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Abstract: The Growth-Optimal Portfolio (GOP) theory determines the path of bet sizes that maximize
long-term wealth. This multi-horizon goal makes it more appealing among practitioners than
myopic approaches, like Markowitz’s mean-variance or risk parity. The GOP literature typically
considers risk-neutral investors with an infinite investment horizon. In this paper, we compute the
optimal bet sizes in the more realistic setting of risk-averse investors with finite investment horizons.
We find that, under this more realistic setting, the optimal bet sizes are considerably smaller than
previously suggested by the GOP literature. We also develop quantitative methods for determining
the risk-adjusted growth allocations (or risk budgeting) for a given finite investment horizon.

Keywords: Growth-optimal portfolio; risk management; Kelly criterion; finite investment horizon;
drawdown
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1. Introduction

The Growth-Optimal Portfolio (GOP) theory is influential in portfolio management Kelly
(1956); Latane (1959); Markowitz (1959); Thorp and Kassouf (1967) along with modern portfolio
theory Markowitz (1952). The GOP advocates to allocate investment capital at the (asymptotic)
expected growth-optimal allocation so as to maximize the long-term expected compounded return
of the portfolio. The attractive property of such portfolios includes optimal asymptotic growth,
hence the name.

Despite its theoretical advantage, the growth-optimal allocation is also known to be generally
too risky in practice Maclean et al. (2009); Thorp and Kassouf (1967); Vince (1990); Zenios and
Ziemba (2006); Zhu (2007); Vince et al. (2013), and various methods have been suggested to
reduce the risk exposure of expected growth-optimal allocations. One unsatisfactory aspect of these
methods is that they are heuristic, and there is no theoretical justification on why and how to do it.

Recently, in Vince and Zhu (2015), Vince and Zhu observed that the GOP neglected two important
practical considerations. First, the GOP optimizes the expected optimal growth assuming an infinite
investment horizon. In reality, investors only invest in a finite time horizon. Second, in the GOP
theory, the focus is on the expected growth only. Risk is ignored. In practice, of course, risk is a critical
factor for any investment decision. Incorporating these two practical considerations in analyzing the
bet size of the game of blackjack, Vince and Zhu showed in Vince and Zhu (2015) analytically and
experimentally that the optimal bet size suggested by Kelly’s formula Kelly (1956), a predecessor of
the GOP theory, needs to be adjusted downward considerably.
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We consider our findings in terms of points within a return manifold, which we term a leverage
space, the surface of expected geometric return in N + 1 dimensions for N simultaneous events, at Q
periods. Each of the N events is characterized by an axis in the N + 1-dimensional manifold and bound
between zero, where nothing is risked, and one, where the risk is as small as possible so as to assure
total loss with the manifestation of the worst case. Further, whenever there exists a cumulative outcome
or feedback mechanism that can range positive or negative from one discrete point to another, we
reside at some loci on the return surface within the leverage space manifold whether we acknowledge
this or not, and pay the consequences or reap the benefits of such loci therein.

GOP, in effect, states that one should select those coordinates in the leverage space at the
(asymptotic, Q→ ∞) peak. We note that Kelly’s formula Kelly (1956) refers to this asymptotic peak.
Using the model in Vince and Zhu (2013) to represent expected geometric return as a function of Q,
we find that for a single position with a positive expectation, expected growth is always maximized
at a fraction risked of 1.0 for Q = 1. As Q increases, this expected growth-optimal fraction rapidly
decreases toward its asymptotic value as specified by the Kelly criterion (the shape of the return surface
within the leverage space manifold is a function of Q), and thus, we generally use this asymptotic value
for all situations as a proxy for the actual expected growth-optimal fraction in all cases except for small
values for Q. Given the unwieldy model for actual expected growth in Vince and Zhu (2013), we use
as a proxy herein Kelly’s formula for the average expected growth per play assuming infinite play,
express this as expected growth after Q plays, and very accurately derive values for the curve over
the domain f ∈ [0, 1] at any given, but not too small values for Q in our analysis. The point becomes
moot in the context discussed here as the important loci discussed in this paper do not appear until Q
reaches satisfactory values to satisfy this requirement. Thus, the Kelly criterion solution is always less
aggressive than what actually is the expected growth-optimal fraction for any finite horizon.

