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Abstract: In this paper, we propose models for non-life loss reserving combining traditional
approaches such as Mack’s or generalized linear models and gradient boosting algorithm in an
individual framework. These claim-level models use information about each of the payments made
for each of the claims in the portfolio, as well as characteristics of the insured. We provide an example
based on a detailed dataset from a property and casualty insurance company. We contrast some
traditional aggregate techniques, at the portfolio-level, with our individual-level approach and we
discuss some points related to practical applications.

Keywords: loss reserving; predictive modeling; individual models; gradient boosting

1. Introduction and Motivation

In its daily practice, a non-life insurance company is subject to a number of solvency constraints,
e.g., ORSA guidelines in North America and Solvency II in Europe. More specifically, an actuary must
predict, with the highest accuracy, future claims based on past observations. The difference between
the total predicted amount and the total of all amounts already paid represents a reserve that the
company must set aside. Much of the actuarial literature is devoted to the modeling, evaluation and
management of this risk, see Wüthrich and Merz (2008) for an overview of existing methods.

Almost all existing models can be divided into two categories depending on the granularity of
the underlying dataset: individual (or micro-level) approaches, when most information on contracts,
claims, payments, etc. has been preserved, and collective (or macro-level) approaches involving some
form of aggregation (often on an annual basis). The latter have been widely developed by researchers
and successfully applied by practitioners for several decades. In contrast, individual approaches have
been studied for decades but are currently used rarely despite the many advantages of these methods.

The idea of using an individual model for claims dates back to the early 1980s with, among others,
Bühlmann et al. (1980), Hachemeister (1980) and Norberg (1986). The latter author has proposed
an individual model describing the occurrence, the reporting delay and the severity of each claim
separately. The idea was followed by the work of Arjas (1989), Norberg (1993, 1999), Hesselager (1994),
Jewell (1989) and Haastrup and Arjas (1996). This period was characterized by very limited computing
and memory resources as well as by the lack of usable data on individual claims. However, we can
find some applications in Haastrup and Arjas (1996) and in some more technical documents.

Since the beginning of the 2000s, several studies have been done including, among others, the
modeling of dependence using copulas Zhao and Zhou (2010), the use of generalized linear models
Larsen (2007), the semi-parametric modeling of certain components Antonio and Plat (2014) and
Zhao et al. (2009), the use of skew-symmetric distributions Pigeon et al. (2014), the inclusion of
additional information Taylor et al. (2008), etc. Finally, some researchers have done comparisons
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between individual and collective approaches, often attempting to answer the question “what is the
best approach?” (see Hiabu et al. (2016); Huang et al. (2015) or Charpentier and Pigeon (2016) for
some examples).

Today, statistical learning techniques are widely used in the field of data analytics and may
offer non-parametric solutions to claim reserving. These methods give the model more freedom
and often outperform the accuracy of their parametric counterparts. However, only few approaches
have been developed using micro-level information. One of them is presented in Wüthrich (2018),
where the number of payments is modeled using regression trees in a discrete time framework.
The occurrence of a claim payment is assumed to have a Bernoulli distribution, and the probability is
then computed using a regression tree as well as all available characteristics. Other researchers,
see Baudry and Robert (2017), have also developed a non-parametric approach using a machine
learning algorithm known as extra-trees, an ensemble of many unpruned regression trees, for loss
reserving. Finally, some researchers consider neural networks to improve classical loss reserving
models (see Gabrielli et al. (2019)).

In this paper, we propose and analyze an individual model for loss reserving based on an
application of a gradient boosting algorithm. Gradient boosting is a machine learning technique, that
combines many “simple” models called weak learners to form a stronger predictor by optimizing some
objective function. We apply an algorithm called XGBoost, see Chen and Guestrin (2016), but other
machine learning techniques, such as an Extra-Trees algorithm, could also be considered.

Our strategy is to directly predict the ultimate claim amount of a file using all available information
at a given time. Our approach is different from the one proposed in Wüthrich (2018) where regression
trees (CART) are used to model the total number of payments per claim and/or the total amount
paid per claim for each of the development periods. It is also different from the model proposed in
Baudry and Robert (2017), which works recursively to build the full development of a claim, period
after period.

We also present and analyze micro-level models belonging to the class of generalized linear
models (GLM). Based on a detailed dataset from a property and casualty insurance company, we study
some properties and we compare results obtained from various approaches. More specifically, we show
that the approach combining the XGBoost algorithm and a classical collective model such as Mack’s
model, has high predictive power and stability. We also propose a method for dealing with censored
data and discuss the presence of dynamic covariates. We believe that the gradient boosting algorithm
could be an interesting addition to the range of tools available for actuaries to evaluate the solvency
of a portfolio. This case study also enriches the too short list of analyzes based on datasets from
insurance companies.

In Section 2, we introduce the notation and we present the context of loss reserving from both
collective and individual point of view. In Section 3, we define models based on both, generalized
linear models and gradient boosting algorithm. A case study and some numerical analyses on a
detailed dataset are performed in Section 4, and finally, we conclude and present some promising
generalizations in Section 5.

