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Abstract: In this paper, we measure the systemic risk with a novel methodology, based on a
“spatial-temporal” approach. We propose a new bank systemic risk measure to consider the two
components of systemic risk: cross-sectional and time dimension. The aim is to highlight the
“time-space dynamics” of contagion, i.e., if the CDS spread of bank i depends on the CDS spread
of other banks. To do this, we use an advanced spatial econometrics design with a time-varying
spatial dependence that can be interpreted as an index of the degree of cross-sectional spillovers.
The findings highlight that the Eurozone banks have strong spatial dependence in the evolution of
CDS spread, namely the contagion effect is present and persistent. Moreover, we analyse the role
of the European Central Bank in managing contagion risk. We find that monetary policy has been
effective in reducing systemic risk. However, the results show that systemic risk does not imply a
policy intervention, highlighting how financial stability policy is not yet an objective.

Keywords: spatial contagion; systemic risk measure; bank risk-taking; macroprudential policy

JEL Classification: G21; E52; C23

1. Introduction

In the last decade, the systemic risk concept is back in the limelight. The crisis has
highlighted how a shock, originating in one country or sector of activity, can spread rapidly to
other markets, given the close interconnection of capital links between institutions and financial
markets. Systemic risk is generally manifested as a series of related defaults that trigger the
withdrawal of liquidity and the loss of belief in the financial system as a whole (Benoit et al. (2017)).
Therefore, to properly assess systemic risk, it is essential to identify not only the largest financial
institutions—“too big to fail” (TBTF)—but also consider the interconnections between them: in
this case, we are talking about “too interconnected to fail” (TITF). An increasing number of
theoretical and empirical research has sought to address the problem of correct estimation of
systemic risk (see Silva et al. (2017)). Many methodologies have recently been implemented to
quantify the contribution of individual financial institutions to systemic risk, for example, the CoVaR
(Conditional Value-at-Risk) proposed by Adrian and Brunnermeier (2016), MES (Marginal Expected
Shortfall) proposed by Acharya et al. (2012) and SRISK (Conditional Capital Shortfall Index) proposed
by Brownlees and Engle (2016). These measures, based on market prices, estimate the probability
of bank default by studying quantile distribution of the probability function. However, according
to Giudici and Parisi (2018), these approaches, which are useful in establishing risk thresholds, do not
identify the interconnections between systemic institutions. As it is a bivariate method, it only
makes it possible to determine the risk of one financial institution depends on another financial firm.
To this end, recent studies have proposed network correlation models. In particular, Billio et al. (2012)
used the quarterly returns of hedge funds, banks, and insurance companies to develop various

Risks 2019, 7, 75; doi:10.3390/risks7030075 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
https://orcid.org/0000-0001-8241-7106
http://dx.doi.org/10.3390/risks7030075
http://www.mdpi.com/journal/risks


Risks 2019, 7, 75 2 of 25

interconnection measures based on the Granger causality test. The results show that banks play a
significant function in the transmission of shocks compared to other financial institutions. In the same
vein, Diebold and Yilmaz (2014) estimated daily time-varying connectivity through the application of
an autoregressive vector model (VAR) on stock return, among the major financial firms for the United
States. More recently, Giudici and Parisi (2018) proposed a systemic risk measure (CoRisk) introducing
the partial correlation and correlation network into a VAR model.

In this work, we use an innovative approach to take into account the network (interaction)
structure of the financial system, with a methodology based on advanced spatial econometrics design.
Our aim is to analyse the co-movements across CDS spread using a spatial dynamic panel model
(Elhorst (2014)), highlighting the “time-space dynamics” of financial contagion, i.e., the evolution of
credit risk. In particular, applying spatial structure, we can explore if CDS spread of BANKi depends
on the CDS spread of other BANKSj.

These econometric models are a particular branch of statistic that “allow us to account
for dependence between observations, which often arises when observations are collected from
points or regions located in space” (LeSage (2008)). In recent years, there has been a substantial
growth of spatial econometric models in finance, especially concerns the study of spillover effects,
for example, to study the co-movements of the stock return (Arnold et al. (2013); Asgharian et al. (2013);
Milcheva and Zhu (2016); Catania and Billé (2017)), the premium risk spreads among firms (S-CAPM;
Fernandez (2011)), the sovereign credit-risk propagation (Dell’Erba et al. (2013); Blasques et al. (2016);
Debarsy et al. (2018); Mili (2018)) or the financial firms credit-risk propagation (Eder and Keiler (2015);
Calabrese et al. (2017)). Most closely related to our article is the recent work by Blasques et al. (2016).
The authors developed a time-varying parameter version of the Spatial Autoregressive model (SAR),
using a Generalise Autoregressive Score (GAS) framework. They proposed a useful method to
incorporate daily credit risk dependencies between countries. High level of spatial dependency
corresponds to the high level of European countries interconnection, namely a high probability of
systemic risk and vice versa. Their results show that the CDS spreads have a strong time-varying
degree of spatial dependence. Moreover, the study evidences how the cross-border debt linkage is a
key channel of transmission for credit risk. In the same line, we study the behaviour of CDS spread
with time-varying spatial spillover. Different from them, we analyse the evolution of contagion for the
Eurozone financial institutions (banks).

The paper has three different goals. First, we propose a new bank interconnected (systemic risk1)
measure following the model of Blasques et al. (2016). This indicator aims to capture the contagion
effect and its potential to become a systemic risk. We want to show how the risk is related to the
concept of “spatial” as well as temporal dependency. In our study, interlocking the banks through the
financial claim, we obtain a spatial time-varying dependence, which is easy to interpret as a systemic
risk, hence the shock spillover that affects the Eurozone banks. The contagion emerges from a change
in a single probability default (CDS spread) that spread in the cross-sectional dimension (banks).
We refer to contagion as the increase in spillover effect across the CDS market and its magnitude
depends on bank interconnectedness measured by banks’ claim. Therefore, our measure derives from
the state of two components: (1) the credit risk status of each individual bank (time dimension); and (ii)
the structure of the banking market, i.e., the financial (lending/borrow) relationships between the
banks (spatial dimension). The second goal is to verify if changes in our measure of contagion predict
future movements in real economy variables such as GDP and unemployment rate, by using Granger

1 We are well aware that the parameter is not the “right definition” measure of systemic risk because we do not consider
important variables such as balance sheet data. Nevertheless, in our framework, the systemic risk arises from the systematic
risk component and the contagion risk component that is modelled. As in the work by Blasques et al. (2016), we interpret
the spatial parameter as a measure of a change in systemic risk that associates to the interconnectedness of the system as the
unconditional correlation measures in the spirit of Forbes and Rigobon (2002). In the remainder of this study, for simplicity,
we use the terms contagion and systemic risk as synonymous, although the two definitions are quite different.
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causality analysis. Finally, the last aim is to evaluate the capability of monetary policy to decrease the
contagion. Our idea is that bank risk is related to ECB policy and vice versa. An increase of risk should
involve intervention on ECB, while a change in ECB policy should affect the risk. To test these relations,
we apply the classical cointegration analysis and the Granger causality following the approach of
Colletaz et al. (2018).