Further, as demonstrated in Vince and Zhu (2015), we scale the Kelly criterion answer using
the worst case, so as to comport to being an actual fraction to risk so that multiple, simultaneous
propositions can be considered properly (relative to each other), short sales considered, etc., such that
we are always using a fraction and thus bounding the axes of the leverage space manifold at zero and
one for all possible simultaneous propositions. This is discussed further at the beginning of Section 3.

The results in Vince and Zhu (2015) were based on two simple observations: the graph of the
total return function for playing blackjack hands a finite number of times is a bell-shaped curve,
and the risk, as measured by the maximum drawdown, is approximately proportional to the bet size.
As a result, the slope of the line connecting (0, 0) and any point on the return curve is proportional to
the return/risk ratio where the risk is measured by the maximum drawdown. Thus, the optimal bet
size maximizing the return/risk ratio is the line emanating from (0, 0) and tangent to the return curve
depicted in Figure 1.

We can see that the corresponding bet size for this point is somewhat more conservative than the
Kelly-optimal bet size corresponding to the peak of the return curve. Moreover, also noteworthy in
Figure 1 is the inflection point corresponding to the lower line. This inflection point can be seen more
clearly in Figure 2.

The inflection point is significant in that it is the boundary of increasing or decreasing marginal
return when the bet size increases. If one were to pursue increasing the return/risk ratio, then it does
not make sense to stop before reaching the inflection point. However, increasing the bet size beyond the
inflection point arguably is a matter of choice. Because between the inflection point and the return/risk
maximum point, while increasing the bet size still improves the return/risk ratio, the marginal benefit
of doing so diminishes. Thus, the interval between the inflection point and the return/risk maximizing
point is a reasonable region for players with different risk aversion to choose their appropriate strategy.
Indeed, these observations are corroborated by Monte Carlo simulations in Vince and Zhu (2015).
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Figure 1. Return/risk ratios as slopes with the top line at the tangent, the middle line at the growth
optimal, and the bottom line at the inflection point.

Figure 2. Inflection point.

Both of these aforementioned points are a function of horizon, Q, and migrate towards the
asymptotic peak as Q→ ∞.1

Although Vince and Zhu (2015) focuses on bet size for playing blackjack, the idea and methods
also apply to general capital allocation for investment problems involving multiple risky assets or
investment strategies. In fact, inflection points have been discussed in Vince and Zhu (2013) in a more
general context. The main goal of this paper is to provide a practical guide on how to implement

1 Thus, we see the answer provided by Kelly’s formula Kelly (1956), though never the actual expected growth-optimal point,
but rather the asymptotic limit of such, is also the asymptotic limit to these other two critical points of risk-adjusted expected
growth optimality.
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the idea in Vince and Zhu (2013; 2015) for investment problems involving multiple investment
instruments. When there are multiple assets involved, the path from the optimal GOP allocation to
the completely riskless position of all cash (bonds) is not unique. In fact, there are infinitely many
possible paths from which to choose. Although given a risk measure, one can argue it is reasonable to
follow a path that on every level of the return manifold, the path should travel through the point that
minimizes the risk measure. In reality, finding such a path may turn out to be very costly. Therefore,
other alternative choices of paths should also be allowed. The risk measure when involving multiple
assets and investment strategies is also more complicated. For each investment strategy, the same
argument in Vince and Zhu (2015) still applies, and the size of the funds allocated to it is approximately
proportional to the drawdown. However, the proportional constants for different investment strategies
may well be different. Moreover, the total drawdown will also depend on how the drawdowns for
different investment strategies are correlated, adding more technical issues into the equation.

Once a return/risk path is determined, the return function along this path becomes a one-variable
function of the parameter that defines the path. One may attempt to use the method in
Vince and Zhu (2015) to determine the trade-off between return and risk. However, the idea in
Vince and Zhu (2015) as alluded to in the previous paragraph only works when the parameter is
proportional to the risk. This only happens for a few return/risk paths. In practical capital allocation
problems, the comparison of different return/risk paths is often necessary. We show that the inflection
points on different return/risk paths are all on one manifold determined by Sylvester’s criterion
of negative definiteness of a matrix involving the derivatives of the return functions and provides
a reasonable approximation. Similarly, we also develop equations characterizing the manifolds of all
return-/risk-optimal points.

