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Abstract: The presented research discusses general approaches to analyze and model healthcare data
at the treatment level and at the store level. The paper consists of two parts: (1) a general analysis
method for store-level product sales of an organization and (2) a treatment-level analysis method
of healthcare expenditures. In the first part, our goal is to develop a modeling framework to help
understand the factors influencing the sales volume of stores maintained by a healthcare organization.
In the second part of the paper, we demonstrate a treatment-level approach to modeling healthcare
expenditures. In this part, we aim to improve the operational-level management of a healthcare
provider by predicting the total cost of medical services. From this perspective, treatment-level
analyses of medical expenditures may help provide a micro-level approach to predicting the total
amount of expenditures for a healthcare provider. We present a model for analyzing a specific type of
medical data, which may arise commonly in a healthcare provider’s standardized database. We do this
by using an extension of the frequency-severity approach to modeling insurance expenditures from
the actuarial science literature.

Keywords: medical data analysis; store sales analysis; predictive modeling; generalized additive models

1. Introduction

Frequency-severity models are foundational to insurance claims’ modeling for actuarial
applications. In a frequency-severity approach, the analyst would utilize a model for the frequency of
insurance claims, as well as a model for the severity of insurance claims. By doing this, the modeler
is able to understand the factors that influence the frequency and the severity of insurance claims.
This paper illustrates how the frequency-severity modeling approach can be extended, so that it is
capable of modeling healthcare expenditures at the treatment level. The idea is to not only consider
the frequency of the patients, but also the frequency of the treatments incurred by each patient at
each department of a healthcare network. This allows the analyst to understand the variation of the
frequency of patients, the frequency of treatments at each department, as well as the severity of the
expenditures, via the coefficients estimated from the analysis.

In order to illustrate our approach, we first motivate the frequency-severity modeling approach
from basic principles. Then, we explain how the framework can be extended to a treatment-level
analysis. In this process, the generalized additive models (GAM) approach can be helpful for capturing
non-linear relationships with the response variable and the explanatory variables, and we demonstrate
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how this can be done. We then utilize a synthetically-generated dataset to illustrate our approach.
The synthetic data have been designed to mimic the treatment-level dataset of a generic healthcare
provider with multiple departments in a network of clinics. Our approach can be helpful for analyzing
datasets of a similar nature. In particular, we found it useful for analyzing the store-level data and
treatment-level data obtained from a local non-profit healthcare organization.

The paper proceeds in the following order: In Section 2, a review of relevant literature is provided.
Section 3 provides an overview of lognormal regression and how it can be applied to a store-level data.
Section 4 introduces the reader to GLM models and the motivation for their use on the store data at
the county level. In our project, the discussed county-level data were obtained by merging the store
data and the total annual payroll data at the county level using data from the U.S. Census Bureau.
Section 5.1 describes in detail a treatment-level model that can be applied to generic medical treatment
data. In Section 5.2, an overview of how the treatments can be categorized is provided. Section 6
explains how the treatment level model can be extended using a GAM framework in order to capture
the nonlinear relationship between the time variable and the response variable. Section 7 summarizes
our finding for the treatment level analysis, and Section 7.3 describes model validation approaches.
Section 8 concludes the paper with final remarks and possible future work.

2. Literature

2.1. Frequency-Severity Modeling

The regression framework in this paper follows closely the frequency-severity approach in the
actuarial science literature, where an overview of dependent frequency-severity modeling is provided
by Frees et al. (2016). For an overview of regression modeling in the actuarial science context, the reader
is referred to the Frees (2009) monograph Modeling with Actuarial and Financial Applications. According to
Frees and coworkers Frees (2014); Frees et al. (2016), there are good reasons for modeling the frequency
and the severity (cost) of claims separately. Insurers may impose coverage modifications, such as the
application of deductibles, co-insurance, or policy limits on a per occurrence basis. Only knowing each
policy’s aggregate claim amount does not allow for the calculation of mean expenditures under per
occurrence-based coverage modifications. Meanwhile, covariates that aid the understanding of the
outcomes can differ substantially between the frequency and the severity. In actuarial applications,
different risk mitigation strategies may be suggested depending on the coefficient obtained for the
frequency part and the severity part. In addition, the data files encountered in practice (analysis and
modeling) often encourage developing independent frequency and severity models. Furthermore,
in actuarial applications, it is important to consider the fact that regulators may typically require the
inclusion of the number of claims along with the amounts (costs) within reports. Finally, the use of a
separate severity model allows complex features for the marginal models to be captured, such as the
heavy-tailed nature of the severity distribution.