The main results can be summarised as follows. The contagion effects depend on the bank’s
“proximity”. High level of proximity provides a high level of systemic risk. This implies that the
Eurozone banks have strong spatial dependence in the evolution of CDS spread, namely the contagion
effect is present. In fact, from 2009 to 2017, our measure is high, suggesting that systemic risk is
persistent in the Euro area banks. The results of the spatial dynamics model show how the Eurozone
banking system is a “too interconnected to fail” system. Moreover, the Granger test supports the results
of Brownlees and Engle (2012), who found that a shock in systemic risk has “an indirect impact on
Unemployment through the Industrial Production channel” (or GDP in our case). This result suggests
how the financial stability of the system is a prerequisite condition for achieving sustainable growth.
Finally, referring to the policy monetary action, we find that monetary stance has been effective in
reducing risk2. However, the results of long-run causality show that systemic risk does not imply
policy intervention, highlighting how financial stability policy is not yet a goal.

The contribution of our study is fourfold. First, by GAS spatial-dynamics model, we obtain a
systemic risk measure where both time and cross-sectional dimension are considered simultaneously.
Introducing cross-sectional correlations, we are also able to incorporate shock-induced effects on
regressors, such as stock market collapses. By contrast, the works of Samaniego-Medina et al. (2016)
and Annaert et al. (2013) examining the CDS spread determinants for European banks use a classic
version of panel models. Second, we estimate the time-varying dynamic of contagion with respect to
the papers of Eder and Keiler (2015) and Calabrese et al. (2017), who used a static version of the SAR
model and binary spatial autoregressive model, respectively. The distinction is important since it is
unrealistic to assume that the contagion effect (spatial coefficient) is constant over the entire period.
This characteristic is particularly germane for monetary policy analysis, hence to understand the
different systemic risk periods. Third, the paper extends the analysis of Colletaz et al. (2018) on the
impact of the European Central Bank’s monetary policy on systemic risk. Investigating whether the
channel of risk-taking, for example, is influenced by the volatility of the financial markets or whether
monetary policy contributed to the expansion of risks, is relevant (Angeloni et al. (2015)). Therefore,
the work contributes to the debate between intervention and non-intervention of monetary policy,
in particular, between the “leaning against the wind” approach, which believes that central banks
should use monetary stance also to management financial imbalances, and the “modified Jackson Hole
consensus”, which argues that the central banks have to focus only on price stability (Smets (2014)).
Fourth, our work contributes to different branches of literature: (i) the researches on contagion and
risk spillovers (Giglio (2016); De Bruyckere et al. (2013); Battiston et al. (2012))3; (ii) the application
spatial econometrics models in the financial contest (Catania and Billé (2017)); (iii) the study of the
determinants of CDS spread4 (Annaert et al. (2013); Samaniego-Medina et al. (2016)); and (iv) the study
of the bank risk-taking channel (Buch et al. (2014); Angeloni et al. (2015)).

2. The Econometrics Spatial Model

The aim is to analyse the co-movements across CDS spread using a spatial dynamic panel model
(see Elhorst (2014)). Thanks to this branch of econometrics, we can highlight the “time-space dynamics”

2 In addition, we use an event study approach to examine the impact of significant monetary policy events as reflected in a
change in CDS spreads (see Appendix A).

3 See Kireyev and Leonidov (2015) for a review of the financial network.
4 For an exhaustive and complete exposition of the CDS market see Angelini (2012) and its determinants Ericsson et al. (2009).
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(Milcheva and Zhu (2016)) of contagion, i.e., the dynamic of credit risk. In particular, applying spatial
structure, we can explore if CDS spread of BANKi depends on the CDS spread of other BANKSj.

The use of this model design means that shocks on explanatory variables are transmitted to all
other “neighbours” within the spatial network. These dependencies can result from spatial spillovers
deriving to contagion effects (see LeSage and Pace (2010)). This model permits us to separate the
contagion measure into two parts: the direct and indirect effects. Since financial variables such as
CDS spreads show a high level of co-movement, it is likely that development of CDS spreads in
one bank are affected by developments in CDS spreads in other banks depending on the degree of
interconnectedness. We can interpret this as financial contagion.

The Spatial Autoregressive model (SAR), which is also known as “spatial lag” model is given by
the following formula:

yt = ρWyt + Xtβ + εt (1)

εt ∼ p(εt, Σ; λ)

where yt denotes a vector of observations on a dependent variable (∆CDS spread) at time t, X is n× k
matrix of observations on exogenous regressors (e.g., company’s financial fundamental), β is the vector
of coefficients, ρ is the spatial dependency coefficient5 that captures the effect spread in neighbouring
“banks”, ε denotes the disturbance (error) vector with multivariate density pe(εt, Σ; λ)6, and W is the
spatial weights matrix allowing to measure the interaction between banks, where each component
seizes the bilateral cross-bank closeness. It captures the relationship between banks, therefore how
the credit risk of bank i is affected (spillover from) by the credit risk of bank j. Wyt captures the
contemporaneous interactions co-movement across the N bank. This impact is seized by a spatial
dependence coefficient ρ.

The principal intuition of this model is that the CDS premium for BANKi is directly affected by
the values of CDS spread in neighbouring BANKS (Dell’Erba et al. (2013)). Specially, the CDS spread
of any bank yi depends on all other CDS spreads. In this case, the parameter ρ specifies the degree of
shock infection in the system.

In this study, we follow the model of Blasques et al. (2016) that applies the spatial lag model
with a time-varying parameter ρ to estimate a measure of daily interconnections. This is a novel kind
of dynamic spatial models, which are based on the score driven framework, namely Generalised
Autoregressive Score (GAS) models (see Harvey (2013) and Creal et al. (2013))7. The main advantage
of this method is that we can assume ρ as a degree of the depth of cross-sectional spillovers. A high
level of ρ represents a high level of the closeness, namely a high probability of systemic risk, while low
level indicates a small degree of contagion.

The time-varying (ρt) SAR model is:

yt = ρtWyt + Xtβ + εt (2)

εt ∼ pe(εt, Σ; λ)

where ρt = h( ft)|ρ ∈ (−1, 1) is a monotonic transformation of a time-varying parameter ft. The score
is driven on the scaled score of the conditional density pe to derive the time-varying in ft. Its dynamic
(updating mechanism) is given by:

ft+1 = ω +
p−1

∑
i=0

aist−1 +
q−1

∑
j=0

bi ft−1 (3)

5 The spatial autocorrelation coefficient is bound to ρ < 1 for standardised weighting matrices.
6 pe represents the Student’s t distribution where λ is the degrees of freedom parameter.
7 For details, visit www.gasmodel.com, which provides a general framework for modelling time variation in

parametric models.

www.gasmodel.com
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where ω is a vector of constant (scalar coefficient), ai and bi are fixed scalar parameters, while
st−1 = St∇t is the scaled score function. This is defined as the first derivative of the log-likelihood
function at time t with respect to ft, formally

∇t =
δlt
δρt

; St =
h( ft)

δ ft

Let ρt = h( ft),
lt = log pe(yt − ρtWyt − Xtβ, Σ; λ) + log(In − ρtW) (4)

Finally8, the static parameters Θ = (ω, a, b, β, λ)′, are estimated via the numerical maximisation
of the likelihood function:

`T =
T

∑
t=1

lt (5)

“Spatial” Distance in Finance

To build the spatial weighted (interaction) matrix is a crucial step of the spatial framework model.
Usually, most of the works assume the space (network) as a pure geographical distance. However,
in finance, the neighbourhood is an immaterial concept (Catania and Billé (2017)).