The rest of the paper is arranged as follows: we first illustrate our results using a simple concrete
example in the next section. Then, we discuss the general model and growth-optimal allocation
in Section 3. Section 4 discusses the return/risk paths and special cases in which the methods in
Vince and Zhu (2015) directly apply. In Sections 5 and 6, we develop methods of characterizing
the manifolds of inflection points and return-/risk-optimal points, respectively. We also discuss
approximations where appropriate. We then discuss application examples in Section 7. We conclude
in Section 8 and discuss avenues for further research regarding this material.

2. An Example

Let us consider playing a game where two coins are tossed independently at the same time. Coin
1 is a 0.50/0.50 coin that pays 2:1, and Coin 2 is a 0.60/0.40 coin that pays 1:1 (to be non-symmetrical,
as the simplest case). We play Q = 50 times. The joint probability distribution is summarized in Table 1.

Table 1. Two coins.

Coin 1 Coin 2 Probability

2 1 0.3
2 −1 0.2
−1 1 0.3
−1 −1 0.2

For f1, f2 being the amounts risked on Coin 1 and Coin 2, respectively, fi ∈ [0, 1], i = 1, 2, then the
expected return function is:

r( f1, f2) = exp(50l( f1, f2))− 1,

where:

l( f1, f2) = [0.3 ln(1 + 2 f1 + f2) + 0.2 ln(1 + 2 f1 − f2) + 0.3 ln(1− f1 + f2) + 0.2 ln(1− f1 − f2)]

is the expected log return function. Figure 3 plots r as a function of f1 and f2.
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Figure 3. Leverage space: two-coin example; altitude is growth at Q = 50.

Note that each of the four summands in the definition of l( f1, f2) is a composition of the strictly
concave log function and a nontrivial affine function and, therefore, strictly concave. Thus, l( f1, f2)

itself is also a strictly concave function on its domain in the leverage space ( f1, f2) ∈ [0, 1)× [0, 1).
We know that strictly concave functions have at most one maximum point. On the other hand,
l( f1, f2) approaches −∞ as ( f1, f2) approaches the upper and right boundaries of the leverage space
[0, 1) × [0, 1). Since both games have a positive expected return, neither the left boundary of the
leverage space where f1 = 0, nor the lower boundary where f2 = 0 will contain the maximum
for the log return function l( f1, f2). Thus, l( f1, f2) must attain a unique maximum in the interior
of the leverage space. As the composition of the monotonic increasing function exp() and the log
return functions l( f1, f2), r( f1, f2) and l( f1, f2) share the same maxima, it follows that r( f1, f2) also has
a unique maximum in the interior of the leverage space, which is the Kelly-optimal bet sizes for these
two games played simultaneously. We can determine this Kelly-optimal point by applying the first
order necessary condition:

∇r( f1, f2) = 50exp(50l( f1, f2))∇l( f1, f2) = 0 (1)

and represent it by the vector κ = (0.243, 0.180). As discussed above, κ is the unique solution to (1).
As pointed out in Maier-Paape and Zhu (2018), practically important risk measures related to

expected (log) drawdowns can be linearly approximated by position size. Thus, in what follows,
we will use position size as a proxy for the risk, an approach already used in Vince and Zhu (2015).
For a single game as discussed in Vince and Zhu (2015), the magnitude of this proportional constant
is not important, as long as the expected (log) drawdown is approximately proportional to the bet
size. Now that we are considering two different games together, the proportional constants for the
two games are in general different. When trying to approximate the aggregated drawdown, it is
now important to estimate the two different proportional constants. Simulating these two games for
2000 rounds of playing 50 simultaneous tosses (Q = 50) each, then calculating the mean, demonstrates
that for the two individual games, the expected drawdowns are proportional to c1 f1 and c2 f2, where
c1 = 5.73 and c2 = 6.12, respectively.
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Another complication in discussing the approximation of the aggregated drawdowns in this
situation is that we need to consider the correlation of the two drawdowns. When the two drawdowns
occur independently of each other (referring to the overlap of their duration in time), the aggregated
drawdown is roughly the largest between the two linear approximations, i.e., max(c1 f1, c2 f2). The other
extreme is that the two drawdowns are completely dependent so that the aggregated drawdown is
proportional to c1 f1 + c2 f2. In general, there are some correlations between the drawdowns of the two
games, and we get something in between.

