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Abstract: XGBoost is recognized as an algorithm with exceptional predictive capacity. Models for a
binary response indicating the existence of accident claims versus no claims can be used to identify
the determinants of traffic accidents. This study compared the relative performances of logistic
regression and XGBoost approaches for predicting the existence of accident claims using telematics
data. The dataset contained information from an insurance company about the individuals’ driving
patterns—including total annual distance driven and percentage of total distance driven in urban
areas. Our findings showed that logistic regression is a suitable model given its interpretability
and good predictive capacity. XGBoost requires numerous model-tuning procedures to match the
predictive performance of the logistic regression model and greater effort as regards to interpretation.

Keywords: dichotomous response; predictive model; tree boosting; GLM; machine learning

1. Introduction

Predicting the occurrence of accident claims in motor insurance lies at the heart of premium
calculation, but with the development of new artificial intelligence methods, the question of choosing
a suitable model has yet to be completely solved. In this article, the recently proposed methods of
XGBoost (Chen and Guestrin 2016) and logistic regression are considered and compared regarding
their predictive performance in a sample of insured drivers, along with their telematic information.

The advantages and disadvantages of XGBoost compared to logistic regression are discussed
and this study showed that a slightly improved predictive power is only obtained with the XGBoost
method, but this has complicated the interpretation of the impact of covariates on the expected response.
In the case of automobile insurance, where the premium calculation is regulated and has to be fully
specified, the weight of each risk factor in the final price needs to be disclosed and the connection
between the observed covariate value and the estimated probability of a claim needs to be shown.
If these conditions are not met, the regulating authority may deny the insurance company the right to
commercialize that product. This study discussed, nevertheless, why the use of an XGBoost algorithm
remains interesting for actuaries and how methods both old and new might be combined for optimum
results. This study does not examine any other boosting methods. However, excellent descriptions
can be found in Lee and Lin (2018), while extensions to high dimensional datasets are presented in
Lee and Antonio (2015), both of which presented cases studies of insurance applications. Many of
those alternatives placed their emphasis on algorithm speed, but in terms of their essential setups they
do not differ greatly from XGBoost.

To compare the two competing methods, a real dataset comprising of motor insurance policy
holders and their telematics measurements were used, that is, real-time driving information collected
and stored via telecommunication devices. More specifically, GPS-based technology captures an
insured’s driving behavior patterns, including distance travelled, driving schedules, and driving speed,
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among many others. Here, pay-as-you-drive (PAYD) insurance schemes represent an alternative method
for pricing premiums based on personal mileage travelled and driving behaviors. Guillen et al. (2019),
Verbelen et al. (2018), and Pérez-Marín and Guillén (2019) showed the potential benefits of analyzing
telematics information when calculating motor insurance premiums. Gao and Wüthrich (2019)
analyzed high-frequency GPS location data (second per second) of individual car drivers and trips.
Gao and Wüthrich (2018) and Gao et al. (2019) investigated the predictive power of covariates extracted
from telematics car driving data using the speed-acceleration heatmaps proposed by Wüthrich (2017).
Further, Hultkrantz et al. (2012) highlighted the importance of PAYD insurance plans insofar as they
allow insurance companies to personalize premium calculation and, so, charge fairer rates.

The rest of this paper is organized as follows. First, the notation is introduced and the logistic
regression and XGBoost methods are outlined. Second, our dataset is described and some descriptive
statistics are provided. Third, the results of our comparisons in both a training and a testing sample are
reported. Finally, following the conclusion, some practical suggestions are offered about the feasibility
of applying new machine learning methods to the field of insurance.

2. Methodology Description

In a data set of n individuals and P covariates, there is a binary response variable Yi, i = 1, . . . ,
n taking values 0, 1; and a set of covariates denoted as Xip, p = 1, . . . , P. The conditional probability
density function of Yi = t (t = 0, 1) given Xi (Xi1, . . . , XiP), is denoted as ht(Xi). Equivalently, it can be
said that Prob(Yi = t) = ht(Xi), and that E(Yi) = Prob(Yi = 1) = h1(Xi).

2.1. Logistic Regression

Logistic regression, a widely recognized regression method for predicting the expected
outcome of a binary dependent variable, is specified by a given set of predictor variables.
McCullagh and Nelder (1989) presented the logistic regression model as part of a wider class of
generalized linear models. A logistic regression is distinguished from a classical linear regression
model primarily because the response variable is binary rather than continuous in nature.

The logistic regression uses the logit function as a canonical link function, in other words, the log
ratio of the probability functions ht(Xi) is a linear function of X; that is:

ln
h1(Xi)

h0(Xi)
= ln

Prob(Yi = 1)
Prob(Yi = 0)

= β0 +
∑P

p=1
Xipβp, (1)

where β0, β1, . . . , βP are the model coefficients1, and Prob(Yi = 1) is the probability of observing the
event in the response (response equal to 1), and Prob(Yi = 0) is the probability of not observing the
event in the response (response equal to 0).

