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Abstract: Risk models developed on one dataset are often applied to new data and, in such cases,
it is prudent to check that the model is suitable for the new data. An important application is in
the banking industry, where statistical models are applied to loans to determine provisions and
capital requirements. These models are developed on historical data, and regulations require their
monitoring to ensure they remain valid on current portfolios—often years since the models were
developed. The Population Stability Index (PSI) is an industry standard to measure whether the
distribution of the current data has shifted significantly from the distribution of data used to develop
the model. This paper explores several disadvantages of the PSI and proposes the Prediction Accuracy
Index (PAI) as an alternative. The superior properties and interpretation of the PAI are discussed and
it is concluded that the PAI can more accurately summarise the level of population stability, helping
risk analysts and managers determine whether the model remains fit-for-purpose.

Keywords: population stability index (PSI); Basel Accord; IFRS 9; model monitoring; model validation

1. Introduction

For banks, their loans are not only assets—as they are income producing—but also liabilities when
customers default and do not repay their debt. In many jurisdictions, these liabilities are measured by
procedures in regulations such as the Basel Accord (Basel Committee on Banking Supervision 2006) for
capital and the International Financial Reporting Standards (IFRS 9) for provisioning (International
Accounting Standards Board 2014). Capital is required in case of a severe economic downturn, while
provisions reflect losses expected in current economic conditions. As these valuations form part of the
value of the company, their accuracy is important to many stakeholders. These stakeholders include the
bank itself (for example, to make profitable acquisition decisions for new loans); external auditors (who
assess the accuracy and reliability of financial statements); regulators (who assess the sustainability of
the bank); and investors (who rely on this information to make investment decisions).

Both the Basel Accord and the IFRS 9 adopt a standard approach of assessing risk of loans with
three components: probability of default (PD), exposure at default (EAD), and loss given default (LGD).
Thus, three models are required to respectively predict the likelihood of a loan defaulting (unable to
make its contractual obligations, typically 90 days overdue in payments); the balance owing at the
time of default; and the monetary loss to the bank in the case of default (expressed as a fraction of the
EAD). Expected loss might be estimated with the product PD × EAD × LGD.

Model development in the banking industry is well covered in the literature (Siddiqi 2005) but an
equally important regulated activity is the continual monitoring of whether the model remains suitable
(fit-for-purpose). For example:

Banks that have adopted or are willing to adopt the Basel II A-IRB approach are required to
put in place a regular cycle of model validation that should include at least monitoring of the

Risks 2019, 7, 53; doi:10.3390/risks7020053 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
https://orcid.org/0000-0002-5353-7448
http://www.mdpi.com/2227-9091/7/2/53?type=check_update&version=1
http://dx.doi.org/10.3390/risks7020053
http://www.mdpi.com/journal/risks


Risks 2019, 7, 53 2 of 11

model performance and stability, review of the model relationships, and testing of model
outputs against outcomes (i.e., back testing). Sabato (2010, p. 40)

and also:

Stability and performance (i.e., prediction accuracy) are extremely important as they provide
information about the quality of the scoring models. As such, they should be tracked and
analyzed at least on a monthly basis by banks, regardless of the validation exercise. Sabato
(2010, p. 40)

This aspect is typically performed internally and externally by bankers, auditors, and regulators.
Monitoring is important because a model developed years earlier may no longer be fit-for-purpose for
the current portfolio. One reason for this is the type of customers within the portfolio may differ from
the types of customers available to develop the model.

Population stability refers to whether the characteristics of the portfolio (especially the distribution
of explanatory variables) is changing over time. When this distribution changes (low population
stability) there is more concern over whether the model is currently fit-for-purpose since the data used
to develop the model differs from the data the model is being applied to. Applying the model to these
new types of customers might involve extrapolation and hence lower confidence in model outputs.