The recent trend in actuarial science research is to incorporate sophisticated marginal distributions
into the frequency-severity framework, allowing more flexibility in the modeling. For an overview of
heavy-tail data modeling, the reader is referred to works by Sun et al. (2008), Yang (2011), and Shi (2014).
Focusing on the treatment frequency aspect, zero-inflated models have been utilized in insurance
modeling, and the reader is directed to the excellent overview by Boucher (2014). The zero-inflated
model has been extended to zero-one-inflated models by Frees et al. (2016). Such sophisticated marginal
models allow for specific features of the data to be captured within the models.

2.2. Longitudinal Modeling

The response and explanatory variables observed in a medical treatment-level analysis may be
longitudinal. This means observations occur and recur over time with a certain correlation structure
among the observations. The reader is referred to Frees’ book—Longitudinal and Panel Data: Analysis
and Applications in the Social Sciences Frees (2004) for a primer on longitudinal data analysis. Recently,
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copula models have been used to model longitudinal data, and Ruscone and Osmetti (2016), Shi and
Valdez (2014), and Shi (2012) have separately demonstrated copula’s ability to model longitudinal
data. The application of pair-copulas can help model complex dependence structures as in the work of
Smith et al. (2010).

The hierarchical modeling framework utilized in the treatment level analysis of this article is
related to the work of Frees and Valdez (2008). They demonstrated the ability to model insurance
claims using a stochastic variable to represent the yearly number of claims, another stochastic variable
to denote the claim type, and a third stochastic variable to stand for the claim amount. These variables
are observed for each observational unit {it}, where i corresponds to risk class and t represents
calendar year. In our research, time was represented by days, weeks, or months, depending on how the
data were tabulated. Different tabulations may result in interesting discoveries regarding the clinics.

2.3. Medical Data Analysis

A detailed example of applying regression techniques on to healthcare expenditure modeling
is demonstrated in the work of Frees et al. (2011). In the health economics literature, Keeler and
Rolph (1988) studied insurance claims from the RANDHealth Insurance Experiment and approached
the data analysis in a similar way as we present herein. Keeler and Rolph’s goal was to analyze
the effects of health insurance plans on expenditures using a random coefficients model along with
logarithmic expenditures and count distributions to model the episode frequencies. In a related paper
by Rosenberg and Farrell (2008), a Bayesian approach was applied to model the inpatient utilization
and expenditures at the individual level. The primary goal of these noted studies was the prediction
of expenditures (costs). Our work also focuses on the prediction problem, yet we are also interested
in the coefficient estimates of certain explanatory variables to understand their relationship with the
response variables.

3. Lognormal Regression

3.1. Model

Imagine observing a certain response variable, which is defined on the domain (0, ∞). Examples
of such responses may be insurance loss amounts, medical expenditure amounts, or property and
crop losses due to natural disasters. One way to model this type of response is to use a lognormal
variable, because the lognormal distribution is defined over (0, ∞). In this case, linear modeling
is a powerful tool for understanding the relationship between a response variable ln Y and the
explanatory (independent) variables X1, X2, . . . , Xp. If observations ln y1, . . . , ln yn are obtained
from random realizations of the variable ln Y, along with the corresponding explanatory variables
x11, x21, . . . , xn1 for X1, and x12, x22, . . . , xn2 for X2, all the way up to x1p, x2p, . . . , xnp for Xp, then we
use matrix algebra to express the relationship between the responses and the explanatory variables by:

ln


y1

y2
...

yn

 =


1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...

...
. . .

...
1 xn1 xn2 . . . xnp




β0

β1
...

βp

+


ε1

ε2
...

εn


or in other words:

ln y = Xβ + ε

Different assumptions on ε result in different models. The standard linear regression model
assumes each component of ε is normally distributed or, equivalently, each component of ln y is
normally distributed. In this case, assuming the components of ln y are independent, we obtain:

ln yi ∼ N
(

xT
i β, σ2

)
,
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where xT
i = (xi1, xi2, . . . xip) and β and σ are parameters to be estimated. Once normality is assumed,

linear regression can be performed to estimate the parameters β and σ. The parameters may be
estimated using various approaches, but the maximum likelihood estimation (MLE) is considered
a standard approach. Intuitively, the probabilities for observing each data point are:

f (yi, xi) =
1

yi
√

2πσ2
exp

[
− 1

2σ2

(
ln yi − xT

i β
)2
]

,

and multiplied out to form:

L =
n

∏
i=1

f (yi, xi) =
1

y1 . . . yn(2πσ2)n/2 exp
[
− 1

2σ2 (ln y− Xβ)T (ln y− Xβ)

]
.