The link function provides the relationship between the linear predictor η = β0 +
∑P

p=1 Xipβp

and the mean of the response given certain covariates. In a logistic regression model, the expected
response is:

E(Yi) = Prob(Yi = 1) =
eβ0+

∑P
p=1 Xipβp

1 + eβ0+
∑P

p=1 Xipβp
. (2)

A logistic regression can be estimated by the maximum likelihood (for further details see,
for example, Greene 2002). Therefore, the idea underlying a logistic regression model is that there must
be a linear combination of risk factors that is related to the probability of observing an event. The data
analyst’s task is to find the fitted coefficients that best estimate the linear combination in (2) and to
interpret the relationship between the covariates and the expected response. In a logistic regression

1 Note we have opted to refer here to coefficients as opposed to parameters to avoid confusion with the values defined below
when describing the XGBoost method.
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model, a positive estimated coefficient indicates a positive association. Thus, when the corresponding
covariate increases, the probability of the event response also increases. If the estimated coefficient is
negative, then the association is negative and, therefore, the probability of the event decreases when
the observed value of the corresponding covariate increases. Odds-ratios can be calculated as the
exponential values of the fitted coefficients and they can also be directly interpreted as the change in
odds when the corresponding factor increases by one unit.

Apart from their interpretability, the popularity of logistic regression models is based on two
characteristics: (i) The maximum likelihood estimates are easily found; and (ii) the analytical form of
the link function in (2) always provides predictions between 0 and 1 that can be directly interpreted
as the event probability estimate. For these motives, logistic regression has become one of the most
popular classifiers, their results providing a straightforward method for predicting scores or propensity
values which, in turn, allow new observations to be classified to one of the two classes in the response.
For R users, the glm function is the most widely used procedure for obtaining coefficient estimates and
their standard errors, but alternatively, a simple optimization routine can easily be implemented.

2.2. XGBoost

Chen and Guestrin (2016) proposed XGBoost as an alternative method for predicting a response
variable given certain covariates. The main idea underpinning this algorithm is that it builds D
classification and regression trees (or CARTs) one by one, so that each subsequent model (tree) is
trained using the residuals of the previous tree. In other words, the new model corrects the errors
made by the previously trained tree and then predicts the outcome.

In the XGBoost, each ensemble model2 uses the sum of D functions to predict the output:

Ŷi =
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(Xi)=
∑D

d=1
fd(Xi), fd ∈ F, i = 1, . . . , n (3)

where F is the function space3 of the CART models, and each fd corresponds to an independent CART
structure which is denoted as q. In other words, q is the set of rules of an independent CART that
classifies each individual i into one leaf. The training phase involves classifying n observations so that,
given the covariates X, each leaf has a score that corresponds to the proportion of cases which are
classified into the response event for that combination of Xi. This score is denoted as wq(X).

Thus, q can be written as a function q: RP
→ T, where T is the total number of leaves of a tree and j

is later used to denote a particular leaf, j = 1, . . . , T. To calculate the final prediction for each individual,
the score of the leaves are summed as in (3), where F = {f (X) = wq(X)}, with q: RP

→ T, and w ∈ RT.
In general, boosting methods fit D models in D iterations (each iteration denoted by d, d = 1,

. . . , D) in reweighted versions. Weighting is a mechanism that penalizes the incorrect predictions of
past models, in order to improve the new models. The weighting structures are generally optimal
values, which are adjusted once a loss function is minimized. Then, new learners incorporate the new
weighting structure in each iteration, and predict new outcomes.

In particular, the XGBoost method minimizes a regularized objective function, i.e., the loss function
plus the regularization term:

L =
∑n

i=1
`(Yi, Ŷi) +

∑D

d=1
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2 Natekin and Knoll (2013) explain that the ensemble model can be understood as a committee formed by a group of base
learners or weak learners. Thus, any weak learner can be introduced as a boosting framework. Various boosting methods have
been proposed, including: (B/P-) splines (Huang and Yang 2004); linear and penalized models (Hastie et al. 2009); decision
trees (James et al. 2013); radial basis functions (Gomez-Verdejo et al. 2005); and Markov random fields (Dietterich et al. 2008).
Although Chen and Guestrin (2016) state fk as a CART model, the R package xgboost currently performs three boosters:
linear, tree and dart.

3 The XGBoost works in a function space rather than in a parameter space. This framework allows the objective function to be
customized accordingly.
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where ` is a convex loss function that measures the difference between the observed response Yi and
predicted response Ŷi and ή = µT + 1

2λ‖w‖
2
2, ή is the regularization term also known as the shrinkage

penalty which penalizes the complexity of the model and avoids the problem of overfitting. The tree
pruning parameter µ regulates the depth of the tree and λ is the regularization parameter that is
associated with l2-norm of the scores vector, which is a way of evaluating the magnitude of scores.
Including this norm, or any other similar expression, penalizes excessive sizes in the components of w.