For each level t of the return r, a risk-averse investor may select, on the level curve of r( f1, f2) = t,
the point ( f1(t), f2(t)) that minimizes the risk as measured by the drawdown. As t progresses from
zero to the maximum of the return, ( f1(t), f2(t)) will trace out a curve in the leverage space from (0, 0)
to κ. Each different choice of the approximation of the drawdown corresponds to such a curve. If we
draw all such curves, they then aggregately provide us a region in leverage space that represents
allocations achieving minimum risk under the given return. Since it is impossible to trace infinitely
many such curves, we focus on the two extreme cases alluded to above to derive the boundaries
of this region.

Consider the completely dependent case first. Our problem becomes, for each t ∈ [0, r(κ)],

minimize c1 f1 + c2 f2 (2)

subject to r( f1, f2) = t.

Observing that changing r( f1, f2) = t to r( f1, f2) ≥ t does not change the solution, we see that
Problem (2) is a convex optimization problem and, therefore, has a unique solution determined by the
Lagrange multiplier rule:

∇r = λ(c1, c2).

Taking the ratio of the two components and using the computation of ∇r in (1), we can see that
the curve ( f1(t), f2(t)) is determined by the equation:

c2
∂r
∂ f1

= c1
∂r
∂ f2

, (3)

starting from κ until it intercepts one of the coordinate axes. Afterwards, it follows the intercepted
coordinate axis to (0, 0). We will name this curve Path 1 for reference in the future.

The other extreme is that the two drawdowns always happen in non-overlapping time intervals.
Then, we need to solve the convex constrained minimization problem:

minimize max(c1 f1, c2 f2) (4)

subject to r( f1, f2) ≥ t.

Here, the optimality condition is (see, e.g., Borwein and Zhu (2005)):

∇r = λ(θc1, (1− θ)c2), λ > 0, θ ∈ [0, 1].

In this optimality condition, θ = 0, corresponding to c2 f2 > c1 f1, and leads to f2 = 0.18. Similarly,
θ = 1 corresponds to c2 f2 < c1 f1 and leads to f1 = 0.243. It follows that before either f1(t) reaches
0.243 or f2(t) reaches 0.18, we should always have θ ∈ (0, 1), which corresponds to c2 f2 = c1 f1. Thus,
the path ( f1(t), f2(t)) follows the line:

c2 f2 = c1 f1 (5)

until either f1(t) reaches 0.243 or f2(t) reaches 0.18. After that, it follows the straight line to
κ = (0.243, 0.18). We will name this curve Path 2. For c1 = 5.73 and c2 = 6.12, the two curves
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discussed above are illustrated in Figure 4, where the curves corresponding to (3) and (5) are colored
in blue and black, respectively. In general, the drawdown will fall in between these two extreme cases.

Figure 4. Allocation region, Path I in Blue and Path II in black.

Next, we consider the return/risk optimizing point ζ and the inflection point ν on these paths.
As we will see in Section 5:

min(− ∂2r
∂ f 2

1
, det(Hessian(r))) = 0 (6)

determines the curve at which the inflection of the graph of r occurs. To determine ζ for the completely
dependent case, we need to maximize r( f1, f2)/(c1 f1 + c2 f2). The optimality condition is:

0 =
∇r( f1, f2)(c1 f1 + c2 f2)− r( f1, f2)(c1, c2)

(c1 f1 + c2 f2)2

which is equivalent to:
∇r( f1, f2)(c1 f1 + c2 f2) = r( f1, f2)(c1, c2).

Using ( f1, f2) to dot product both sides and canceling (c1 f1 + c2 f2) yield:

∇r( f1, f2) · ( f1, f2) = r( f1, f2). (7)

It turns out that this is true in general (the proof uses a similar calculation involving
subdifferentials for convex functions and will be given in Section 6). Thus, the ζ point corresponding to
any curve will have to be on the curve defined by Equation (7). In particular, we can find the ζ points
corresponding to the independent and completely dependent cases by looking at the interception of
the corresponding curves as shown in Figure 5, in which the curves corresponding to Equations (6)
and (7) are represented in red and green, respectively, and the blue and black curves again represent
(3) and (5), respectively. The corresponding significant points are summarized in Table 2 below.
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Table 2. Two-coin example with Q = 50.