According to Hellwig (2014), there are several distinct channels of propagation (contagion) of
shock, for example: (i) via physical exposures, i.e. banks are interconnected via claim and liabilities;
and (ii) via market and price, i.e. the spiral of co-sell assets when one bank is distressed. In our
estimation, we consider these channels of propagation by using two different interaction matrices
(bank proximity).

First, we fashion a financial interaction matrix (an estimation of the interbank matrix),
using the Financial Claim matrix, provided by BIS, to incorporate the Physical exposures,
following Calabrese et al. (2017). This is the most direct channel by contractual relations. A default of
one financial institution implies a high level of bankruptcy probability for all institutions with its the
counterparty. This matrix is an aggregate claim of the entire banking sector in one country to the total
banking sector in another. We define CAi as the claims from the banking sector in country A of bank i,
and CBj as the claims from the banking sector in country B of bank j. This implies the equal weight for
banks in the same country (CAi = CAj).

To check for the robustness of our results, we try a different weighting matrix based on financial
distances. We use a stock correlation weighting matrix, following Fernandez (2011), to capture the
market and price exposure (the spiral of co-sell assets). In particular, we build an empirical Spearman
correlation matrix estimated from daily equity returns over the period. Each element within the matrix
W(i, j) is given by the Euclidean distance (di,j) between a daily stock return associated with two banks
i and j:

d(i,j) =
√

2(1− ρi,j) (6)

where ρi,j is the Spearman’s correlation coefficient between returns i and j. According to the
spatial literature (LeSage and Pace (2010)), we standardise the weighting matrix by classical rule
(row-standardisation), such that for each i, ⇒ ∑i wi,j = 1. Since these weights are likely to be
endogenous, we lag the correlation coefficient used as a weight Wi,j by one year, in order to obtain
exogeneity of the weighting matrix.

8 Following Blasques et al. (2016), we adopt unit scaling, i.e. St = 1 such that st = ∇t. In addition, we assume that the inverse
matrix Z = (In − ρW)−1 exists with In as the n× n identity matrix. We consider the multivariate Student’s t distribution as
pertinent to assign the disturbance density pe.
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3. Data

We measure contagion effects using CDS spread; specifically, we select the five-year CDS spread9,
from 1 December 2008 to 24 February 2017 (2110 daily obs.). Our sample consists of 22 listed
Eurozone banks from Austria (2), Belgium (1), France (3), Germany (2), Greece (3), Ireland (2), Italy (4),
Netherlands (1), Portugal (1), and Spain (3) (see Table A1 in Appendix A for details). The range is
made based on the data availability of CDS and stock prices in the Datastream database.

Figure 1 shows the median Euro bank CDS spread across the period. The impacts of the subprime
crisis, the market turbulence and the sovereign debt crisis are clear.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2009  2010  2011  2012  2013  2014  2015  2016  2017

0.25 percentile

Median

0.75 percentile

Figure 1. Banks CDS Spread. Plot of the median (red line) CDS spread; blue line indicates the 0.75,
while the light blue line indicates 0.25 percentiles.

Covariates

Local bank variables. The equity value variable is represented by each bank’s stock returns.
Generally speaking, an improvement of stock return implies a decrease of the probabilities of default
and may thus lead to lower spreads. For that reason, a negative relationship with CDS spread
is expected.

Common variables. We add three variables that represent the Economic state: the term-spread,
the volatility risk, and the financial sector stress.

The term spread is the slope of the term structure that captures the business cycle predictor
(Estrella and Mishkin (1997)), as a proxy for the drift rate (expected rate of return of the firm’s assets).
Following the model of Merton (1974), we expect a negative relationship with CDS spread, as well as a
high level of slope spread the economic growth. We apply the difference between 10-year bond yield
and two-year bond yield following the literature (Alexander and Kaeck (2008)) for each country as a
proxy of the slope of the curve (local country variables).

Volatility risk is a measure of uncertainty of the future. A higher volatility represents a higher
level of uncertainty about economic prospects. This implies a positive relationship with credit default
spreads. We use the option implied volatility on the VStoxx, which seizes the implied volatility in the
stock market.

Finally, we add the difference between Euro Overnight Index (Eonia) and the three-month Euribor
rate (E-E spread). This spread captures both credit risk/banking stress and market liquidity, as well as
the health of the banking system (Pelizzon et al. (2016)). We expect a positive relationship with CDS
spread because this difference is usually associated with economic distress, namely the spread is an
indicator of the soundness of the banking system (Eder and Keiler (2015)). Therefore, the Euribor–Eonia
spread is a measure of interbank funding pressure in the European Monetary Union.

9 We use relative changes (log differences multiplied by 100) of CDS spreads for each bank. We select the CDS spread contract
based on five-year senior bond since these obligations are the most liquid (Meng and Gwilym (2008)).
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All data are stationary, as indicated by the Levin–Lin–Chu unit-root test10. In addition, to avoid
endogeneity issues, we lag the covariates by one period following Blasques et al. (2016).

4. Estimation Results

Table 1 shows the static and dynamic (time-varying parameter) results11. Looking at the static
model, the significance and high level of ρ̂ coefficient (0.52), means that it is important to account for
spatial linkages across banks. This implies that the Eurozone banks are strong spatial dependence
in the evolution of CDS spread, namely the contagion effect is present. This means that there is a
high probability of systemic risk, thus the BANKi level of CDS depends on the level of BANKj CDS
and vice versa.

Table 1. The spatial model results. Estimated parameters and their robust (sandwich) standard errors
in parentheses, for the static spatial lag model and the time-varying spatial model, based on Student’s t
distributed errors.

Static Model Time-Varying

ρ
0.52

(0.003)

ω
0.0048
(0.000)

a
0.004

(0.000)

b
0.9918
(0.000)

σ2 1.0434
(0.017)

1.046
(0.014)

VStoxx
−0.037
(0.004)

−0.04
(0.014)

E-E
0.098

(0.011)
0.01

(0.044)
Local

Stock Return
−0.05
(0.001)

−0.035
(0.000)

Term structure
−0.001
(0.000)

−0.005
(0.000)

const
−0.0002
(0.0004)

−0.0002
(0.0003)

λ
1.735

(0.016)
1.738

(0.034)
logLik/T −52.00 −51.88

AICc 120 123.76

Concentrating on the dynamic spatial model, we can observe how the spatial dependence
parameter is extremely persistent (b is close to unity). Furthermore, the unconditional mean of
ft equals ω/(1− b) = 0.59 with tanh (0.52) equal to the static model. The log-likelihood value is
greater than the static model, which testifies to how the dynamic model fits better12. In addition, as the
model suggests, the volatility clustering is high and present.