It is noted that pruning is a machine learning technique which reduces the size of a decision tree by
removing decision nodes whose corresponding features have little influence on the final prediction of
the target variable. This procedure reduces the complexity of the model and, thus, corrects overfitting.

The l2-norm is used in the L2 or Ridge regularization method, while the l1-norm is used in the
L1 or Lasso regularization method. Both methods can take the Tikhonov or the Ivanov form (see
Tikhonov and Arsenin 1977; Ivanov et al. 2013).

2.2.1. A Closer Look at the XGBoost Minimization Algorithm

A loss function or a cost function like (4) measures how well a predictive algorithm fits the
observed responses in a data set (for further details, see Friedman et al. 2001). For instance, in a binary
classification problem, the logistic loss function is suitable because the probability score is bounded
between 0 and 1. Then, by selecting a suitable threshold, a binary outcome prediction can be found.
Various loss functions have been proposed in the literature, including: The square loss; the hinge loss
(Steinwart and Christmann 2008); the logistic loss (Schapire and Freund 2012); the cross entropy loss
(De Boer et al. 2005); and the exponential loss (Elliott and Timmermann 2003).

The intuition underpinning the regularization proposed in (4) involves reducing the magnitude
of w, so that the procedure can avoid the problem of overfitting. The larger the e, the smaller the
variability of the scores (Goodfellow et al. 2016).

The objective function at the d-th iteration is:

L
(d) =

∑n

i=1
`(Yi, Ŷ(d−1)

i + fd(Xi)) +
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( fd), (5)

where Ŷ(d−1)
i is the prediction of the i-th observation at the (d − 1)-th iteration. It is noted that

`(·, ·) is generally a distance so its components can be swapped, i.e., `(Yi, Ŷi) = `(Ŷi, Yi). Following
Chen and Guestrin (2016), it is assumed that the loss function is a symmetric function.

Due to the non-linearities in the objective function to be minimized, the XGBoost is an algorithm
that uses a second-order Taylor approximation of the objective function L in (5) as follows:

L
(d) �

∑n

i=1
[`(Yi, Ŷ(d−1)

i ) + gi fd(Xi) +
1
2

hi fd
2(Xi)]+
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The l2-norm shown in (8) is equivalent to the sum of the squared weights of all T leafs. Therefore
(8) is expressed as:

L
(d) =

∑n

i=1
[gi fd(Xi) +

1
2

hi fd
2(Xi)]+uT +

1
2
λ
∑T

j=1
w2

j . (9)

The definition of I j = {i|q(Xi)}, I j is the set of observations that are classified into one leaf j, j = 1,
. . . , T. Each I j receives the same leaf weight w j. Therefore, L(d) in (9) can also be seen as an objective
function that corresponds to each set I j. In this sense, the fd(Xi), which is assigned to the observations,
corresponds to the weight wj that is assigned to each set I j. Therefore (9) is expressed as:

L
(d) =

∑T

j=1

[(∑
i∈I j

gi

)
w j +

1
2

(∑
i∈I j

hi + λ

)
w2

j

]
+ uT. (10)

In order to find the optimal leaf weight w∗j, the authors derived (10) with respect to w j, let the new
equation be equal to zero, and cleared the value of w∗j. Then the authors obtained:

w∗j = −

∑
i∈I j

gi∑
i∈I j

hi + λ
. (11)

The (10) was updated by replacing the new w∗j. The next boosting iteration minimized the following
objective function:

L̂
(d) =

∑T
j=1

(∑i∈I j
gi
)(
−

∑
i∈I j

gi∑
i∈I j

hi+λ

)
+ 1

2

(∑
i∈I j

hi + λ
)(
−

∑
i∈I j

gi∑
i∈I j

hi+λ

)2+ uT

= − 1
2
∑n

i=1

(∑
i∈I j

gi

)2

(∑
i∈I j

hi+λ
) + uT.

(12)

Once the best objective function has been defined and the optimal leaf weights assigned to I j,
the best split procedure is considered. As (12) is derived for a wide range of functions, the authors
were not able to identify all possible tree structures q in each boosting iteration. This algorithm starts
by building a single leaf and continues by adding new branches. Consider the following example:

Here, IL and IR are the sets of observations that are in the left and right parts of a node following a
split. Therefore, I = IL + IR.

L̂
(d) =

1
2

−∑n

i=1

(∑
i∈I j

gi
)2(∑

i∈I j
hi + λ

) +∑n

i=1

(∑
i∈IL

gi
)2(∑

i∈IL
hi + λ

) +∑n

i=1

(∑
i∈IR

gi
)2(∑

i∈IR
hi + λ

)
− u, (13)

L̂
(d) of (13) is the node impurity measure, which is calculated for the P covariates. The split is

determined by the maximum value of (13). For example, in the case of CART algorithms, the impurity
measure for categorical target variables can be information gain, Gini impurity or chi-square, while for
continuous target variables it can be the Gini impurity.

