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Abstract: In this study, we consider the problem of zero claims in a liability insurance portfolio
and compare the predictability of three models. We use French motor third party liability (MTPL)
insurance data, which has been used for a pricing game, and show that how the type of coverage and
policyholders’ willingness to subscribe to insurance pricing, based on telematics data, affects their
driving behaviour and hence their claims. Using our validation set, we then predict the number of
zero claims. Our results show that although a zero-inflated Poisson (ZIP) model performs better than
a Poisson regression, it can even be outperformed by logistic regression.

Keywords: validation; generalised linear modelling; zero-inflated poisson model; telematics

1. Introduction

There are two main types of machine learning: (i) predictive or supervised learning in which the
machine trains data and learns the relationship between inputs and outputs and (ii) descriptive and
unsupervised learning in which machine uses the inputs and discovers the outputs (Murphy 2012).
Classification and regression are two supervised learning approaches which are well-known in
general insurance. One of the objectives of the insurance companies is to charge premiums which
is commensurate with the risk characteristics of their policyholders and for this, they classify the
policyholders into homogeneous groups according to, say, age, sex, type of policy, subscription to
telematics-based insurance pricing (see, Section 3), etc. Regression analysis and its extensions such as
generalised linear modelling (GLM) are strong tools in insurance pricing. Unlike regression models, GLM
is not constrained to a normal distribution and can be applied to any distribution from an exponential
family. For example, a logistic regression model handles binary responses and thus is suitable for a
Bernoulli distribution and a Poisson regression model applies to count data and deals with discrete
random variables. GLM has long been used in actuarial practice to model claims amounts and claims
frequency in the insurance portfolio (Haberman and Renshaw 1996; McCullagh and Nelder 1998).

In this study, we consider motor third party liability (MTPL) insurance. One of the problems
in modelling claims frequency in this class of insurance is the number of zero claims and building
a model that can capture all these zero claims. Zero claims in MTPL does not necessarily mean that
there has been no accident during the term of a policy, rather it means that there has been no reported
accident to the insurance company. This particularly happens under a no claim discount (NCD) system
as some policyholders, known as bonus hunger, prefer to benefit from a discount by not reporting a
claim. Another problem which is related to the previous one is the problem of over-dispersion. In a
Poisson regression model, claims are distributed according to a Poisson distribution with equal mean
and variance. Therefore, to build an appropriate model we need to test our dataset for the presence of
over-dispersion (Peruman-Chaney et al. 2013; Wilson and Einbeck 2018). Binomial regression, negative
binomial (NB) regression and zero-inflated Poisson (ZIP) model are techniques that can handle over
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and under dispersed data with the latter being able to distinguish between structured and unstructured
zeros. Lambert (1992) considers a ZIP model where the probability of only possible observation, i.e., 0
and the parameter of a Poisson distribution depend on some covariates. Lambert (1992) applies this
technique to model the number of defects in manufacturing. Since then, this model has been applied
in different settings including insurance pricing. For example, Lee et al. (2002) use this model to
analyse the impact of lifestyle and motivations on car crashes involving young drivers in Australia.
Yip and Yau (2005) use ZIP to model claims frequency in car insurance. They compare different types
of zero-inflated count models and conclude that a zero-inflated double Poisson regression model is a
good fit for their dataset. Boucher et al. (2007) compare zero-inflated, hurdle and compound frequency
models and conclude that the bonus rate is an important factor for policyholders to report the claim.
In another study, Boucher et al. (2009) consider the problem of bonus hunger and construct a ZIP
model to distinguish between the distribution of the number of claims and the number of accidents.

Model fitting and the selection of risk factors can be challenging in some cases. There are some
papers that consider these problems. For example, Tang et al. (2014) propose a method to determine
the variables in a ZIP model. They combine EM algorithm and adaptive LASSO and find that their
technique performs better for the non-inflated part of the ZIP regression. Liu and Pitt (2017) also apply
LASSO and ridge regression to address this issue in a bivariate negative binomial regression model.
See, also, Cantoni and Auda (2018), Chowdhury et al. (2019) and Chen et al. (2019) among others.

The impact of mileage as a risk factor is considered by Lemaire et al. (2015). They conclude
that annual mileage is a powerful predictor of the number of claims at-fault. Tselentis et al. (2017)
provide a review of some Usage-based motor insurance (UBI) including Pay-as-you-drive (PAYD),
Pay-how-you-drive (PHYD) and Pay-at-the-pump (PATP). PATP is a pricing method that considers
fuel consumption as a rating factor but did not get enough attention from researchers. These new
pricing methods require telematics data. In recent years, there is much research on telematics data and
mileage based (MB) insurance. Boucher et al. (2017) apply generalised additive models and consider
both time and mileage in insurance pricing. See the following papers on the relevance of including the
mileage as a risk factor (Ayuso et al. 2019; Guillen et al. 2019; Verbelen et al. 2018).

In addition to regression analysis, neural network, decision tree, random forest and boosting
algorithms such as XGBoost, etc., are other machine learning techniques that can be applied to model
claims frequency and insurance pricing. However, although these models have good predictive power,
unlike regression models, it is difficult to interpret their parameters and their computation time is
long. Weerasinghe and Wijegunasekara (2016) study neural network, decision tree and multinomial
logistic regression models. Their results show that the neural network has the best predictive
performance among the three models. However, they state that to understand the relationship between
independent and dependent variables, the logistic regression is the best model. Fauzan and Murfi
(2018) compare XGBoost, neural network and random forest models and find that in terms of the Gini
index, XGBoost is a more accurate algorithm. See, also, Spedicato et al. (2018) and Gao et al. (2019) and
the references therein.

In this study, we consider the classical Poisson and logistic regression and compare our findings
with a ZIP model. We divide our dataset into training and validation (hold-out) set to predict the
number of zero claims. This paper is organised as follows. In the next section, we present models and
notation. Section 3 discusses our dataset. In Section 4, we build our models and in Section 5 we test
their validation. Finally, Section 6 concludes.