ν ζ κ

Path 1 (0.1885, 0.077) (0.2175, 0.133) (0.243, 0.18)
Path 2 (0.148, 0.1385) (0.1935, 0.18) (0.243, 0.18)

Figure 5. ζ (on red curve) and ν (on green curve.)

3. The General Model

Consider investing in M investment systems represented by a random vector X = (X1, . . . , XM)

with N different outcomes {b1, . . . , bN} where bn = (bn
1 , . . . , bn

M). The random variable Xm represents
the absolute gain (loss) of the mth investment asset. We consider investing in those investment systems
for Q holding periods and suppose that Prob(X = bn) = pn. We wish to determine how best to allocate
funds into those investment systems. We re-scale so that the allocation can be represented in leverage
space Vince (2009). Let wm = min{b1

m, . . . , bN
m}. Assume there is no arbitrage opportunities so that

wm < 0 for all m = 1, . . . , M. Define the scaled random vector Y = (−X1/w1, . . . ,−XM/wM) and the
scaled outcome an = (−bn

1 /w1, . . . ,−bn
M/wM). Then, Prob(Y = an) = pn. Now, each allocation can be

represented by a vector f = ( f1, . . . , fM) ∈ [0, 1]M where fm represents the fraction of the total number
of shares one can invest in the mth investment vehicle such that the worst loss wm will result in the
loss of all the investment capital. We further assume that the M investment assets are independent
enough so that:

rank[a1, a2, . . . , aN ] = M. (8)

We note that condition (8) amounts to saying that there does not exist a nontrivial portfolio x such
that x · an = 0 for all n = 1, 2, . . . , N. Since in this paper, we consider the simplified case where the
riskless bond has an interest of zero, such a portfolio, in fact, replicates a riskless bond. In other words,
we are considering a market in which there is no nontrivial bond replicating portfolio as defined in
Maier-Paape and Zhu (2018).
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Given the above setting, the expected gain per period is:

GX( f ) := ΠN
n=1(1 + f · an)

pn .

Then, the total return can be approximated by rQ( f ) = [GX( f )]Q − 1. We have seen in
Vince and Zhu (2015) that, for reasonably large Q, this approximation is quite accurate for the case of
M = 1. Thus, we will use this approximation in the analysis below. We note that using the log return
function:

lX( f ) :=
N

∑
n=1

pn ln(1 + f · an) (9)

we have the representation:
[GX( f )]Q = exp(QlX( f )).

Since the exponential function is monotone increasing and the log return function is strictly
concave given Condition (8) (see (Maier-Paape and Zhu 2018, Proposition 6)) , rQ( f ) attains a unique
maximum, which can be determined by solving the equation:

0 = ∇rQ( f ) = Qexp(QlX( f ))∇lX( f ),

or equivalently:
∇lX( f ) = 0.

We denote the solution κ and note that this is the asymptotic growth-optimal allocation and
therefore is independent of Q.

4. Return/Risk Paths

As illustrated in the example discussed in Section 2, we know that the allocation κ is usually
too risky. In practice, one needs to reduce the risk and take a middle ground between f = ~0 and
f = κ. It is clear from the example in Section 2 that there are many possible paths connecting these
two possible allocations providing various trade-offs between risk and return.

Definition 1. Let X be the vector of random variables introduced in Section 3 representing the gains of a group
of risky assets. A mapping f : [a, b] → RM is called a return/risk path with respect to X, if it has the
following properties

1. f has piecewise continuous second order derivatives.
2. f (a) = 0 and f (b) = κ.
3. t 7→ lX( f (t)) is an increasing function on [a, b].
4. There is a risk measure m on the leverage space such that t 7→ m( f (t)) is an increasing function on [a, b].
5. ∇lX( f (t)) f ′′(t) = 0 for all t ∈ [a, b] where f ′′(t) exists.

The meaning of Properties 4 and 5 is that the return/risk path must move toward the direction of
increasing the reward with the maximum rate while increasing the risk. It is easy to see that both Path
1 and Path 2 in the example in Section 2 are return/risk paths. Along such paths, we can show that
an inflection point always exits as long as Q is large enough.