Once the tree fd is completely built (i.e., its branches and leaf weights are established), observations
are mapped on the tree (from the root to one corresponding leaf). Thus, the algorithms will update from
(5) to (14) as many times as D boosting iterations are established and the final classification is the sum
of the D obtained functions which are shown in (3). Consequently, the XGBoost corrects the mistaken
predictions in each iteration, as far as this is possible, and tends to overfit the data. Thus, to prevent
overfitting, the regularization parameter value in the objective function is highly recommended.
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2.2.2. Implementation

An example of R code is given in the Appendix A.
The implementation of XGBoost has proved to be quite effective for fitting real binary response

data and a good method for providing a confusion matrix, i.e., a table in which observations and
predictions are compared, with very few false positives and false negatives. However, since the final
prediction of an XGBoost algorithm is the result of a sum of D trees, the graphical representation and
the interpretation of the impact of each covariate on the final estimated probability of occurrence may
be less direct than in the linear or logistic regression models. For instance, if the final predictor is a
combination of several trees, but each tree has a different structure (in the sense that each time the
order of segmentation differs from that of the previous tree), the role of each covariate will depend on
understanding how the covariate impacts the result in the previous trees and what the path of each
observation is in each of the previous trees. Thus, in the XGBoost approach, it is difficult to isolate the
effect on the expected response of one particular covariate compared to all the others.

Under certain circumstances, the XGBoost method can be interpreted directly. This happens when
fd has analytical expressions that can easily be manipulated to compute

∑D
d=1 fd(Xi). One example

is the linear booster, which means that each fd is a linear combination of the covariates rather than a
tree-based classifier. In this case of a linear function, the final prediction is also a linear combination of
the covariates, resulting from the sum of the weights associated with each covariate in each fd.

The results for the true XGBoost predictive model classifier can easily be obtained in R with the
xgboost package.

3. Data and Descriptive Statistics

Our case-study database comprised of 2767 drivers under 30 years of age who underwrote a
pay-as-you-drive (PAYD) policy with a Spanish insurance company. Their driving activity was recorded
using a telematics system. This information was collected from 1 January through 31 December 2011.
The data set contained the following information about each driver: The insured’s age (age), the age
of the vehicle (ageveh) in years; the insured’s gender (male); the driving experience (drivexp) in years;
the percentage of total kilometers travelled in urban areas (pkmurb); the percentage of total kilometers
travelled at night—that is, between midnight and 6 am (pkmnig); the percentage of kilometers above
the mandatory speed limits (pkmexc); the total kilometers (kmtotal); and, finally, the presence of an
accident claim with fault (Y) which was coded as 1 when, at least, one claim where the fault occurred
in the observational period and was reported to the insurance company, and 0 otherwise. This study
is interested in predicting Y using the aforementioned covariates. This data set has been extensively
studied in Ayuso et al. (2014, 2016a, 2016b) and Boucher et al. (2017).

Table 1 shows the descriptive statistics for the accident claims data set. This highlighted that a
substantial part of the sample did not suffer an accident in 2011, with just 7.05% of drivers reporting
at least one accident claim. The insureds with no accident claim seemed to have travelled fewer
kilometers than those presenting a claim. The non-occurrence of accident claims was also linked
to a lower percentage of driving in urban areas and a lower percentage of kilometers driven above
mandatory speed limits. In this dataset, 7.29% of men and 6.79% of women had an accident during the
observation year.

The data set was divided randomly into a training data set of 1937 observations (75% of the
total sample) and a testing data set of 830 observations (25% of the total sample). The function
CreateDataPartion of R was used to maintain the same proportion of events (coded as 1) of the total
sample in both the training and testing data sets.
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Table 1. The description of the variables in the accident claims data set 1.

Variables
Non-Occurrence of

Accident Claims
(Y = 0)

Occurrence of
Accident Claims

(Y = 1)
Total

Age (years) 25.10 24.55 25.06

Gender
Female 1263 (93.21%) 92 (6.79%) 1355

Male 1309 (92.71%) 103 (7.29%) 1412

Driving experience (years) 4.98 4.46 4.94

Age of vehicle (years) 6.37 6.17 6.35

Total kilometers travelled 7094.63 7634.97 7132.71

Percentage of total kilometers
travelled in urban areas 24.60 26.34 24.72

Percentage of total kilometers
above the mandatory speed limit 6.72 7.24 6.75

Percentage of total kilometers
travelled at night 6.88 6.66 6.86

Total number of cases 2572 (92.95%) 195 (7.05%) 2767
1 The mean of the variables according to the occurrence and non-occurrence of accident claims. The absolute
frequency and row percentage is shown for the variable gender.

4. Results

In this section, the results obtained in the training and testing samples were compared when
employing the methods described in Section 2.

