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Abstract: We present several fast algorithms for computing the distribution of a sum of spatially
dependent, discrete random variables to aggregate catastrophe risk. The algorithms are based on
direct and hierarchical copula trees. Computing speed comes from the fact that loss aggregation
at branching nodes is based on combination of fast approximation to brute-force convolution,
arithmetization (regriding) and linear complexity of the method for computing the distribution
of comonotonic sum of risks. We discuss the impact of tree topology on the second-order moments
and tail statistics of the resulting distribution of the total risk. We test the performance of the presented
models by accumulating ground-up loss for 29,000 risks affected by hurricane peril.

Keywords: risk aggregation; numerical convolution; copula trees; Monte-Carlo simulation;
spatial correlation

1. Introduction

The main objective of catastrophe (CAT) modeling is to predict the likelihood, severity and
socio-economic consequences of catastrophic events such as hurricanes, earthquakes, pandemias and
terrorism. Insurance companies use models to prepare for the financial impact from catastrophic
events. Such models offer realistic loss estimates for a wide variety of future scenarios of catastrophes.
Losses computed by CAT models can either be deterministic pertaining to a specific historical event
(e.g., 2011 Tohoku earthquake in Japan or 2012 Hurricane Sandy in the U.S.), or probabilistic, inferred
from an ensemble of hypothetical events (Clark 2015). In the probabilistic framework, large catalogs of
events are randomly simulated using Monte-Carlo (MC) methods coupled with physical/conceptual
models. For example, based on historical hurricane data, distributions of parameters such as
frequencies, intensities, paths etc. are estimated and then used to randomly simulate values of
these parameters to obtain a footprint of potential hurricane events in the period of, e.g., 10,000 catalog
years. These events are not meant to predict hurricanes from year 2020 to year 12,020, but instead,
each of the 10,000 years is considered as a feasible realization of the hurricane activity in the year
2020 (Latchman 2010).

Insurance companies investigate how catalog events affect a portfolio of properties using financial
risk analysis (portfolio rollup). This operation typically consists of first aggregating event losses per
property to obtain the event total loss, and then aggregating event totals within each catalog year
to obtain the aggregate annual loss. Typically, the event loss per property, the event total, and the
annual loss are all characterized by finite discrete probability distributions. Finally, the mixture of
annual loss distributions is used to construct the exceedance probability (EP) curve Grossi et al. (2005).
The EP curve is essentially the complementary cumulative distribution function which describes the
portfolio loss, and is the key for insurers to estimate the probabilities of experiencing various levels of
financial impact.
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The first step of risk analysis for large insurance portfolio consists of probabilistic loss
aggregation over a large number of locations for each event in the stochastic catalog. In the past
few decades a number of methods have been proposed to address this difficult technical issue,
see Shevchenko (2010); Wang (1998) for detailed overview. These approaches can roughly be
categorized into three mainstream groups: (i) parametric, see e.g., Chaubey et al. (1998); Panjer
and Lutek (1983); Venter (2001), where distributions characterizing individual losses belong to some
parametric family and their convolution is given by an analytic expression or parametric closed form
approximation, (ii) numerical, where individual loss distributions are given in discrete, generally
non-parametric form and the distribution of the total risk is obtained using a variant of numerical
convolution in Evans and Leemis (2004) boosted by Fast Fourier Transform in Robertson (1992) to
make computations tractable (iii) MC, where, for a number of realizations, random samples are drawn
from individual loss distributions and simply added up to obtain the aggregate loss, see e.g., Arbenz
et al. (2012); Côté and Genest (2015); Galsserman (2004). The approach proposed in this paper originates
from the category (ii). This is because of high computing speed requirement for ground-up/gross CAT
loss analysis and also due to the fact that risks at different locations and their partial aggregates are
described by discrete, generally non-parametric distributions (see Section 2.4 for details). We introduce
two major enhancements to loss aggregation via numerical convolution. First, the proposed algorithm
operates on irregular positive supports with the size of up to 300 points and treats atoms (point
probability masses at minimum and maximum loss) separately. Second, positive correlations between
pairs of risks are modeled by a mixture of Split-Atom convolution in Wojcik et al. (2016) and
comonotonic distribution (Dhaene et al. 2002) of the sum of risks using several risk aggregation
schemes based on copula trees in Arbenz et al. (2012); Côté and Genest (2015). High computing
speed of our procedure stems from the fact that, by design, we aim at reproducing only the second
order moments of the aggregate risk. Numerical experiments presented in this contribution show,
however, that also tail measures of risk compare favorably with the estimates obtained from large
sample MC runs.

The paper is organized as follows. First, we introduce the framework for aggregation of
spatially dependent risks with copula trees and discuss direct and hierarchical models given positive
dependence structure. Next, we present a computationally fast way to sum the dependent risks at
branching nodes of a copula tree and algorithms for determining the tree topology. Finally, we show
an example of ground-up loss estimation for a historical hurricane event in the U.S. Pros and cons of
the proposed aggregation models are discussed and compared to the corresponding MC approach.

2. Copula Trees

2.1. Problem Statement

When aggregating CAT risks it is essential to account for spatial dependency between these
risks relative to CAT model estimate. In general, combining dependent loss variables requires
knowledge of their joint (multivariate) probability distribution. However, the available statistics
describing the association between these variables are frequently limited to e.g., correlation
matrix Wang (1998). To compute the aggregate loss distribution given such incomplete information,
the risks are combined within copula trees (Arbenz et al. 2012; Côté and Genest 2015) where
dependencies between losses are captured at each step of the aggregation using copula approach
(see, e.g., Cherubini et al. 2004; Nelsen 2006). In the current study, we consider two accumulation
schemes which assume non-negative correlations between pairs of risks. The question we attempt
to answer is: “What is the most computationally efficient copula tree which aggregates spatially
dependent risks pairwise and approximates non-parametric distribution of the sum of losses for
a particular CAT event in such a way that its second order moments are reproduced?”
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2.2. Direct Model

Following the idea in Wang (1998) and Dhaene et al. (2014) the positive dependence between risks
can be represented using Fréchet copula via weighting independence and comonotonicity:

Cw(u) = (1− w)∏
i

ui + w min(u) 0 ≤ w ≤ 1, ∀u (1)

where u = [u1, . . . , uM] ∈ [0, 1]M. For portfolio of M ≥ 2 risks X = [X1, X2, . . . XM], assuming
each Xk has finite variance, let X⊥ = [X⊥1 , X⊥2 , . . . X⊥M] and X+ = [X+

1 , X+
2 , . . . X+

M] be independent
and comonotonic random vectors with the same marginals PX1 , PX2 , . . . , PXM as X. By definition
PX⊥(x) = ∏ PXi (xi) and PX+(x) = min (PX1(x1), PX2(x2), . . . , PXM (xM)), which is equivalent to the
statement that a random vector is either independent or comonotonic if and only if it has either
product or min copula showed as the first and second summand in (1), respectively. For any positive
dependent random vector X (Definition 2 and 3 in Koch and De Schepper 2011), (Collorary 2.3 in Koch
and De Schepper 2006) the following bounds hold:

PX⊥(x) ≤ PX(x) ≤ PX+(x) ∀x (2)

Assuming that the distribution of X is induced by (1) and reads:

PX(x) = (1− w)PX⊥(x) + wPX+(x) 0 ≤ w ≤ 1, ∀x (3)

it follows from (Denuit et al. 2001, Theorem 3.1) and (Hürlimann 2001, Remark 2.1) that the dependent
sum S = X1 + X2 + . . . + XM is always bounded in convex order by the corresponding independent
sum S⊥ = X⊥1 + X⊥2 + . . . + X⊥M and the comonotonic sum S+ = X+