2. Methodology and Notation

Risk classification is an important concept in general insurance pricing. An insurance company
tries to determine the insurance premium according to risk characteristics of policyholders such
as age, sex, type of policy and car model, etc. Regression analysis is a well-known technique to
incorporate such risk (rating) factors. In this section, we review Poisson regression, Logistic regression
and ZIP model.
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Let yi ∈ {0, 1, 2, . . . } be a dependent or response variable such as number of claims, for i = 1, . . . , n
that follows a Poisson distribution with parameter λi. Assuming a log link function and that λi is a
linear combination of rating factors β0 + β1xi1 + · · ·+ βkxik we have

E[yi|xi] = λi = exp{β0 + β1xi1 + · · ·+ βkxik}, yi ∼ Pois(λi) for i = 1, 2, . . . , n. (1)

When we consider the average number of claims for each policyholder, we need to specify a
unit measure or exposure. We cannot expect two policyholders with the same risk characteristics,
but different terms, to be equally risky. Normally, the length of coverage is considered as an exposure.
However, in recent years, it is argued that even if policyholders join at different times, some may
drive fewer distances than others. Therefore, when such information is available as in telematics data,
mileage travelled is considered as a more appropriate exposure (Guillen et al. 2019). In our study,
all policyholders are under observation for one year and thus the exposure for each policyholder is 1.

We use logistic regression when yi ∈ {0, 1} is a binary, also called dichotomous variable.
In that case,

E[yi|xi] = πi(x) = g (β0 + β1xi1 + · · ·+ βkxik)

where g is a logistic link function to ensure that πi is between 0 and 1. Hence

πi(x) =
exp {β0 + β1xi1 + · · ·+ βkxik}

1 + exp {β0 + β1xi1 + · · ·+ βkxik}
(2)

or, more commonly

log
(

πi(x)
1− πi(x)

)
= β0 + β1xi1 + · · ·+ βkxik.

In this paper, we use logistic regression to answer the question: “What is the probability of a claim
(yi = 1) and zero claims (yi = 0) for a given policyholder with particular risk characteristics?”

When the mean and variance of the underlying population is not equal, the assumption of a
Poisson distribution is not suitable and a better candidate is a distribution that can allow for over/under
dispersion such as a binomial or NB distribution. However, sometimes we deal with a large number of
zeros in our dataset. For example, we see in the next section that many policyholders have zero claims,
which does not necessarily mean that they were involved in no accidents, but they are low risk. In such
cases, we can apply a ZIP model which is a mixture of a point mass at zero, also called structural zeros,
and another claims frequency distribution, such as a Poisson or NB, which can be written as

Pr(yi = j) =

{
πi + (1− πi)Pr(yi = 0) j = 0

(1− πi)Pr(yi = j) j = 1, 2, . . .
(3)

where πi is given by Equation (2) and denotes the probability of zeros when zero is the only possible
observation. In a ZIP model, yi follows a Poisson distribution with parameters being given by Equation (1).

We can easily implement these models in R and the codes are provided in Appendix A (Frees et al.
2014, 2016).

3. Data

We use datasets provided by the French Institute of Actuaries for the 2017 pricing game, which
is based on French MTPL insurance. The dataset is available in Package ‘CASdatasets’ by Dutang
and Dutang and Charpentier (2019) and to the best of the author’s knowledge, this is the first time
it is used in a study. The dataset contains some information about the new pricing strategy of the
company. The policyholders were given a choice whether they would like to join a new mileage-based
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(MB) pricing system or not. We would like to see how policyholders’ perception regarding this
new system affects their driving behaviour and hence their number of claims. There are two types
of datasets: (i) underwriting and (ii) claims dataset. Underwriting datasets are available for three
years, whereas claims dataset is only publicly available for year 0. Therefore, we only use data from
year 0. After merging claims and underwriting datasets, we randomly split our data into training and
validation sets with 60% being in training and 40% in the validation set. As some policyholders have
more than one car, we assume that each policy covers only one car and therefore consider the number
of policies and claims per policy rather than claims per policyholder. We have 100,000 policies (rows
in underwriting dataset) and 12,654 policies with claims (rows in claims dataset after consolidation).
Table 1 shows the variables we use in our study. In addition to these variables, information about Insee
town code, make and model, marketing duration and age of driving license are also provided. However, we
do not take into account these variables as, for example, there is a considerable number of policies
with 113 years for driving license age which is not reasonable.

In Table 1 policy ID refers to the combination of the vehicle ID and policyholder ID. In this study,
we have 100,000 policy ID. Bonus coefficient is the percentage of the full premium that policyholders
pay allowing for their claims experience and the allocated discount. There are four types of coverage
available: Maxi, Median 2, Median 1 and Mini. The time from the last policy alteration, such as
the inclusion of a new driver, is represented by situation duration. Payments can be made annually,
semi-annually, quarterly and monthly. As it is usual for the liability insurance, some of the claims
amounts are negative1. Therefore, we set all claims amounts of less than 30 equal to zero (Ferreira and
Minikel 2012; Frees et al. 2014).

Table 1. Variables in our datasets.

Control Policy Driver (1 and 2) Vehicle Response

policy ID bonus coefficient driver 2? age number of claims
type of coverage age cylinder

duration gender din power
situation duration fuel type

payment frequency max speed
subscription to MB type

usage value
weight

Subscription to mileage-based (MB) policy refers to a new scheme in which one of the main risk
factors is the travel distance and policyholders are charged based on their mileage, also known as PAYD
scheme. Policy Usage includes WorkPrivate, Retired, Professional and AllTrips. If a policy covers
two drivers, age and gender are provided for both drivers. Different features of the car including
age, engine power (represented by Din), fuel type, max speed (provided by manufacturing company),
type—Tourism and Commercial, value and weight are provided and will be used as rating factors.
In this study, we only consider the number of claims as a dependent variable.

We now provide some explanatory analysis based on the training set. The minimum policy term
in our dataset is one year, which means all these policies have been under observation for at least one
year. Since claims have occurred in Year 0, we consider car years or earned exposure of one year for all
policies. The maximum claims number is 6, the oldest policyholder is 103 years old and the oldest car
is 66 years old. Table 2 presents mean and standard deviation of our numerical explanatory variables
for all policies, policies without claims and policies with at least one claim based on the training set.
In order to examine which variables are considerably different in the group of policies with claims and
the group of policies without claims and hence are effective on the frequency of claims, we can apply

1 This happens due to subrogation rights of the insurer.
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Mann-Whitney test. The Mann-Whitney test is a nonparametric test of the null hypothesis that it is
equally likely that a randomly selected value from one sample is less than or greater than a randomly
selected value from a second sample. The Mann-Whitney test shows that the difference in the mean
for all these variables is statistically significant with p-value < 0.0001, except for policy duration and
driver age 2 with p-values 0.001232 and 0.004252, respectively.

Table 2. The mean and standard deviation of numerical variables in the training set.