2. Loss Reserving

In non-life insurance, a claim always starts with an accident experienced by a policyholder that
may lead to financial damages covered by an insurance contract. We call the date on which the
accident happens the occurrence point (T1). For some situations (bodily injury liability coverage,
accident benefits, third-party responsibility liability, etc.), a reporting delay is observed between the
occurrence point and the notification to the insurer at the reporting point (T2). From T2, the insurer
could observe details about the accident, as well as some information about the insured, and record a
first estimation of the final amount, called case estimate. Once the accident is reported to the insurance
company, the claim is usually not settled immediately, e.g., the insurer has to investigate the case
or to wait for bills or court judgments. At the reporting point T2, a series of M random payments
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Pt1 , . . . , PtM made respectively at times t1 < . . . < tM is therefore triggered, until the claim is closed at
the settlement point (T3). To simplify the presentation, all dates are expressed in number of years from
an ad hoc starting point denoted by τ. Finally, we need a unique index k, k = 1, . . . , K, to distinguish
the accidents. For instance, T(k)

1 is the occurrence date of the accident k, and t(k)m is the date of the mth
payment of this claim. Figure 1 illustrates the development of a claim.

The evaluation date t∗ is the moment on which the insurance company wants to evaluate its
solvency and calculate its reserves. At this point, a claim can be classified in three categories:

1. If T(k)
1 < t∗ < T(k)

2 , the accident has happened but has not yet been reported to the insurer. It is
therefore called an “incurred but not reported” (IBNR), claim. For one of those claims, the insurer
does not have specific information about the accident, but can use policyholder and external
information to estimate the reserve.

2. If T(k)
2 < t∗ < T(k)

3 , the accident has been reported to the insurer but is still not settled, which
means the insurer expects to make additional payments to the insured. It is therefore called a
“reported but not settled” (RBNS), claim. For one such claim, the historical information as well as
policyholder and external information can be used to estimate the reserve.

3. If t∗ > T(k)
3 , the claim is classified as settled, or S, and the insurer does not expect to make

more payments.

Finally, it is always possible for a claim to reopen after its settlement point T3.
Let C(k)

t be a random variable representing the cumulative paid amount at date t for claim k:

C(k)
t =

0, t < T(k)
2

∑{m:t(k)m ≤t}
P

t(k)m
, t ≥ T(k)

2 .

At any evaluation date T(k)
1 < t∗ < T(k)

3 and for an accident k, an insurer wants to predict the

cumulative paid amount at the settlement C(k)
T3

, called total paid amount, by Ĉ(k)
T3

using all information

available at t∗ and denoted by D(k)
t∗ . The individual reserve for a claim evaluated at t∗ is then given

by R̂(k)
t∗ = Ĉ(k)

T3
− C(k)

t∗ . For the whole portfolio, the total reserve is the aggregation of all individual
reserves and is given by

R̂t∗ =
K

∑
k=1

R̂(k)
t∗ .

Traditionally, insurance companies aggregate information by accident year and by development
year. Claims with accident year i, i = 1, . . . , I, are all the claims that occurred in the ith year after
τ, which means all claims k for which i − 1 < T(k)

1 < i is verified. For a claim k, a payment made

in development year j, j = 1, . . . , J = I is a payment made in the jth year after the occurrence T(k)
1 ,

namely a payment P
t(k)m

for which j− 1 < t(k)m − T(k)
1 < j. For development years j = 1, . . . , I, we define

Y(k)
j = ∑

m∈S (k)j

P
t(k)m

,

where S (k)j = {m : j− 1 < t(k)m − T(k)
1 < j}, as the total paid amount for claim k during year j and we

define the corresponding cumulative paid amount as

C(k)
j =

j

∑
s=1

Y(k)
s .
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The collective group approaches every claim in the same accident year to form the aggregate
incremental payment

Yij = ∑
k∈Ki

Y(k)
j , i, j = 1, . . . , I,

where Ki is the set of all claims with accident year i. For portfolio-level models, a prediction of the
reserve at time t∗ is obtained by

R̂t∗ =
I

∑
i=2

I

∑
j=I+2−i

Ŷij, (1)

where the Ŷij are usually predicted using only the accident year and the development year.
Each cell contains a series of payments, information about the claims and some information

about policyholders. These payments can also be modeled within an individual framework. Hence,
a prediction of the total reserve amount is given by

R̂t∗ =
I

∑
i=2

I

∑
j=I+2−i

∑
k∈Ki

Ŷ(k)
j︸ ︷︷ ︸

RBNS reserve

+
I

∑
i=2

I

∑
j=I+2−i

∑
k∈Kunobs.

i

Ŷ(k)
j︸ ︷︷ ︸

IBNR reserve

, (2)

where Kunobs.
i is the set of IBNR claims with occurrence year i and the Ŷ(k)

j can now be predicted using
all available information. It should be noted that in Equations (1) and (2), we assume that all claims are
paid for the earliest occurrence period (i = 1). In this paper, we adopt this point of view and we mainly
focus on estimating the RBNS reserve, which is the first part on the right-hand side of Equation (2).

T(k)
1 T(k)

2 t(k)1 t(k)2 t(k)M T(k)
3

Occurrence Reporting SettlementPayments

P
t(k)1

P
t(k)2

P
t(k)M

Reporting delay Settlement period

Figure 1. Development of claim k.

3. Models for Loss Reserving

3.1. Bootstrap Mack’s Model and Generalized Linear Models for Loss Reserving

In Section 4, we compare our micro-level approach with three different types of models
for loss reserving: a bootstrapped Mack’s model England and Verrall (2002), a collective GLM
Wüthrich and Merz (2008) and an individual version of the latter. In order to enrich the discussion
that will be done in the analysis, we briefly present in this subsection these three different approaches.