There are other characteristics of a model that requires monitoring to ensure the model is
fit-for-purpose. These include calibration (whether the model is unbiased) and discrimination (whether
the model correctly ranks orders the loans from best to worst). While these measures are important,
they require known outcomes. For example, a PD model predicting defaults in a one-year window
must evaluate loans at least one year old to determine calibration and discrimination. Therefore,
conclusions from these measures are at least one year out of date compared to the current portfolio.

Population stability is important as it requires no lag; it can be measured with the current
portfolio since the outcome is not required. Therefore, it is important to monitor population stability
to gain insights concerning whether the current portfolio (rather than the portfolio one year ago)
is fit-for-purpose.

This paper focuses on the measurement of population stability, especially the Population Stability
Index (PSI) which has become an industry standard. Deficiencies in the PSI are explored and an
alternative that has superior properties and whose values are more directly interpretable is introduced.
Statistical tests also exist to test the null hypothesis that the distribution of the development data and
the distribution of the review data are equal. Examples include the Kolmogorov-Smirnov test for
numerical data or a chi-squared test for categorical data. We do not consider these appropriate because
they summarize the amount of evidence against the null hypothesis and are too reliant on sample size.
In large samples, small and unimportant differences in the distributions can be statistically significant,
while in small samples, large and important differences can be statistically insignificant. We therefore
do not consider these further in this paper.

1.1. Models and Notation

Model development tasks are extensive and well covered in the literature, of which Siddiqi (2005)
is particularly relevant to the banking industry. Briefly, empirical historical data is used to estimate
relationships between an outcome (such as default in the case of a PD model) and explanatory variables
(such as employment status of the customer). PD models typically estimate probabilities of default
within one year, so for model development, explanatory variables must be at least one year old (so the
outcome is known). The model development then looks for, and captures in mathematical form,
relationships in the data between the explanatory variables and the outcome. For example, this may
take the form of a logistic or probit regression model predicting default. This mathematical form often
takes the form of a regression where some (possibly transformed) measure of the outcome equals

β0xi0 + β1xi1 + . . .+ βkxik (1)
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where β0 to βk are estimated coefficients and xi0 to xik are the values of the explanatory (numerical)
variables for the ith observation (typically xi0 is defined to always equal 1, in which case β0 is an
intercept). For example, a logistic regression used to predict default uses Equation (1) to predict the
log-odds of default (defined as the natural logarithm of the ratio of the probability of default to the
probability of not defaulting).

The explanatory variables have several basic types whose treatments are summarized here because
these affect the details presented later (see Pyle (1999) for further details of these issues and treatments).
In particular, variables might be categorical or numerical. Categorical variables (such as occupation
category) take values from a list (such as trade, professional, retired, student, etc.) and typically have
no natural ordering or numerical value. Modelling might create n − 1 (where n is the number of
categories) dummy variables (taking numerical values of 0 or 1) or by numeration where a numerical
value (the weight of evidence) is assigned to each category (Siddiqi 2005). For example, numerical
values might be determined from the observed default rate within each category.

Numerical variables are defined in numerical terms. For example, the loan to value (LVR) ratio
is defined as the value of the loan divided by the value of the asset securing the loan. Modelling
might use this numerical value directly, after a simple numerical transformation (such as logarithms or
Winsorizing) or by bucketing into a small number of categories (such as 0 to 0.5; 0.5 to 0.8; 0.8 to 1; and
>1). Thus, bucketing transforms a numerical variable into a categorical variable (which in turn may be
numerated with weight of evidence or dummy variables during model development). As expanded
on below, this is a key issue not only because bucketing is a common practice in banking but because
the PSI is only defined for categorical variables (or bucketed numerical variables).