1 + X+
2 + . . . + X+

M. So,

S⊥ ≤cx S ≤cx S+ (4)

where ≤cx denotes the convex order. By definition

E[v(S⊥)] ≤ E[v(S)] ≤ E[v(S+)] (5)

for all real convex functions v, provided the expectations exist. As a consequence S+ has heavier tails
than S and the following variance order holds:

Var[S⊥] ≤ Var[S] ≤ Var[S+] (6)

In addition, E[S⊥] = E[S] = E[S+] since X⊥, X and X+ belong to the same Fréchet class Dhaene et al.
(2014). To approximate the distribution PS of the arbitrary sum S we use the weighted average

PS(s) ≈ (1− w)PS⊥(s) + wPS+(s) (7)

where PS⊥ and PS+ are distributions of independent and comonotonic sums S⊥ and S+, respectively.
Such ansatz, referred to as the the mixture method in Wang (1998), corresponds to the flat aggregation
tree in the upper panel of Figure 1. For computational convenience, we elect to approximate the mixing
coefficient w as the multivariate dependence measure in Dhaene et al. (2014), so

w =
Var(S)−Var(S⊥)

Var(S+)−Var(S⊥)
=

∑i 6=j Cov(Xi, Xj)

∑i 6=j Cov(X+
i , X+

j )
=

∑i 6=j r(Xi, Xj)

∑i 6=j r(X+
i , X+

j )
(8)

where r is the classical Pearson correlation. Since the denominator of (8) is a normalizing constant
which depends only on the shape of the marginals, any general correlation matrix r(Xi, Xj) = ρi,j with
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positive entries as, e.g., shown in Figure 2B,C can be represented by the exchangeable correlation ρe in
Figure 2A without impacting the value of w. That is,

ρe =
∑i 6=j ρi,j

M(M− 1)
(9)

Moreover, (8) is equivalent to the comonotonicity coefficient in Koch and De Schepper (2011) if (7)
holds for all bivariate marginals:

PXi ,Xj(xi, xj) = (1− w)PX⊥i ,X⊥j
(xi, xj) + wPX+

i ,X+
j
(xi, xj) (10)

We observe that w = r(Xi, Xj) if and only if r(X+
i , X+

j ) = 1 which holds when all univariate marginals
differ only in location and/or scale parameters (Dhaene et al. 2002).

X 1 X 2 X 3 X 4 X 5

X 1 X 2 X 3 X 4 X 5

X 1 X 2 X 3 X 4 X 5

X 1 + X 2 + X 3 + X 4 + X 5

X 1 + X 2 + X 3 + X 4 + X 5

X 1 + X 2 X 3 + X 4

X 1 + X 2 + X 3 + X 4

X 1 + X 2

X 1 + X 2 + X 3

X 1 + X 2 + X 3 + X 4

X 1 + X 2 + X 3 + X 4 + X 5

Figure 1. Aggregation of five risks using copula trees. Direct model (upper panel), hierarchical model
with sequential topology (middle panel) and hierarchical model with closest pair topology (lower
panel). The leaf nodes represent the risks whose aggregate we are interested in. The branching nodes of
direct tree represent a multivariate copula model for the incoming individual risks while the branching
nodes of hierarchical trees represent a bivariate copula model for the incoming pairs of individual
and/or cumulative risks.

(A) (B) (C)

Figure 2. Illustration of hypothetical correlation matrices: (A) exchangeable, (B) nested block diagonal,
and (C) unstructured correlation matrix.

2.3. Hierarchical Model

If unique description of the joint distribution of individual risks is not crucial and the focus
is solely on obtaining an easily interpretable model for the total risk, the individual risks can be
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aggregated in a hierarchical way. Such process involves specification of partial dependencies between
the groups of risks in different aggregation steps (Arbenz et al. 2012). For pairwise accumulation,
we first select the two risks Xi, Xj and construct a copula model for that pair. Then, we replace Xi
and Xj by their sum Xi + Xj and treat it as a new, combined risk. A simple example is given in the
middle panel of Figure 1 depicting the sequential risk aggregation scheme in Côté and Genest (2015).
With bivariate (1) inducing the convex sum approximation (7) at the branching nodes we have:

pS1 = pX1+X2 = (1− w1) · pX⊥1 +X⊥2
+ w1 pX+

1 +X+
2

pS2 = (1− w2) · pS⊥1 +X⊥3
+ w2 · pS+

1 +X+
3

...

pS4 = (1− w4) · pS⊥3 +X⊥5
+ w4 · pS+

3 +X+
5

(11)

For ease of notation, we dropped the arguments of the probability density functions (pdfs)
characterizing the partial sums Si = X1 + . . . + Xi+1. Observing that for the sequential tree, the partial
sums S⊥i and S+

i are symbolic abbreviations of (X1 + . . . + Xi+1)
⊥ and (X1 + . . . + Xi+1)

+ as opposed
to X⊥1 + . . . + X⊥i+1 and X+

1 + . . . + X+
i+1 in (4), the partial weights wi read:

wi =
Var[Si]−Var[S⊥i ]

Var[S+
i ]−Var[S⊥i ]

(12)

We remark, that if the order in which the aggregation is performed does not trivially follow from
the tree structure, any convention can be used to make the numbering of partial sums unique,
e.g., see Côté and Genest (2015). However, this has no implication on the fact that, in general,
hierarchical trees do not uniquely determine the joint distribution of risk X. To answer the research
question posed in Section 2.1, this non-uniqueness is not critical. Conversely, in situations where,
e.g., capital allocation is of interest (see Côté and Genest 2015), an extra conditional independence
assumption in Arbenz et al. (2012) is needed. For instance, the aggregation scheme in the middle panel
of Figure 1 would require:

(X1, X2, S1) ⊥ (X3, X4, X5, S2, S3, S4)|S1

(X1, X2, X3, S1, S2) ⊥ (X4, X5, S3, S4)|S2

(X1, X2, X3, X4, S1, S2, S3) ⊥ (X5, S4)|S3

(13)

2.4. Implementation of Risk Aggregation at Branching Nodes

A sample reordering method, inspired from Iman and Conover (1982) and assembled into the
customized procedure in Arbenz et al. (2012), has recently been used to facilitate summation of risks
in both the direct and hierarchical models. Despite the elegant simplicity of this approach, it comes
at high computational cost for large samples. To reduce that cost and to orchestrate reproduction
of the second order moments of the target sum S, we opt to use the following set of algorithms
instead: (i) second order approximation to brute force convolution referred to as the Split-Atom
convolution Wojcik et al. (2016), (ii) arithmetization (aka regriding) of loss distributions Vilar (2000), (iii)
estimation of the distribution of the comonotonic sum of risks (comonotonization) and (iv) construction
of the mixture distribution in (7). These algorithms are described in Sections 2.4.1–2.4.3. An individual
risk X is a discrete random variable expressed in terms of the damage ratio defined as loss divided by
replacement value. The corresponding pdf pX is represented by zero-and-one inflated mixture:

pX(x) =


α, if x = 0

(1− α− β) p̂X(x), if 0 < x < 1

β, if x = 1

(14)
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where α and β are atoms at zero and one damage ratio, respectively, and p̂X is the (discretized) pdf
describing the main part of the mixture, see Figure 3 for an example and Section 3 for parameterization
used in this study. The atoms are a common feature inferred from analysis of CAT insurance claims
data. They also emerge during gross loss portfolio roll-up as a result of applying stop-loss insurance
and/or re-insurance terms—deductibles and limits assembled into a variety of tiers/structures.