Mack’s model Mack (1993) is a distribution-free stochastic loss reserving method built for a
cumulative run-off triangle. This collective model is among the most popular for loss reserving and as
a result, the literature is more than substantial about it. One of the main drawbacks of this technique is
that the predictive distribution of the total reserve cannot be computed directly due to the absence
of a distribution assumption. In order to compare with our gradient boosting approach, we thus use
a bootstrapped version of Mack’s model which allows to compute a predictive distribution. In the
interest to be concise, we will not discuss more about this model, and we invite the reader to take a
look at Mack (1993) and England and Verrall (2002) for more details.
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In the collective GLM framework, we assume that the incremental aggregate payments Yij are
independent and follow a distribution falling into the exponential family with expected value given
by g

(
E
[
Yij
])

= β0 + αi + β j, where g() is the link function, αi, i = 2, 3, . . . , N is the accident year
effect, β j, j = 2, 3, . . . , N is the development year effect and β0 is the intercept. Variance is given
by Var

[
Yij
]
= ϕV

(
E
[
Yij
])

, where V() is the variance function and ϕ is the dispersion parameter
(see De Jong and Heller (2008) for an introduction to GLM). The prediction for Yij is then given by

Ŷij = g−1(β̂0 + α̂i + β̂ j),

where estimates of the parameters β̂0, {α̂i}N
i=2 and {β̂ j}N

j=2 are usually found by maximizing likelihood.
The reserve at time t∗ can thereafter be computed using Equation (1), and the predictive distribution of
the total reserve can be calculated using simulations. A complete description of this model is done in
Wüthrich and Merz (2008).

The individual GLM for loss reserving which we present here represents a micro-level version
of the collective GLM described in the last paragraph. A major advantage of this model over the
collective version comes from the use of covariates in addition to the accident and development year.
Adaptations, minor or not, of our chosen approach could be studied as well, but this is not the main
purpose of this paper. We assume that Y(k)

j follows a distribution falling into the exponential family

with expected value given by g
(

E
[
Y(k)

j

])
= x(k)j β and variance given by Var

[
Y(k)

j

]
= ϕV

(
E
[
Y(k)

j

])
,

where x(k)j is the vector of covariates for claim k and development period j and β is the usual vector of

parameters. The prediction for Y(k)
j is obtained with

Ŷ(k)
j = g−1

(
x(k)j β̂

)
,

where β̂ is the maximum likelihood estimator of β. For a claim from occurrence period i in the portfolio,
the individual reserve, evaluated at t∗, is given by R̂(k)

t∗ = ∑I
j=I+2−i Ŷ(k)

j , and the total RBNS reserve

is given by R̂t∗ = ∑k R̂(k)
t∗ . Some remarks should be made concerning the implementation of this

model. First, the distribution of the random variable Y(k)
j has a mass at 0 because we did not separate

occurrence and severity in our modeling. It may also be possible to consider a two-part GLM. Secondly,
this model assumes that the covariates remain identical after the valuation date, which is not exactly
accurate in the presence of dynamic variables such as the number of healthcare providers. We discuss
this issue in more detail in the next subsection. Third, the status of a file (open or closed) is used as
an explanatory variable in the model, which implicitly allows for reopening. Finally, obtaining the
IBNR reserve also requires a model for the occurrence of a claim and the delay of its declaration to the
insurer in addition to more assumptions about the composition of the portfolio.

3.2. Gradient Boosting for Loss Reserving

In order to train gradient boosting models, we use an algorithm called XGBoost developed
by Chen and Guestrin (2016), and regression trees are chosen as weak learners. For more detail
about XGBoost algorithm and regression trees, see Breiman et al. (1984); Chen and Guestrin (2016),
respectively. The loss function used is the squared loss L(y, f (x)) = (y− f (x))2 but other options
such as residual deviance for gamma regression were considered without significantly altering the
conclusions. A more detailed analysis of the impact of the choice of this function is deferred to a
subsequent case study. Models were built using R programming language in conjunction with caret
and xgboost libraries. caret is a powerful package used to train and to validate a wide range of
statistical models including XGBoost algorithm.
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Let us say we have a portfolio S on which we want to train an XGBoost model for loss reserving.
This portfolio contains both, open and closed claims. At this stage, several options are available:

1. The simplest solution is to train the model on data DT where only settled claims (or non-censored
claims) are included. Hence, the response is known for all claims. However, this leads to a
selection bias because claims that are already settled at t∗ tend to have shorter developments,
and claims with shorter development tend to have lower total paid amounts. Consequently,
the model is almost exclusively trained on simple claims with low training responses, which
leads to underestimation of the total paid amounts for new claims. Furthermore, a significant
proportion of the claims are removed from the analysis, which causes a loss of information.
We will analyze this bias further in Section 4 (see model B).

2. In Lopez et al. (2016), a different and interesting approach is proposed: in order to correct the
selection bias induced by the presence of censored data, a strategy called “inverse probability of
censoring weighting” (IPCW) is implemented, which involves assigning weights to observations
to offset the lack of complete observations in the sample. The weights are determined using the
Kaplan-Meier estimator of the censoring distribution, and a modified CART algorithm is used to
make the predictions.

3. A third approach is to develop claims that are still open at t∗ using parameters from a classical
approach such as Mack’s or the GLM model. We discuss this idea in more detail in Section 4
(see model C and model D).

In order to predict total paid amount for a claim k, we use information we have about the case at
evaluation date t∗, denoted by x(k)t∗ .

Some of the covariates, such as the accident year, are static, which means their value do not
change over time. These covariates are quite easy to handle because their final value is known since the
reporting of the claims. However, some of the available information is expected to develop between t∗

and the closure date, for example, the claimant’s health status or the number of healthcare providers
in the file. To handle those dynamic covariates, we have, at least, the following two options:

• we can assume that they are static, which can lead to a bias in the predictions obtained
(see model E in Section 4); or

• we can, for each of these variables, (1) adjust a dynamic model, (2) obtain a prediction
of the complete trajectory, and (3) use the algorithm conditionally to the realization of this
trajectory. Moreover, there may be dependence between these variables, which would warrant a
multivariate approach.