1.2. The Population Stability Index (PSI)

The PSI is closely related to well-established entropy measures, and essentially is a symmetric
measure of the difference between two statistical distributions. The index specifically called ‘Population
stability index’ (PSI) is found in Karakoulas (2004), as a “diagnostic technique for monitoring shifts
in characteristics distributions”. It is also described in Siddiqi (2005), who explains its use to either
monitor overall population score stability (“System stability report”) or, as a likely follow-up, the
stability of individual explanatory variables (“Characteristic analysis report”) in credit risk modelling
scorecards for the banking industry. The same formulation has appeared in the statistical literature
as the “J divergence” (Lin 1991, who in turn references Jeffreys 1946), and is closely related to the
Jensen-Shannon divergence.

The formula for the PSI assumes there are K mutually exclusive categories, numbered 1 to K, with:

PSI =
K∑

i=1

(Oi − Ei) × ln
(

Oi
Ei

)
(2)

where Oi is the observed relative frequency of accounts in category i at review; Ei is the relative
frequency of accounts in category i at development (the review relative frequency is expected to be
similar to the development relative frequency); i is the category, taking values from 1 to K; and ln() is
the natural logarithm.

A PSI value of 0 implies the observed and expected distributions are identical with the PSI
increasing in value as the two distributions diverge. Siddiqi (2005) interpreted PSI values as follows:
less than 10% show no significant change; values between 10% and 25% show a small change requiring
investigation; and values greater than 25% show a significant change. Note the PSI is large when a
category has either the observed or expected relative frequency close to zero and is not defined if
either relative frequency equals 0. Therefore, a limit argument suggests the PSI might be interpreted as
having an infinite value when one of the relative frequencies equals zero.

The calculation of the PSI is illustrated with a hypothetical example in Table 1. A PSI of 0.25 results
primarily from the high observed frequencies of 21% in categories 1 and 10. Thus the interpretation
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recommended by Siddiqi (2005) suggests the distribution of the data has changed significantly from
development to review.

Table 1. Calculation of the PSI (example 1).

Term 1 2 3 4 5 6 7 8 9 10 Total

Oi 21% 9% 7% 7% 6% 6% 7% 7% 9% 21% 100%
Ei 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 100%

(Oi − Ei) × ln
(

Oi
Ei

)
0.082 0.001 0.011 0.011 0.020 0.020 0.011 0.011 0.001 0.082 0.25

Table 2 shows the calculation of the PSI for a second hypothetical example that also results
in a value of 0.25 for the PSI. The similar PSI values are interpreted to mean the deviations from
development in the two examples are similar in magnitude.

Table 2. Calculation of the PSI (example 2).

Term 1 2 3 4 5 6 7 8 9 10 Total

Oi 3% 8% 11% 14% 15% 15% 14% 11% 8% 3% 100% 1

Ei 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 100%
(Oi − Ei) × ln

(
Oi
Ei

)
0.084 0.004 0.001 0.013 0.020 0.020 0.013 0.001 0.004 0.084 0.25

1 Observed values at review are rounded but sum to 100%.

The similar interpretations based on the PSI from these examples might be reasonable if the
10 categories represent categorical divisions, such as industry sector. However, this is questionable if
the categories represent a division of a continuous scale used in model development. For example, the
explanatory variable might be the loan to value (LVR) ratio: the value of the loan divided by the value
of the asset securing the loan (a common and intuitive predictor of loss). This continuum is divided
into 10 categories as this is required for calculation of the PSI (it may or may not have been a modelling
choice). Failing to take this information into account and instead treating the categories as unordered
can lead to misleading conclusions concerning whether the model remains fit-for-purpose.