The logarithm of the expression above is called the log-likelihood. The log-likelihood ln L may be
maximized by setting its derivative with respect to the parameter β to zero.

∂

∂β
ln L = − 1

2σ2
∂

∂β
(ln y− Xβ)T (ln y− Xβ) = 0.

Solving the above system analytically is a standard exercise in vector calculus, and derivations
are found in Generalized Linear Models with Applications in Engineering and the Sciences,
by Myers et al. (2002). The result is:

β̂ = (XTX)−1XT(ln y),

which is a familiar expression for those who have a background in linear regression. The important
point is that standard linear regression can be understood as a procedure, where some log-likelihood
function is maximized. Numerically minimizing the function − ln L, with respect to the parameter β,
results in a nearly identical answer to those found analytically. Notice that the mean of
a lognormally-distributed random variable with parameters µi and σ is:

E[yi] = exp
(

µi +
σ2

2

)
.

Hence, for predictive applications, we have:

ŷi = exp
(

xT
i β̂
)
· exp

(
σ̂2

2

)
, (1)

which takes on values within (0, ∞). Notice that the log transform of the response variable assures the
resulting predictions to be positive values.

3.2. Specific Example

In this section, we present a model that can be used for the analysis of hypothetical store-level data
of a healthcare provider. The total square footage of the stores and the population within certain miles
of the stores are used as independent variables for the regression modeling. In this case, our model
specification is:

E[yi] = exp (β0 + β1 ln xi,1 + β2 ln xi,2) · exp
(

σ2

2

)
,

where yi is store sales, xi,1 is the total square feet of the ith observation, and xi,2 is the population
within certain miles of the ith observation. Collinearity may arise if the two variables xi,1 and xi,2
are highly correlated. In our analysis, due to the collinearity of these two variables, only one of the
variables was significant at the 0.05 level (95% confidence). The adjusted R2 of the model can be used
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to determine the fit of the model, where a high R2 may indicate that a large portion of the variability
in the response variable could be explained by the explanatory variables. The reason why the log
amounts of the square feet and population are used instead of the provided observed values is because
the coefficients have an elasticity interpretation when included as log amounts. We see that:

∂E[yi]

∂xi,1
= exp (β0 + β1 ln xi,1 + β2 ln xi,2) · exp

(
σ2

2

)
· β1

xi,1
=

E[yi]

xi,1
β1

Solving this for β1, we have:

β1 =
∂E[yi]/E[yi]

∂xi,1/xi,1
=

%∆E[yi]

%∆xi,1
=

percent change in E[yi]

percent change in xi,1

and hence, β1 is the total square feet elasticity of the expected sales. A similar interpretation is
possible for β1, and hence, we use the log amounts of the explanatory variables along with a log-link.
The analyst may utilize Q-Q (quantile-quantile) plots to assess the goodness of the fit of the model.
A Q-Q plot is a graphical approach to comparing two probability distributions by plotting their
quantiles against each other. During our project, we also tried fitting the gamma model (explained
later in the paper), and the Q-Q plot was not significantly different from the lognormal model for our
particular dataset.

4. GLMs

4.1. Motivation

The model shown in Section 3.2 helps us tell an interesting story; however, it does not capture the
correlation between annual payroll and the location of the stores. For this, we perform an analysis at
the county level, meaning that the unit of analysis is a single lattice and the response variable is the
number of stores observed in each area. For each lattice, we count the number of stores within the area
and create a response variable using the counts. Along with the response variable, the total annual
payroll for each county can be obtained by aggregating the payroll data obtained (downloaded) from
the U.S. Census Bureau.