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
04

0.
08

x

p X
(x
)

Figure 3. A discrete loss pdf represented as a mixture of two “spikes” (atoms) at minimum and
maximum x damage ratio (red) and the main part (blue). Damage ratio is discretized on 64-point grid.

2.4.1. Split-Atom Convolution

The pdf pS⊥ of a sum of two independent discrete random variables X and Y with pdfs pX and
pY respectively, can be computed as:

pS⊥(s) = pX ⊕ pY = ∑
x

pX(x)pY(s− x) (15)

The classical way of implementing (15) for random variables defined on irregular support is
brute force (BF) convolution in Evans and Leemis (2004). Let Nx and Ny be the number of points
discretizing pX and pY support, respectively. The complexity of BF convolution is O

(
Nx Nylog(Nx Ny)

)
because computing all possible products of probabilities and all possible sums of losses is O(Nx Ny),
and redundancy removal is O(Nx Nylog(Nx Ny)), see Evans and Leemis (2004) for details. Such high
computational demand makes the BF algorithm impractical for convolving large number of CAT loss
distributions. Our solution in Wojcik et al. (2016), referred to as the Split-Atom convolution, reduces
the computational cost to O(N′x N′y) where N′x < Nx and/or N′y < Ny. The idea is to separate two atoms
(“spikes”) at min/max losses and arithmetize (regrid) the main parts of loss distributions. The regriding
is the key to accelerating computations. The Split-Atom approach preserves min/max losses from
different loss perspective (e.g., insurer, re-insurer, insured, FAC underwriter etc.) and enhances the
accuracy of pS reproduction in situations where substantial probability mass is concentrated in the
atoms. This is relevant for ground-up and, even more so, for gross loss estimation when stop-loss
insurance is applied. Various ways of splitting the atoms and compacting main parts of loss
distributions can be considered depending on computing speed and memory requirements and
organization/arrangement of the original and convolution grids. An example is given in Algorithm 1.
The original grids are non-uniform: the main parts of pX and pY are defined on regular grids with
spans hx and hy, but the spacing between atoms and the main parts is arbitrary. Convolution grid
is designed to have the same irregular spacing for preserving min/max losses. The speedup comes
from execution of step 28 in Algorithm 1 using Algorithm 2. Depending on the application, other
variants of the Split-Atom convolution are conceivable. For example, the 9-products approach in
Algorithm 1 not only reproduces min/max losses but also probabilities describing these losses, or the
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4-products approach which only splits the right atom to gain extra computing speed. See Appendix A,
Algorithm A1.

Algorithm 1: Split-Atom Convolution: 9-products
Input : Two discrete pdfs pX and pY with supports:

x = {x1, x2, x2 + hx, x2 + 2hx, . . . , x2 + (Nx − 3)hx, xNx};
y = {y1, y2, y2 + hy, y2 + 2hy, . . . , y2 + (Ny − 3)hy, yNy};
and probabilities: pX(x) = ∑Nx

i=1 δ(x− xi)pX(xi); pY(y) = ∑
Ny

i=1 δ(y− yi)pY(yi)

Ns - maximum number of points for discretizing convolution grid

1: x(1) = {x1}; p(1)X (x) = δ(x− x(1))pX(x1)// split the left atom of pX

2: x(2) = {xNx}; p(2)X (x) = δ(x− x(2)i ) · p(2)X (x(2)i )// split the right atom of pX

3: x(3) = {x2, x2 + hx, x2 + 2hx, . . . , x2 + (Nx − 3)hx}; p(3)X (x) = ∑Nx−2
i=1 δ(x− x(3)i )p(3)X (x(3)i )

4: y(1) = {y1}; p(1)Y (y) = δ(y− y(1))pY(y1)// split the left atom of pY

5: y(2) = {yNy}; p(2)Y (y) = δ(y− y(2)i ) · p(2)Y (y(2)i )// split the right atom of pY

6: y(3) = {y2, y2 + hy, x2 + 2hy, . . . , y2 + (Ny − 3)hy}; p(3)Y (y) = ∑
Ny−2
i=1 δ(y− y(3)i )p(3)Y (y(3)i )

7: hs? =
xNx+yNy−(x1+y1)

Ns?−1 // corresponding step size of the main part of convolution grid s

8: hs = max(hx, hy, hs? )// final step size of the main part of convolution grid s

9: Ns = b
xNx+yNy−(x1+y1)

hs
c // corresponding number of points

10: // set irregular convolution grid:

11: if hs ≥ (x2 + y2 − x1 − y1) then

12: s = {x1 + y1, x2 + y2, x2 + y2 + hs, . . . , x2 + y2 + (Ns − 3)hs, xNx + yNy}
13: else

14: s = {x1 + y1, x2 + y2 − hs, x2 + y2, . . . , x2 + y2 + (Ns − 4)hs, xNx + yNy}
15: end if

16: x(3)
′
= {x2, x2 + hs, x2 + 2hs, . . . , x2 + (Nx − 3)hs}// discretize x(3) with hs

17: p(3)
′

X (x) = ∑
N′x
i=1 δ(x− x(3)

′

i )p(3)
′

X (x(3)
′

i )// regrid p(3)X

18: y(3)
′
= {y2, y2 + hs, y2 + 2hs, . . . , y2 + (Ny − 3)hs}// discretize y(3) with hs

19: p(3)
′

Y (y) = ∑
N′y
i=1 δ(y− y(3)

′

i )p(3)
′

Y (y(3)
′

i )// regrid p(3)Y

20: B(1) = p(1)X ⊕ p(1)Y // Brute Force convolution

21: B(2) = p(2)X ⊕ p(1)Y // –-”–-

22: B(3) = p(3)
′

X ⊕ p(1)Y // –-”–-

23: B(4) = p(1)X ⊕ p(2)Y // –-”–-

24: B(5) = p(2)X ⊕ p(2)Y // –-”–-

25: B(6) = p(3)
′

X ⊕ p(2)Y // –-”–-

26: B(7) = p(1)X ⊕ p(3)
′

Y // –-”–-

27: B(8) = p(2)X ⊕ p(3)
′

Y // –-”–-

28: B(9) = p(3)
′

X ⊕ p(3)
′

X // –-”–-

29: Regrid B(1−9) onto convolution grid s

Output : Discrete probability density function pS⊥ of the independent sum S⊥ = X + Y with the support
s = {s1, s2, s2 + hs, s2 + 2hs, . . . , s2 + (Ns − 3)hs, sNs} and the associated probabilities
pS⊥ (s) = ∑Ns

k=1 δ(s− sk)pS⊥ (sk), where sNs − [s2 + (Ns − 3)hs] ≤ hs, s2 − s1 ≤ hs,
hs ≥ max(h1, h2).
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Algorithm 2: Brute force convolution for supports with the same span
Input : Two discrete probability density functions pX and pY , where the supports of X and Y are

defined using the same span h as: x = {x1, x1 + h, . . . , x1 + (Nx − 1)h},
y = {y1, y1 + h, . . . , y1 + (Ny − 1)h} and the associated probabilities as

pX(x) = ∑Nx
i=1 δ(x− xi)pX(xi), pY(y) = ∑

Ny

j=1 δ(y− yi)pY(yj)

1: s = {x1 + y1, x1 + y1 + h, x1 + y1 + 2h, . . . , x1 + y1 + (Nx + Ny − 2)h}// compute convolution support

2: pS⊥ (s) = 0// initialize

3: pS⊥ (si+j−1)← pS⊥ (si+j−1) + pX(xi)pY(yj) 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny // compute probabilities

Output : Discrete probability density function pS⊥ of the independent sum S⊥ = X + Y with the support
s = {s1, s2, . . . , sNx+Ny−1} and the corresponding probabilities

pS⊥ (s) = ∑
Nx+Ny−1
k=1 δ(sk)pS⊥ (sk).