Variables
All Policies Policies without Claims Policies with Claims

Mean SD Mean SD Mean SD

Policy duration 11.09 8.56 11.13 8.57 10.78 8.56
Policy duration since the last change 2.74 2.36 2.78 2.41 2.40 2.36

Driver age 1 54.65 14.86 54.75 14.86 53.84 14.86
Driver age 2 46.93 16.21 47.06 16.19 46.04 16.21
Vehicle value 18,086 8677.92 17,858 8618.47 19,894 8677.92
Vehicle age 9.56 7.03 9.84 7.19 7.30 7.03

Engine cylinder 1645 460.59 1,639 464.05 1,696 460.59
Speed 170.71 23.48 170.13 23.69 175.31 23.48
Weight 1171.59 288.39 1164.36 288.68 1228.89 288.39

Motor power (din) 91.43 34.41 90.58 34.35 98.23 34.41

Figure 1 shows the distribution of the number of claims. We can observe that zero claims form a
large part of our portfolio.

0 1 2 3 4 6

0

10,000

20,000

30,000

40,000

50,000

Figure 1. Distribution of claims frequency.

Figure 2 illustrates how policies are distributed across categorical variables. As we can see,
most of our policies cover one driver and most of the drivers are men aged between 51 and 70.
Our policyholders prefer Maxi and drive tourism cars for work and private purposes. Most of them
pay annually and are distributed almost evenly across monthly and biannual payment categories.
They have not registered for MB scheme and they use diesel with very few of them using a hybrid car.
Next, we see how claims are distributed across categorical variables.
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Table 3 presents the distribution of the number of claims across different categories. For the
variable policy usage, although professional usage forms a small portion of our portfolio, claims under
professional group is more than private and retired groups. However, from Figure 3 professional and
retired groups have almost the same median loss and except for all trips we can see little difference
among policies in this group. Under this insurance, the most comprehensive protection is provided
by maxis and as can be expected this may lead to moral hazard. We can see there are more claims
under maxis than under other types of coverage. The order of coverage is maxis, median 2, median 1 and
mini and unsurprisingly, the percentage of claims reduces in the same order. Under mini, 97.39% of
the policies have made zero claims. Perhaps lower coverage is a motivation for policyholders to take
more precautious measures. Figure 3 shows the effect of policy coverage on the amounts of claims
and as we can see this will be an effective covariate in our model. From Table 3 those policyholders
who were willing to subscribe to MB plan are less likely to have an accident. Figure 3 shows that the
subscribers are less dispersed than those who have not subscribed. From the regulatory point of view,
gender cannot be used as a discriminatory factor. In fact, we can see there is no considerable difference
between male’s and female’s number of claims. In Figure 2 the least favourable payment frequency is
quarterly payment, but we do not see considerable differences in claim numbers and amounts for
different categories of payments. A large number of policies provide coverage only for one driver,
but policies with two drivers have a slightly greater chance of making claims. The age of the first driver
ranges from 19 to 103. We classify the policyholders in different age groups as 18–30, 31–50, 51–70,
71–85 and 85+. Most of the policyholders are in the range 51–70 and the next largest group is between
31 and 50. Both Table 3 and Figure 3 do not show a significant difference in claims frequency and
claim amounts for different age categories and it seems that some categories can be combined together.
In fact, in the next section we see that instead of these categories, we use age as a numerical covariate
in our models as some categories are not statistically significant.

AllTrips Professional Retired WorkPrivate

Usage

     0

10,000

20,000

30,000

Maxi Median1 Median2 Mini

Coverage

     0

10,000

20,000

30,000

No Yes

Subscription to MB

     0

20,000

40,000

Biannual Monthly Quarterly Yearly

Payment

     0

10,000

20,000

No Yes

2nd driver?

     0

10,000

20,000

30,000

F M

Gender 1

     0

10,000

20,000

30,000

18−30 31−50 51−70 71−85 85+

Age 1

     0

10,000

20,000

Diesel Gasoline Hybrid

Fuel Type

     0

10,000

20,000

30,000

Commercial Tourism

Vehicle Type

     0

20,000

40,000

Figure 2. Distribution of policies according to categorical variables.
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Figure 3. Distribution of log of claims amounts according to categorical variables.

Most of our policyholders drive gasoline cars and very few of them have hybrid cars.2 According
to Table 3, hybrid cars make more claims than gasoline and diesel cars. Most policies cover tourism
cars and claims percentage made by this type of cars is more than commercial cars. Our initial analysis
suggests that payment frequency and gender are not significant variables and therefore can be removed
from our study. In the next section, we will see that they are indeed insignificant and are not included
in our final models.

Table 3. Frequency of claims per categorical variables in the training set.

Variables Categories
Claim frequency

Total
0 1 2 3 4 5 6

Policy usage WorkPrivate 35,248 3, 877 450 49 7 0 1 39,632
88.94% 9.78% 1.14%

Retired 14,193 1, 462 191 20 3 0 0 15,869
89.44% 9.21% 1.20%

Professional 3, 729 544 76 10 0 0 0 4, 359
85.55% 12.48% 1.74%

All trips 41 10 1 0 0 0 0 52
78.85% 19.23% 1.92%

Policy coverage Maxis 33,459 4,489 600 70 9 0 1 38,628
86.62% 11.62% 1.55%

Median 2 9,628 862 82 7 1 0 0 10,580
91.00% 8.15% 0.78%

Median 1 5, 122 412 32 2 0 0 0 5, 568
91.99% 7.04% 0.57%

Mini 5, 002 130 4 0 0 0 0 5, 136
97.39% 2.53% 0.08%

2 According to the game document, hybrid cars were not popular at the time of collecting this dataset.
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Table 3. Cont.