Theorem 1. Let f : [a, b] → RM be a return/risk path. Then, when Q is sufficiently large, the function
t 7→ rQ( f (t)) has an inflection point on (a, b), which is determined by the equation:

Q[∇lX( f (t)) · f ′(t)]2 + 〈 f ′(t), HessianlX( f (t)) f ′(t)〉 = 0. (10)
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Proof. Direct computation shows that:

∂rQ( f (t))
∂t

= Qexp(QlX( f (t)))[∇lX( f (t)) · f ′(t)]

and:
∂2rQ( f (t))

∂t2 = Qexp(QlX( f (t)))φQ(t),

where:
φQ(t) := Q[∇lX( f (t)) · f ′(t)]2 + 〈 f ′(t), HessianlX( f (t)) f ′(t)〉.

Since there are only finitely many points on [a, b] where f ′′(t) does not exist, we denote b′

as the last such point before b. Since κ is unique, lX( f (b)) > lX( f (b′)). Thus, there are infinitely
many t ∈ [b′, b] where ∇lX( f (t)) · f ′(t) > 0. Thus, we can choose c ∈ (b′, b) such that
∇lX( f (c)) · f ′(c) > 0. Observing that∇lX( f (b)) = ∇lX(κ) = 0 and HessianlX(κ) is negative definite,
we have φQ(b) = 〈 f ′(b), HessianlX(κ) f ′(b)〉 < 0. On the other hand, for Q sufficiently large:

φQ(c) := Q[∇lX( f (c)) · f ′(c)]2 + 〈 f ′(c), HessianlX( f (c)) f ′(c)〉 > 0. (11)

Thus, φQ(t) = 0 has a solution on (c, b).

Since c can be chosen arbitrarily close to b, when Q → ∞, the inflection point νQ related to Q
approaches κ.

On the other hand, the relationship between the risk measure and the parameters in these
two paths is different. For Path 2, the risk measure is piecewise linearly related to the parameter t.
Thus, we can use t as a proxy for the risk and using the method in Vince and Zhu (2015) for one risky
asset to determine t values corresponding to the inflection point and the return/risk maximum point.
However, this is not the case for Path 1 in which the risk c1 f1(t) + c2 f2(t) as a nonlinear function of t is
not proportional to t. Thus, it is not always possible to use the return/risk path to convert a problem
involving multiple strategies into one with only one parameter and use the method discussed in
Vince and Zhu (2015). In the following two sections, we seek more generic ways of finding inflection
points and return/risk maximizing points.

5. Determining the Manifold of Inflection Points Using Sylvester’s Criterion

Next, we show that, similar to the example discussed in Section 2, in general, the function rQ( f )
is concave near κ.

Theorem 2. (Concavity) The function rQ( f ) is concave near κ.

Proof. Recall that the concavity of a multi-variable function at a given point is characterized by
its Hessian to be negative definite. Calculating the mixed second order partial derivative of rQ( f ),
we have:

∂2

∂ fi∂ f j
rQ( f ) = Qexp(QlX( f ))

(
∂2

∂ fi∂ f j
lX( f ) + Q

∂lX( f )
∂ fi

∂lX( f )
∂ f j

)
.

Since, for i = 1, . . . , N,
∂lX(κ)

∂ fi
= 0

We have:
∂2

∂ fi∂ f j
rQ(κ) = Qexp(QlX(κ))

∂2lX(κ)

∂ fi∂ f j
.

It follows that:
Hessian(rQ(κ)) = Qexp(QlX(κ))Hessian(lX(κ)).
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The concavity of lX( f ) implies that Hessian(rQ(κ)) is negative definite. Since the second order
partial derivatives of rQ( f ) are continuous around κ, the Hessian of rQ(κ) is negative definite in the
neighborhood of κ. Thus, rQ( f ) is concave near κ.

It is clear that the inflection point occurs where the concavity of rQ( f ) changes. A characterization
of this set is the following:

Theorem 3. (Set of inflection points) The inflection point along any risk return path is contained in the
following set of f in leverage space characterized by:

min

−a11( f ), det

[
a11( f ) a12( f )
a21( f ) a22( f )

]
, . . . , (−1)Ndet


a11( f ) a12( f ) . . . a1N( f )
a21( f ) a22( f ) . . . a2N( f )

. . . . . . . . . . . .
aN1( f ) aN2( f ) . . . aNN( f )


 = 0.

where aij( f ) := ∂2

∂ fi∂ f j
lX( f ) + Q ∂lX( f )

∂ fi

∂lX( f )
∂ f j

.