Further acceleration of Algorithm 1 can be achieved using Fast Fourier Transform (FFT) and
applying convolution theorem, (Wang 1998, Section 3.3.1) to convolve the main parts of pX and pY.
Therefore, step 28 in Algorithm 1, is replaced with the following product:

p(3)
′

X ⊕ p(3)
′

Y
FFT→ P(3)′

ΩX
P(3)′

ΩY

IFFT→ p(3,3)′

X+Y → B
(9) (16)

where P(3)′

Ω1
and P(3)′

Ω2
represent FFTs of the probabilities p(3)

′

X and p(3)
′

Y . IFFT in (16) stands for the

Inverse Fast Fourier Transform. Implementation of (16) requires the supports x(3)
′

and y(3)
′

have the
same span hs, which is guaranteed by steps 16 and 18 in Algorithm 1, and also have the same range
containing power-of-2 numbers of points, which can be guaranteed by extending one or both supports
and padding zero probabilities.

2.4.2. Regriding

Split-Atom convolution requires that two pdfs being convolved have the main part of their
supports discretized using the common span (grid step size) hs, see step 8 in Algorithm 1. Prior to
convolution, either one or both of these pdfs may need arithmetization hereafter referred to as the
regriding. In general, this operation takes the discrete pdf pX defined on fine scale support with the
span h and determines the new arithmetic pdf pX′ on coarse scale support with the span h′ > h with
the property ∑x xm pX(x) = ∑x′ x′ m pX′(x′) of equating m moments with pX (see, e.g., Gerber 1982;
Vilar 2000; Walhin and Paris 1998).

For m = 1, linear regriding or mass dispersal in Gerber (1982) redistributes a probability mass
on the original grid to two neighboring points on the new grid such that only E[X] is preserved.
This is achieved by solving a 2× 2 local linear system, see Algorithm 3, Step 6 and animation therein.
For m = 2, the standard approach is to apply the method of local moment matching (LMM) which
reproduces local second order moments of pX in predefined intervals on the new grid, assuring
preservation of both E[X] and Var[X] (Gerber 1982; Vilar 2000; Walhin and Paris 1998). Despite
technical simplicity of LMM, there are two caveats: “wiggly” behavior and/or negative probabilities
in pX′ (see, e.g., Table 4 in Walhin and Paris 1998). The first one is due to the fact that LMM performs
local moment matching in fixed intervals (xk, xk + 2h′], (xk + 2h′, xk + 4h′], (xk + 4h′, xk + 6h′] . . ., etc.
but ignores matching the moments in (xk + h′, xk + 3h′], (xk + 3h′, xk + 5h′], (xk + 5h′, xk + 7h′] . . . , etc.
A simple improvement is proposed in Appendix A, Algorithm A2. The second caveat is that solving
the 3 × 3 local linear system for matching the local moments (Equation (16) in Gerber 1982) guarantees
a negative in the three dispersed probability masses. The negative mass can only be balanced out by
a positive one dispersed from solving the next local linear system if the positive mass is greater than
the negative one. Upon completion of the LMM algorithm, negative probabilities could still exist at
arbitrary locations on the new grid. One way to handle this issue is to retreat to linear regriding as
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in Panjer and Lutek (1983). Another way is to use linear goal programming in Vilar (2000), i.e., for
every span h′ determine the arithmetic pdf which conserves the first moment E[X] and has the nearest
second moment to the target Var[X]. Therefore, the negative mass is mitigated by sacrificing the quality
of reproducing Var[X]. Here, we propose an alternative two-stage strategy listed in Algorithms 4 and 5
hereafter referred to as the 4-point regriding.

Algorithm 3: Linear regriding
Input :Discrete pdf pX with fine scale support x = {x1, x1 + h, . . . , x1 + (N − 1)h} and associated

probabilities pX(x) = ∑N
i=1 δ(x− x1 − (i− 1)h) · pX(x1 + (i− 1)h); the support of coarse scale

discrete pdf pX′ : x′ = {x′1, x′1 + h′, . . . , x′1 + (N′ − 1)h′}.
Requirement: x′1 ≤ x1, x′N′ ≥ xN , h < h′.

1: For convenience, let {x1, x2, . . . , xN} ← x and {x′1, x′2, . . . , x′N} ← x′
2: Initialize pX′ (x′)← 0
3: if x′1 = x1 then

4: pX′ (x′1)← pX′ (x′1) + pX(x1)
5: end if
6: for i < N′, j ≤ N, x′i < xj ≤ x′i+1 do

7:  pX′ (x′i)

pX′ (x′i+1)

←
 pX′ (x′i)

pX′ (x′i+1)

+

 1 1

x′i x′i+1

−1  pX(xj)

xj pX(xj)


8: end for

Example 1. Linear regriding of fine
scale pdf (blue bars) onto new grid
(orange circles). The resulting coarse
scale pdf is represented as green bars.

Output :Discrete pdf pX′ (x′)

In Stage I, a probability mass is dispersed to the two neighboring points and the two end points
(first and last point on the new grid) such that the mean and the second moment are preserved.
The local linear system for matching moments (Algorithm 4, Step 15) guarantees (i) positive masses
added to the neighboring points and negative masses added to the end points, (ii) probabilities added
to the neighboring points are inversely proportional to distances between these neighboring points
and the projecting point. Property (ii) mimics linear regriding and completes a 4× 4 invertible local
linear system along with the other three constraints for matching moments. Negative probabilities
resulted from solving the system are typically small in absolute value because the end points are
usually far from the projecting point. In practice, Stage I rarely leaves negative probabilities at one or
both endpoints of the new grid on completion of the algorithm.

If this is not the case, in Stage II, the negative probability at the first (last) point is dispersed to
the second (second to last), the third (third to last), and the last (first) point, respectively, subject to
second order moment matching, see Steps 6 and 16 in Algorithm 5. The local linear system in step 7
(or 17) guarantees positive mass dispersed to the third (third to last) point and negative masses to the
first (last) point and to the second (second to last) point respectively, see animation in Algorithm 5.
Probability at the first (last) point is then set to zero and the second (second to last) point becomes the
first (last) point on the new grid, reducing min/max range of pX′ support. The algorithm alternates
between the first and the last points until both hold nonnegative probabilities, or, until no more points
are available for balancing out the negative probabilities (see the animation in Example 3, Algorithm 5).
The latter indicates 4-point regriding failure and invokes linear regriding.
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Algorithm 4: 4-point regridding, Stage I
Input :Discrete pdf pX with fine scale support x = {x1, x1 + h, . . . , x1 + (N − 1)h} and associated

probabilities pX(x) = ∑N
i=1 δ(x− x1 − (i− 1)h) · pX(xi + (i− 1)h); the support of coarse scale

probability mass function pX′ : x′ = {x′1, x′1 + h′, . . . , x′1 + (N′ − 1)h′}.
Requirement: x′1 ≤ x1, x′N′ ≥ xN , h < h′.