Variables Categories
Claim frequency

Total
0 1 2 3 4 5 6

Subscription to MB No 50,946 5, 714 693 76 10 0 1 57,440
88.69% 9.95% 1.21%

Yes 2, 265 179 25 3 0 0 0 2, 472
91.63% 7.24% 1.01%

Payment Yearly 20,094 2, 106 263 25 3 0 1 22,492
89.34% 9.36% 1.17%

Biannual 15,930 1,746 199 29 3 0 0 17,907
88.96% 9.75% 1.11%

Monthly 15,880 1, 875 234 23 4 0 0 18,016
88.14% 10.41% 1.30%

Quarterly 1, 307 166 22 2 0 0 0 1, 497
87.31% 11.09% 1.47%

Policy with 2 drivers No 35,675 3, 814 457 47 6 0 0 39,999
89.19% 9.54% 1.14%

Yes 17,536 2,079 261 32 4 0 1 19,913
88.06% 10.44% 1.31%

Gender 1 Male 32,118 3, 501 433 52 4 0 0 36,108
88.95% 9.70% 1.20%

Female 21,093 2, 392 285 27 6 0 1 23,804
88.61% 10.05% 1.20%

Age 1 18–30 2, 471 299 29 4 0 0 1 2, 804
88.12% 10.66% 1.03%

31–50 18,961 2, 228 256 24 4 0 0 21,473
88.30% 10.38% 1.19%

51–70 22,978 2, 479 322 40 3 0 0 25,822
89.99% 9.60% 1.25%

71–85 8,154 822 105 9 3 0 0 9, 093
89.67% 9.04% 1.15%

85+ 647 65 6 2 0 0 0 720
89.86% 9.03% 0.83%

Vehicle fuel Diesel 28,605 3, 783 475 54 7 0 1 32,925
86.88% 11.49% 1.44%

Gasoline 24,565 2, 104 241 25 3 0 0 26,938
91.19% 7.81% 0.89%

Hybrid 41 6 2 0 0 0 0 49
83.67% 12.24% 4.08%

Vehicle type Tourism 47,891 5, 387 668 73 10 0 1 54,030
88.64% 9.97% 1.24%

Commercial 5, 320 506 50 6 0 0 0 5, 882
90.45% 8.60% 0.85%

Total 53,211 5,893 718 79 10 0 1 59,912

4. Results

In this section, we use statistical software R and package “pscl” to build Poisson, logistic and ZIP
models (Zeileis et al. 2008). Our purpose is to estimate the frequency and the probability of claims
and compare our results with a ZIP model using Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC).

Table 4 presents three Poisson regression models with their estimated coefficients and their
corresponding p-values. Model 1 is the full model where we consider all the variables from Section 3.
However, according to pricing game document, there is a correlation between vehicle cylinder, weight,
value, speed and power and in our dataset, some of the entries for weight, value and cylinder are
missing. Therefore, we only incorporate speed and power into our models. We build Model 2 using
the stepwise selection of variables that can be implemented in R. In Model 3 we only consider variables
which are statistically significant at 0.05.
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Table 4. Regression coefficient of Poisson models.

Coefficients
Model 1: All Variables Model 2: Stepwise Selection Model 3: Only Significant

Estimate p-Value Estimate p-Value Estimate p-Value

Intercept −2.6883 <0.0001 −2.5645 <0.0001 −2.4729 <0.0001
Age 1 0.0048 0.0001 0.0048 0.0002 0.0036 0.0026
Age 2 −0.0034 0.0084 −0.0034 0.0087 −0.0033 0.0111

Female 1 0.0380 0.1251 0.0374 0.1285
Driver2? 0.1790 0.0057 0.1781 0.0060 0.1717 0.0080

Situation duration −0.0185 0.0078 −0.0185 0.0080 −0.0220 0.0013
Bonus 0.8677 <0.0001 0.8683 <0.0001 0.9125 <0.0001

Coverage(Med2) −0.1854 <0.0001 −0.1847 <0.0001 −0.1877 <0.0001
Coverage(Med1) −0.2282 <0.0001 −0.2280 <0.0001 −0.2306 <0.0001
Coverage(Mini) −1.2611 <0.0001 −1.2631 <0.0001 −1.2723 <0.0001

Payment(biannual) 0.0485 0.0919 0.0487 0.0908
Payment(quarterly) 0.1676 0.0184 0.1681 0.0181
Payment(monthly) 0.0911 0.0018 0.0912 0.0018
Subscription to MB −0.1586 0.0198 −0.1587 0.0197 −0.1675 0.01370

Usage(retired) −0.0304 0.4331 −0.0297 0.4433 −0.0315 0.4146
Usage(professional) 0.1536 0.0003 0.1535 0.0002 0.1481 0.0002

Usage(all trips) 0.3451 0.2328 0.3456 0.2321 0.3448 0.2332
Duration −0.0025 0.0969 −0.0025 0.0978

Fuel(gasoline) −0.2621 <0.0001 −0.2630 <0.0001 −0.2607 <0.0001
Fuel(hybrid) 0.1265 0.6896 0.1225 0.6988 0.1196 0.70588

Type(commercial) 0.0318 0.5466
Din(power) 0.0022 0.0004 0.0026 <0.0001 0.0024 <0.0001
Vehicle age −0.0316 <0.0001 −0.0318 <0.0001 −0.0332 <0.0001

Vehicle speed 0.0009 0.3967

Log-likelihood −23,207 −23,207 −23,216
Degrees of freedom 24 22 17

AIC 46,462 46,458 46,466
BIC 46,678 46,656 46,619

Running time (s) 0.761 7.336 0.601

As we can see, some of the coefficients are statistically significant at 0.0001. For example,
the coefficient associated with the Bonus is significant and positive as expected. The bonus represents
the percentage of the full premium and a large percentage shows an adverse claims history of a
policyholder. The positive sign indicates that as the percentage of the full premium increases, the mean
of claims frequency will increase. The coefficients associated with Coverage are negative for all
categories and significant. The coefficient of Median 2 shows that the policyholders with this type of
coverage have fewer claims than policyholders with Maxi coverage (the reference level). For example,
in Model 1, a policyholder with a Median 2 has fewer claims than a policyholder with a Maxi
coverage by exp(−0.1854) = 0.83 and a policyholder with a Mini coverage has fewer claims by
exp(−1.2611) = 0.28. The coefficient of the car’s power, represented by Din, is positive and significant,
which indicates that powerful cars are more likely to be involved in an accident and therefore the
mean of claims frequency for the owners of the powerful cars is higher. Unlike Ayuso et al. (2019) and
Guillen et al. (2019), we found that Vehicle age has a negative impact on the number of claims. In our
study, most of the policyholders are middle-aged and more likely to have old cars. In Section 3 we
saw that the mean of the vehicle age is 9.56 for all policies and 7.30 for policies with at least one claim.
Our portfolio of middle-aged policyholders also affects the sign of the coefficient associated with Age 1.
Our dataset includes drivers as old as 103. Therefore, it seems reasonable to find a positive impact
of age on the mean of the number of claims. In Model 1 the coefficients which are not significantly
different from zero include Female 1, car usage for Retired and All trips, Hybrid fuel, Type and Speed.
The coefficient of Professional usage indicates that Professional usage increases the mean of claims
frequency compared to Work and private usage (the reference level) by exp(0.1536) = 1.17. This is in
line with Table 3 that policies for professional purposes make more claims. We obtain similar results
for gasoline cars as in Table 3. Owners of Gasoline cars have fewer claims than owners of Diesel cars
by exp(−0.2621) = 0.77. We can see that the coefficient associated with Driver2 is positive. This seems
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reasonable as a policy that covers two drivers is more likely to make claims. The coefficient of Age 2
is negative. One interpretation can be that the average age of the second drivers is lower than the
average age of the first drivers. However, in Section 3, we saw that driver age 2 is not significantly
different for policies with claims and policies without claims. The coefficients associated with Duration
and Policy duration are both negative. This implies that more experienced policyholders make fewer
claims and also the more stable a policy is, the lower the mean of the number of claims. The coefficient
of subscription to MB is negative and therefore this variable reduces the mean of claims frequency.
Perhaps those who are willing to be monitored by telematics technology are more confident about
their driving behaviour. We saw in the previous section that payment frequency is not a significant
variable. As we can see, their corresponding p-values for some categories in models 1 and 2 are not
significant at 0.05 and therefore we have removed them from Model 3. However, we decided to keep
the variable Usage, although not all categories are significant at 0.05, as we found in the previous
section that it is effective on the number of claims. Among our three models, Model 2 has the lowest
AIC and Model 3 has the lowest BIC. As we can see, the computation time for Model 2 is longer than
the other two models. The reason is that the stepwise algorithm examines different models to find the
one with the smallest AIC.