The problem with the lognormal approach to modeling the store counts at the county level is that
the log response may no longer be assumed to have a normal distribution. Because the response is the
number of stores in a county, it is no longer a real number in the range (0, ∞), but instead numbers
in Z+ = {0, 1, 2, . . .}. We used generalized linear models (GLMs), where the regression technique
is “generalized” to response variables that are non-normal. The technique was first introduced by
Nelder and Wedderburn (1972), and today, there are numerous books covering the topic; the reader is
directed to the works of Myers et al. (2002), Ohlsson and Johansson (2010), and Dobson (2008). Because
of GLM’s inherent flexibility, they have been the workhorse model within the insurance industry
where modeling non-normal responses such as insurance claim counts, claim indicators, or claim
amounts is a major part of the actuarial analyst’s workflow.

Today, predictive analytics modeling has become a core component of the daily tasks performed
by actuarial analysts. With the abundance of data and the availability of standardized statistical
routines, actuaries are now able to analyze insurance claims’ data in a systematic way. The GLM
framework has become a central component among the tools used by actuaries to analyze insurance
claims’ data. Some advantages of GLM are as follows:

• GLMs are able to model both the claim frequency and the claim severity in a unified language
similar to that used in linear regression modeling.

• Standardized routines are readily available for software packages such as R, SAS, SPSS, and JMP,
allowing the analyst to avoid writing complex maximum likelihood code and scripts.

• GLMs have flexibility in incorporating covariates into the modeling framework.
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One of the main goals of predictive analytics modeling, in an actuarial context, is to provide
a rating engine for an insurance provider. A rating engine is a way to express the relationship between
explanatory variables and the response variable of interest. The coefficient estimates obtained from
regression modeling can be used in the rating engine for this purpose. We believe the GLM framework
is also useful for medical data analysis, as we will demonstrate.

4.2. Poisson Regression for Count Data

A GLM model can be understood as the application of the exponential family distributions to
a regression problem. An exponential family distribution has the form:

f (y) = exp
{

yθ − b(θ)
a(φ)

+ c(y, φ)

}
(2)

Here, θ is the location parameter and φ is the dispersion parameter. To obtain the normal
distribution from this, set θ = µ, b(θ) = µ2/2, a(φ) = φ = σ2, and:

c(y) = −1
2

[
y2

σ2 + ln(2πσ2)

]
.

Hence, the normal distribution is an exponential family distribution. Another member of the
exponential family is the Poisson distribution that can be obtained by setting θ = ln µ, b(θ) = eθ ,
and c(y) = − ln(y!). For the Poisson case, the probability function reduces to:

f (y) = exp [y ln µ− µ− ln(y!)] =
e−µµy

y!

The probability function of the Poisson model gives the probability of an observation within Z+.
Hence, the Poisson distribution is used to model counts of events. Now, we informally define the
GLM model. Assume the observations y1, y2, . . . , yn are independent response variables following
the exponential family distribution, with means µ1, µ2, . . . , µn, along with explanatory variables
x11, x21, . . . , xn1 for the first explanatory variable, x12, x22, . . . , xn2 for the second explanatory variable,
and so on. We use a link function to parameterize the mean of the response variables, so that:

E[yi] = µi = g−1
(

xT
i β
)

where g is a monotonic differentiable function. We use the log-link for the Poisson model, so that
g(·) = log(·). Once the mean of the distribution is parameterized, we apply the maximum likelihood
estimation to obtain an estimate for the parameter β. Specifically, the log-likelihood:

ln L =
n

∑
i=1

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
is minimized numerically. The important point here is that by parameterizing the mean of the response,
maximizing the log-likelihood defined by the exponential family distribution turns into essentially
a regression problem. Hence, using this approach, we were able to regress the count variable (number
of stores in a county) onto a set of explanatory variables xi.

4.3. Other GLM Models

In Equation (2), setting θ = −1/µ, a(φ) = r−1, b(θ) = − ln(−θ), and c(φ) = r ln r − ln Γ(r) +
(r − 1) ln y, where r is a shape parameter satisfying µ = rλ for a scale parameter λ, we have the
gamma distribution:

f (y) =
1

Γ(r)

(
1
λ

)r
e−y/λyr−1
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The gamma distribution is often used with a log-link, so that:

E[yi] = µi = exp
(

xT
i β
)

is the parameterization of the mean, resulting in a regression framework. The support of the gamma
distribution is (0, ∞), and hence, the gamma distribution may be used to replace the log-normal
model to model insurance claim amounts, treatment amounts, and expenditure sizes. The advantage
of the gamma distribution is its theoretical properties when it comes to the sum of independent
identically-distributed gamma random variables. The Poisson sum of gamma random variables is
called the Tweedie distribution in the literature; see Ohlsson and Johansson (2010). Frees and Lee (2016)
have demonstrated the ability to model endorsement premiums via a Tweedie distribution.

