(λi) = 2(i − 1)ε, i = 2, . . . , k − 1, and

SH(λk) = 1− ε.
(d) Approximate the spectral cdf SH(y) with the step function

ŜH(y) =


0, y ∈ [0, λ1),

ε, y ∈ [λ1, λ2),

(2i− 1)ε, y ∈ [λi, λi+1), i = 2, . . . , k− 1,

1, y ≥ λk.

(e) Find the ladder height distribution Ĥ(u) =
[
e−λ1u + 2 ∑k−1

i=2 e−λiu + e−λku
]

/2(k− 1) and

calculate its Laplace transform L
{

Ĥ(u)
}
(s) = 1

2(k−1)

[
1

s+λ1
+ 2 ∑k−1

i=2
1

s+λi
+ 1

s+λk

]
.

5. Calculate the Laplace transform of the ruin probability as L
{

ψ̂(u)
}
(s) =

φL
{

Ĥ(u)
}
(s)

φsL
{

Ĥ(u)
}
(s) + 1− φ

.

6. Use simple fraction decomposition to determine positive real numbers Ri, ηi, i = 1, . . . , k, with

∑k
i=1 Ri = 1, such that L

{
ψ̂(u)

}
(s) = φ

k

∑
i=1

Ri
1

s + ηi
.

7. Invert the previous Laplace transform to find ψ̂(u) = φ
k

∑
i=1

Rie−ηiu, u ≥ 0.

8. The accuracy for ψ̂(u) is then
D(H, Ĥ)(1− φ)φ(

1− φH(u)
)(

1− φĤ(u)
) , ∀u > 0.

Remark 3. The decomposition of L
{

ψ̂(u)
}
(s) at Step 6 is guaranteed by Asmussen and Rolski (1992),

who showed that the ruin probability in the Sparre Andersen model has a phase-type representation
when the claim sizes are phase-type. Moreover, the particular hyperexponential representation of ψ̂(u)
at Step 7 occurs because the poles of L

{
ψ̂(u)

}
(s) are exactly the roots of the polynomial function

Pφ(s) = ∏k
i=1(s + λi)− φ

(
∏k

i=1(s + λi)− s
(

∏k
i=1(2− δi1 − δik)(s + λi)

)′/2(k − 1)
)

, where δij is the

Kronecker delta. It is immediate from perturbation theory that Pφ(s) has exactly k simple roots analytic in φ; see
Baumgärtel (1985) for details.

Remark 4. The above algorithm is an extension of the one developed for the Cramér–Lundberg model in
Vatamidou et al. (2014), to which we refer for further details on technical implementation.
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4. Asymptotic Approximation

In many cases, it is of importance to investigate the asymptotic behaviour of the ruin probability
when the initial risk reserve tends to infinity. This question is particularly interesting in the case
of heavy-tailed claim sizes. Towards this direction, when the claim sizes belong to the class of
subexponential distributions S (Teugels 1975), e.g., Pareto, Weibull, Lognormal, etc., the following
asymptotic approximation is classical (see, e.g., Embrechts and Veraverbeke 1982):

Theorem 3. Suppose in the general Sparre Andersen model that the claim sizes and interclaim times have both
finite means EX and EW, respectively, such that cEW > EX. If 1

EX
∫ u

0 FX(x)dx ∈ S , then

ψ(u) ∼ ψS (u) :=
1

cEW−EX

∫ +∞

u
FX(x)dx, as u→ +∞.

Note that the heavy-tail approximation ψS (u) holds for any interclaim time distribution. However,
further modifications have been attained in Willmot (1999), when the Laplace transform of the
interclaim times is a rational function of the form (5) with β(s) = β and FX belongs to the subclass of
regularly varying distributions, i.e., FX(u) ∼ L(u)u−α−1e−γu, u→ +∞, where L(u) a slowly varying
function and α > 0, γ ≥ 0. For example, the Pareto(a, b) distribution (see Section 5.2.1) belongs to
the class of regularly varying distributions with L(u) =

(
b + 1/u

)−a, α = a− 1 and γ = 0, and its
modified asymptotic approximation is then given by

ψ(u) ∼ ψM(u) :=
L(u)u−α

α(cEW−EX)
=

(1 + bu)−a+1

(a− 1)
(
b + 1

u
)
(cEW−EX)

,

which is smaller than ψS (u) by a factor
bu

bu + 1
that converges to 1 as u → +∞; see Willmot (1999)

for details.
Clearly, the heavy-tail approximation admits a simple formula whenever the expectations of the

interclaim times and claim sizes are finite; however, it has a drawback that occurs when cEW ≈ EX
the approximation is useful only for extremely large values of u.