Table 5 presents three logistic models with their coefficients and the corresponding p-values.
Similar to Table 4, Model 1 includes all variables, Model 2 is based on the stepwise algorithm and
Model 3 only includes significant variables. The interpretation of the coefficients in logistic regression
is similar to Poisson regression and as we can see, the signs of the coefficients are the same. The only
difference is that in logistic regression we look at the impact of variables on the odds of the occurrence
of claims. So, for example, the interpretation of the coefficient associated with Bonus is that, the greater
the percentage of the full premium (adverse claims history) is, the higher the odds of the occurrence
of the claims for the coefficient associated with professional usage; we can say that the odds of the
occurrence of claims for policyholders with professional usage increases by exp(0.1691) = 1.18 as
opposed to policyholders with work and private usage. For the negative coefficient associated with
subscription to MB, we can say that the odds of the occurrence of claims fall for a policyholder who
joins this scheme. Other variables can be similarly interpreted. Model 2 is built by examining different
models and finding the one with the lowest AIC. All variables in this model are the same as the
variables in stepwise Poisson regression except for duration which is not included in stepwise logistic
regression. For Model 3 we again remove all variables with a p-value greater than 0.05. In addition,
we do not include payment frequency as this has been proved to be insignificant in Section 3. As we
can see, Model 2 has the smallest AIC and Model 3 has the smallest BIC. Further, the computation time
for the stepwise algorithm is longer than the stepwise Poisson regression model.

When building a model, it is important to consider the underlying assumptions. For example,
to fit a ZIP model to our data, we first need to test for the presence of over-dispersion. One approach is
to fit a quasi-Poisson and to determine the dispersion parameter, i.e., θ in Var(y) = θ E[y]. In our case,
using only significant variables from Tables 4 and 5, the dispersion parameter is 1.1. Alternatively,
we can fit NB regression and compare our new model with Poisson regression. In our case, AIC and
BIC for NB regression are 46,184 and 46,346, respectively, which are lower than AIC and BIC for the
Poisson regression. Now, since we have the problem of over-dispersion and excess zeros, we can fit
a ZIP model to our data. Table 6 shows the estimated coefficients and their p-values for the Poisson
(count) part and zero-inflated part of three ZIP models. Model 1 is the full model where we consider
the variables of the full model in Table 4 for the count part and the variables of the full model in Table 5
for the zero-inflated part. As we can see, most variables are not significantly different from zero. If we
consider the significant level of 0.1, the coefficient associated with Age 1 is positive as in Table 4 and
statistically significant in the count part. In addition, the coefficient associated with Age 2 is positive
and significant in the zero-inflated part, but not in the count part. From Section 3, we know that the
second divers are younger than the first drivers. Therefore, we can claim that in this group older
drivers are more likely to have zero claims. The coefficient of situation duration in the count part is
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negative and significant as in Table 4 with the same interpretation. The coefficients associated with
coverage are significant at 0.01 in the count part with the identical signs as in Table 4, but they are
not significant in the zero-inflated part. The interpretation is that the mean frequency of claims for
policyholders covered under, for example, Mini coverage is less than the policyholders covered under
Maxi coverage by exp(−1.0487) = 0.35.

The coefficient of fuel (gasoline) is positive and significant which indicates that the odds of zero
claims for drivers of gasoline cars increases by exp(0.5066) = 1.66 as opposed to drivers of diesel cars.
Further, in the zero-inflated part, the coefficient of Driver2? is negative and significant. Therefore,
a policy with two drivers is less likely to have zero claims, in other words, a policy with the 2nd
driver is more likely to be involved in an accident and to make a claim. The associated coefficient of
vehicle age is positive and significantly different from zero in the zero-inflated part, which is in line
with our findings for Poisson and logistic models that it is more likely for the owners of older cars
to have zero claims. All other variables including subscription to MB are not significantly different
from zero. The variables of Model 2 in the count and zero-inflated part come from the variables of
stepwise models in Tables 4 and 5, respectively. The coefficients have the same sign and therefore
similar interpretation as in Model 1. Again the coefficient of subscription to MB is not significantly
different from zero. Model 3 can be built using the variables of the models that contain only significant
variables in Tables 4 and 5. Coverage in the count part and Age 2, Driver2?, fuel and vehicle age
in the zero-inflated part are all significantly different from zero. In Table 6 the signs of some of the
coefficients do not conform to Tables 4 and 5. For example, subscription to MB is positive both in the
count part and in the zero-inflated part. Since such coefficients are not statistically significant, we can
conclude that they are not significantly different from zero. Comparing AIC and BIC of these three
models, we can see that the smallest AIC can be obtained by Model 2 where the variables come from
stepwise models in Tables 4 and 5 and the smallest BIC by Model 3. In addition, AIC has considerably
improved for ZIP models compared to Poisson models in Table 4. In the next section, we show that the
prediction of zero claims by ZIP is considerably better than Poisson regression.

Table 5. Regression coefficients of logistic models.