These two points will be discussed in Section 4 (see model E). The XGBoost algorithm therefore
learns a prediction function f̂XGB on the adjusted dataset, depending on the selected option 1., 2. or 3.
and how dynamic covariates are handled. Then, the predicted total paid amount for claim k is given
by Ĉ(k)

T3
= f̂XGB

(
x(k)t∗

)
. Reserve for claim k is R̂(k)

t∗ = Ĉ(k)
T3
− C(k)

t∗ , and the RBNS reserve for the whole

portfolio is computed with R̂t∗ = ∑k∈S R̂(k)
t∗ . Gradient boosting is a non-parametric algorithm and no

distribution is assumed for the response variable. Therefore, in order to compute the variance of the
reserve and some risk measures, we use a non-parametric bootstrap procedure.

4. Analyses

In this section, we present an extended case study based on a detailed dataset from a property
and casualty insurance company. In Section 4.1, we describe the dataset, in Section 4.2 we explain how
we construct and train our models, and in Section 4.4 we present our numerical results and analyses.
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4.1. Data

We analyzed a North American database consisting of 67.203 claims occurred from 1 Januar
2004 to 31 December 2016. We therefore let τ, the starting point, be 1 January 2004 meaning that all
dates are expressed in number of years from this date. These claims are related to 60.075 general
liability insurance policies for private individuals. We focus only on the accident benefits coverage
that provides compensation if the insured is injured or killed in an auto accident. It also includes
coverage for passengers and pedestrians involved in the accident. Claims involve one (83%), two (13%)
or 3+ parties (4%) resulting in a total of 82.520 files in the database. Consequently, there is a possibility
of dependence between some payments in the database. Nevertheless, we assume in this paper that
all files are independent claims, and we postpone the analysis of this dependence. Thus, we analyze a
portfolio of 82.520 independent claims that we denote by S . An example of the structure of the dataset
is given in Table A1 in Appendix A.

The data are longitudinal, and each row of the database corresponds to a snapshot of a file.
For each element in S , a snapshot is taken at the end of every quarter, and we have information from
the reporting date until 31 December 2016. Therefore, a claim is represented by a maximum of 52 rows.
A line is added in the database even if there is no new information, i.e., it could be possible that two
consecutive lines provide precisely the same information. During the training of our models, we do
not consider these replicate rows because they do not provide any relevant information for the model.

The information vector for claim k, k = 1, . . . , 82.520 at time t is given by D(k)
t = (x(k)t , C(k)

t ).

Therefore, the information matrix about the whole portfolio at time t is given by D(S)
t = {D(k)

t }k∈S .

Because of the discrete nature of our dataset, it contains information {D(S)
t }{0.25t: t∈N, t≤52}, where t is

the number of years since τ.
In order to validate models, we need to know how much has actually been paid for each claim.

In portfolio S , the total paid amount CT3 is still unknown for 19% of the cases because they are related
to claims that were open on 31 December 2016 (see Figure 2). To overcome this issue, we use a subset
S7 = {k ∈ S : T(k)

1 < 7} of S , i.e., we consider only accident years from 2004 to 2010 for both training
and validation. This subset contains 36.286 files related to 32.260 claims of which 22% are still open on
31 December 2010. Further, only 0.67% of the files are associated with claims that are still open as of
the end of 2016, so we know the exact total paid amount for 99.33% of them, assuming no reopening
after 2016. For the small proportion of open claims, we assume that the incurred amount set by experts
is the true total paid amount. Hence, the evaluation date is set at 31 December 2010 and t∗ = 7. This is
the date at which the reserve must be evaluated for files in S7. This implies that the models are not
allowed to use information past this date for their training. Information past the evaluation date is
used only for validation.

For simplicity and for computational purposes, the quarterly database is summarized to form a
yearly database {D(S7)

t }13
t=1, whereD(S7)

t = {D(k)
t }k∈S7 . We randomly sampled 70% of the 36.843 claims

to form the training set of indices T ⊂ S7, and the other 30% forms the validation set of indices V ⊂ S7,
which gives the training and validation datasets DT = {D(T )

t }13
t=1 and DV = {D(V)

t }13
t=1.

In partnership with the insurance company, we selected 20 covariates in order to predict total
paid amount for each of the claims. To make all models comparable, we use the same covariates for all
claims. Some covariates are characteristics of the insured, such as age and gender, and some pertain to
the claim such as the accident year, the development year, and the number of healthcare providers in
the file. For privacy reasons, we cannot discuss the selected covariates further in this paper.
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Figure 2. (a) Status of claims of incurred amounts on 31 December 2016; (b) Means and standard
deviations of incurred amounts on 31 December 2016.

4.2. Training of XGBoost Models

In order to train XGBoost models, we analyze the training dataset DT = {(xt, Ct)}13
t=1. Because

some covariates are dynamic, the design matrix xt changes over time, that is to say xt 6= xt′ for t 6= t′.
Unless otherwise stated, the models are all trained using x7, which is the latest information we have
about files, assuming information after t∗ = 7 is unknown.