1: For convenience, let {x1, x2, . . . , xN} ← x and {x′1, x′2, . . . , x′N′} ← x′.
2: if min(N, N′) < 5 then

3: Go to Algorithm 3.
4: end if
5: pX′ (x′)← 0; i← 1; j← 1; i∗ ← N′
6: if x′1 = x1 then

7: pX′ (x′1)← pX(x1); i← i + 1
8: if x2 > x′2 then

9: j← j + 1
10: end if
11: end if
12: if x′N′ = xN then

13: pX′ (x′N′ )← pX(xN); i∗ ← i∗ − 1
14: end if
15: for i < i∗, j ≤ N, x′i < xj ≤ x′i+1 do

16: 
pX′ (x′1)

pX′ (x′i)

pX′ (x′i+1)

pX′ (x′N′ )

←


pX′ (x′1)

pX′ (x′i)

pX′ (x′i+1)

pX′ (x′N′ )

+


1 1 1 1

x′1 x′i x′i+1 x′N′

x′21 x′2i x′2i+1 x′2N′

0 xj − x′i xj − x′i+1 0


−1 

pX(xj)

xj pX(xj)

x2
j pX(xj)

0


17: end for
18: if min

(
pX′ (x′1), pX′ (x′N′ )

)
< 0 then

19: Go to Algorithm 5.
20: end if

Example 2. 4-point regriding of fine scale pdf (blue bars)
onto new grid (orange circles). The resulting coarse scale pdf
is represented as green bars.

Output :Discrete pdf pX′ (x′).
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Algorithm 5: 4-point regridding, Stage II

Input :Discrete pdf pX′ (x′) from Algorithm 4; min
(

pX′ (x′1), pX′ (x′N′ )
)
< 0.

1: u← 1; t← N′; B←FALSE; / B =TRUE implies negative probabilities reconciliation fails.
2: loop

3: if t− u < 3 then

4: B←TRUE; break
5: end if
6: if pX′ (x′u) < 0 then

7: 
pX′ (x′u+1)

pX′ (x′u+2)

pX′ (x′t)

←


pX′ (x′u+1)

pX′ (x′u+2)

pX′ (x′t)

+


1 1 1

x′u+1 x′u+2 x′t
x′2u+1 x′2u+2 x′2t


−1 

pX′ (x′u)

xh pX′ (x′u)

x2
h pX′ (x′u)


8: pX′ (x′u)← 0; u← u + 1
9: end if

10: if min
(

pX′ (x′u), pX′ (x′t)
)
≥ 0 then

11: break
12: end if
13: if t− u < 3 then

14: B←TRUE; break
15: end if
16: if pX′ (x′t) < 0 then

17: 
pX′ (x′t−1)

pX′ (x′t−2)

pX′ (x′u)

←


pX′ (x′t−1)

pX′ (x′t−2)

pX′ (x′u)

+


1 1 1

x′t−1 x′t−2 x′u
x′2t−1 x′2t−2 x′2u


−1 

pX′ (x′t)

xt pX′ (x′t)

x2
t pX′ (x′t)


18: pX′ (x′t)← 0; t← t− 1
19: end if
20: if min

(
pX′ (x′u), pX′ (x′t)

)
≥ 0 then

21: break
22: end if
23: end loop
24: if B =TRUE then

25: Go to Algorithm 3.
26: end if

Example 3. Mitigation of negative probabilities (red bars) in
4-point regriding.

Output :Discrete pdf pX′ (x′).

2.4.3. Comonotonization and Mixture Approximation

The basic construction idea for p+S is listed in Algorithm 6 and illustrated by Example 3.
The method proceeds recursively, defining the next element of the new distribution p+S based on the
first elements of pX and pY then modifying pX and pY, respectively. It requires O(Nx + Ny) operations.
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Algorithm 6: Distribution of the comonotonic sum
Input :Two discrete probability density functions pX and pY , with irregular positive supports

x = {x1, x2, . . . , xNx−1, xNx}; y = {y1, y2, . . . , yNy−1, yNy} and associated probabilities

pX(x) = ∑Nx
i=1 δ(x− xi)pX(xi); pY(y) = ∑

Ny

i=1 δ(y− yi)pY(yi)

1: ix ← 1, iy ← 1, is ← 1
2: loop

3: s+is
← xix + yiy

4: p← pX(xix )− pY(xiy )
5: if p > 0 then

6: pS+ (s+is
)← pY(yiy )

7: pX(xix )← p
8: iy ← iy + 1
9: if iy > Ny then

10: break
11: end if
12: else

13: pS+ (s+is
)← pX(xix )

14: pX(xix )← −p
15: ix ← ix + 1
16: if ix > Nx then

17: break
18: end if
19: end if
20: is ← is + 1
21: end loop

X 10 20

P X 0.6 0.4

Y 1 2 6 1 2

P Y 0.3 0.5 0.2 0.3 0.5

S
+

11 12 22 26

P S
+ 0.3 0.3 0.2 0.2

0.6

10 20

6

0.2

10 + 1 10 + 2 20 + 2 20 + 6

min(0.6, 0.3) min(0.5, 0.3) min(0.4,0.2) min(0.2,0.2)

0.4

Example 3: To visualize the algorithm on the right, consider two pdfs
pX and pY listed in the left panel of the above cartoon. These pdfs are
represented as subsegments of the 0-1 probability line. Quantiles of
the same order are added and recursively registered as points on the
S+ support. At the start of the algorithm, we (i) subtract the smaller of
{pX(x1), pY(y1)} from the larger, (ii) assign the smaller to pS+ (s+1 ), (iii)
replace the larger with the residual, and (iv) zero the smaller. Next, we
move on to the first nonzero probabilities in pX and pY , and repeat the
above procedure for computing pS+ (s+2 ). The algorithm ends once the
probabilities in both pX and pY are exhausted.

Output : Discrete probability density function pS+ of the comonotonic sum S+ = X + Y satisfying
P−1

S+ (u) = P−1
X (u) + P−1

Y (u), where u ∼ U(0, 1) and P−1
X , P−1

Y are the inverse cumulative
distribution functions of X and Y respectively. The support of pS+ is defined as
s+ = {s+1 , s+2 , . . .+ , s+Ns−1, s+Ns

} and associated probabilities as

pS+ (s+) = ∑Ns
i=1 δ(s+ − s+i )pS+ (s+i ) where Ns ≤ Nx + Ny.

Once pS⊥ , pS+ and w are known, the mixture distribution pS is composed using (11) . In general,
supports of pS⊥ and pS+ cover the same range but are defined on different individual grids,
so arithmetizing on common grid is needed. If 4-point regriding is used, the target E[S] is preserved
exactly and the target Var[S] is preserved with small error due to occasional retreats to linear regriding.

2.5. Order of Convolutions and Tree Topology

Following Wojcik et al. (2016), to further minimize this error, convolutions should be ordered to
assure that two distributions undergoing convolution have supports covering approximately same
domains (xNx − x1 ≈ yNy − y1) with the same span (hx ≈ hy) in Algorithm 1. Since convolution is
computationally more expensive than comonotonization, we assume that the order of convolutions
governs the order of comonotonizations. Therefore, topology of a particular aggregation tree should
be determined by the order of convolutions. For example, ascending order arranges risks at leaf nodes
from smallest to largest maxima prior to aggregation, and then accumulates the risks using closest
pair strategy depicted in the bottom panel of Figure 1. More sophisticated risk sorting strategy
originates from the balanced multi–way number partitioning and is referred to as the balanced
largest–first differencing method in Zhang et al. (2011). Here, one seeks to split a collection of numbers
(risk maxima) into subsets with (roughly) the same cardinality and subset sum. In general, sorting
based convolution orders are useful where no specific way to group risks at leaf nodes of aggregation
tree is of importance for total risk analysis. When the goal is to assess the impact of spatial dependencies
among elements within a CAT risk portfolio on aggregate loss, geographical grouping of properties
(locations) affected by a particular CAT event is crucial (Einarsson et al. 2016). To account for such
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patterns we propose to use the recursive nearest neighbor order (RNN) of convolutions where depth-first
search in Cormen et al. (2009) is performed to define an aggregation tree, see example in Figure 4.
In contrast with sorting based strategies, the RNN keeps the original (predefined) ordering of risks at
the leaf nodes of the aggregation tree intact.