Coefficients
Model 1: All variables Model 2: Stepwise Selection Model 3: Only Significant

Estimate p-Value Estimate p-Value Estimate p-Value

Intercept −2.6571 <0.0001 −2.5321 <0.0001 −2.4255 <0.0001
Age 1 0.0043 0.0036 0.0038 0.0066 0.0032 0.0226
Age 2 −0.0048 0.0011 −0.0047 0.0013 −0.0047 0.0013

Female 1 0.0441 0.1198 0.0428 0.1275
Driver2? 0.2410 0.0012 0.2363 0.0014 0.2340 0.0016

Situation duration −0.0234 0.0027 −0.0248 0.0013 −0.0265 0.0006
Bonus 0.9017 <0.0001 0.9151 <0.0001 0.9447 <0.0001

Coverage(Med2) −0.1814 <0.0001 −0.1786 <0.0001 −0.1832 <0.0001
Coverage(Med1) −0.2111 0.0005 −0.2061 0.0007 −0.2132 0.0004
Coverage(Mini) −1.2481 <0.0001 −1.2438 <0.0001 −1.2589 <0.0001

Payment(biannual) 0.0522 0.1121 0.0490 0.1335
Payment(quarterly) 0.1852 0.0240 0.1883 0.0217
Payment(monthly) 0.0939 0.0049 0.0936 0.0051
Subscription to MB −0.2014 0.0088 −0.2038 0.0080 −0.2098 0.0063

Usage(retired) −0.0180 0.6847 −0.0149 0.7364 −0.0203 0.6455
Usage(professional) 0.1691 0.0007 0.1733 0.0002 0.1664 0.0004

Usage(all trips) 0.4841 0.1577 0.4856 0.1563 0.4835 0.1577
Duration −0.0019 0.2708

Fuel(gasoline) −0.2885 <0.0001 −0.2914 <0.0001 −0.2875 <0.0001
Fuel(hybrid) 0.0707 0.8560 0.0691 0.8592 0.0598 0.8778

Type(commercial) 0.0462 0.4402
Din(power) 0.0022 0.0019 0.0027 <0.0001 0.0025 <0.0001
Vehicle age −0.0336 <0.0001 −0.0336 <0.0001 −0.0332 <0.0001

Vehicle speed 0.0010 0.4404

Log-likelihood −20,292 −20,293 −20,299
Degrees of freedom 24 21 17

AIC 40,632 40,628 40,633
BIC 40,848 40,817 40,785

Running time (s) 0.634 31.611 0.431
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Table 6. Regression coefficients of zero-inflated Poisson (ZIP) models.

Coefficients
Model 1 * Model 2 * Model 3 *

Estimate p-Value Estimate p-Value Estimate p-Value

Poisson (count) part
Intercept −2.2750 <0.0001 −2.1404 <0.0001 −2.0736 <0.0001

Age 1 0.0066 0.0513 0.0063 0.0542 0.0046 0.1347
Age 2 0.0012 0.6647 0.0013 0.6290 0.0019 0.4998

Female 1 −0.0448 0.4746 −0.0479 0.4324
Driver2? −0.0473 0.7366 −0.0536 0.6972 −0.0809 0.5584

Situation duration −0.0009 0.0194 −0.0017 0.9282 −0.0011 0.9558
Bonus 0.5787 0.2021 0.5953 0.2068 0.5433 0.2026

Coverage(Med2) −0.3670 0.0006 −0.3734 0.0004 −0.3646 0.0006
Coverage(Med1) −0.4294 0.0022 −0.4231 0.0022 −0.4269 0.0024
Coverage(Mini) −1.0487 0.0017 −1.0599 0.0016 −1.1031 0.0007

Payment(biannual) −0.0691 0.3318 −0.0668 0.3472
Payment(quarterly) -0.0569 0.7525 −0.0452 0.8002
Payment(monthly) 0.0091 0.8961 0.0137 0.8427
Subscription to MB 0.0596 0.7580 0.0462 0.8099 0.0126 0.9486

Usage(retired) −0.0623 0.5523 −0.0623 0.5455 −0.0538 0.6006
Usage(professional) 0.0723 0.5491 0.0710 0.5063 0.0952 0.3725

Usage(all trips) 0.2543 0.6523 0.2375 0.6765 −0.0332 0.9544
Duration −0.0043 0.2948 −0.0025 0.1145

Fuel(gasoline) −0.0346 0.6549 −0.0387 0.6228 −0.0759 0.3854
Fuel(hybrid) 0.6976 0.2553 0.7050 0.2500 0.6366 0.3302

Type(commercial) 0.0284 0.8457
Din(power) 0.0023 0.3055 0.0026 0.1207 0.0024 0.3063
Vehicle age 0.0024 0.7925 0.0032 0.1207 0.0063 0.4799

Vehicle speed 0.0010 0.7557
Zero-inflation part

Intercept −0.5544 0.6449 −0.4634 0.6883 −0.4819 0.6826
Age 1 0.0040 0.5922 0.0032 0.6558 0.0020 0.7736
Age 2 0.0108 0.0653 0.0111 0.0546 0.0121 0.0356

Female 1 −0.1962 0.1572 −0.2020 0.1358
Driver2? −0.5491 0.0892 −0.5633 0.0748 −0.6165 0.0522

Situation duration 0.0331 0.3289 0.0309 0.3575 0.0387 0.2442
Bonus −0.8651 0.4958 −0.8200 0.5308 −1.0637 0.3802

Coverage(Med2) −0.3798 0.1014 −0.3932 0.0848 −0.3595 0.1139
Coverage(Med1) −0.4030 0.1541 −0.3871 0.1601 −0.3847 0.1645
Coverage(Mini) 0.2803 0.5949 0.2610 0.6222 0.2052 0.6923

Payment(biannual) −0.2596 0.0910 −0.2547 0.0963
Payment(quarterly) −0.5661 0.2637 −0.5354 0.2798
Payment(monthly) −0.1721 0.2518 −0.1615 0.2751
Subscription to MB 0.4226 0.2041 0.3978 0.2310 0.3560 0.3030

Usage(retired) −0.0775 0.7250 −0.0783 0.7177 −0.0533 0.8043
Usage(professional) −0.2215 0.4672 −0.2273 0.4063 −0.1510 0.5703

Usage(all trips) −0.3050 0.8550 −0.3668 0.8345 −1.8681 0.7405
Duration −0.0040 0.6448

Fuel(gasoline) 0.5066 0.0017 0.5002 0.0021 0.4090 0.0236
Fuel(hybrid) 114.80 0.1984 116.60 0.1890 1.0632 0.2829