Meanwhile, setting θ = ln(π/(1− π)), a(φ) = 1, b(θ) = n ln(1 + eθ), c(φ) = ln (n
y) results in the

binomial distribution. The probability function for the binomial distribution with n = 1 is:

f (y) =
(

n
y

)
πy(1− π)n−y =

{
π for y = 1

1− π for y = 0

The support of the binomial distribution is {0, 1}, meaning that each observation is either true or
false. In a predictive application, one is often interested in calculating the probability of a true response;
hence, we parameterize π using a logit link function.

xT
i β = logit(πi) = ln

(
πi

1− πi

)
=⇒ πi = logit−1

(
xT

i β
)
=

exp(xT
i β)

1 + exp(xT
i β)

Again, notice that we have formulated a regression framework, for the case where the response
variable yi takes on values within {0, 1}. Now, we have a number of tools in our toolbox: we are able
to regress binary response variables and count response variables and continuous response variables
onto a set of explanatory variables, using a unified regression framework. Next, let us understand
the building blocks of a hierarchical model. The most basic hierarchical model is a frequency-severity
modeling framework, as explained in Section 4.4.

4.4. The Frequency-Severity Model

In the actuarial literature, it is common for an insurance claims model to be applied to a dataset,
in which the following variables are observed:

• N, the number of claims (events),
• Yi, i = 1, ..., N, the amount of each claim (expense).

In this case, the aggregate amount of the claims for the insurance company, or healthcare provider,
becomes:

S = Y1 + · · ·+ YN

and if we assume independence between the frequency (N) and the severity (Yi) of the claims, then we
can model the two components separately and have:

E[S] = E[N] · E[Yi]

According to Frees et al. (2016), the aggregate claim amount S is an important feature for
an insurer’s balance sheet because it is the amount paid on claims. The same may be true for a non-profit
organization, which might interpret the healthcare expenditures of individuals as “claims”, and the
total amount of such expenditures as the cost of operating for the healthcare provider. While the
aggregate amount S is often of interest, for an actuarial application, there are benefits to modeling
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the frequency and severity of the losses separately. If the losses represent healthcare expenditures
paid by a healthcare provider, then we may imagine the model as representing the following situation:
an individual’s decision to use healthcare may vary (the frequency), and the individual’s cost
(the severity) is likely related to the characteristics of the physician or the type of treatment (healthcare
provider). Herein, we take the position that the joint modeling of frequency and severity of claims
is the point of interest. The long history of studying frequency, severity, and the aggregate claim for
independent and identically-distributed realizations of random variables is a cornerstone of actuarial
science. For an introduction to actuarial science, we direct the reader to the introductory textbook—Loss
Models: From Data to Decisions by Klugman et al. (2012).

We assume the (actuarial) analyst has access to the explanatory variables. For an analyst in
the insurance industry, the independent variables—various characteristics of the policyholder—are
obtained from the policyholder’s application form. Explanatory variables for auto insurance may
include the driver’s age, vehicle type, and region of operation. Recently, there have been attempts
to incorporate telematics data into insurance rate-making, where distance driven, distance driven in
the city (city mileage), and how often the vehicle’s operator violates speed limits are incorporated
into the modeling of the claim frequencies and severities. Additionally, it has been demonstrated that
a person’s credit score is an important predictor of auto claims; see Frees’ review Frees (2015) for
further discussion.

In healthcare applications, the independent variables may be obtained from the patient’s clinic
visitation history. For example, the age and gender of the patient may be likely predictors for the
frequency of certain medical treatments. Meanwhile, independent of the patient, the treatment
types and frequencies may also be influenced by the season (month of the year) or depend on
which day of the week administered. The severity of the healthcare expenditures is related to the
International Classification of Diseases (ICD) code chapter, sub-chapter, and major designation of
the treatment. Unfortunately, such patient-level explanatory variables are often difficult to obtain for
academic research because they are the private information of the patients and protected by the Health
Insurance Portability and Accountability Act (HIPAA). Based on these restraints, we present a study
of a more complex hierarchical model for a treatment-level analysis of healthcare expenditures for
general analyses.