Although a model using real responses is not usable in practice, it is possible to train it because
we set the evaluation date to be in the past. Model A acts as a benchmark model in our case study
because it is fit using CT3 as training responses and it is best model we can hope for. Therefore, in order

to train model A, data DA
T = {(x(k)7 , C(k)

T3
)}k∈T is input into the XGBoost algorithm, which learns the

prediction function f̂A.
Model B, which is biased, is fit using C7 as training responses, but only on the set of claims for

which the claim is settled at time t∗ = 7. Hence, model B is trained using DB
T = {(x(k)7 , C(k)

7 )}k∈TB ,

where TB = {k ∈ T : T(k)
3 < 7}, giving the prediction function f̂B. This model allows us to measure

the extent of the selection bias.
In the next models, we develop claims that are still open at t∗, i.e., we predict pseudo-responses

ĈT3 using training set DT , and these ĈT3 are subsequently used to fit the model.
In model C, claims are developed using the Mack’s model. We only develop open files at the

evaluation date, i.e., we assume no reopening for settled claims. More specifically, information from
data {D(T )

t }7
t=1 is aggregated by accident year and by development year to form a cumulative run-off

triangle. Based on this triangle, we use the bootstrap approach described in England and Verrall (2002)
and involving Pearson’s residuals to generate B = 1000 bootstrapped triangles {C(b)}B

b=1. On each of

those triangles, the Mack’s model is applied to obtain vectors of development factors λ̂j = {λ
(b)
j }

B
b=1,

j = 1, . . . , 6, with

λ̂
(b)
j =

∑
7−j
i=1 C(b)

i(j+1)

∑
7−j
i=1 C(b)

ij

, b = 1, . . . , B, (3)
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where C(b)
i(j+1) and C(b)

ij are from bootstrapped triangle C(b). From each vector λ̂j, we compute

empirical cumulative distribution function Fj and we set λ̂j = F−1
j (κC), j = 1, . . . , 6 and where

κC is a hyperparameter estimated using cross-validation. Finally, we calculate pseudo-responses
{Ĉ(k)

T3
}k∈T using

Ĉ(k)
T3

= λ̂c
j C

(k)
7 , where λ̂c

j =
6

∏
l=j

λ̂l . (4)

In model D, claims are projected using an individual quasi-Poisson GLM as described in Section 3.1
and including all 20 covariates. We discretize the amounts by rounding in order to be able to use
a counting distribution even if the response variable is theoretically continuous. This approach is
common in the literature associated with loss reserving and does not have a significant impact on
the final results. Unlike in model C, we also develop settled claims at t∗ = 7. This is because
in this model, the status (open or closed) of the file is used, which means the models will be
able to make the difference between open and settled claims. More specifically, model D uses
an individual quasi-Poisson GLM to estimate the training dependent variable. The GLM is fit on
data {(x(T )t , Y (T )

t )}7
t=1, where x(T )t = {x(k)t }k∈T , Y (T )

t = {Y(k)
t }k∈T and Y(k)

t is the yearly aggregate
payment at year t for claim k. A logarithm link function is used and coefficients are estimated by
maximizing the Poisson log-likelihood function. Therefore, the estimation of the expected value for a
new observation is given by

µ̂
(k)
t = exp

(
x(k)t β̂

)
,

and a prediction is made according to Ŷ(k)
t = F−1

Y(k)
t

(κD), which is the level κD empirical quantile of the

distribution of Y(k)
t . This quantile can be obtained using simulation or bootstrap procedure. Finally,

for the claim k, the pseudo-response is

Ĉ(k)
T3

= C(k)
7 +

13

∑
t=8

Ŷ(k)
t .

Model E is constructed in the same way as model C but it uses prospective information about
the 4 dynamic stochastic covariates available in the dataset. It is analogous to model A in the sense
that it is not usable in practice. However, fitting this model indicates whether an additional model
that would project censored dynamic covariates would be useful. In Table 1, we summarize the main
specifications of the models.

Table 1. Main specifications of XGBoost models.

Model Response Variable (ĈT3 ) Covariates Usable in Practice?

Model A {CT3} x7 No

Model B {C(k)
7 }k∈TB , TB = {k ∈ T : T(k)

3 < 7} x7 Yes

Model C closed: {C7} x7 Yes
open: {λ̂c

j C7} (λ̂ from bootstrap) x7

Model D all: {C7 + ∑13
t=8 Ŷt} (with Ŷt = qYt (κD)) x7 Yes

Model E closed: {C7} x13 No
open: {λ̂c

j C7} (λ̂ from bootstrap) x13

Note: unless otherwise stated, we have k ∈ T .
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4.3. Learning of Prediction Function

In Section 4.2, we showed how to train the XGBoost models having the dataset DT . However, no
details were given on how we obtain the prediction function for each model. In this section, we dive
one abstraction level lower by explaining the general idea behind the algorithm. Our presentation
is closely inspired by the TreeBoost algorithm developed by Friedman (2001), which is based on the
same principles as XGBoost using regression trees as weak learners. The main difference between the
two algorithms is the computation time: XGBoost is usually faster to train. In order to get through this,
we take model A as an example. The explanation is nevertheless easily transferable to all other models
since only the dataset given as input changes.

In the regression framework, a TreeBoost algorithm combines many regression trees together in
order to optimize some objective function and thus learn a prediction function. The prediction function
for model A takes the form of a weighted sum of regression tress

f̂A

(
x(k)7

)
=

M

∑
m=1

βmT
(

x(k)7 ; θm

)
, (5)

where {βm}M
m=1 and {θm}M

m=1 are the weights and the vectors of parameters characterizing the
regression trees, respectively. The vector of parameters associated with the mth tree contains Jm

regions (or leaves) {Rjm}Jm
j=1 as well as the corresponding prediction constants {γjm}Jm

j=1, which means

θm = {Rjm, γjm}Jm
j=1. Notice that a regression tree can be seen as a weighted sum of indicator functions:

T(x; θ) =
J

∑
j=1

γj1(x ∈ Rj).