Type(commercial) 0.0041 0.9901
Din(power) 0.0000 0.9944 -0.0000 0.9959 −0.0002 0.9627
Vehicle age 0.0696 <0.0001 0.0712 <0.0001 0.0756 <0.0001

Vehicle speed 0.0006 0.9258

Log-likelihood −23,044 −23,045 −23,054
Degrees of freedom 48 43 34

AIC 46,184 46,175 46,177
BIC 46,616 46,563 46,482

Running time (s) 16.719 18.81 13.951

* Model 1: full model; Model 2: based on the variables of stepwise models in Tables 4 and 5; Model 3: based
on the variables of only significant models in Tables 4 and 5.
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5. Validation

In this section, we use our validation set to compare the predictability of the models discussed
in Section 4. Table 7 presents the predicted number of zero and non-zero claims by our models in
Section 4. In this table, individual 1 refers to an 85-year-old male policyholder with a maxi policy
that pays biannually with the bonus (percentage of the full premium) of 0.5. He holds this policy for
retired usage, for 29 years and has not signed to MB scheme. The policy was modified nine years
ago. He owns a 10-year-old tourism car with gasoline, the din of 98 and max speed of 182. In year 0,
this policyholder has not made any claim and the probability of zero claims predicted by Poisson
regression according to full model is exp(−0.1036) where 0.1036 is the estimated parameter λ and the
probability of zero claims predicted by logistic regression is 1− 0.0903 where 0.0903 is the estimated
π = Pr(y = 1). Prediction of zero claims by ZIP is 0.9104. Individual 2 is a male policyholder with a
maxi policy. This policy covers two drivers aged 54 and 56 and has been held for six years and been
modified two years ago with a bonus of 0.5 and monthly premium payment. The policyholder owns
a two-year old tourism car with diesel for work and private purposes with the din of 75 and max
speed of 163. The estimated parameter by Poisson regression is λ = 0.1794 and by logistic regression
is π = 0.1525. As we can see, the count part of ZIP for the two policyholders is very close to the
estimated value of Poisson regression. If we add the probability of zero claims in all these models,
we can approximate the number of zero claims. Results show that ZIP models considerably outperform
Poisson regression and logistic regression performs better than ZIP models in predicting zero claims.
Further, we can see that there is a slight difference between predictions made by full models, stepwise
models and the models with only significant variables.

Table 7. Prediction of the probability and the number of zero claims by our models.

Prob Zero Claims: Prob Zero Claims: Total No. of Total No. of
Individual 1 ** Individual 2 *** Zero Claims Non-Zero Claims

Observed value 0 1 35,772 4316

Poisson Full model 0.9016 0.8358 35,361.44 4726.56
Stepwise 0.9019 0.8350 35,361.27 4726.73

Significant 0.9019 0.8410 35,360.50 4727.50

Logistic Full model 0.9097 0.8475 35,606.88 4481.12
Stepwise 0.9091 0.8480 35,606.95 4481.05

Significant 0.9102 0.8512 35,606.62 4481.38

ZIP Model 1 * Count 0.1024 0.1778 35,602 4486Zero 0.9104 0.8446

Model 2 * Count 0.1016 0.1785 35,601.27 4486.74Zero 0.9113 0.8440

Model 3 * Count 0.1020 0.1710 35,601.06 4486.94Zero 0.9113 0.8495

* Model 1: full model; Model 2: based on the variables of stepwise models in Tables 4 and 5; Model 3: based on
the variables of only significant models in Tables 4 and 5. ** An 85-year-old male policyholder with biannual
maxi coverage and bonus of 0.5 for retired usage. He had this policy for 29 years and changed it nine years
ago. He has not registered for MB and owns a 10-year old tourism car with gasoline, the din of 98 and max
speed of 182. *** A 54-year-old male with monthly maxi coverage and bonus of 0.5 for private usage. The 2nd
driver is a 56-year-old female. The policy was written six years ago and was modified two years ago. It covers
a two-year-old tourism car with diesel and din of 75 and max speed of 163. It is not part of MB scheme.

6. Conclusions

We have divided our dataset into training and validation sets. Using our training set, we have
developed three models and compared our models according to their AIC and BIC values. We found
that type of coverage, vehicle age and fuel are statistically significant in most of our models. We then
validated our models and showed that a ZIP model can predict the frequency of claims better than a
Poisson regression. Further, we have shown that if we are just concerned about the number of zero
and non-zero claims, logistic regression can even outperform a ZIP model. In fact, logistic regression
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is a one layer neural network and there is a scope to extend our study to a more generalised form of
logistic regression for future research. We saw that the policyholders who were willing to be monitored
by telematics devices are less likely to make a claim. A thorough study of the policyholders’ behaviour
before and after being monitored by telematics devices can be another area of future research. Given
the current concern regarding climate change and sustainability, the possibility of the inclusion of fuel
consumption into a pricing model may be considered in the future (Tselentis et al. 2017).
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Appendix A