The coefficients of the two models have the same and correct signs. The negative coefficient of VStoxx
suggests that a high level of market volatility is correlated with a lower level of CDS spreads. On the other
hand, a high level of market turmoil reduces the CDS premium. Although the result may seem misleading

10 See Appendix A Table A2.
11 Table A3 in Appendix A reports the results with a stock correlation weighted matrix.
12 To validate this result, we have applied the Vuong test following Engle (2016). The Voung test (=3.28) suggests significant

improvement using time-varying ρ. The results from residual diagnostic are shown in Appendix A (see Figure A1).
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and in contrast with our hypothesis, this finding is consistent with Alexander and Kaeck (2008)
and Annaert et al. (2013) who found the same sign for market volatility. This result supports
the phenomenon of “flight to quality” (Caballero and Krishnamurthy (2008); Beber et al. (2009)): in
turbulent times, investing in the banking sector is considered safer (Gatev and Strahan (2006)).

The positive effect of stock return on the decrease of risk could be attributed to the fact that,
when the performance increases (higher growth in firm value), as well as the financial market has
good performance, the probability of default decreases (Zhang et al. (2009)). If we consider the stock
return as a proxy of leverage (following Annaert et al. (2013)), then a positive performance will cause
a decrease of leverage, leading to lower CDS premium. In our case, an increase of 1 bp of the stock
return, generates a reduction of 0.03 bp around of CDS.

The term structure slope carries a significant right sign. The term structure reflects the expected
negative relationship with the changes in CDS spreads. This confirms our hypothesis. An increase
in the slope of the term structure is an index of expected growth in economic activity (suggesting an
increase in inflation): this implies a reduction in CDS spreads. On the other hand, an improvement
suggests also the expectation of a tighter monetary policy (Alexander and Kaeck (2008)). E-E spread has
a positive effect on risk. A lower level of this spread implies a lower propensity to borrow overnight,
namely an increase of liquidity. Indeed, the overnight rate is an index of the widespread liquidity in
the financial system as well as in the economy, and therefore the rate could rise during low liquidity
periods. Moreover, it may increase due to a lack of confidence among banks, as observed in the 2008
liquidity crisis. Therefore, the malfunctioning of the interbank market may increase the fear of bank
bail-outs (upturns of CDS) and therefore possible sovereign debt problems, due to the “diabolical loop”
(Shambaugh (2012)) between the banks and the government.

Figure 2 shows the path of the spatial dependency parameter. The plot suggests that there are
interlinkages between banks’ five-year CDS bond markets. These linkages are not equally strong over
time, and the pattern seems to change in response to the business cycle, as well as policy events during
the European sovereign debt crisis.

The spillover effect dominants the Eurozone banks. The year 2009 showed a high level of spillover
due to the financial crisis turbulence that affects the financial market13. The level sunk towards about
0.5, in 2010, following the creation of European Financial Stability Facility (EFSF), the “special purpose
vehicle”, founded on 7 June 2010 by the member countries of the monetary union. The EFSF was
created with the aim of preserving the Eurozone’s financial stability through assistance to member
countries, especially to bail out troubled banks.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2009  2010  2011  2012  2013  2014  2015  2016  2017

R
h
o

Figure 2. The figure exhibits the time-varying spatial spillover, ρ̂t.

13 In addition, in 2009, Greece reached its highest (negative) deficit level. In addition, in 2011, Greece self-proclaimed a much
larger than expected fiscal deficit. This event spread to a series of downgrades, financial market turbulence, affecting the
other countries members, as well as other financial systems.
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As an afterthought, the GIPSI fiscal troubles gave life to the sovereign debt crisis. The higher
level of government bond, in short and long-term, increased the risk of the collapse of the Eurozone,
stimulating the self-fulfilling crisis (De Grauwe and Ji (2013)). The spillover shows how the contagion
measure for the European banks—with the Greek bailout agreement (May 2010)—rose to its highest
point in November 2011. The higher peak of systemic risk (about 0.8) tension was reached in
correspondence with the maximum level of crisis due to the dysfunctional interbank market.

To enhance financial stability and better transmission in monetary policy, the ECB applied several
tools of unconventional monetary policy. Credit support measure, such as long-term refinancing
operations (LTROs), six-month LTROs, twelve-month LTROs, covered bond purchase programme
and the Securities Markets Programme, purposed at restoring and supporting the banking sector
since the latter is the fundamental channel for better transmission of monetary policy. Furthermore,
for the purpose of addressing the funding problems of the Eurozone banks, the Eurosystem intervened
straight in securities markets, with several programs such as: the Securities Markets Programme
(SMP, May 2010), the purchase programme for bank-issued covered bonds (October 2011), and the
Outright Monetary Transactions (OMT, September 2012)14. The spillover effects, induced by tension in
the Euro area sovereign debt market, started to decline only in 2012, following other unconventional
ECB interventions (“Whatever it takes”, July 2012; OMT announced; Establishment of the European
Stability Mechanism (ESM), October 2012). At the same time, at the end of 2012, we observed
some specific spikes in spillover, for example, after the creation of Single Supervisory Mechanism
(SSM, November 2014), the announced (January 2015) and application (March 2015) of the ABS
purchase programme. Finally, the lower level refers to on the second series of targeted longer-term
refinancing operations (TLTRO-II).

These evolutions of spillover are coherent with the analysis of Claeys and Vasicek (2015).
They found a similar result by using a G-VAR model. In addition, the authors showed how the
ECB interventions had restored the credit condition and mitigated the propagation risk. To summarise,
throughout the whole period, the coefficient was high, implying that systemic risk was persistent
in the euro area banking system, fluctuating around an average value of 0.58, between a maximum
level of 0.80 (12 May 2010), and a minimum value of 0.31 (2 November 2016). The graphical analysis
intimates that the business cycle, macroeconomic factors, and policy events may affect the contagion
risk. In the next sections (Sections 6 and 7 and Event Studies analysis in Appendix A), we provide
stronger evidence of these results.

5. Spillover Effects on the Real Economy

In this section, we study if the ρ̂t can be a pre-alarm signal for economic equilibrium, i.e., if the
contagion has a negative impact on the real economy. In fact, as specified by the European Systemic
Risk Board (ESRB): “Systemic risk means a risk of disruption in the financial system with the potential have
serious negative consequences for the internal market ant the real economy. All type of financial intermediaries,
markets and infrastructure may be potentially systemically important to some degree” and the ECB15: “the risk
that financial instability becomes so widespread that it impairs the functioning of a financial system to the point
where economic growth and welfare suffer materially”, the systemic risk induces negative effects on the
real economy (Acharya et al. (2012); Kok and Gross (2013)). Following Brownlees and Engle (2012),
we implement Granger causality test, through vector autoregressive (VAR) model, to determine if

14 For more details of ECB monetary policy during the Eurozone crisis, please see “The crisis response in the euro area”, a
speech by Peter Praet, Member of the Executive Board of the ECB, at the afternoon session “The Challenges Ahead” at
Pioneer Investments’ Colloquia Series “Redrawing the Map: New Risk, New Reward” organised by Unicredit S.p.A., Beijing,
17 April 2013.