Ref. Friedman (2001) proposed to slightly modify Equation (5) in order to choose a different
optimal value β jm for each of the tree’s regions. Consequently, each weight β jm can be absorbed into
the prediction constant γjm. Assuming a constant number of regions J in each tree (which is almost
always the case in practice), Equation (5) becomes

f̂A

(
x(k)7

)
=

M

∑
m=1

J

∑
j=1

γjm1
(

x(k)7 ∈ Rjm

)
.

With a loss function L(), we need to solve

{βm, θm}M
m=1 = arg min

{β′m ,θ′m}
∑

k∈T
L
(

C(k)
T3

,
M

∑
m=1

J

∑
j=1

γjm1
(

x(k)7 ∈ Rjm

))
,

which is, most of the time, too expensive computationally. The TreeBoost algorithm overcomes this
issue by building the prediction function iteratively. In order to avoid overfitting, it also adds a learning
rate ν, 0 < ν ≤ 1. The steps needed to obtain the prediction function for model A are detailed in
Algorithm 1.
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Algorithm 1: Obtaining f̂A with least square TreeBoost.

Input: data DA
T =

{(
x(k)7 , C(k)

T3

)}
k∈T

, number of trees M, number of regions in each tree J,

learning rate ν

Initialize: f (0)A

(
x(k)7

)
:= average

k∈T

{
C(k)

T3

}
for m← 1 to M do
• compute residuals of the current model

r(k)m := C(k)
T3
− f (m−1)

A

(
x(k)7

)
, for k ∈ T ;

• fit a tree to the data
{(

x(k)7 , r(k)m

)}
k∈T

, yielding regions {Rjm}J
j=1;

• compute prediction constant for each region

γjm = average{
k:x(k)7 ∈Rjm

}
{

r(k)m

}
, for j = 1, . . . , J;

• update the model

f (m)
A

(
x(k)7

)
:= f (m−1)

A

(
x(k)7

)
+ ν

J

∑
j=1

γjm1
(

x(k)7 ∈ Rjm

)
;

end

return f̂A := f (M)
A

4.4. Results

From {D(T )
t }7

t=1, which was the training dataset before the evaluation date, it is possible to obtain
a training run-off triangle by aggregating payments by accident and by development year, presented
in Table 2.

Table 2. Training incremental run-off triangle (in $100,000).

Development Year 1 2 3 4 5 6 7

Accident year
2004 79 102 66 49 57 48 37
2005 83 128 84 55 52 41 ·
2006 91 138 69 49 38 · ·
2007 111 155 98 61 · · ·
2008 100 178 99 · · · ·
2009 137 251 · · · · ·
2010 155 · · · · · ·

We can apply the same principle for validation dataset DV , which yields the validation run-off
triangle displayed in Table 3.
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Table 3. Validation incremental run-off triangle (in $100,000).

Development Year 1 2 3 4 5 6 7 8+

Accident year
2004 34 41 23 13 14 14 9 7
2005 37 60 36 29 45 21 20 24
2006 41 64 34 23 21 14 4 21
2007 46 67 40 37 15 18 3 13
2008 46 82 39 42 16 11 15 33
2009 54 109 62 51 31 36 11 2
2010 66 93 47 45 16 16 9 ?

Note: Data used to score models are displayed in black as aggregated payments used for validation are in gray.

Based on the training run-off triangle, it is possible to fit many collective models,
see Wüthrich and Merz (2008) for an extensive overview. Once fitted, we scored them on the validation
triangle. In the validation triangle (Table 3), data used to score models are displayed in black and
aggregated payments observed after the evaluation date are displayed in gray. Payments have been
observed for six years after 2010, but this was not long enough for all claims to be settled. In fact,
on 31 December 2016, 0.67% of files were associated with claims that are still open, mostly from
accident years 2009 and 2010. Therefore, amounts in column “8+” for accident years 2009 and 2010
in Table 3 are in fact too low. Based on available information, the observed RBNS amount was
$67,619,905 (summing all gray entries), but we can reasonably think that this amount would be closer
to $70,000,000 if we could observe more years. The observed IBNR amount was $3,625,983 for a total
amount of $71,245,888.

Results for collective models are presented according to two approaches:

• Mack’s model, for which we present results obtained with the bootstrap approach developed by
England and Verrall (2002), based on both quasi-Poisson and gamma distributions; and

• generalized linear models for which we present results obtained using a logarithmic link
function and a variance function V(µ) = φµp with p = 1 (quasi-Poisson), p = 2 (gamma),
and 1 < p < 2 (Tweedie).

For each model, Table 4 presents the expected value of the reserve, its standard error, and
the 95% and the 99% quantiles of the predictive distribution of the total reserve amount. As is
generally the case, the choice of the distribution used to simulate the process error in the bootstrap
procedure for Mack’s model has no significant impact on the results. Reasonable practices, at
least in North America, generally require a reserve amount given by a high quantile (95%, 99%
or even 99.5%) of the reserve’s predictive distribution. As a result, the reserve amount obtained
by bootstrapping Mack’s model is too high (between $90,000,000 and $100,000,000) compared to
the observed value (approximately $70,000,000). Reserve amounts obtained with generalized linear
models were more reasonable (between $77,000,000 and $83,000,000), regardless of the choice of the
underlying distribution. The predictive distribution for all collective models is shown in Figure 3.

In Table 4, we also present in-sample results, i.e., we used the same dataset to perform both
estimation and validation. The results were very similar, which tends to indicate stability of the results
obtained using these collective approaches.