4.1. Coefficient Estimates

Table 2 presents the estimates obtained using the two methods. It is noted, however, that the
values are not comparable in magnitude as they correspond to different specifications. The logistic
regression uses its classical standard method to compute the coefficients of the variables and their
standard errors. However, the boosting process of the XGBoost builds D models in reweighted versions
and, therefore, a historical record of the D times P + 1 coefficient estimates was obtained. XGBoost can
only obtain a magnitude of those coefficients if the base learner allows it, and this is not the case when
fd are CART models.

The signs obtained by the logistic regression point estimate and the mean of the XGBoost
coefficients are the same. The inspection of the results in Table 2 shows that older insureds are less
likely to suffer a motor accident than younger policy holders4. In addition, individuals who travel more
kilometers in urban areas are more likely to have an accident than those that travel fewer kilometers in
urban areas. The authors were not able to interpret the coefficients of the XGBoost, but by inspecting
the maximum and minimum values of the linear booster case, an idea of how the estimates fluctuate
until iteration D was obtained.

Only the coefficients of age and percentage of kilometers travelled in urban areas were significantly
different from zero in the logistic regression model, but the authors preferred to keep all the coefficients
of the covariates in the estimation results to show the general effect of the telematics covariates on the
occurrence of accident at-fault claims in this dataset, and to evaluate the performance of the different
methods in this situation.

4 In general, this is only partially true. The relation of the variable age is typically non-linear, U-shaped, as (very) young
drivers also cause a lot of accidents. The maximum age in this sample is 30 and so, even if models with age and age2 were
estimated, the results did not change substantially.
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Table 2. The parameter estimates of the logistic regression and XGBoost with linear booster.

Training Data Set

Parameter
Estimates

Logistic Regression XGBoost (Linear Booster)

Lower
Bound Estimate Upper

Bound p-Value Minimum Mean Maximum

Constant −2.8891 −0.5442 1.8583 0.6526 −2.6760 −2.6690 −1.7270
* age −0.2059 −0.0994 0.0011 0.0591 −0.2573 −0.2416 −0.0757

drivexp −0.1285 −0.0210 0.0906 0.7060 −0.0523 −0.0517 −0.0069
ageveh −0.0786 −0.0249 0.0257 0.3481 −0.0897 −0.0885 −0.0220

male −0.3672 0.0039 0.3751 0.9837 0.0019 0.0020 0.0070
kmtotal −0.0203 0.0266 0.2505 0.0137 0.1164 0.1176
pkmnig −0.0354 −0.0046 0.0239 0.7625 −0.0292 −0.0290 −0.0061
pkmexc −0.0122 0.0144 0.0385 0.2650 0.0180 0.1007 0.1016

* pkmurb 0.0002 0.0146 0.0286 0.0425 0.0436 0.2008 0.2023

In the logistic regression columns, the point estimates are presented with the lower and upper bound of a 95%
confidence interval. In the XGBoost columns, the means of the coefficient estimates with a linear boosting of the D
iterations are presented. Similarly, bounds are presented with the minimum and maximum values in the iterations.
There are no regularization parameter values. * Indicates that the coefficient is significant at the 90% confidence
level in the logistic regression estimation. The calculations were performed in R and scripts are available from
the authors.

Figure 1 shows the magnitude of all the estimates of the XGBoost in 200 iterations.
From approximately the tenth iteration, the coefficient estimates tend to become stabilized. Thus,
no extreme changes were present during the boosting.
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4.2. Prediction Performance

The performance of the two methods was evaluated using the confusion matrix, which compares
the number of observed events and non-events with their corresponding predictions. Usually, the larger
the number of correctly classified responses, the better the model. However, the out-of-sample
performance was even more important than in-sample results. This means that the classifier must
be able to predict the observed events and non-events in the testing sample and not just in the
training sample.

The predictive measures used to compare the predictions of the models were sensitivity, specificity,
accuracy and the root mean square error (RMSE). Sensitivity measures the proportion of actual positives
that are classified correctly as such, i.e., True positive/(True positive + False negative). Specificity
measures the proportion of actual negatives that are classified correctly as such, i.e., True negative/(True
negative + False positive). Accuracy measures the proportion of total cases classified correctly (True
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positive + True negative)/Total cases. RMSE measures the distance between the observed and predicted
values of the response. It is calculated as follows:√∑n

i=1

(Yi − Ŷi)
2

n
, (14)

The higher the sensitivity, the specificity and the accuracy, the better the models predict the
outcome variable. The lower the value of RMSE, the better the predictive performance of the model.

Table 3 presents the confusion matrix and the predictive measures of the methods (the logistic
regression, XGBoost with a tree booster and XGBoost with a linear booster) for the training and
testing samples. The results in Table 3 indicated that the performance of the XGBoost with the linear
booster (last column) was similar to that of the logistic regression both in the training and testing
samples5. XGBoost using the tree approach provided good accuracy and a good RMSE value in the
training sample, but did not perform as well as the other methods in the case of the testing sample.
More importantly, XGBoost failed to provide good sensitivity. In fact, the XGBoost with the tree booster
clearly overfitted the data, because while it performed very well in the training sample, it failed to
do so in the testing sample. For instance, sensitivity was equal to 100% in the training sample for the
XGBoost tree booster methods, but it was equal to only 7.9% in the testing sample.