The categories in Tables 1 and 2 were constructed from underlying development data with a
standard normal distribution, with intervals defined to each capture 10% of the distribution: −infinity
to −1.28; −1.28 to −0.84; −0.84 to −0.52, etc. The review data in Table 1 was also normally distributed,
but with a standard deviation of 1.6 instead of 1, creating more observations in the extreme categories
(below −1.28 and above 1.28 respectively). Observed frequencies were rounded to the nearest percent
to ensure the calculations use the exact observed and expected values in Table 1. Similarly, the review
data in Table 2 was constructed with a standard deviation of 0.674, creating less data in the extreme
categories. This is illustrated in Figure 1. Note that the use of the normal distribution is not important
here since bucketing is used to create 10 buckets of equal frequency.
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Although the PSI value in Tables 1 and 2 both equal 0.25, the extent to which the model is
fit-for-purpose for the corresponding review data is not. In Table 1, the model is being applied to more
extreme data than was available at development. Confidence that the data is suitable for this review
data should be low; especially when the model is being extrapolated from development data to the
more extreme review data. Not only will a small change in estimated coefficients have a larger impact
on the predicted value for these observations, but we have less confidence in the validity of assumptions
such as linearity of relationships between response and explanatory variables. In contrast, the review
data in Table 2 suggests no extrapolation is involved. If the model was considered fit-for-purpose
at development then this change in distribution gives no reason to suggest the model is no longer
fit-for-purpose: if it was fit for standard normal data (95% of which is within −1.96 and +1.96) then it
should be fit for the review data (95% of which is within −1.35 and +1.35). These examples illustrate
how the PSI captures any differences between the development and review data rather than focussing
on those differences that suggest the model is not fit for the purpose of estimation on the review data.

The PSI is typically calculated for each independent variable in the model. It can also be computed
for variables not in the model, such as variables considered serious candidates during modelling.
However, since a separate PSI value is obtained for each variable, this can result in numerous
quantitative results when a single value summarizing stability is desirable. To avoid this issue of
multiple values summarising population stability, the PSI can be computed on the model output (or
score) instead. However, this requires placing the typically numeric model output into categories
before calculation.

Finally, the value of the PSI can be influenced by the number and choice of categories. Too
many categories and the PSI can detect minor differences in the distribution; too few categories and it
may miss differences (for example, if two categories, one with a high frequency and one with a low
frequency, are combined to form a single category). This can create interpretation issues as it is not
always clear whether the categories used are determined a priori, or whether they are chosen to smooth
out differences in the distributions. This is an important issue in practice as the categories for the PSI
often have to be chosen after inspection of the data. In particular, the PSI has unreliable properties
when frequencies for a category approach 0. Furthermore, due to the necessity to create categories for
numerical variables, extreme outliers have minimal impact on the PSI even though they may have
significant impact on model accuracy; if the model uses a numerical variable, then assessing population
stability using a categorical (bucketed) version may not capture changes in stability appropriately.

2. The Prediction Accuracy Index (PAI)

The Prediction Accuracy Index (PAI) is defined as the average variance of the estimated mean
response at review divided by the average variance of the estimated mean response at development.
As with the PSI, in this definition it is the values of the explanatory variables (design space) that is
important; the values of the response are irrelevant and not required. The PAI is high when: at review,
the explanatory variables take values that result in a variance of the predicted response that is higher
than the corresponding variance at development. The cases of a single numeric variable, multiple
regression, and a categorical variable are considered in the following three sections. Note that these
sections are presented for ordinary least squares regression where the response is normally distributed,
however, the above definition of the PAI can be applied to any model (e.g., a neural network) where
variances of estimated mean responses are available (by techniques such as bootstrapping if necessary).
In particular, the results presented below are immediately applicable to logistic regression used to
predict default if the predictions are taken to be the log-odds of default (see Equation (1)).