Individual models were trained on the training set {D(T )
t }7

t=1 and scored on the validation
set {D(V)}13

t=8. In contrast to collective approaches, individual methods used micro-covariates and,
more specifically, the reporting date. This allows us to distinguish between IBNR claims and RBNS
claims and, as previously mentioned, in this project we mainly focus on the modeling of the RBNS
reserve. Nevertheless, in our dataset, we observe very few IBNR claims ($3,625,983) and therefore,
we can reasonably compare the results obtained using both micro- and macro-level models with the
observed amount ($67,619,905).
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Table 4. Prediction results (incurred but not reported (IBNR) + reported but not settled (RBNS)) for
collective approaches.

Model Assessment E[Res.]
√

Var[Res.] q0.95 q0.99

Bootstrap Mack out-of-sample 76,795,136 7,080,826 89,086,213 95,063,184
(quasi-Poisson) in-sample 75,019,768 8,830,631 90,242,398 97,954,554
Bootstrap Mack out-of-sample 76,803,753 7,170,529 89,133,141 95,269,308

(Gamma) in-sample 75,004,053 8,842,412 90,500,323 98,371,607

GLM out-of-sample 75,706,046 2,969,877 80,655,890 82,696,002
(Quasi-Poisson) in-sample 74,778,091 3,084,216 79,922,183 81,996,425

GLM out-of-sample 73,518,411 2,263,714 77,276,416 78,907,812
(Gamma) in-sample 71,277,218 3,595,958 77,343,035 80,204,504

GLM out-of-sample 75,688,916 2,205,003 79,317,520 80,871,729
(Tweedie) in-sample 74,706,050 2,197,659 78,260,722 79,790,056

Note: because 70% of the data was used for training and 30% is used for testing, we used a factor of 7/3 to
correct in-sample predictions and make them comparable with out-of-sample predictions. The observed total
amount was $71,245,888.

Total reserve amount (in millions)
60 70 80 90 100

Mack bootstrap quasi−Poisson
Mack bootstrap gamma
GLM quasi−Poisson
GLM gamma
GLM Tweedie

Figure 3. Comparison of predictive distributions (incurred but not reported (IBNR) + reported but not
settled (RBNS)) for collective models.

We considered the following approaches:

• individual generalized linear models (see Section 3.1), for which we present results obtained using
a logarithmic link function and three variance functions: V(µ) = µ (Poisson) and V(µ) = φµp

with p = 1 (quasi-Poisson) and V(µ) = φµp with 1 < p < 2 (Tweedie); and
• XGBoost models (models A, B, C, D and E) described in Section 4.2.

Both approaches used the same covariates described in Section 4.1, which makes them comparable.
For many files in both training and validation sets, some covariates are missing. Because generalized
linear models cannot handle missing values, median/mode imputation has been performed for both
training and validation sets. No imputation has been done for XGBoost models because missing values
are processed automatically by the algorithm.

Results for individual GLM are displayed in Table 5, and predictive distributions for both
quasi-Poisson and Tweedie GLM are shown in Figure 4. Predictive distribution for the Poisson
GLM is omitted because it is the same as the quasi-Poisson model, but with a much smaller variance.
Based on our dataset, we observe that the estimated value of the parameter associated to some
covariates is particularly dependent on the database used to train the model, e.g., in the worst case,
for the quasi-Poisson model, we observe β̂ = 0.169 (0.091) with the out-of-sample approach and
β̂ = −1.009 (0.154) with the in-sample approach. This can also be observed for many parameters of the
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model, as shown in Figure 5 for the quasi-Poisson model. These results were obtained by resampling
from the training database and the quasi-Poisson model. Crosses and circles represent the estimated
values of the parameters if the original training database is used, and the estimated values of the
parameters if the validation database is used, respectively. On this graph, we observe that, for most of
the parameters, the values estimated on the validation set are inaccessible when the model is adjusted
on the training set. In Table 5, we display results for both in-sample and out-of-sample approaches.
As the results shown in Figure 4 suggest, there are significant differences between the two approaches.
Particularly, the reserves obtained from the out-of-sample approach are too high compared with the
observed value. Although it is true that in practice, the training/validation set division is less relevant
for an individual generalized linear model because the risk of overfitting is lower, this suggests that
some caution is required in a context of loss reserving.

Total RBNS reserve amount (in millions)
60 70 80 90 100

Quasi−Poisson (out−of−sample)
Tweedie (out−of−sample)
Quasi−Poisson (in−sample)
Tweedie (in−sample)

Figure 4. Predictive distributions (RBNS) for individual GLM with covariates.
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Figure 5. Means and 95% confidence intervals for all parameters of the model.
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Table 5. Prediction results (RBNS) for individual generalized linear models using covariates.

Model Assessment E[Res.]
√

Var[Res.] q0.95 q0.99

Poisson out-of-sample 86,411,734 9007 86,426,520 86,431,211
in-sample 75,611,203 8655 75,625,348 75,631,190

Quasi-Poisson out-of-sample 86,379,296 894,853 87,815,685 88,309,697
in-sample 75,606,230 814,608 76,984,768 77,433,248

Tweedie out-of-sample 84,693,529 2,119,280 88,135,187 90,011,542
in-sample 70,906,225 1,994,004 74,098,686 75,851,991

Note: Because 70% of the data is used for training and 30% is used for testing, we use a factor of 7/3 to
correct in-sample predictions and make them comparable with out-of-sample predictions. The observed
RBNS amount is $67,619,905.