In the next section, we compare the accuracy of the spectral approximation to the accuracy of the
heavy tail one, i.e., ψS (u). An interesting observation is that the spectral approximation converges
faster to zero than any heavy-tailed distribution due to the exponential decay rate of the former.
Thus, the heavy-tail approximation is expected to outperform the spectral approximation in the far tail,
but for medium values, this new approximation can be very competitive.

5. Numerical Analysis

The goal of this section is to implement our algorithm in order to check the accuracy of the spectral
approximation and the tightness of its accompanying bound, which is given in Theorem 1. To perform
the numerical examples, we need to make a selection for the distribution K of the interclaim times as
well as the claim size distribution FX .

5.1. Interclaims Times

We choose a hyperexponential distribution with two phases, i.e., K ∼ H2(θ, 1− θ; ν1, ν2), such that

k̃(s) =
ν1ν2 + s

(
θν1 + (1− θ)ν2

)
(s + ν1)(s + ν2)

. As N = 2, it is evident that there exists only one positive

and real root ρ1 to the generalised Lundberg equation of Equation (6). Therefore, given also that
β(s) = θν1 + (1− θ)ν2, the ladder height distribution takes the form

H(u) =
1

φc2

(
ν1ν2 − cρ1

(
θν1 + (1− θ)ν2

)
−ρ1

Tρ1 FX(u) +
ν1ν2

ρ1
T0FX(u)

)
,
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which is in accordance with Li and Garrido (2005).

5.2. Claim Sizes

For the claim sizes, we consider the Pareto(a, b) distribution with shape parameter a > 0 and
scale parameter b > 0 and the Weibull(c, a) distribution with c and a positive shape and scale
parameters, respectively.

5.2.1. Pareto

This distribution is c.m., as its ccdf FX(x) = (1 + bu)−a can be written as the LST of the Gamma
distribution with shape and scale parameters a and b, respectively, i.e.,

(1 + bu)−a =
∫ +∞

0
e−uy ya−1

Γ(a)ba e−y/bdy.

The nth moment of the Pareto distribution exists if and only if the shape parameter is greater than
n. As we are interested in comparing the spectral approximation to the asymptotic approximation
of Section 4, it is necessary to have a finite first moment for the claim sizes. Therefore, the shape
parameter a must be chosen to be greater than 1.

Using Proposition 1, we can easily verify that

dSH(y) =
1

φc2

(
ν1ν2 − cρ1

(
θν1 + (1− θ)ν2

)
−(y + ρ1)ρ1

+
ν1ν2

yρ1

)
ya−1

Γ(a)ba e−y/bdy.

5.2.2. Weibull

It can be verified that the ccdf FX(x) = e−(u/a)c
with fixed shape parameter c = 1/2 arises as

a c.m. distribution (Jewell 1982), where the mixing measure (measure of the spectral function) S is
given by

dS(y) =
e−

1
4ay

2
√

aπy3
dy.

Similarly, we can find using Proposition 1 that

dSH(y) =
1

φc2

(
ν1ν2 − cρ1

(
θν1 + (1− θ)ν2

)
−(y + ρ1)ρ1

+
ν1ν2

yρ1

)
e−

1
4ay

2
√

aπy3
dy.

5.3. Numerical Results

The goal of this section is to implement our algorithm to check the accuracy of the spectral
approximation and the tightness of its accompanying bound, which is given in Theorem 1.

For Pareto claim sizes, we choose a = 2, b = 3, c = 1, θ = 0.4, ν1 = 1 and ν2 = 5, and we obtain
EW = 0.52, EX = 0.33 and φ = 0.72897. For Weibull claim sizes, we choose a = 3, c = 1, θ = 0.2,
ν1 = 1 and ν2 = 1/9, and we obtain EW = 7.4, EX = 6 and φ = 0.83184. Note that we performed
extensive numerical experiments for various combinations of parameters, but we chose to present only
these two cases since the qualitative conclusions are comparable among all cases. Our experiments are
illustrated below.