X 1 X 2 X 3 X 4 X 5 X 6

2 1 4 2 3 11
2 3 7 9 12 23

2 3 7 9 12 23

2 3 7 9 12 23

2 3 7 9 12

2 3 7 9 12

2 3

X 6

X 3 X 4 X 5

X 1 X 2

max

(A)

(B) X 4 + X 5

X 1 + X 2 + X 3 + X 4 + X 5

Cumulative max

X 1 + X 2

X 1 + X 2 + X 3

23 / 2 = 11.5

7 / 2 = 3.5

12 / 2 = 6

X 1 + X 2 + X 3 + X 4 + X 5 + X 6

Figure 4. An example of RNN approach for determining topology of hierarchical risk aggregation
tree for six risks with zero minima. The maxima and cumulative maxima characterizing losses for the
six risks are presented in the upper panel. (A) The algorithm takes the largest cumulative max and
halves it to obtain the number c. Then, it binary searches for the number closest to c except for the last
element in the sequence. This number (showed in bold) becomes the cumulative maximum of the new
subsequence. The search is repeated until the subsequence consists of two elements. (B) The resulting
hierarchical aggregation tree.

It must be mentioned that order of convolutions is implicitly affecting the topology of the direct
aggregation model in (7). This is shown in Figure 5 where the convex sum approximation at the root
node is composed of aggregates constructed using, e.g., the RNN approach in Figure 4.
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Figure 5. An example of recursive nearest neighbor (RNN) approach for determining topology of direct
risk aggregation tree for six risks shown in Figure 4. Note that the order of comonotonic aggregation
follows the order of independent aggregation.

3. Results

As an example of loss analysis, we estimated ground-up loss for a major hurricane event in the
US affecting 29,139 locations from portfolio of an undisclosed insurance company. Loss Xk at kth
location is described by inflated transformed beta pdf, i.e., the main part in (14) is parameterized using
transformed beta in Venter (2013). We assume that the mean of each pdf is a function of CAT model
prediction and that covariance between risks is a function of model error, so

Xk ∼ InTrBeta(Θk)

E(Xk) = g(Ik)

Cov(Xi, Xj) = Σi,j = E[(Xi − g(Ii))(Xj − g(Ij))]

(17)

where Θk is the parameter vector, Ik stands for hurricane peril intensity end g is the damage function
which transforms intensity into damage ratio. The intensity is expressed as wind speed and computed
using the U.S. hurricane model in AIR-Worldwide (2015). Loss distributions are discretized on 64-point
grid. Spatial dependency is described by Σ with nested block diagonal structure in Figure 2B.
This structure is a consequence of using exchangeable correlation in spatial bins at two scales: 1 km
and 20 km. The values assigned to off-diagonal elements of Σ are 0.07 if two locations belong to
the same 1 km bin and 0.02 if two location belong to the same 20 km bin but different 1 km bins,
respectively. Correlation between any two locations in different 20 km bins is set to zero. Details
of our estimation methodology are given in Einarsson et al. (2016). Portfolio rollup was performed
via direct, hierarchical sequential and hierarchical RNN models using Split-Atom convolution with
linear and 4-point regriding. Note that for the hierarchical sequential model, the order of convolutions
simply corresponds to the order of locations in insurance portfolio. The maximum number of points
discretizing the aggregate distribution grid was set to 256. Additionally, to keep the discretization
dense at the bulk of the aggregate distribution, we investigated the effect of right tail truncation at
losses with probabilities ≤ 10−10 .

The runs above were compared with Monte Carlo (MC) simulations. We applied Latin Hypercube
Sampling in McKay et al. (1979) with sample reordering in Arbenz et al. (2012) to impose correlations
between samples. We generated 30 realizations with 1 MM samples each. Second order statistics and
Tail Value at Risk (or p%-TVaR, which measures the expectation of all the losses that are greater than
the loss at a specified p% probability, see, e.g., Artzner et al. 1999; Latchman 2010) for these runs
are presented in Table 1. For the direct model, linear regriding inflates the variance of the total risk.
This behavior is alleviated by tail truncation and/or 4-point regriding coupled with RNN order of
convolutions. Variance of the total risk obtained from the sequential model with linear regriding and
no truncation is higher than the corresponding variance of the RNN model. This is due to increasing
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size of the partial aggregate pdf support at upper branching nodes of the sequential tree as compared
to that of the individual risks being cointegrated to these nodes. Again, tail truncation and 4-point
regriding tackles this effect. For the RNN model, the reproduction of the tail statistics is poor if linear
regriding is applied with or without tail truncation. These errors are reduced by 4-point method in
Algorithms 4 and 5. Figure 6 shows comparisons between the aggregate distributions for direct and
hierarchical models. Models based on linear regriding (the upper row) lead to coarse discretization
of the final aggregation grid, with obvious shape mismatch between the sequential model and MC
run. This is due to the lack of mechanism for keeping the dense discretization of the bulk of the total
loss distribution and, for sequential model, due to increasing differences in max losses between partial
aggregates and risks being cointegrated at branching nodes. Such mechanism is included in 4-point
regriding (lower row in Figure 6). Interestingly, the grid of the total loss for direct model is still coarse.

Table 1. Mean (µ), standard deviation (σ) and tail Value-at-Risk (TVaR%) at levels 1%, 5% and 10% of
the total hurricane risk for 29,139 locations for (A) direct, (B) hierarchical sequential and (C) hierarchical
RNN aggregation models compared to the average values from 30 realizations of MC runs. The losses
are in [$MM]. Numbers in brackets represent percentage errors relative to MC simulations.

Linear Regriding Linear Regriding 4-PointMC No Truncation Tail Truncation Regridding

(A)

µ 44.3 44.3 (0.00%) 44.3 (0.00%) 44.3 (0.00%)
σ 7.1 10.9 (53.02%) 7.1 (0.00%) 7.1 (0.00%)

TVaR1% 51.4 2550.9 (4864.2%) 2550.8 (4864.0%) 2550.8 (4863.9%)
TVaR5% 48.5 502.1 (934.7%) 501.4 (932.8%) 501.9 (933.8%)
TVaR10% 47.6 252.0 (429.7%) 250.7 (427.1%) 251.0 (427.6%)

(B)

µ 44.3 44.3 (0.00%) 44.3 (0.00%) 44.3 (0.00%)
σ 7.1 7.6 (6.11%) 7.1 (0.00%) 7.1 (0.00%)

TVaR1% 93.7 81.2 (−13.3%) 84.7 (−9.6%) 88.0 (−6.1%)
TVaR5% 66.3 62.5 (−5.8%) 68.5 (3.4%) 66.8 (0.8%)
TVaR10% 58.6 67.3 (15.0%) 60.5 (3.3%) 59.8 (2.1%)

(C)

µ 44.3 44.3 (0.00%) 44.3 (0.00%) 44.3 (0.00%)
σ 7.1 7.2 (1.55%) 7.1 (0.00%) 7.1 (0.00%)

TVaR1% 75.9 151.0 (98.9%) 95.0 (25.2%) 76.0 (0.1%)
TVaR5% 62.9 184.4 (193.4%) 98.0 (55.8%) 63.5 (0.9%)
TVaR10% 58.4 95.8 (63.9%) 87.0 (48.9%) 59.1 (1.1%)

●●

0 20 40 60 80 100

P

MC
Mixture method

●●

0 20 40 60 80 100

●●

0 20 40 60 80 100

●●

0 20 40 60 80 100

Loss [MM $]

●●

40 50 60 70 80 90 100

●●

20 40 60 80 100

Direct aggregation

Hierarchical aggregation,

Sequential order

Hierarchical aggregation

RNN order

Figure 6. MC (red line) and convolution/comonotoinization based (blue bars) distributions of the
total risk for 29,139 locations affected by hurricane peril using different aggregation models with
linear regriding (upper row) and 4-point regriding (lower row). No tail truncation was applied.
For consistency, the losses are plotted in [0; $100 MM] interval.
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Here, the support span of pS+ is much larger than that of pS⊥ . Placing combination of both sums
on the same grid causes the discretization of the comonotonic sum to dominate. Conversely, the bulk
is well resolved by hierarchical models, however, only the RNN model reproduces the shape of the
total loss distribution obtained from MC run.