Proof. Sylvester’s criterion for the negative definiteness of a matrix tells us that rQ( f ) is negative
definite if and only if:

−a11( f ) > 0, det

[
a11( f ) a12( f )
a21( f ) a22( f )

]
> 0, . . . , (−1)Ndet


a11( f ) a12( f ) . . . a1N( f )
a21( f ) a22( f ) . . . a2N( f )

. . . . . . . . . . . .
aN1( f ) aN2( f ) . . . aNN( f )

 > 0.

Thus, the set in the theorem characterizes the boundary where this condition is violated for the first
time: the potential inflection points.

We note that the computation in determining the set given in Theorem 3 is quite involved.
A practical (conservative) approximation is:

{
f ∈ RN : min (−a11( f ),−a22( f ), . . . ,−aNN( f )) = 0

}
. (12)

6. Determining the Manifold of Return/Risk Maximum Points

We now turn to the manifolds of return/risk maximum points. We begin by a general definition
of a kind of risk measure that covers the several patterns of risks discussed in Section 2 using the idea
in Artzner et al. (1999).

Definition 2. We say m : RM → R is a risk measure coherent with the investment allocation f if m is convex
m(0) = 0 and m(t f ) = tm( f ) for any t > 0.

Coherent risk measures have the following serendipitous property:

Lemma 1. Let m( f ) be a risk measure coherent with the investment allocation f . Then, for any ξ ∈ ∂m( f ),
the convex subdifferential of m at f , we have:

m( f ) = 〈ξ, f 〉.

Proof. The definition of the convex subdifferential ξ ∈ ∂m( f ) implies that:

m(z)−m( f ) ≥ 〈ξ, z− f 〉, ∀z.
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For t > 0, setting z = t f in the above inequality and using the coherent property of m( f ) yield:

(t− 1)m( f ) ≥ (t− 1)〈ξ, f 〉, ∀t > 0.

Hence:
m( f ) = 〈ξ, f 〉.

Now, we can characterize the manifold in leverage space that maximizes the return/risk ratio.

Theorem 4. Let m( f ) be a risk measure coherent to the investment allocation f . Then, the set of allocations f
that maximizes the return/risk ratio rQ( f )/m( f ) is contained in the set:

{ f : 〈∇rQ( f ), f 〉 = rQ( f )}.

Proof. We observe that maximizing rQ( f )/m( f ) is equivalent to the problem:

maximize
rQ( f )

y
(13)

subject to m( f )− y ≤ 0,

and the maximum is always attained when y = m( f ). The solution to the above problem belongs to:(∇rQ( f )
y

,−
rQ( f )

y2

)
∈ λ(∂m( f ),−1),

or:

∇rQ( f ) ∈ λy∂m( f ) (14)

and:

rQ( f ) = λy2, (15)

where λ is the Lagrange multiplier. Using Lemma 1 and inclusion (14), we have:

〈∇rQ( f ), f 〉 = λym( f ).

Combining this with (15) and y = m( f ), we arrive at:

〈∇rQ( f ), f 〉 = rQ( f ).

Note that the linear approximation of drawdown is coherent with the investment allocation f .
Many other types of risk measures also have this coherent property.

7. Applications

We now turn to concrete examples to illustrate how to apply the theory discussed in the
previous sections.

Example 1. First, we recall the example of betting two simultaneous hands of blackjack in
Vince and Zhu (2015). In this example, although there are two players involved, their strategy is the
same. Thus, by symmetry, we can reason that the two players should use the same bet size. As a result,
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the problem is reduced such that there is only one bet size to calculate, and it can be solved using the methods in
Vince and Zhu (2015).

However, in general, such a reduction is most of the time impossible.

Example 2. A small, private equity firm is considering further funding for two very separate companies over
the course of 72 months (six years) into the future. They wish to maximize their marginal increase in return
with respect to the marginal increase in risk over this period, investing simultaneously in both companies.

Their study of these companies reveals that for each million provided in funding, Company A will
show a monthly profit of $15,300 with a probability of 0.4 or a loss of $5000 with a probability of 0.6.

In considering Company B, there is a 0.8 probability of a $5000 monthly profit and a 0.2 probability
of a $9200 monthly loss.

Assuming the returns on the two companies are statistically independent leads to the joint
probabilities represented in Table 3.

Table 3. Two companies.