15 Clare Distinguished Lecture in Economics and Public Policy by Jean-Claude Trichet, President of the ECB organised by
the Clare College, University of Cambridge, 10 December 2009. Defining and Measuring Systemic Risk, Charles Wyplosz,
ECB Supervision.
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there exist co-movements, namely, we want to investigate the causality direction, if one variable is
fitting in forecasting another.

The VAR model is,

yt =

∣∣∣∣∣∣∣
∆ log ρ̂t

∆ log GDP
∆ log UR

∣∣∣∣∣∣∣ (7)

where ∆ρ̂t is growth rates of our measure of systemic risk, GDP is the Gross Domestic Production16

and UR is the unemployment. All variables are monthly based, from December 2008 to February
2017, and are obtained from the ECB Data Warehouse database. The lag is chosen using the classic
criteria information such as the Akaike Information Criteria (AIC), the Schwarz Bayesian Criteria
(BIC), and the Hannan–Quinn Criteria (HQC). Based on them, an adequate number of lags is 2. Table 2
shows the results of the Granger Causality test.

Table 2. The table reports the results of the Granger causality; χ2 statistics of lagged first differenced
term; in parentheses, the p-value.

∆ρ̂t ∆UR ∆GDP

∆ρ̂t
0.711

(0.700)
1.223

(0.542)

∆UR 2.369
(0.306)

5.528
(0.063)

∆GDP 9.897
(0.007)

11.63
(0.003)

We have to keep in mind that ρ̂t is a measure derived from bank CDS market. We can interpret
it as an index of financial contagion, i.e., ρ̂t provides a measure of changes in systemic risk and the
market’s perception of contagion within the euro area banks. Therefore, we expect it spills over on to
the macroeconomic variables.

The outcome indicates that the real economy (GDP) not Granger causes the ρ̂t: the systemic
risk is not influenced by macro variables, confirming our hypothesis. More in detail, we found that
the change on ρ̂t leads to a change in GDP growth. This implies that there is a unidirectional effect
from these variables. The unemployment rate has not influenced on ρ̂t, but is Granger caused by the
business cycle. The Granger test supports the results of Brownlees and Engle (2012), who found that a
shock in systemic risk has “an indirect impact on Unemployment through the Industrial Production
channel” (or GDP in our case). The casual channels can be summarised as follows (Figure 3).

Figure 3. Granger casual relationship between ρ̂t and real economy.

An increase in contagion could have a negative impact on economic activity and creditworthiness
of households and thus on their capacity to refund debt. Indeed, higher corporate bond yields linked
with an extended time economic recession would increase the credit risk of companies (ESRB (2018)).
Hence, this could cause a malfunction of the financial system (e.g., an inter-bank market freeze) and

16 We apply interpolation methodology following Litterman and Weiss (1983).
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this will compromise industrial production (then the GDP): companies will have problems accessing
credit. For this reason, the investments would be adversely affected by the increase in companies’
financing costs due to the increased risk, which in turn has a negative indirect effect on employment.
Overall, the increased risk of contagion would lead to a higher unemployment rate.

6. The Monetary Policy Impact

Now, we want to test the ECB monetary policy efficiency’s on the reduction of contagion
risk. Between 2008 and 2016, the ECB carried out several programmes to respond to economic
and financial shocks across the Eurozone. We can identify two types of instruments: conventional and
unconventional. The first includes the change of Main Refinancing Operations (MRO) interest rate.
The second refers to injection capital into the financial system. The most famous and largest is the
Quantitative Easing (QE) in March 2015.

To evaluate the impact of ECB monetary policy on the transmission and contagion in the European
banking system, as well as the financial system stability, we apply two types of autoregressive models.
The “classical” Vector autoregressive error correction model (VECM), and the short- and long-term
causality approach, in accordance with the technique proposed by Dufour and Taamouti (2010) and
applied by Colletaz et al. (2018). We employ monetary policy indicators at the monthly frequency and
we aggregate daily sequences into monthly values by computing monthly medians (the data span
from December 2008 to February 2017).

6.1. The Classical VECM

In this section, we test the causality relationship between the monetary policy stance and ρ̂t.
We decided to simulate two policy shocks. We use the MRO as a measure of the stance of conventional
monetary policy, i.e., the change in MRO stands for a restrictive policy. This connotes that in each
month MRO rate is set regardless of factors that move the size of the ECB’s balance sheet. Then,
conventional monetary policy is scheduled without taking into account the components underlying
decisions on unconventional monetary policy (Kremer (2016)). The change in M2 represents the
unconventional monetary policy, as well as the quantitative easing program (as a proxy of expansionary
monetary policy shock). Moreover, we include the inflation rate (HICP) as a measure of the ease of
monetary conditions.

We test the cointegration applying the classical rules concern the cointegration analysis: (i) the
ADF test; (ii) Johansen Cointegration test; and (iii) the Vector Error Correction model (VECM).

The VEC model is given below:

∆Yt,i = αi + λiβiYt−1 +
n

∑
z=1

Γj,i∆Yt−j,i + εt,i (8)

where Yt,i ≡ (ρ̂t, Gj) is a vector of variables Gj = (M2, MRO and HICP), αi is the linear trend, Γj,i is
the matrix that reflects the short-run relationship, and βi is the cointegration vector. The λi represents
the error correction coefficient that should have a negative sign with range −1 < λi < 0. The latter
provides information about the speed of adjustment to the long equilibrium path.

The ADF test (Table A4 in Appendix A) suggests that the variables are non-stationary at the
5% significance level, they are a one-integrated order system, and they may evidence a long-run
combination (Engle and Granger (1987)). The test of Johansen and Juselius (1990) (Table 3)
confirms this relation17. The trace and maximum test suggest the existence of two cointegration

17 The lag is chosen using three criteria information: AIC, BIC and HQC. According to these, the appropriate number of lags
is 1.
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relationship, implying that exists a long-run equilibrium relationship between the monetary policy
stance and contagion.

Table 3. Johansen and Juselius test. Trace and Max eigenvalue indicate two cointegration equation at
1%; *** indicates the rejection of null hypothesis at 1%.

Hypothesised Critical Value (5%)

No. of CE(s) Eigenvalue Trace Max

r = 0 0.334 76.06 *** 37.87 ***
r ≤ 1 0.294 38.19 *** 32.33 ***
r ≤ 2 0.059 5.865 5.702
r ≤ 3 0.001 0.164 0.164

Now, we perform the Vector Error Correction model (VECM) to explore the dynamics relationship,
and we employ a VEC Granger causality test to verify the existence of a long-run relationship among
each variable and to study the direction of causality. The results are summarised in Table 4.

Table 4. The table reports the results of the Granger causality; χ2, statistics of lagged first differenced
term; in parentheses, the p-value.

∆ρ̂t ∆M2 ∆MRO ∆H ICP ECT (1) ECT (2)

∆ρ̂t
0.083

(0.773)
3.099

(0.078)
2.699

(0.101)
−0.464
(0.000)

−0.018
(0.000)

∆M2
0.454

(0.500)
1.584

(0.208)
3.229

(0.072)
−0.166
(0.784)

−0.071
(0.008)

∆MRO 0.8323
(0.3604)

0.215
(0.645)

4.536
(0.033)

0.148
(0.321)

0.001
(0.924)

∆HICP 4.355
(0.036)

0.283
(0.594)

0.049
(0.824)

−1.526
(0.001)

−0.051
(0.015)

The Granger causality analysis shows that the change in monetary easing (HICP) has predictive
power for change MRO and through such it is able to influence the systemic risk. Additionally,
the contagion Granger causes the monetary condition and in turn the injection of liquidity (M2).
This loop (Figure 4) among HICP, MRO and ρ̂t highlights the importance of unconventional monetary
policy to break this transmission channel.