• Impact of phases. It is intuitively true that the spectral approximation becomes more accurate
as the number of phases increases. To test this hypothesis, we compare three different spectral
approximations with number of phases 10, 30 and 100, respectively, with the exact value of the
ruin probability (which we obtain through simulation). We display our results in Table 1 only
for Pareto claim sizes. The conclusion is that, indeed, a more accurate spectral approximation is
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achieved, as the number of phases increases for every fixed initial capital u, which is in line with
expectations.

Table 1. The spectral approximation for different number of phases, under Pareto(2, 3) claim sizes.
The numbers in the brackets correspond to the confidence intervals of the exact ruin probability.

u Simulation sa 10 Phases sa 30 Phases sa 100 Phases

0 0.72888 (±0.00016) 0.72897 0.72897 0.72897
1 0.42859 (±0.00018) 0.42505 0.42828 0.42859
2 0.30991 (±0.00017) 0.29972 0.30877 0.30984
5 0.16095 (±0.00014) 0.13236 0.15608 0.15996

10 0.08189 (±0.00010) 0.04214 0.07216 0.08017
15 0.05240 (±0.00008) 0.01463 0.03978 0.05025

• Quality of the bound. A compelling question regarding the bound is if it is strict or pessimistic,
i.e., how far it is from the true error of the spectral approximation. To answer this question,
we first need to determine the accuracy δ we would like to guarantee for the ruin probability.
Using Lemma 3, we present, in Figure 2, the number of phases required in order to guarantee
δ = 0.02 under Pareto(2, 3) claim sizes and δ = 0.05 under Weibull(0.5, 3) claim sizes as a function
of u. For u = 30, the required number of phases is equal to k = 67 in the Pareto case. Similarly,
we find that k = 11 for u = 17 in the Weibull case. We generate the spectral approximations with 67
and 11 phases, respectively, and compare in Figure 3 the true error (difference between simulation
and spectral approximation) with the predicted error bound of Theorem 1 (green dotted line).
The dashed cyan line in the left graph represents the worst-case scenario for the bound that was
used in the proof of Lemma 3 to calculate the optimal number of phases to guarantee an error of
at most δ = 0.02 up to u = 30.

#
�
�
�
�
�
�
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20
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40
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60

70

�

#
ph
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0 20 40 60 80 100 120

10

20

30

40

50

u

Figure 2. Number of phases required to guarantee for each initial capital u an error bound
(i) δ = 0.02 under Pareto(2, 3) claim sizes (left graph) and (ii) δ = 0.05 under Weibull(0.5, 3) claim sizes
(right graph).

As we can observe in Figure 3, the true error is significantly smaller than the predicted error bound
for small values of u, under Pareto(2, 3) claim sizes. This may be because, for small values of
u, a smaller number of phases k is enough to guarantee δ = 0.02; see also Figure 2. Afterwards,
the true error increases to the error bound by reaching its maximum value close to u = 40, and then
drops to zero as u→ ∞, whereas the predicted bound remains constant. A similar behaviour is
recognised under Weibull(0.5, 3) claim sizes, where now the true error is close to the predicted
error bound for small values of u, as k = 11 is already a small number itself.
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Figure 3. Comparison between the error bound and the true error, under Pareto(2, 3) (left graph) and
Weibull(0.5, 3) (right graph) claim sizes. The dashed cyan line in the left graph corresponds to the
worst-case scenario for the bound that was used to determine the number of phases in the spectral
approximation that guarantee δ = 0.02 up to u = 30.

Finally, notice that the predicted error bound is almost 4 times smaller than δ = 0.02 in the
Pareto case. This happens because D(H, Ĥ) could be a lot smaller than ε; see also Figure 1
where D(H, Ĥ) < 0.1. However, most importantly, the true error is close to the predicted bound,
and thus we can say that Lemma 3 provides a good proxy for the necessary number of phases k to
achieve it.

• Comparison between spectral and heavy-tail approximations. As we pointed out in Section 4,
the spectral approximation is expected to underestimate both the exact ruin probability and
the asymptotic approximation ψS (u) in Theorem 3 for large u, due to its exponential decay rate.
It is of interest to see the magnitude of u for which the asymptotic approximation outperforms the
spectral approximation.