Table 3. The confusion matrix and predictive measures of the logistic regression, XGBoost with a tree
booster and XGBoost with a linear booster for the testing and training data sets.

Testing Data Set

Predictive Measures Logistic Regression XGBoost
(Tree Booster)

XGBoost
(Linear Booster)

Yi = 0, Ŷi = 0 524 692 516
Yi = 1, Ŷi = 0 38 58 38
Yi = 0, Ŷi = 1 243 75 251
Yi = 1, Ŷi = 1 25 5 25

Sensitivity 0.3968 0.0790 0.3968
Specificity 0.6831 0.9022 0.6728
Accuracy 0.6614 0.8397 0.6518

RMSE 0.2651 0.2825 0.2651

Training Data Set

Predictive Measures Logistic Regression XGBoost
(Tree Booster)

XGBoost
(Linear Booster)

Yi = 0, Ŷi = 0 1030 1794 1030
Yi = 1, Ŷi = 0 55 0 55
Yi = 0, Ŷi = 1 775 11 775
Yi = 1, Ŷi = 1 77 132 77

Sensitivity 0.5833 1.0000 0.5833
Specificity 0.5706 0.9939 0.5706
Accuracy 0.5715 0.9943 0.5715

RMSE 0.2508 0.0373 0.2508

The threshold used to convert the continuous response into a binary response is the mean of the outcome variable.
The authors performed the calculations.

It cannot be concluded from the foregoing, however, that XGBoost has a poor relative predictive
capacity. Model-tuning procedures have not been incorporated in Table 3. However, tuning offers
the possibility of improving the predictive capacity by modifying some specific parameter estimates.

5 This is not surprising because XGBoost (linear) is a combination of linear probability models.
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The following are some of the possible tuning actions that could be taken: Fixing a maximum for
the number of branches of the tree (maximum depth); establishing a limited number of iterations of
the boosting; or fixing a number of subsamples in the training sample. The xgboost package in R
denotes these tuning options as general parameters, booster parameters, learning task parameters,
and command line parameters, all of which can be adjusted to obtain different results in the prediction.

Figure 2 shows the ROC curve obtained using the three methods on the training and testing
samples. This study confirmed that the logistic regression and XGBoost (linear) have a similar predictive
performance. The XGBoost (tree) presented an outstanding AUC in the case of the training sample,
and the same value as the logistic regression in the testing sample. However, as discussed in Table 3,
it failed to maintain this degree of sensitivity when this algorithm is used with new samples.
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Figure 2. The receiver operating characteristics (ROC) curve obtained using the three methods on the
training and testing samples. The red solid line represents the ROC curve obtained by each method
in the training sample, and the blue dotted line represents the ROC curve obtained by each method
in the testing sample. The area under the curve (AUC) is 0.58 for the training sample (T.S) and 0.49
for the testing sample (Te.S) when logistic regression is used; 0.58 for the T.S and 0.53 for the Te.S
when XGBoost (linear booster) is used; and, 0.997 for the T.S and 0.49 for the Te.S when the XGBoost
(tree booster) is used.

4.3. Correcting the Overfitting

One of the most frequently employed techniques for addressing the overfitting problem is
regularization. This method shrinks the magnitude of the coefficients of the covariates in the modelling
as the value of the regularization parameter increases.

In order to determine whether the XGBoost (tree booster) can perform better than the logistic
regression model, a simple sensitivity analysis of the regularization parameters was proposed. In so
doing, the evolution of the following confusion matrix measures was evaluated: Accuracy, sensitivity
and specificity—according to some given regularization parameter values for the training and the
testing sample—and, finally, the regularization parameter was chosen that gives the highest predictive
measures in the training and testing samples.