Processing times of the investigated models are listed in Table 2. Clearly, the proposed models
outperform MC simulations. This is because (i) sampling from skewed loss distributions requires large
sample size to resolve higher order moments of the total loss distribution while the implementation of
the mixture method presented in the paper operates on 256-point grid and guarantees reproduction
of the second order moments only, (ii) floating point addition (MC) and multiplication (the mixture
method) have the same performance on (most) modern processors, (iii) large samples cause out-of-cache
IO during reshuffling and sorting, i.e., the complexity O(N log N) for fast sort does not apply.

Further, we investigated reproduction of the second order moments, 1,5,10%-TVaR and run times
as a function of maximum grid size permitted during aggregation. These results are displayed in
Figure 7. Oscillation of error curves (Figure 7A–E) is caused by variability in the total risk support size
attributed to the maximum permitted grid size and to the risk aggregation scheme used. As expected,
estimates of the mean (µ) and the standard deviation (σ) perfectly reproduce their target values
regardless of the support size. For small support sizes, the RNN model approximates TVaR better than
sequential model (see Figure 7A–C). The pronounced underestimation of 1%-TVaR in Figure 7C is
because 4-point regriding in Algorithm 5 eliminates negative probabilities at the expense of truncating
min/max range of convolution and/or comonotonization support. The remedy is to increase the
maximum support size. The sequential order has roughly linear growth of grid size because at the
lth hierarchy of the sequential tree (see Figure 1), the left child node is always the aggregation of the
first l − 1 distributions, which guarantees the lth hierarchy has a grid size (before possible truncation)
greater than that of the left child. The RNN order has nonlinear growth of grid size because for the lth
aggregation, the two child nodes could be the aggregations of any number less than l of distributions,
see Figure 4. In turn, grid sizes in the sequential run are larger on average than those in the RNN run.
The latter yields higher speed shown in Figure 7F.

Table 2. Processing times [s] for different risk aggregation models. MC run is a single realization
with 1 MM samples. The mixture method implementation for hierarchical trees was optimized for
performance with nested block diagonal correlation structure in Figure 2B. Intel i7-4770 CPU @ 3.40 GHz
architecture with 16 GB RAM was used.

Linear Regridding Linear Regriding 4-Point
Aggregation Model MC No Truncation Tail Truncation Regriding

Direct 1539 0.25 0.26 0.33
Hierarchical, sequential 12,769 0.34 0.35 0.44

Hierarchical, RNN 10,512 0.40 0.41 0.52
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Figure 7. (A–E) Percentage errors in statistics of the total risk relative to the corresponding values
obtained from MC simulations. Risk aggregation was performed for 29,139 locations affected by
hurricane peril using sequential (blue) and RNN (red) models with 4-point regriding and maximum
support size varying from 64 to 6400; (F) shows the average time cost of five runs for each maximum
support size.

Oscillation of the computing time curves is mainly due to the cache mechanism
(Hennessy and Patterson 2007, Chapter 5.5) in modern computer design. Varying support sizes leads
to different cache miss frequencies during the entire run, and a cache miss is resolved by spending time
reading from upper memory hierarchies. In consequence, a slightly larger support size could yield
higher speed if it is better adapted to the cache hierarchies of the architecture where the program runs.
A good example can be found at https://stackoverflow.com/questions/11413855/why-is-transposing-
a-matrix-of-512x512-much-slower-than-transposing-a-matrix-of.

4. Conclusions

In this paper we presented several computationally fast models for CAT risk aggregation under
spatial dependency. These models are variants of copula trees. Operations at branching nodes were
facilitated by the Split-Atom convolution and estimation of distribution of the comonotonic sum. Using
an example of ground-up loss estimation for 29,000 locations affected by a major hurricane event in
the U.S., we have shown that the mixture method coupled with 4-point regriding and RNN order of
convolutions, preserves target mean and variance of the total risk. Values of tail statistics compare
favorably with those from, computationally slower, large sample MC runs.

5. Future Research Directions

In future work we aim to use the methods presented here for gross loss accumulation when
complex financial terms act as non-linear transformations on partial loss aggregates in hierarchical
trees. In such case the target second order statistics of the total risk are unknown and can only be
inferred from MC runs. Since (sometimes nested) application of deductibles and limits makes the
emergence of probability atoms even more pronounced than in the case of ground-up loss, fast gross
loss aggregation strategies could potentially benefit from the Split-Atom approach. Another challenge
is to develop a capital back allocation methodology which is in concert with our second order moment
preservation requirement. This is crucial, for example, when risks in a geographical domain are part of
one sub-limit by building and contents combined, and second sub-limit for business interruption; at
the same time, some risks are not a part of any sub-limit.

Investigating how our methods can be extended to include negative correlations between pairs of
risks is another exciting topic for future study. Some thoughts on this research direction are given in
Appendix B.

https://stackoverflow.com/questions/11413855/why-is-transposing-a-matrix-of-512x512-much-slower-than-transposing-a-matrix-of
https://stackoverflow.com/questions/11413855/why-is-transposing-a-matrix-of-512x512-much-slower-than-transposing-a-matrix-of
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Appendix A

Algorithm A1: Split-Atom Convolution: 4-products
Input : Two discrete pdfs pX and pY with supports:

x = {x1, x1 + hx, x1 + 2hx, . . . , x1 + (Nx − 2)hx, xNx};
y = {y1, y1 + hy, y1 + 2hy, . . . , y1 + (Ny − 2)hy, yNy};
and probabilities: pX(x) = ∑Nx

i=1 δ(x− xi)pX(xi); pY(y) = ∑
Ny

i=1 δ(y− yi)pY(yi);
Ns - maximum number of points for discretizing convolution grid

1: x(1) = {x1, x1 + hx, x1 + 2hx, . . . , x1 + (Nx − 2)hx}; p(1)X (x) = ∑Nx−2
i=1 δ(x− x(1)i )p(1)X (x(1)i )

2: x(2) = {xNx}; p(2)X (x) = δ(x− x(2)i ) · p(2)X (x(2)i ) // split the right atom of pX

3: y(1) = {y1, y1 + hy, y1 + 2hy, . . . , y1 + (Ny − 2)hy}; p(1)Y (y) = ∑
Ny−2
i=1 δ(y− y(1)i )p(1)Y (y(1)i )

4: y(2) = {yNy}; p(2)Y (y) = δ(y− y(2)i ) · p(2)Y (y(2)i ) // split the right atom of pY

5: hs? =
xNx+yNy−(x1+y1)