We select the spectral approximations with k = 67 phases for Pareto(2, 3) claim sizes and k = 11
phases for Weibull(0.5, 3) claim sizes, as in the previous experiment, and present the distributions
in a graph. The pink shadow in Figure 4 enfolding the spectral approximation represents its
bound. We observe that for small values of u, the spectral approximation is more accurate than
the heavy-tail approximation, where the second provides a rough estimate of the ruin probability.
On the other hand, the heavy-tail approximation is slightly more accurate than the spectral
approximation in the tail, i.e., for u > 25, under Pareto claim sizes. However, for the Weibull case,
we observe that, even for values of u around 300, the spectral approximation still outperforms the
heavy-tail approximation.
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Figure 4. Comparison between the spectral approximation with k = 67 under Pareto(2, 3) claim
sizes (left graph) and with k = 11 under Weibull(0.5, 3) claim sizes (right graph) and the heavy-tail
approximation.
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6. Conclusions

In this paper, we considered the ruin probability of the Sparre Andersen model with
heavy-tailed claim sizes and interclaim times with rational Laplace transform. Using the geometric
random sum representation, we developed an explicit bound and also constructed a spectral
approximation by approximating the c.m. ladder height distribution with a hyperexponential
one. Our spectral approximation algorithm advances on the algorithm established in
Vatamidou et al. (2014) in various aspects. We provide below a summary of our conclusions both for
the spectral approximation and the bound.

• When comparing with the technique proposed in Vatamidou et al. (2014), the strategic selection
of the quantiles in Step 4d reduces the number of phases to almost a half, to guarantee a certain
accuracy for the ladder height distribution.

• As the bound depends on the initial capital, we were able to focus on one area and optimise the
required number of phases to achieve a desired accuracy, e.g., we would need 110 phases for u = 5
and 132 phases for u = 30 to guarantee accuracy of at most δ = 0.01 in our example.

• The step function is constructed to guarantee D(H, Ĥ) ≤ ε, but in most applications D(H, Ĥ) is a
lot smaller than ε. Thus, the use of D(H, Ĥ) in the bound makes it tighter.

To sum up, the spectral approximation is highly accurate for all values of u as opposed to
the heavy-tail approximation, which fails to provide a good fit for small values. Moreover, it is
accompanied by a rather tight bound.

Finally, note that the results of this paper are also valid for the risk model with two-sided
jumps, i.e.,

Ř(t) = u + ct +
N+(t)

∑
j=1

Yj −
N−(t)

∑
i=1

Xi, t ≥ 0, (13)

where u, c and Xi are defined as before, whereas N+(t) and N−(t) are independent Poisson processes
with intensities λ+ and λ−, respectively; see, e.g., Albrecher et al. (2010). In addition, the sequence
{Yj}i≥1 of i.i.d. r.v.’s, independent of {Xi}j≥1, N+(t) and N−(t), and having the common d.f. GY that
belongs to the class of distributions with rational Laplace transform, are the sizes of premium payments.
The positive security loading condition in this model becomes c + λ+EY > λ−EX.

Let τn be the time when the nth claim occurs with τ0 = 0. As ruin occurs only at the epochs
when claims occur, we define the discrete time process Ř = {Řn : n = 0, 1, 2, . . . }, where Ř0 = 0 and
Řn = Ř(τn), which denotes the surplus immediately after the nth claim, i.e.,

Řn = u + cτn +
N+(τn)

∑
j=1

Yj −
n

∑
i=1

Xi = u + cτ̌n −
n

∑
i=1

Xi, n = 0, 1, 2, . . . , (14)

where τ̌n = τn + ∑
N+(τn)
j=1 Yj/c with τ̌0 = 0. Equation (14) corresponds to the discrete-time embedded

process of the Sparre Andersen risk model (1), and the counting process N(t) denotes the number of
claims up to time t with the modified interclaim times Wi = τ̌j − τ̌j−1. Clearly,

k̃(s) =
λ−

λ− + s + λ+
(
1− g̃Y(s/c)

) , (15)

where g̃Y(s) =
∫ +∞

0 e−sxdGY(x) is the Laplace transform of the premium payments; see Dong and
Liu (2013). Let now Ť = inf{t ≥ 0 | Ř(t) < 0} and ψ̌(u) = P(Ť < ∞ | Ř(0) = u). Obviously,
ψ̌(u) = ψ(u).
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