5. Treatment-Level Analysis

5.1. Model

In order to present a generic treatment-level model, we follow a hierarchical model, where the
total cost is determined by components. The first is the number of patients arriving at a given time, and
we call this random variable Ntk, where t is discretized time in days and k is the treatment category.
We assume that treatments are provided through three hypothetical departments within the healthcare
provider network. The departments may be categorized into any different number of categories to
suit the particular data in hand. Given a realization of Ntk, each patient department (Departments 1, 2,
and 3) will generate the following number of treatments for each patient i ∈ 1, . . . , Ntk:

• M1,tki number of treatments in Department 1 (the department of interest)
• M2,tki number of treatments in Department 2 (a department being compared with Department 1)
• M3,tki number of treatments in Department 3 (all other departments)

For the first category, given a realization of M1,tki, each treatment will correspond to an ICD-10
code chapter, which may result in either a zero or positive cost. Here, j is the index of the treatment.
For an arbitrary treatment in the ICD-10 code category k, for patient i at time t, the charge for the
treatment can be positive or negative. Thus, we use a binary variable P1,tkij to model the variable.
Given that the cost is positive, we let Y1,tkij be the random variable for the cost for treatment j of patient
i at time t in treatment category k. Similar definitions are applicable for Departments 2 and 3.
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Then, we define TC1,tki as the total cost arising from Department 1 for patient i at time t in
treatment category k, and TC2,tki, TC3,tki are defined similarly. In this case, we have the relationship:

TCtk =
Ntk

∑
i=1

[TC1,tki + TC2,tki + TC3,tki]

where TCtk is the total cost for the medical care provider in year t in category k. We assume that there
are K different categories of treatments, as shown in Table 1 (these categories are explained in more
detail in Section 5.2). We then have:

TC1,tki =
M1,tki

∑
j=1

Y1,tkij TC2,tki =
M2,tki

∑
j=1

Y2,tkij TC3,tki =
M3,tki

∑
j=1

Y3,tkij

Then, we have:

E[Y1,tkij] = E[P1,tkij] · E[Y1,tkij|P1,tkij = 1]

E[Y2,tkij] = E[P2,tkij] · E[Y2,tkij|P2,tkij = 1]

E[Y3,tkij] = E[P3,tkij] · E[Y3,tkij|P3,tkij = 1]

where:

P1,tkij =

{
1 if Y1,tkij > 0

0 otherwise
P2,tkij =

{
1 if Y2,tkij > 0

0 otherwise
P3,tkij =

{
1 if Y3,tkij > 0

0 otherwise

Assuming independence of Ntk, M1,tki, the expected costs for each department become:

E[TC1,tki] = E

[M1,tki

∑
j=1

Y1,tkij.

]
= E[M1,tki] · E[Y1,tkij],

E[TC2,tki] = E

[M2,tki

∑
j=1

Y2,tkij.

]
= E[M2,tki] · E[Y2,tkij],

E[TC3,tki] = E

[M3,tki

∑
j=1

Y3,tkij.

]
= E[M3,tki] · E[Y3,tkij],

where we assume the independence of M1,tki and Y1,tkij, and so on. Thus, the total cost for the medical
provider within treatment category k becomes:

E [TCtk] = E

[
Ntk

∑
i=1

{
TC1,tki + TC2,tki + TC3,tki

}]
= E[Ntk] ·

{
E[M1,tki] · E[Y1,tkij] + E[M2,tki] · E[Y2,tkij] + E[M3,tki] · E[Y3,tkij]

}
5.1.1. Modeling Ntk Using GLMs

It is a common practice in actuarial analysis to model Ntk based on covariates xtk via generalized
linear models (GLMs). A Poisson or negative binomial distribution is used for count outcomes.
It is common for analysts to use zero-inflated models, as described by Boucher (2014) or De Jong and
Heller (2008) to accommodate the excessive number of zeros relative to the count values greater than
zero implied by these distributions. An advantage of using GLMs is the ability to express the mean in
terms of the explanatory variable xtk where—in actuarial practice—it is common to use a logarithmic
link for this function to express the mean as:
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E[Ntk] = exp
(

xT
tkβ
)

,

where β is a vector of parameters associated with the covariates. Logarithmic link functions are
typically used because they are adept at fitting the data, allow easy parameter interpretations, and fits
nicely with traditional approaches used in actuarial rate-making applications such as Mildenhall’s
systematic relationship between minimum bias and generalized linear models Mildenhall (1999).
Here, we assume that Ntk follows a Poisson distribution so that:

PNtk (n) =
λn

tke−λtk

n!