Two regularization methods were considered. First, the L2 (Ridge) was considered, which
is Chen and Guestrin (2016) original proposal and takes the l2-norm of the leaf weights. It has a
parameter λ that is multiplied to the l2-norm. Second, the L1 (Lasso) method was considered, which is
an additional implementation possibility of the xgboost package in R that takes the l1-norm of the leaf
weights. It has a parameter α that is multiplied to the l1-norm. Consequently, λ and calibrated the
regularization term in (4). For simplicity, no tree pruning was implemented, so µ = 0 in (4).
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The values of α and λ should be as small as possible, because they add bias to the estimates,
and the models tend to become underfitted as the values of the regularization parameters become
larger. For this reason, their changes were evaluated in a small interval. Figure 3 shows the predictive
measures for the testing and training samples according to the values of α when the L1 regularization
method was implemented. When α = 0, exactly the same predictive measure values as in Table 3
(column 3) were obtained because the objective function had not been regularized. As the value of α
increased, the models’ accuracy and sensitivity values fell sharply—to at least α ' 0.06 in the training
sample. In the testing sample, the fall in these values was not as pronounced. However, when α
was lower than 0.06, the specificity performance was the lowest of the three measures. Moreover,
selecting an α value lower than 0.05 resulted in higher accuracy and sensitivity measures, but lower
specificity. In contrast, when α equaled 0.06 in the testing sample, the highest specificity level of 0.5079
was obtained, with corresponding accuracy and sensitivity values of 0.5892 and 0.5988, respectively.
In the training sample, when α = 0.06 the specificity, accuracy and sensitivity were: 0.7227, 0.6086,
and 0.6000, respectively. As a result, when was fixed at 0.06, the model performed similarly in both the
testing and training samples.Risks 2019, 7, x FOR PEER REVIEW 11 of 16 
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Thus, with the L1 regularization method (α = 0.06), the new model recovered specificity, but lost
some sensitivity when compared with the performance of the first model in Table 3, for which no
regularization was undertaken. Thus, the authors concluded that α = 0.06 which can be considered
as providing the best trade-off between correcting for overfitting while only slightly reducing the
predictive capacity.

Figure 4 shows the predictive measures for the testing and training samples according to the
values of λ when the L2 regularization method is implemented. From λ = 0 to λ = 0.30. all predictive
measures were approximately 100% in the training sample. However, very different results were
recorded in the testing sample. Specifically, accuracy and sensitivity fell slowly, but specificity was
low—there being no single λ that made this parameter exceed at least 20%. Therefore, no λ could help
improve specificity in the testing sample. The L2 regularization method did not seem to be an effective
solution to correct the problem of overfitting in our case study data set.



Risks 2019, 7, 70 12 of 16
Risks 2019, 7, x FOR PEER REVIEW 12 of 16 

 

 

Figure 4. The predictive measures according to 𝜆. L2 method applied to the training and testing 
samples. 

Table 4 shows the three most important variables for each method. The two agree on the 
importance of the percentage of total kilometers travelled in urban areas as a key factor in predicting 
the response variable. Total kilometers driven and age only appeared among the top three variables 
in the case of logistic regression, while the percentage of kilometers travelled over the speed limits 
and the percentage of kilometers driven at night appeared among the most important variables in 
the case of the XGBoost method. 

Table 4. Variable Importance. The most relevant variables of the different methods. 

Level of 
Importance Logistic Regression 

XGBoost  
(Tree Booster) 

First 
percentage of total kilometers 

travelled in urban areas  
percentage of kilometers above the 

mandatory speed limits 

Second age percentage of total kilometers 
travelled in urban areas 

Third total kilometers percentage of total kilometers 
travelled at night 

5. Conclusions 

XGBoost, and other boosting models, are dominant methods today among machine-learning 
algorithms and are widely used because of their reputation for providing accurate predictions. This 
novel algorithm is capable of building an ensemble model characterized by an efficient learning 
method that seems to outperform other boosting-based predictive algorithms. Unlike the majority of 
machine learning methods, XGBoost is able to compute coefficient estimates under certain 
circumstances and, therefore, the magnitude of the effects can be studied. The method allows the 
analyst to measure not only the final prediction, but also the effect of the covariates on a target 
variable at each iteration of the boosting process, which is something that traditional econometric 
models (e.g., generalized linear models) do in one single estimation step. 

Figure 4. The predictive measures according toλ. L2 method applied to the training and testing samples.

The difference in outcomes recorded between the L1 and L2 regularization approaches might
also be influenced by the characteristics of each regularization method. Goodfellow et al. (2016) and
Bishop (2007) explained that L1 penalizes the sum of the absolute value of the weights, and that it
seems to be robust to outliers, has feature selection, provides a sparse solution, and is able to give
simpler but interpretable models. In contrast, L2 penalizes the sum of the square weights, has no
feature selection, is not robust to outliers, is more able to provide better predictions when the response
variable is a function of all input variables, and is better able to learn more complex models than L1.

4.4. Variable Importance

Variable importance or feature selection is a technique that measures the contribution of each
variable or feature to the final outcome prediction based on the Gini impurity. This method is of great
relevance in tree models because it helps identify the order in which the leaves appear in the tree.
The tree branches (downwards) begin with the variables that have the greatest effect and end with
those that have the smallest effect (for further details see, for example, Kuhn and Johnson 2013).

Table 4 shows the three most important variables for each method. The two agree on the
importance of the percentage of total kilometers travelled in urban areas as a key factor in predicting
the response variable. Total kilometers driven and age only appeared among the top three variables in
the case of logistic regression, while the percentage of kilometers travelled over the speed limits and
the percentage of kilometers driven at night appeared among the most important variables in the case
of the XGBoost method.
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Table 4. Variable Importance. The most relevant variables of the different methods.