Out-of-sample results for XGBoost models are displayed in Table 6. For all models, the learning
rate is around 10%, which means our models are quite robust to overfitting. We use a maximum
depth of 3 for each tree. A higher value would make our model more complex but also less robust
to overfitting. All those hyperparameters are obtained by cross-validation. Parameters κC = 0.8 and
κD = 0.8 are obtained using cross-validation over a grid given by {0.6, 0.7, 0.8, 0.9}.

Table 6. Prediction results (RBNS) for individual approaches (XGBoost) using covariates.

Model E[Res.]
√

Var[Res.] q0.95 q0.99

Model A 73,204,299 3,742,971 79,329,916 82,453,032
Model B 14,339,470 6,723,608 25,757,061 30,643,369
Model C 67,655,960 2,411,739 71,708,313 73,762,242
Model D 68,313,731 4,176,418 75,408,868 78,517,966
Model E 67,772,822 2,387,476 71,722,744 73,540,516

Note: The observed RBNS amount is $67,619,905.

Not surprisingly, we observe that model B is completely off the mark, underestimating the total
reserve by a large amount. This confirms that the selection bias, at least in this example, is real
and substantial.

model C considers a collective model, i.e., without micro-covariates, to create pseudo-responses
and uses all covariates available in order to predict final paid amounts. With a slightly lower
expectation and variance, model C is quite similar to model A. Because the latter model uses
real responses for its training, the method used for claim development appears to be reasonable.
Model D uses an individual model, a quasi-Poisson GLM, using all covariates available to obtain both,
pseudo-responses and final predictions. Again, results are similar to those of model A. In Figure 6 we
compare the predictive distributions of model A, model C and model D.

Total RBNS reserve amount (in millions)
60 70 80 90 100

Model A
Model C
Model D

Figure 6. Predictive distributions (RBNS) for XGBoost models A, C and D.
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Model E is identical to model C with the exception of dynamic variables whose value at the
evaluation date was artificially replaced by the ultimate value. At least in this case study, the impact
is negligible (see Figure 7). There would be no real interest in building a hierarchical model that
allows, first, to develop the dynamic variables and, second, to use one XGBoost models to predict final
paid amounts.

Total RBNS reserve amount (in millions)
60 70 80 90 100

Model C
Model E

Figure 7. Comparison of predictive distributions for models E and C.

5. Conclusions

This paper studies the modeling of loss reserves for a property and casualty insurance company
using micro-level approaches. More specifically, we apply generalized linear models and gradient
boosting models designed to take into account the characteristics of each individual policyholder,
as well as individual claims. We compare those models to classical approaches and show their
performance on a detailed dataset from a Canadian insurance company. The choice of a gradient
boosted decision-tree model is motivated by its strong performance for prediction on structured data.
In addition, this type of algorithm requires very little data preprocessing, which is a notable benefit.
The XGBoost algorithm was chosen for this analysis, mainly for its relatively short calculation time.

Through a case study, we mainly showed that

(1) the censored nature of the data could strongly bias the loss reserving process; and
(2) the use of a micro-level model based solely on generalized linear models could be unstable for

loss reserving but an approach combining a macro-level (or a micro-level) model for the artificial
completion of open claims and a micro-level gradient-boosting model represents an interesting
approach for an insurance company.

The gradient boosting models presented in this paper allow insurers to compute a prediction
for the total paid amount of each claim. Insurers might also be interested in modeling the payment
schedule, namely to predict the date and the amount of each individual payment. Moreover, we know
that payments for parties belonging to the same claim are not independent and are positively correlated.
Therefore, one could extend the model by adding a dependence structure between parties. The same
principle could be applied with the different types of coverage (medical and rehabilitation, income
replacement, etc.). Dynamic covariates can change over time, which makes their future value random.
In this work, we assumed that their value will not change after the evaluation date and we checked
that the impact was not very high. However, for a different database, this could have a significant
impact on the results. A possible refinement would be to build a hierarchical model that first predicts
the ultimate values of dynamic covariates before inputting them in the gradient boosting algorithm.
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In recent years, several new individual approaches have been proposed. It will be interesting,
in a future case study, to compare the results obtained, on the same database, using these different
methods. Finally, in this case study, we always consider predictive distributions to compare models.
One might wonder why we do not use criteria often used in machine learning such as the root mean
squared error (RMSE) or the mean absolute error (MAE). The reason lies, at least in part, in the fact that
the database used in this work contains numerous small (or zero) claims and very few large claims.
Therefore, because RMSE and MAE are symmetric error functions, they favor models that predict low
reserves. Expectile regression is an avenue that is being explored to overcome this weakness.
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Appendix A. Structure of the Dataset

Table A1. An example of the structure of the database.

Policy Number Claim Number Party File Number Date . . .

P100000 C234534 1 F0000001 31 March 2004 . . .
P100000 C234534 1 F0000001 30 June 2004 . . .
P100000 C234534 1 F0000001 30 September 2004 . . .
. . . . . . . . . . . . . . . . . .
P100000 C234534 2 F0000002 31 March 2004 . . .
P100000 C234534 2 F0000002 30 June 2004 . . .
P100000 C234534 2 F0000002 30 September 2004 . . .
. . . . . . . . . . . . . . . . . .
P100034 C563454 1 F0000140 31 March 2004 . . .
P100034 C563454 1 F0000140 30 June 2004 . . .
P100034 C563454 1 F0000140 30 September 2004 . . .
. . . . . . . . . . . . . . . . . .

Note: It can be seen that the contract P100000 generated a claim involving two people, i.e., the driver and
a passenger, and generating two files. In our analysis, files F0000001 and F0000002 are considered to be
independent claims. A snapshot of the available information is taken at the end of each quarter.
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