Company A Company B Probability

−5000 −9200 0.12
−5000 5000 0.48
15,300 −9200 0.068
15,300 5000 0.32

However, further analysis of the past, given that the month-by-month performance of the two
companies is in part contingent on business conditions, amends the probabilities to show greater
interdependency, and our private equity firm deems the probabilities associated with these outcomes,
when taken together, to be more accurately as in Table 4.

Table 4. Two companies adapted.

Company A Company B Probability

−5000 −9200 0.2
−5000 5000 0.36
15,300 −9200 0.06
15,300 5000 0.38

Thus, the log return function and the cumulative return function in this case are:

l( f1, f2) = 0.2 ln(1− f1 − f2) + 0.36 ln(1− f1 +
5,000
9,200 f2) + 0.06 ln(1 + 15,300

5,000 f1 − f2) + 0.38 ln(1 + 15,300
5,000 f1 +

5,000
9,200 f2)

and:
r( f1, f2) = exp(72l( f1, f2))− 1,

respectively.
Numerically solving equation:

∇r( f1, f2) = 0,

we find the peak of the (asymptotic) expected growth-optimal allocations to be κ = (0.245, 0.121)
for Company A and Company B, respectively, with an average growth per month of 1.0981493.
Next, we consider the risk-adjusted return. In this case, since we only invest in a relatively short
72-month time-frame, it is reasonable to assume the risk related to the two companies is proportional to
the largest monthly loss of −5000 and −9200, respectively. In the leverage space, this is to say the risks
of Companies A and B are proportional to f1 and f2, respectively. Moreover, the probability of such
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losses occurring simultaneously is relatively high at 20%. Therefore, we assume that the aggregated
risk is proportional to their sum f1 + f2. We can see that the path that corresponds to the least risk for
each level set is given by the equation:

∂r
∂ f1

=
∂r
∂ f2

.

This path is depicted in Figure 6, which follows the horizontal axis and then the blue line. Depicted
in Figure 6 as well are the curves corresponding to the inflection points in green and the return/risk
maximizing points in red, calculated using the methods in Sections 5 and 6. This gives us an estimate
of ν72 = (0.218, 0) and ζ72 = (0.23, 0.05).

Figure 6. Allocation of a private fund.

8. Conclusions and Further Research

Theoretical analysis, Monte Carlo simulation, and analysis of real-world examples showed that
by the practical consideration of investment in a finite horizon and adjusting for risk, the leverage on
different risky investment strategies suggested by the classical growth-optimal portfolio theory needs
to be adjusted down considerably. We show that the inflection point and return/risk maximizing
point discussed in Vince and Zhu (2015) are reasonable loci in leverage space in cases of capital
allocation to risky assets or investment strategies. However, when multiple strategies are involved,
reducing risk exposure from the growth optimal allocation, κ, there exists infinitely many choices of
paths. Analyzing the problem path by path is difficult. We established equations for determining the
manifolds of inflection points and the return/risk maximizing points. These equations can be solved
numerically to determine a region for reasonable choices of leverage. Examples were presented to
show how to apply these methods in practice.

As usual, our research here leads to additional questions of practical importance. For example,
portfolio insurance allocates a certain percentage to the underlying asset or portfolio based on the delta
of a hypothetical option on the underlying asset or portfolio. Thus, portfolio insurance is a practice
where one traverses along the return curve between its bounds as a function of the underlying price
relative to its hypothetical option. The curve is identical in shape to the return curves discussed here,
as reinvestment is constantly occurring (and thus, delta and f are interchangeable in this context),
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yet, the practitioners, in order to mimic the hypothetical option, are not capitalizing on any of the
important growth-regulation points mentioned in this paper.

Similarly, inverse Exchange Traded Funds (ETFs) and leveraged ETFs (cases of constant
reinvestment) have a delta embedded within them as:

delta =
ETFprice · leverage f actor · (long = 1, short = −1)

UnderlyingPrice
.

This delta too, a number between zero and some number whose absolute value can be greater than
one, is followed so as to track the promoted criterion of the ETF, e.g., “triple long ETF”. Yet, as with
portfolio insurance, the implementors, in keeping with the promoted criterion of the ETF, are not able
to capitalize on the important growth-regulating points (perhaps to be used as bounds on the delta).
Further research into this area is clearly warranted.
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