Unlike the PSI, which is defined on a scale with no obvious interpretation, the PAI measures the
increase in the variance of estimated mean response since development. For example, a PAI value
of 2 is directly interpretable as the variance of the predicted mean response at review is double the
variance of the mean response at development (on average). It is recommended that PAI values are
interpreted as follows: values less than 1.1 indicate no significant deterioration; values from 1.1 to 1.5
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indicate a deterioration requiring further investigation; and values exceeding 1.5 indicate the predictive
accuracy of the model has deteriorated significantly. Note that these guidelines are more stringent
than the interpretations by Siddiqi (2005) for the PSI (note in Table 1 the PSI was 0.252, the boundary of
a significant change, but the PAI equals 1.78, well above the recommended boundary of 1.5). These
more stringent recommendations are based on several factors: a value of PAI equal to 1.5 corresponds
to review data having a standard deviation of 1.4 times the standard deviation of development data
(if distributions are normal), which is a significant increase; a PSI greater than 0.25 is rare; and since the
PAI is more focussed on model predictive accuracy, it has more power at detecting deterioration in this
important characteristic specific to the model.

2.1. Simple Regression

In the case of simple linear regression (Equation (1) with k = 1 and xi0 is defined to always equal 1),
the variance of the estimated mean response when the explanatory variable xi is equal to z is given by
(Ramsey and Schafer 2002, p. 187):

MSE×

1
n
+

(z− x)2∑
(xi − x)2

 (3)

where MSE is the mean squared error (of the residuals) from model development; x is the mean
value of the explanatory variable x at development; n is the sample size at development; and the
summation is over all values xi of the explanatory variable used during scorecard development. Note
the average value of Equation (3), averaging over values of z equal to the development data xi, is equal
to MSE× 2/n.

The PAI for simple linear regression equals Equation (3) averaged over all values of z equal to the
review data (denoted r j; j = 1 to N) divided by Equation (3) averaged over all values of z equal to the
development data (denoted xi; i = 1 to n):

PAI =
1
2
×

1 +

∑N
j=1

(
r j − x

)2
/N∑n

i=1(xi − x)2/n

 (4)

Note that the sum of squares in both the numerator and the denominator are centred on the
average of the explanatory variable in the development data (not the average of the review data).

Applying Equation (4) to the normally distributed review data in Table 1 gives a value for the PAI
of 1.78. That is, the variance of the estimated mean response is, on average, 78% higher when calculated
on the review data than when calculated on the development data. This is directly interpretable as the
model being 78% less precise on the review data than on the development data. In contrast, the PAI
equals 0.73 for the review data in Table 2, and hence the model is on average more accurate on the
review data in Table 2 than it was on the development data. This is interpretable as the model being
27% more precise on the review data than on the development data.

2.2. Multiple Regression

In the case of a multiple regression model given by Equation (1), the estimated variance of the
mean response when the explanatory variables xi1, xi2, . . . , xip take values zi1, zi2, . . . , zip is given by
(Johnson and Wichern 2007, p. 378):

MSE× zT
j

(
XTX

)–1
z j (5)

where zT
j =

(
zi1, zi2, . . . , zip

)
is the row vector of explanatory variables (zi1 = 1 when an intercept is

included); X is the matrix of explanatory variables at development; MSE is the mean squared error (of
the residuals) from model development; T indicates transpose; and ()–1 denotes matrix inverse.
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The columns of X equal the values of the explanatory variables of the development data (the rows
are similar to zT

j for each observation in the model development data). In practice, Equation (5) can be
calculated with:

zT
j Vz j (6)

where V = MSE×
(
XTX

)–1
is the variance-covariance matrix of the estimated regression coefficients

(β1, β2, . . . , βp) and is available from most regression software.
The PAI for multiple regression is defined as the average of Equation (6) calculated at the values

of the explanatory variables z j at review divided by the average of Equation (6) calculated at the values
of the explanatory variables z j at development:

PAI =

∑N
j=1 rT

j Vr j/N∑n
i=1 xT

i Vxi/n
(7)

where r j is the vector of explanatory variables for the jth observation of the review data ( j = 1 to N);
xi is the vector of explanatory variables for the ith observation of the development data (i = 1 to n).

The following sections apply this formula to the cases where a single categorical variable has more
than two categories (requiring multiple regression with dummy variables to estimate the mean response
for each category) and a multiple regression where the model contains several explanatory variables.