Figure 4. Granger casual relationship between ρ̂t and monetary policy.

When there is a change on conventional monetary policy (e.g., change in MRO rate), the different
types of bank’ risks change via the bank funding (cost) and lending (rates) channels. An increase
of MRO rate is related to a rise in funding costs: the retail deposits become costlier for the banks.
Moreover, the monetary policy can influence stock market expectations of banks and “thereby affect
their solvency conditions” (Beyer et al. (2017)). In addition, by promoting portfolio rebalancing
through ECB intervention, unconventional measures can thus strengthen the banks’ capital channel
(ECB (2017)).

The error correction term (ECT) coefficients for ρ̂t are significant (at 1%) and have a negative
correct sign. This means that 46% negative deviations in time period t− 1 in the contagion is correct in
monthly t.
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Figure 5 plots the impulse response function of ρ̂t on restrictive monetary policy shock (1% increase
in the MRO) and the response to expansionary monetary policy shock (1% increase in the money
supply, M2). The first row shows the interactions between the systemic risk and the policy variables, i.e.
the response of ρ̂t to shock in policy actions. The plots confirm that the path of the relationship is the
expected one. An increase of MRO rate increases the systemic risk, about 10 basis points. The impact
remains significant until lag 20. On the other hand, there is a decrease in contagion induced by a
one-standard deviation shock to 1% changes in M2, followed by a slow recovery. The impact is
short-lived. The impulse response is statistically significant only for 2–10 periods, implying that the
injection of capital is not a “contemporaneous” solution. Focusing on interactions between the impact
of the shock in systemic risk on monetary variables (first column), we can observe that the shock leads
to a significant decrease of HICP (monetary condition) and liquidity, while the impact on MRO is
(borderline) statistically insignificant.

Figure 5. Impulse response. The figure reports 90% bootstrap coverage areas. Bootstrapped confidence
intervals are based on 1000 replications.

These results are coherent with the economic theory and similar empirical applications
(see Bekaert et al. (2013)). In fact, an increase in MRO rate decreases collateral and asset values.
This implies a change in bank probabilities of default, as well as the asset stock volatilities. The high
value of interest rate tends to increase the volatility, by a reduction in asset prices. Hence, lower stock
price decreases the value of equity, which in turn increases the leverage and therefore the systemic risk.
However, some caution is needed in interpreting this result. In our simulation, an MRO shock implies
a change in contagion. It is important to underline that the opposite is not true, that is, a shock of ρ̂t

does not imply a change of MRO, therefore of conventional monetary policy (see also Section 6.2.4).
In addition, it is important to remember that our analysis is focused on the period of crisis and allows
us to understand how, in this period, the ECB policy has generated positive effects on the banking
interdependence (reduction of the contagion). Indeed, we can see how these expansive policies (such as
reduction of MRO), whilst able to create dangerous risk-taking channels (Dell’Ariccia et al. (2014)),
have had a positive effect of reducing risk.
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Concentrating on the liquidity action, the effect of injection of capital to banks on contagion
is not clear a priori. It could be effective in preventing bank runs and improving the credit for
“rational” investment. However, if the increase of liquidity is large enough in magnitude, it could imply
major bank risk-taking. In line with the moral hazard theory, past experiences of the bailouts could
produce an insurance effect which also inspires higher risk-taking due to the “too big to fail” effect
(Cao and Illing (2015); Diamond and Rajan (2012)). According to Dell’Ariccia et al. (2014), an expansive
credit easing policy (for example the QE) could affect banks’ perception of risk, as it would lead to a
reduction in bank interest rates on loans, then a banks’ gross return decrease. The banks could increase
their demand-side exposure to risky assets. Conversely, our impulse response to a liquidity shock
indicates a reduction in risk. This is because the capitalisation of the banking system, and thus greater
lending to the business (and households) in the Eurozone, leads to a greater propensity to invest,
thus a higher growth in the real economy than the growth of risk-taking. To summarise, a decrease in
interest rate anticipates a downward shift in systemic risk and then an improvement in the underlying
conditions, as well as an increase in liquidity, has a predictive power to reduce the contagion.

6.2. Systemic Risk-Taking Channel

We now run the second causal analysis and we assess the monetary stance impact of systemic
risk applying the methodology of Dufour and Taamouti (2010). Based on a recent study, this section
addresses two main questions: (i) What are the shadow channels through which monetary policy has
an effect on contagion? (ii) Has financial stability become an objective of the ECB’s policy? We extend
the analysis of Colletaz et al. (2018), so as to study the “new” effects of monetary policy during and
after the crisis.

To try to answer these questions, we employ the long-term causality with a different point of view:
a variable x does not Granger cause y in this short run, but in the long run causality might exist via
another (auxiliary) variable z. In essence, x causes z, by turns causes y, at time longer period t + h. This
implies that the absence of causality at time 1 doe not exclude the existence of longer causality. The z
variables capture the essence of underestimate risk, namely the “shadow link” between the systemic
risk-taking channel and monetary policy transmission, suggesting that the impact of monetary stance
on contagion is not immediate.

6.2.1. The Colletaz Long-Run Measures

The theoretical framework of Colletaz et al. (2018) is inspired by the long-run measures
of Dufour and Taamouti (2010). The models are based on a vector autoregressive model, with three
variables, y, x and z. The causality measure is computed by two types of VAR models,
the unconstrained and the constrained model. The unconstrained VAR model can be express as follows:

Wt =
p

∑
i=1

ΘWt−i + εt (9)

where W is the matrix of variables (y, x, z), Θ is the coefficient matrices and εt is an i.i.d. error term.
The constrained model is divided into two models. The first, where only y and z are incorporated
(causality from y to x), and the second where only x and z are included (causality from x to z).

Without loss of generality18, the causality—of Model a (4.10) and Model b (4.11)—is given by:

C(y −→ x|F) = ln
[

det[J0Σ0(h)J′0]
det[J1Σ(h)J′1]

]
(10)

18 See Dufour and Taamouti (2010) for mathematical derivation of the model.
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C(x −→ y|F) = ln
[

det[J∗0 Σ∗0(h)J′∗0 ]

det[J∗1 Σ(h)J′∗1 ]

]
(11)

where F is the information set, Σ(h) stands for the residual of covariance matrix from the unconstrained
model, h is the horizon, Σ0(h) (Σ∗0(h)) is the covariance matrix from constrained model unless y,
J0 = [1 0] (J∗0 = [1 0]) and J1 = [1 0 0] (J∗0 = [0 1 0]) identify the block corresponding to the variable x
(y) in the covariance matrix. If the numerator is higher than the denominator, then y causes x (and vice
versa). The causality measure is express as a per cent of total relationship within x and y for any h.