Level of Importance Logistic Regression XGBoost
(Tree Booster)

First percentage of total kilometers
travelled in urban areas

percentage of kilometers above the
mandatory speed limits

Second age percentage of total kilometers
travelled in urban areas

Third total kilometers percentage of total kilometers
travelled at night

5. Conclusions

XGBoost, and other boosting models, are dominant methods today among machine-learning
algorithms and are widely used because of their reputation for providing accurate predictions.
This novel algorithm is capable of building an ensemble model characterized by an efficient learning
method that seems to outperform other boosting-based predictive algorithms. Unlike the majority of
machine learning methods, XGBoost is able to compute coefficient estimates under certain circumstances
and, therefore, the magnitude of the effects can be studied. The method allows the analyst to measure
not only the final prediction, but also the effect of the covariates on a target variable at each iteration of
the boosting process, which is something that traditional econometric models (e.g., generalized linear
models) do in one single estimation step.

When a logistic regression and XGBoost compete to predict the occurrence of accident claims
without model-tuning procedures, the predictive performance of the XGBoost (tree booster) was much
higher than the logistic regression in the training sample, but considerably poorer in the testing sample.
Thus, a simple regularization analysis has been proposed here to correct this problem of overfitting.
However, the improvement in predictive performance of the XGBoost following this regularization
was similar to that obtained by the logistic regression. This means additional efforts have to be taken
to tune the XGBoost model to obtain a higher predictive performance without overfitting the data.
This might be considered as the trade-off between obtaining a better performance, and the simplicity it
provides for interpreting the effect of the covariates.

Based on our results, the classical logistic regression model can predict accident claims using
telematics data and provided a straightforward interpretation of the coefficient estimates. Moreover,
the method offered a relatively high predictive performance considering that only two coefficients
were significant at the 90% confidence level. These results are not bettered by the XGBoost method.

When the boosting framework of XGBoost is not based on a linear booster, interpretability
becomes difficult, as a model’s coefficient estimates cannot be calculated. In this case, variable
importance can be used to evaluate the weight of the individual covariates in the final prediction.
Here, different conclusions were obtained for the two methods employed. Thus, given that the
predictive performance of XGBoost was not much better than the logistic regression, even after
careful regularization, the authors concluded that the new methodology needs to be adopted carefully,
especially in a context where the number of event responses (accident) is low compared to the opposite
response (no accident). Indeed, this phenomenon of unbalanced response is attracting more and more
attention in the field of machine learning, because it is known that machine learning algorithms do not
work well in datasets with imbalanced responses (He and Garcia 2008). XGBoost might perform better
in other problems, especially when the number of events and no events are balanced. The reputation
of XGBoost (tree booster) may be due to its capacity of accuracy. In our case study, XGBoost has
proven the highest accuracy in the testing and training data sets, but it does not seem to be effective
for sensitivity.

For future work, it would be interesting to see bigger datasets with thousands of explanatory
variables to conclude whether or not XGBoost has better predictive performance than a regularized
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version of logistic regression. Similarly, it would also be interesting to see comparative studies for other
machine learning approaches using this dataset, including but not limited to neural network approaches.
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Appendix A

R Code

# Loading data
load(“data.Rdata”)
x<-data

# Training and test data sets
# We divide 70% of the data set as training, and 30% as testing

library(caret)
part<-createDataPartition(x$Y,p = 0.70, list = F)
train.set<-x[part,] # training data set
train.set<-train.set()[−1]
testing.set<- x[-part,] # testing data set
testing.set<-testing.set()[−1]

## First Method: Logistic Regression
logistic1 <- glm(factor(train.set$Y) ~ x2+I(x2ˆ2)+x3+x4+factor(x1)+x5+x6+x7+x8,
data = train.set,family = binomial(link = ‘logit’))
summary(logistic1)

# Predicting the output with the testing data set
predicted.log.test <- predict(logistic1,testing.set, type = ‘response’)

# Predicting the output with the training data set
predicted.log1.train<- predict(logistic1,train.set, type = ‘response’)

# Variable Importance
varImp(logistic1)

## Second Method: XGBoost (tree booster)
library(xgboost)
library(Matrix)

# Function xgboost requires sparsing data first
sparse_xx.tr<- sparse.model.matrix(Y ~ x2+I(x2ˆ2)+x3+x4+factor(x1)+x5+x6+x7+x8, data = train.set)
sparse_xx.te<- sparse.model.matrix(Y ~ x2+I(x2ˆ2)+x3+x4+factor(x1)+x5+x6+x7+x8,
data = testing.set)
xgboost_reg <- xgboost(data = sparse_xx.tr, label = train.set$Y, objective = “binary:logistic”,
nrounds = 100, verbose = 1)

# Predicting the output with testing data set
pred.xgboost.test<- predict(xgboost_reg,sparse_xx.te, outputmargin = F)

# Predicting the output with training data set
pred.xgboost.train<-predict(xgboost_reg,sparse_xx.tr, outputmargin = F)

# Variable Importance
importance <- xgb.importance(feature_names = sparse_xx.tr@Dimnames[(2)],
model = xgboost_reg)
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