2.3. One Categorical Variable

Applying Equation (7) to a categorical variable requires the construction of dummy variables to
model the differences between the categories; the multiple regression requires a number of parameters
(including the intercept) equal to the number of categories. This results in the PAI taking the value of 1
for data in both Tables 1 and 2. Indeed, for any distribution of review data across these 10 categories,
the PAI will always equal 1 if the development data is equally distributed across the categories. This is
because in this case the response can be measured with the same precision for each category; a shift in
customers from one category at the time of development to another category at review has no impact
on model precision if both categories were estimated with equal precision at development. The PSI
does not share this property, instead, capturing the extent to which the distribution of the review data
deviates from the equal frequency distribution at development.

This invariance property does not hold if the categories are not equally frequent at development.
A shift in customers from one category at the time of development to another category at review will
give a higher value for the PAI if the customers move into a category that, at development, had a lower
frequency. To illustrate, if the roles of development and review data are reversed in the examples, so
Table 2 now involves extrapolation (from 3% of development data to 10% review data in categories 1
and 10), the PAI is 1.60. The PAI for Table 1 with reversed data is 0.70. This asymmetry property of
the PAI is arguably desirable as extrapolation and interpolation are not equivalent with regards to
model accuracy. The PSI, however, was designed to possess this symmetry as there was no distinction
between development and review in its conception (reversing the roles of review and development
data gives the same value for the PSI).

3. The Multivariate Predictive Accuracy Index (MPAI)

The Multivariate Predictive Accuracy Index (MPAI) is defined as Equation (7) using all the
explanatory variables in the model. While this is mathematically equivalent to the case of multiple
regression, Equation (7), it is discussed separately in this section because considering all explanatory
variables is important and not feasible with the PSI. The PSI cannot easily be applied to multivariate
distributions of many variables because it requires categories, and ensuring there are enough categories
to capture the multidimensional space typically results in too many categories, many of which will
have frequencies of development or review data too close to zero.
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To illustrate the importance of the MPAI, consider a model with two explanatory variables that
are positively correlated at development (circles) and at review (stars) in Figure 2. While the review
data does not represent extreme variables for either variable (the most extreme observation for either
variable is always in the development data), there is a visual pattern whereby the review data tends
to be in the lower right corner (high x1 and low x2) where no development data exists. Thus, in
a multivariate sense, extrapolation is involved with this data, and the model estimated using the
development data may not be fit-for-purpose for the review data.
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Figure 2. Hypothetical development data (circles) and review data (stars) for two explanatory variables
x1 and x2.

Applying the MPAI to the data in Figure 2 (three parameters are estimated; one for each of the
two explanatory variables and one for the intercept) produces a PAI value of 5.43. This suggests the
accuracy of the estimates have a variance at review that is over 5 times higher than the variance at
development. The univariate PAI from Equation (4) are respectively 0.93 for variable x1 and 1.02
for variable x2 (similarly acceptable values are obtained with the PSI if reasonable categories are
created). Thus, this multivariate PAI is a significant contribution in its own right as it enables deviations
between the development and review multivariate distributions to be detected that univariate statistics
may not1.

To avoid confusion, it is recommended that the term Multivariate Predictive Accuracy Index
(MPAI) is used when all variables are included, and the term Univariate Predictive Accuracy Index
(UPAI) is used when only one variable is included at a time. The term PAI can be used for either case.
Note that the UPAI may involve multiple regression even though only one variable is considered;
examples include the treatment of a categorical variable or when a quadratic term is included with a
numerical variable to avoid making assumptions of linearity (as discussed in the next section).