6.2.2. Building a (One) Monetary Policy Stance

We use a unique index of monetary policy, namely a measure able to take into account
the conventional and unconventional strategy. To do this, we make use of “shadow rate”
(sr—Lombardi and Zhu (2018); Pattipeilohy et al. (2017)) to measure monetary policy stance (x).
sr is a measure adequate to summarise information from both policies and market expectations
(Krippner (2015)), at the Zero Lower Bound (ZLB) era. The sr shows the behaviour of short interest
rate (it) not constrained by ZLB. The short interest rate is the maximum between 0 and shadow rate sr.

rt = max(r, sr)

If the short interest rate is positive, then it is equal to the value of sr; if it should have negative
values, the nominal interest rate is constrained by the ZLB level. Comparative to this, the shadow rate
can assume negative values and therefore it is unconfined (Lombardi and Zhu (2018)).

We use a factor analysis to extract the two components from yield curve, following the
methodology of Pattipeilohy et al. (2017). In the words of Avery (1979), we can interpret the monetary
policy as “a single dimensioned unobserved variable”. The latter consists of two unobservable
components: the term premium and the expectations component. In formula:

ZM
t = âM

1 F1,t + âM
2 F2,t + εt (12)

where ZM
t is the yield for maturity bucket M, âM

1 stands for the loading on factor i, Fit represents the
score and εt is the mean zero error term. To build this measure, we use the weekly yield curve data,
over the period from September 2004 to 24 February 2017, provided by ECB Data Warehouse.

Figure A2, shows the dynamics of term premium (Factor 1) and the expectations component
(Factor 2). A higher value of sr with respect to zero stands for a restrictive policy, while a lower value
corresponds to an expansive monetary policy. From 2012 to 2017, the corresponding monetary stance
is negative, highlighting the monetary stimulus implemented by unconventional strategies.

6.2.3. Auxiliary Variables

We include different auxiliary variables (z) related to global financial risk and specific bank risk.
For the first, we use a Global Risk Aversion indicator (GRAI) that captures the global risk perception.
For the second set of variables, we look upon the cost of equity for banks (COE), the return of equity
(ROE), and liquidity to asset ratio (LIQ), which capture the financing conditions. All data are taken
from the ECB Data Warehouse database at monthly frequency. We standardise the variables as mean
equal to zero and unit variance and we estimate the VAR model, with trend using AIC criteria to
choose the appropriate lag.

6.2.4. Results

Figure 6 shows the causality results between the monetary policy (y) and the contagion risk
(ρ̂t), through the globally financial risk (GRAI) as an auxiliary (z) variable. The plot suggests that
the monetary stance seems to cause the systemic risk, after 14 periods when the measure becomes
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significant. This confirms that the implementation of ECB policy has important effects on reduction
of contagion.

Figure 6. Dashed lines represent the 90% confidence intervals; the values of our measures are between
0 (not significant) and 1. z = GRAI.

Figures 7–9 report the causality measure with bank variables as auxiliaries. Figure 7 shows the
causality measures when the auxiliary variable is the Cost of Equity (COE). We can see how the policy
stance, via COE, implies the contagion. For Periods 2–7, the measure is significant and explains about
60% of total causality.

Figure 7. Dashed lines represent the 90% confidence intervals; the values of our measures are between
0 (not significant) and 1. z = COE.

In Figure 8, we present the Granger causality via ROE. In this circumstance, the monetary policy
is a predictor of contagion. Starting with Period 4, the causality measure Policy → Risk becomes
significant and it remains so throughout the time horizon. As specified by Lambert and Ueda (2014),
the monetary policy “could have a positive and negative effect on banks’ profitability”. A quantitative
easing policy could cause an increase in the bank asset price, as well as an interest rate close (equal) to
zero, could have a positive effect on banks balance-sheet, reducing their funding cost. This implies
a possible increase of ROE. However, low rates could tighten the interest margin of banks, due to
the reduction of revenues from loans with variable rates. This implies a possible decrease of ROE.
Therefore, our results suggest that the monetary policy causes systemic risk via the return on equity
of banks.

Considering as the auxiliary variable the banks’ liquidity to asset ratio (Figure 9), we see how
policy Granger causes the risk (from Period 6 to all horizons), further confirming our above results.
An injection of capital by ECB can increase the supply of money, which in turn drives down interest
rates and causes a decrease in the cost banking debt, therefore a dwindling in systemic risk.

Looking at the right-panel plot, we can recognise—always—the non-significant relations between
Risk and Policy, suggesting that the risk does not Granger cause the policy of ECB. The results seem to
highlight that the systemic risk does not cause the ECB policy during the sovereign debt crisis.

These findings are qualitatively similar to the classical above cointegration analysis and they are
consistent with the findings of Colletaz et al. (2018) who provided the same evidence from 2001M1
to 2008M4. For the authors, the not relationship from Risk to Policy can be attributed to the fact that
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financial stability “was not an objective per se for the ECB before the GFC”. We find the same results
during and after the Global Financial Crisis periods, highlighting how the central bank policy is still
too a “price-stability focused”. Nevertheless, although macro- and micro-prudential policy (MMP)
measures have been implemented in recent years, the analysis suggests that systemic risk is not yet a
central focus of the new monetary policy19.

However, the ECB could only decrease the market and bond turmoil, as well as the bank stock
return interconnections, particularly with an announcement effect policy. The credibility of ECB played
a major role in the management of the contagion (see Event Studies analysis in Appendix A).

Figure 8. Dashed lines represent the 90% confidence intervals; the values of our measures are between
0 (not significant) and 1. z = ROE.

Figure 9. Dashed lines represent the 90% confidence intervals; the values of our measures are between
0 (not significant) and 1. z = LIQ.

7. Conclusions

In this paper, we develop a new measure of banking systemic risk. Using the spatial-temporal
econometrics model of Blasques et al. (2016), we estimate a time-varying spatial ρ̂t, namely a
time-spatial dependency across Euro area banks. We provide evidence that the Euro banking system
is spatially dependent on the spread of systemic risk. To test the predictive power of this measure,
we engage an out-of-sample evaluation exercise. We carry out a Granger Causality analysis to verify
if changes in our measure predict troublesome changing in macroeconomic variables such as GDP
and unemployment. The findings show that a shock in systemic risk has “an indirect impact on
Unemployment through the Industrial Production channel”.

19 To ensure the robustness of the analysis, we applied the classic Granger test between the shadow measure of monetary
policy (sr) and ρ̂t. The results (Table A5 in Appendix A) show how monetary policy has an effect on systemic risk and not
the other way around, supporting the results from the model of Dufour and Taamouti (2010).
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Finally, we asked the following questions: What is the effect of monetary policies on systemic risk?
Is there a shadow channel which influences the effect of monetary policy on systemic risk? To answer,
we applied two cointegration analyses: the “classical” and the method of Dufour and Taamouti (2010).
The results of our two cointegration exercises can be summarised as follows: We found that a restrictive
monetary policy increases the level of contagion. The climb in systemic risk due to high-interest rates
is persistent during the whole studied period. On the contrary, monetary expansion decreases the
value of systemic risk. The second cointegration exhibits that policies by ECB have at least been partly
effective in breaking the contagion (see also the event studies), but that such actions are not yet part of
a specific and common objective. That is, financial stability, as the Granger’s causality shows, is not yet
a monetary policy goal.