Ns?−1 // corresponding step size of the main part of convolution grid s

6: hs = max(hx, hy, hs? ) // final step size of the main part of convolution grid s

7: Ns = d
xNx+yNy−x1−y1

hs
e+ 1 // corresponding number of points

8: // set irregular convolution grid:

9: s = {x1 + y1, x1 + y1 + hs, . . . , x1 + y1 + (Ns − 2)hs, xNx + yNy}
10: Nx(1)′ = d x1+(Nx−2)hx−x1

hs
e+ 1 // size of the regridded main part

11: x(1)
′
= {x1, x1 + hs, x1 + 2hs, . . . , x1 + (Nx(1)′ − 1)hs} // discretize x(1) with hs

12: p(1)
′

X (x) = ∑
N′x
i=1 δ(x− x(1)

′

i )p(1)
′

X (x(1)
′

i ) // regrid p(1)X

13: Ny(1)′ = d
y1+(Ny−2)hy−y1

hs
e+ 1

14: y(1)
′
= {y1, y1 + hs, y1 + 2hs, . . . , y1 + (Ny(1)′ − 1)hs}

15: p(1)
′

Y (y) = ∑
N′y
i=1 δ(y− y(1)

′

i )p(1)
′

Y (y(1)
′

i )

16: B(1) = p(1)
′

X ⊕ p(1)
′

Y // Brute Force convolution

17: B(2) = p(2)X ⊕ p(1)
′

Y // –-”–-

18: B(3) = p(1)
′

X ⊕ p(2)Y // –-”–-

19: B(4) = p(2)X ⊕ p(2)Y // –-”–-

20: Regrid B(1−4) onto convolution grid s

Output : Probability mass function pS of the independent sum S = X + Y with the support
s = {s1, s1 + hs, s1 + 2hs, . . . , s1 + (Ns − 2)hs, sNs} and the associated probabilities
pS(s) = ∑Ns

k=1 δ(s− sk)pS(sk), where sNs − [s1 + (Ns − 2)hs] ≤ hs.
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Algorithm A2: Modified local moment matching
Input :Discrete pdf pX with fine scale support x = {x1, x1 + h, . . . , x1 + (N − 1)h} and associated

probabilities pX(x) = ∑N
i=1 δ(x− x1 − (i− 1)h) · pX(x1 + (i− 1)h); the support of coarse scale

probability mass function pX′ : x′ = {x′1, x′1 + h′, . . . , x′1 + (N′ − 1)h′}.
Requirement: x′1 ≤ x1, x′N′ ≥ xN , h < h′.

1: For convenience, let {x1, x2, . . . , xN} ← x and {x′1, x′2, . . . , x′N′} ← x′
2: Initialize pX′ (x′)← 0
3: if x′1 = x1 then

4: pX′ (x′1)← pX′ (x′1) + pX(x1)
5: end if
6: for i < N′, j ≤ N, x′i < xj ≤ x′i+2, xj − x′i ≤ x′i+3 − xj do

7: 
pX′ (x′i)

pX′ (x′i+1)

pX′ (x′i+2)

←


pX′ (x′i)

pX′ (x′i+1)

pX′ (x′i+2)

+


1 1 1

x′i x′i+1 x′i+2

x′2i x′2i+1 x′2i+2


−1 

pX(xj)

xj pX(xj)

x2
j pX(x2

j )


8: end for

Output :Pdf pX′ (x′)

Appendix B

The mixture method implemented in the paper accounts only for positive correlations between
pairs of risks. There is no reason, however, to believe that negative correlations do not exist. A situation
when the CAT model errors are increasing at one location in space and they are decreasing at an adjacent
location, or vice versa, induces negative correlation entries in the covariance frame r(Xi, Xj) = ρi,j
where ρi,j ∈ [−1; 1], i, j = 1, . . . , M. Representing that type of dependence in the direct aggregation
model would require extension of (3) which includes M-dimensional Fréchet–Hoeffding lower bound
W(u) = max(u1 + u2 + . . . + uM − (M− 1), 0). While W is a countermonotonic copula for M = 2, it
is not a copula for M ≥ 3, see Lee and Ahn (2014). Furthermore, minimum copula for M ≥ 3 does
not exist. Lee and Ahn (2014); Lee et al. (2017) give a new equivalent definition for multidimensional
countermonotonicity referred to as the d-countermonotonicity or d-CM for short. They have shown
that d-CM copulas constitute a minimal class of copulas and that, e.g., minimal Archimedian copula
in McNeil and Nešlehová (2009), sometimes used as an approximation to Fréchet–Hoeffding lower
bound, is d-CM. Let S− = X−1 + X−2 + . . . ,+X−M be the sum of losses when the individual risks are
d-CM s. We aim at extending the representation of the arbitrary sum S in (7) to:

S = w1S− + w2S⊥ + w3S+ (A1)

where w1, w2 and w3 are non-negative mixing weights such that w1 + w2 + w3 = 1. By analogy with
(8), we require that the weights in (A1) should be chosen such that the target moments E[S] and Var[S]
are preserved. Observing that the left side of:

Var[S] = w1Var[S−] + w2Var[S⊥] + (1− w1 − w2)Var[S+] (A2)

can further be decomposed into two overlapping parts:

Var[Sw− ] = w1Var[S−] + w2Var[S⊥]

Var[Sw+ ] = w2Var[S⊥] + (1− w1 − w2)Var[S+]
(A3)
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where:

Var[Sw− ] = ∑
i′

σ2
i′
+ ρi′ j′ ∑

i′ 6=j′
σi′ σj′

Var[Sw+ ] = ∑
i′′

σ2
i′′
+ ρi′′ j′′ ∑

i′′ 6=j′′
σi′′ σj′′

(A4)

The negative and positive correlations ρi′ j′ ∈ [−1; 0) and ρi′′ j′′ ∈ (0; 1] are defined for some indices
i′, j′ = 1, . . . , N′ and i′′, j′′ = 1, . . . , N′′. Expressing Var[S−] using (A2) and substituting into (A3) yields:

Var[Sw− ] = Var[S]− (1− w1 − w2)Var[S+]

Var[Sw+ ] = w2Var[S⊥] + (1− w1 − w2)Var[S+]

Var[S−] =
Var[S]− w2Var[S⊥]− (1− w1 − w2)Var[S+]

w1

(A5)

Solving (A5) for the weights leads to:

w1 =
Var[Sw− ](Var[S⊥]−Var[S+]) + Var[S](Var[S+]−Var[S⊥]) + Var[S+](Var[S⊥]−Var[Sw+ ])

Var[S+]Var[S⊥]

w2 =
Var[Sw− ] + Var[Sw+ ]−Var[S]

Var[S⊥]

(A6)

The results above indicate that for the direct model the natural and open research question is to
construct a d-CM distribution with the variance Var[S−] in computationally efficient manner. This issue
can easily be addressed for hierarchical models where risk accumulation is performed pairwise. In this
case, whenever negative correlations occur between pairs of risks and/or their partial sums, we simply
replace the bivariate version of (1) with:

Cw(u1, u2) = (1− w)∏
i

ui + w max(u1 + u2 − 1, 0) (A7)

at the branching nodes. To compute w we use (8) and replace ∑i 6=j r(X+
i , X+

j ) with ∑i 6=j r(X−i , X−j ) in
the denominator. Comonotonization in Algorithm 6 with reversed order of losses and their probabilities
is used to get the countermonotonic distribution of S−. The latter requires an extra regriding and
sorting operation so the increase in algorithmic complexity as compared to the mixture method with
the comonotonic dependency is O(N + N log(N)).
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