1 Univariate statistics such as the PSI may detect the pattern in Figure 1 if the score combining these variables is analysed
however there is no guaranteed of this. For example, a score equal to the sum of x1 and x2 in Figure 1 will produce similar
distributions in score for development and review data.
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4. Discussion

This paper considers the requirement of stability: that the data used to develop a model is
representative of the data the model is currently applied to. The industry standard in banking to
measure stability, the Population Stability Index (PSI), interprets this as the distribution of development
data and the distribution of review data are similar. This paper introduces the Prediction Accuracy
Index (PAI) which takes a different perspective on this requirement. The PAI requires the predictive
ability of the model on current data is not significantly worse than the predictive ability at development.
This perspective more suitably answers the key question of whether a model is still fit-for-purpose.
Both indices only examine the distribution of the inputs to a model, so do not address concerns such as
calibration or discrimination of the model. While calibration and discrimination are also important,
they have the disadvantage that values of the response are required. This can make the model input
data old; at least one year ago if an outcome such as default over a one-year outcome window is
used. In contrast, the PAI and PSI can be calculated on the characteristics of today’s portfolio. This
can provide an earlier warning that the model may no longer be suitable for the current customers.
A high value of the PAI may therefore require consideration of overlays above model outputs to
prudently provision for expected losses or capital, even if historical calibration and discrimination
were considered satisfactory.

The negative consequences of using the PSI are illustrated with the example in Table 2. The PSI
value of 0.25 is interpreted as a significant change that may lead banks to take action such as planning
re-development of the model or applying an overlay to provisions or capital to account for this unjustified
lack of confidence in model predictions. These actions can have severe consequences, including
unnecessary expense re-developing a model that remains fit-for-purpose or sending inappropriate
messages to investors. The PAI correctly recommends no such actions are required. Importantly, this
phenomenon can easily occur because a new model declines high-risk customers that were previously
accepted. Hence, we may expect some extreme customers that were present at development to be
absent from the review data. That is, the fact that high-risk customers are less frequent in the review
data compared to the development data is an expected outcome of a new model deployment and
should not be interpreted, as the PSI does, as evidence that the model is no longer fit-for-purpose.

The PAI has several advantages over the PSI. First, the PAI measures the predictive accuracy
of the model when applied to the review data rather than a generic difference in the distribution of
review and development data. The PAI penalises a model when it is applied to review data beyond
the boundary of development data (extrapolation), but not when the review data is more concentrated
in the regions suited for the model. The latter is not uncommon; an example is when a new application
scorecard replaces an old inferior application scorecard and thereby reduces the number of poor
applications accepted. This can reduce the variation in the types of customers accepted without
introducing customers that were not accepted previously (so no extrapolation is involved).

Second, the PAI is directly applicable to explanatory variables that are numeric or categorical
(ordered or unordered). While the PAI could be applied to variables bucketed into categories (for
example when the model applies this transformation of a numeric variable into a few categories),
there is no need to do so. Applying the PAI to a raw, untransformed variable might also give
important insights.

Third, the PAI does not suffer from calculation problems when categories have frequencies close
to zero in either development or review data. Both will give an infinite value (or undefined value)
for categorical data if a category has no observations at development but at least one observation at
review, but, unless there is good reason to combine this category with another category, this conclusion
is not unreasonable as the model cannot provide a prediction for such an observation. This issue does
not arise when the PAI is applied to numeric variables.

Fourth, the PAI can be applied to many explanatory variables simultaneously, thus revealing the
extent to which the review data involves extrapolation in a multivariate sense. This is arguably more
important than assessing the univariate distributions of each variable one at a time. A common attempt
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to include multiple explanatory variables in the PSI is to use the model output (score) rather than the
model inputs. This is similar to the simple linear regression case, Equation (4), as the score is typically
a numerical value. In order to apply the PSI, the scores must first be assigned to categories. While this
approach does take into account all explanatory variables, it has several of the above disadvantages: it
requires creation of arbitrary categories; extreme scores will be placed into a category without taking
into account how extreme they are (possible extrapolation); and the PSI considers these as unordered
categories when the score is clearly ordered. If too many categories are used the PSI can be high
due to a minor difference in frequencies and if too few categories are used important differences in
the distributions are not captured. More significantly, the PSI only examines one dimension of the
multivariate design space (the one defined by the model coefficients) but deviations in other directions
are just as important from a model fit-for-purpose perspective.