Beyond our approach, a further development might be to consider the weighted matrix as a
time-varying diagonal covariance matrix to take into account the updated status dependency at
each observation. This model could highlight the dynamics of contagion by distinguishing potential
spillovers between different financial system networks.
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The following abbreviations are used in this manuscript:

ABS Asset-Backed Securities
CDS Credit Default Swap
ECB European Central Bank
EFSF European Financial Stability Facility
ESM European Stability Mechanism
ESRB European Systemic Risk Board
LTROs Long-Term Refinancing Operations
OMT Outright Monetary Transactions
SMP Securities Markets Programme
SSM Single Supervisory Mechanism
TBTF Too Big To Fail
TITF Too Interconnected To Fail
TLTRO Targeted Longer-Term Refinancing Operations

Appendix A. Event Study Approach

In this section, we analyse the impact of diverse events on our measure of systemic risk, i.e.,
the power of episodes to increase/reduce the bank contagion. To estimate these effects, we apply the
event study methodology, specially the constant-mean model:

ACρt = Cρ̂t − E[Cρ̂t|Xt] (A1)
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where ACρ̂t, Cρ̂t and E[Cρ̂t|Xt] are the abnormal actual and normal change of contagion, respectively,
while Xt is the information for normal contagion, and

E[Cρ̂t|Xt] = E[Cρ̂t] = µi (A2)

then,
Cρ̂t = µi + εt

with E[εt] = 0 and Var[εt] = σ2 . We aggregate the cumulating abnormal change in systemic risk by:

CACρ̂t =
t

∑
i=1

ACρ̂t (A3)

Finally, to verify the statistical significance of an abnormal contagion response to the events,
we employed the usual version of the t-test. The event period is, in event time, (−10, +10) days around
the event, which refers to the cumulative return between the values of the index 10 days after the event
and 10 days before the event, such that the event is centred. The estimation window is, in event time,
(−100, +100), following the classic event study approach (Park (2004)). In the period from December
2008 to February 2017, we identified 13 important events. Several episodes had a negative effect
(i.e., growth of risk), while others had a positive impact (i.e., decrease of risk) on contagion. Table A6
shows the estimation results, while Figure A4 plots the cumulative abnormal CDS “return”. Most of
the events are significant, as shown by p-values, highlighting the importance of expectation and the
“announcement effect” on financial stability in the Eurozone.
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Figure A1. Cross-Correlation Matrix: (top) the cross-correlation matrix for raw data; and (bottom) for
the full model residuals. Breusch–Pagan LM test of independence: F-statistic: 0.61, p-value: 0.4348.
This implies there is no cross-sectional dependence among residuals.
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Figure A2. The Shadow Rate. Factor 1 explains 0.93 of variance, while Factor 2 explains 0.07.
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Table A1. Sample Banks. The table lists the larger banks in the Eurozone in 2012. Source: Bankscope.

Country Bank Name Ticker Size of Bank
(USD bn, 2012)

GDP
(USD bn, 2012) %GDP

Austria Erste Group Bank AG EBS 282 334 84
Austria Raiffeisen Zentralbank RBI 179 334 54
Belgium KBC Group KBC 339 406 83
France BNP Paribas BNP 2516 2189 115
France Crédit Agricole ACA 2134 2189 98
France Natixis KN 697 2189 32

Germany Deutsche Bank AG DBK 2668 2894 92
Germany Commerzbank AG CBK 839 2894 29

Greece National Bank of Greece NBGIF 138 201 69
Greece EFG Eurobank Ergasias EGFEY 89 201 45
Greece Alpha Bank ALPHA 76 201 38
Ireland Allied Irish Banks Plc AIBG 161 184 88
Ireland Bank of Ireland Plc BIRG 148 184 80

Italy Unicredit UCG 1223 1692 72
Italy Intesa Sanpaolo ISP 888 1692 53
Italy BPM BPM 616 1692 36
Italy Monte dei paschi di Siena BMPS 288 1692 17

Netherlands ING Group NV ING 1538 676 227
Portugal Banco Commercial Portugues BCP 118 177 67

Spain Banco Santander SAN 1675 1090 154
Spain Banco Bilbao Vizcaya Argentaria BBVA 841 1090 77
Spain CaixaBank CABK 459 1090 42

Table A2. Panel unit-root test: Levin–Lin–Chu. T-statistics are reported; *** stands for statistical
significance at 1%.

Panel Unit-Root Test: Levin–Lin–Chu Statistics

CDS Spread Unadjusted t −1.3 × 102

Adjusted t* −1.8 × 102 ***
VStoxx Unadjusted t − 1.2 × 102

Adjusted t* −1.5 × 102 ***
Eonia-Euribor Unadjusted t −18.91

Adjusted t* −9.203 ***
Stock Return Unadjusted t −99.66

Adjusted t* −44.61 ***
Term Structure Unadjusted t −29.36

Adjusted t* −18.63 ***

Table A3. The spatial model results. Estimated parameters and their robust (sandwich) standard errors
in parentheses, for the static spatial lag model and the time-varying spatial model, based on Student’s t
distributed errors. W matrix = Spearman correlation matrix of stock return.

Static Model Time-Varying

ρ
0.7129
(0.000)

ω
0.030

(0.009)

a 0.029
(0.107)

b 0.966
(0.021)

log σ2 1.036
(0.000)

1.037
(0.000)

logLik −51.99 −51.98
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Table A4. Augmented Dickey–Fuller (ADF) test. T-statistics are reported; *** stands for statistical
significance at 1%; the appropriate lag length () for ADF test is selected using Schwarz Bayesian
criterion (SC).

Variables Level Differences

ρ̂t −2.71 (0) −12.4 (0) ***
M2 −1.98 (0) −7.33 (0) ***

MRO −1.37 (0) −8.69 (0) ***
HICP −1.13 (0) −9.16 (0) ***

Table A5. The results of the pairwise Granger causality.

Null Hypothesis F-Statistic Prob.

sr does not Granger Cause ρ̂t 7.626 0.000
ρ̂t does not Granger Cause sr 0.686 0.506

Table A6. Significant Event: (−10, +10) days around the event, in which the event is centred.
Significance is assessed with a two-sided t-test where the observed changes on announcements days are
compared with the corresponding means on non-announcements days; * denotes statistical significance
at 10%, ** denotes statistical significance at 5%, *** denotes statistical significance at 1%.

Events t-test

5 July 2009 CBPP I 6.94 ***
25 March 2010 Support to Greece −3.58 ***
10 May 2010 SMP 6.89 ***

6 October 2011 CBPP II −0.37
22 December 2011 LTRO I 7.41 ***

1 March 2012 LTRO II −7.11 ***
27 July 2012 “Whatever it takes” 6.98 ***

2 August 2012 OMT −1.67
15 October 2014 CBPP III −5.43 ***
19 October 2014 ABSPP −2.27 **

9 March 2015 PSPP −2.11
10 March 2016 TLTRO II and APP −4.18 ***

2 June 2016 New-TLTRO −0.73
TOTAL Effect 4.76 ***
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