# Loading the prepared data
Data <- read.csv("Year0.csv", header = TRUE)
# Creating training and validation datasets
set.seed(123567)
random <- runif(dim(Data)[1])
# Training set is our data <<0.6
train <- random < 0.6
DataTrain <- cbind(Data, random, train)
# Validation set is everything not included in training set
valid <- !(train) ; DataValid <- cbind(Data, random, valid)
# Exporting our sets
write.csv(DataTrain[train == TRUE,], "DataTrain.csv")
write.csv(DataValid[valid == TRUE,], "DataValid.csv")
# Codes to produce Table~\ref{tab.2}:
DataTrain <- read.csv("DataTrain.csv", header = TRUE)
# Remove negative claim amounts
DataTrain$claim_amount[DataTrain$claim_amount < 30] <- 0
# Adjusting claim numbers
DataTrain$claim_nb <- DataTrain$claim_nb * (DataTrain$claim_amount > 0)
# Removing zeros
DataTrain$drv_age2[DataTrain$drv_age2==0] <- NA
DataTrain$vh_value[DataTrain$vh_value==0] <- NA
DataTrain$vh_cyl[DataTrain$vh_cyl==0] <- NA
DataTrain$vh_weight[DataTrain$vh_weight==0] <- NA
DataTrain$drv_drv2[DataTrain$drv_drv2==0] <- NA
# Separating the training set into two sets of policies with and without claims
NClaim <- subset(DataTrain, DataTrain$claim_nb == 0)
Claim <- subset(DataTrain, DataTrain$claim_nb > 0)
# Calculations for all policies
Mydata <- data.frame(cbind(DataTrain$claim_nb, DataTrain$pol_duration,
DataTrain$pol_sit_duration, DataTrain$drv_age1, DataTrain$drv_age2,
DataTrain$vh_value, DataTrain$vh_age, DataTrain$vh_cyl,
DataTrain$vh_speed, DataTrain$vh_weight, DataTrain$vh_din))
Mean <- sapply(Mydata, mean, na.rm = TRUE)
SD <- sapply(Mydata, sd, na.rm = TRUE)
# Calculations for policies without claims
NMydata <- data.frame(cbind(NClaim$claim_nb, NClaim$pol_duration,
NClaim$pol_sit_duration, NClaim$drv_age1, NClaim$drv_age2,
NClaim$vh_value, NClaim$vh_age, NClaim$vh_cyl, NClaim$vh_speed,
NClaim$vh_weight,NClaim$vh_din))
NMean <- with(NClaim, sapply(NMydata, mean, na.rm = TRUE))
NSD <- with(NClaim, sapply(NMydata, sd, na.rm = TRUE))
# Calculations for policies with claims
CMydata <- data.frame(cbind(Claim$claim_nb, Claim$pol_duration,
Claim$pol_sit_duration, Claim$drv_age1, Claim$drv_age2,
Claim$vh_value, Claim$vh_age, Claim$vh_cyl, Claim$vh_speed,
Claim$vh_weight, Claim$vh_din))
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CMean <- with(Claim, sapply(CMydata, mean, na.rm = TRUE))
CSD <- with(Claim, sapply(CMydata, sd, na.rm = TRUE))
# Modelling
DataTrain <- read.csv("DataTrain.csv", header = TRUE)
DataTrain$claim_amount[DataTrain$claim_amount < 30] <- 0
DataTrain$claim_nb <- DataTrain$claim_nb * (DataTrain$claim_amount > 0)
# Re-leveling categorical variables:
DataTrain$drv_sex1_r <- relevel(factor(DataTrain$drv_sex1), ref = "M")
DataTrain$pol_coverage_r <- relevel(factor(DataTrain$pol_coverage), ref = "Maxi")
DataTrain$pol_pay_freq_r <- relevel(factor(DataTrain$pol_pay_freq), ref = "Yearly")
DataTrain$pol_payd_r <- relevel(factor(DataTrain$pol_payd), ref = "No")
DataTrain$pol_usage_r <- relevel(factor(DataTrain$pol_usage), ref = "WorkPrivate")
DataTrain$vh_fuel_r <- relevel(factor(DataTrain$vh_fuel), ref = "Diesel")
DataTrain$vh_type_r <- relevel(factor(DataTrain$vh_type), ref = "Tourism")
DataTrain$drv_drv2_r <- relevel(factor(DataTrain$drv_drv2), ref = "No")# Poisson regression
Model.poi <- glm(claim_nb ~ drv_age1 + drv_age2 + drv_sex1_r + drv_drv2_r + pol_sit_duration
+ pol_bonus + pol_coverage_r + pol_pay_freq_r + pol_payd_r + pol_usage_r
+ pol_duration + vh_fuel_r + vh_type_r + vh_din + vh_age + vh_speed,
data = DataTrain,
family = poisson(link = "log"), offset = log(Exposures), na.action = na.omit)
# Logistic regression
# y=1 represents claim and y=0 no claim
DataTrain$y[DataTrain$claim_nb==0] <- 0
DataTrain$y[DataTrain$claim_nb > 0] <- 1
# Model:
Model.log <- glm(y ~ drv_age1 + drv_age2 + drv_sex1_r + drv_drv2_r + pol_sit_duration
+ pol_bonus + pol_coverage_r + pol_pay_freq_r + pol_payd_r + pol_usage_r
+ pol_duration + vh_fuel_r + vh_type_r + vh_din + vh_age + vh_speed,
data = DataTrain,
family = binomial(link = "logit"), na.action = na.omit)# ZIP regression
library("pscl")
Model.zeropoi <- zeroinfl(claim_nb ~ drv_age1 + drv_age2 + drv_sex1_r + drv_drv2_r
+ pol_sit_duration + pol_bonus + pol_coverage_r + pol_pay_freq_r
+ pol_payd_r + pol_usage_r
+ pol_duration + vh_fuel_r + vh_type_r + vh_din + vh_age + vh_speed,
data = DataTrain, na.action = na.omit,
dist = "poisson", link = "logit")
# Validation:
# loading validation set
DataValid <- read.csv("DataValid.csv", header = TRUE)
DataValid$claim_amount[DataValid$claim_amount < 30] <- 0
DataValid$claim_nb <- DataValid$claim_nb * (DataValid$claim_amount > 0)
#
DataValid$pol_coverage_r <- DataValid$pol_coverage
DataValid$vh_fuel_r <- DataValid$vh_fuel
DataValid$vh_type_r <- DataValid$vh_type
DataValid$pol_pay_freq_r <- DataValid$pol_pay_freq
DataValid$pol_payd_r <- DataValid$pol_payd
DataValid$drv_drv2_r <- DataValid$drv_drv2
DataValid$pol_usage_r <- DataValid$pol_usage
DataValid$drv_sex1_r <- DataValid$drv_sex1
DataValid$y[DataValid$claim_nb==0] <- 0
DataValid$y[DataValid$claim_nb > 0] <- 1
# Prediction:
predict.poi <- predict(Model.poi, DataValid, type = "response")
#
predict.log <- predict(Model.log, DataValid, type = "response")
#
predict.zeropoi <- cbind( DataValid, Mean = predict(Model.zeropoi,
DataValid, type = "response"),Probab = predict(Model.zeropoi,
DataValid, type = "prob"))
# Test for dispersion
library("AER")
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dispersiontest(Model.poi,trafo=1)
Model.neg <- MASS::glm.nb(claim_nb ~ drv_age1 + drv_age2 + drv_drv2_r + pol_sit_duration
+ pol_bonus + pol_coverage_r + pol_payd_r + pol_usage_r
+ vh_fuel_r + vh_din + vh_age , data = DataTrain,
link = "log", na.action = na.omit)
odTest(Model.neg)
# Codes to predict zero claims:
sum(exp(-predict(Model.poi, DataValid, type = "response")))
sum(1-predict(Model.log, DataValid, type = "response"))
sum(predict(Model.zeropoi, DataValid, type = "prob")[,1])
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