Fifth, the PAI is directly applicable to most model structures. For example, regression models that
include non-linear terms such as logarithmic transformations, quadratics or interactions between two
variables are handled naturally by the MPAI. The PSI requires some manipulation of variables that may
be unnatural, require careful thought, or have undesirable consequences. For example, it is difficult to
interpret the PSI when applied to both a variable and its square in a quadratic regression model, and it
is unclear how two variables involved in an interaction should be categorised for application of the PSI.

Sixth, the PAI can be applied without making any linearity assumptions considered appropriate
at model development that may no longer be valid. For example, including the square of each numeric
variable (as well as the variable itself) in the calculation of the PAI, even though the quadratic is not
in the model, will estimate population stability that considers the possibility that relationships are
non-linear. Due to the extra uncertainty of model predictions when the linearity assumption is relaxed
and extrapolation is involved, this will increase the PAI when the review data has significant outliers
compared to the development data.

While these points suggest the PAI has many advantages over the PSI, it also has characteristics
that might be considered disadvantages if they are not taken into account. First, modelling often
applies bucketing (or Winsorizing) of variables to remove the impact of extreme outliers. Similar
actions should be considered when calculating the PAI as otherwise the PAI may be heavily influenced
by a few extreme outliers. However, if it is desired to monitor the modelling decision to bucket or
Winsorize, then we recommend calculating the PAI both with and without this action being applied to
the data. Second, the MPAI may be inappropriate if too many explanatory variables are included due
to the curse of dimensionality. For this reason, we recommend calculating the MPAI using only the
variables in the model or using these and a few other variables considered important. These variables
might be included because business experience suggests they might be important predictors and
quadratic and interaction effects of variables. These additional variables should be included in the
MPAI if it is desired to monitor the decision to include or exclude variables; a practice that has much to
be recommended. The curse of dimensionality is not a suggestion that only variables in the model
should be considered, but a warning against including all available modelling variables (including
potentially all their squares, interactions, etc.) in the MPAI, as this will typically be a lot more than just
a few times the number of variables included in the final model.

Third, it is important to remember the PSI and PAI measure subtly different ideas of stability.
While the PSI measures any change in the distribution of explanatory variables, the PAI only measures
how this change influences the predictive accuracy of the model. This was illustrated in the example
in Table 2, where changes in the distribution of a categorical variable have no effect on the PAI if all
the categories are equally frequent in the development data. We argue this is of more interest when
monitoring the performance of a model. Nevertheless, the PSI can detect a change in the characteristics
of customers that may be of interest for reasons other than whether the model remains fit-for-purpose.

It is recommended that the MPAI is used as the primary diagnostic for population stability.
This provides a single value to measure population stability, and hence, more concise reporting than
would be the case if a UPAI (or PSI) value was presented for each variable. UPAI values may add
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insights concerning which variables are responsible for instability should the MPAI indicate population
stability is low. Following these guidelines will produce monitoring reports that more concisely
and accurately assess whether a lack of population stability suggests the model under review is no
longer fit-for-purpose.

5. Conclusions

The auditing and monitoring of models to assess whether they remain fit-for-purpose are important,
and regulations within the banking industry make it clear this is essential to ensure banks, auditors,
regulators, and investors have confidence in model outputs. The Population Stability Index is an
industry standard to assess stability: whether the data the model is currently applied to differs from the
data used to develop the model. This paper introduces the Prediction Accuracy Index which addresses
many deficiencies in the PSI and assesses more precisely whether the model remains fit-for-purpose
by considering when review data is inappropriate for the model, rather than just different to the
development data. Adoption of the Prediction Accuracy Index as an industry standard will simplify
reporting and improve confidence in the use of credit models.
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