A “zero-one-inflated” model may be used—as in the work of Frees et al. (2016)—if there are large
numbers of zeros and ones in our data. The zero-one-inflated model expands on the zero-inflated
method and employs two generating processes: (1) a multinomial distribution that generates structural
zeros and ones and (2) a Poisson or negative binomial distribution that generates counts, some of
which may be zero or one. To parameterize the probabilities for the latent variable, a logit specification
may be used, and to fit the parameters, maximum likelihood estimation can be used. In our project,
for simplicity of coefficient interpretation, we assumed a Poisson distribution; the covariates xtk
(explanatory variables) are explained in Section 5.3. Because we assume the patient frequencies are
independent of other random variables in the model, we can estimate the coefficient β separately using
maximum likelihood.

5.1.2. Modeling M1,tki, M2,tki, M3,tki Using GLMs

Assuming the number of treatments is independent of the number of patients arriving in each
category, we can model M1,tki, M2,tki, M3,tki using a Poisson distribution and a framework similar to
that in Section 5.1.1.

fM1,tki (m) =
γm

1,tkie
−γ1,tki

m!
, fM2,tki (m) =

γm
2,tkie

−γ2,tki

m!
, fM3,tki (m) =

γm
3,tkie

−γ3,tki

m!

where:

γ1,tki = exp
(

xT
1,tkα1

)
, γ2,tki = exp

(
xT

2,tkα2

)
, γ3,tki = exp

(
xT

3,tkα3

)
where α1, α2, α are the coefficients for the number of treatments model. Notice that x1,tk, x2,tk, and x2,tk
do not have the subscript i, because our model uses explanatory variables at the tk level. Due to the
independence assumption, the coefficients may be estimated using a regression routine, or maximum
likelihood, separately from the other components of the model.

5.1.3. Modeling P1,tkij, P2,tkij, P3,tkij Using GLMs

Often, logit and probit forms are commonly used for binary outcomes; see Guillén (2014).
Each treatment j in treatment category k could have zero cost, or a positive cost. We use a logistic
regression model specification, where:

logit
{
E[P1,tkij]

}
= xT

1,tkγ1, logit
{
E[P2,tkij]

}
= xT

2,tkγ2, logit
{
E[P3,tkij]

}
= xT

3,tkγ3

Here, γ1, γ2, γ3 are the coefficients to be estimated. Notice that the explanatory variables x1,tk, x2,tk,
and x3,tk do not have subscripts ij. Then, for Departments 1, 2, and 3, given a specific category k,
the probability of positive treatment cost becomes:

π1,tkij =
exp(xT

tkγ1)

1 + exp(xT
tkγ1)

, π2,tkij =
exp(xT

tkγ2)

1 + exp(xT
tkγ2)

, π3,tkij =
exp(xT

tkγ3)

1 + exp(xT
tkγ3)

.
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Estimating γ1, γ2, and γ3 boils down to maximum-likelihood. In the R programming language,
binary outcomes may be modeled using the binomial family within the glm routine. For some
datasets, it may be the case that treatments always result in expenditures. In this case, the model for
P1,tkij, P2,tkij, P3,tkij is not needed.

5.1.4. Modeling the Conditional Expenditure Severity

Finally, the cost of random variables can be modeled using gamma random variables.
For regression purposes, the mean of the gamma random variable may be parametrized so that:

E[Y1,tkij|P1,tkij = 1] = exp
(

xT
1,tkξ1

)
E[Y2,tkij|P2,tkij = 1] = exp

(
xT

2,tkξ2

)
E[Y3,tkij|P3,tkij = 1] = exp

(
xT

3,tkξ3

)
where ξ1, ξ2, ξ3 are the regression coefficients and x1,tk, x2,tk, x3,tk are explanatory variables for the kth
category treatment at time t.

There are many ways to model the severity of outcomes. For a dependence model, using a latent
variable that affects both frequency and loss amounts induces a positive association. Copulas are
another method to model non-linear associations among random variables. A strength of the GLM
approach—for insurance analysts—is that the same set of routines can be used for continuous, as well
as discrete (binary) outcomes.

GLMs have become the workhorse for insurance industry analysts interested in analyzing and
modeling the severity of claims. Due to the industry’s primary focus on claims’ severity (total cost),
several alternative approaches have been explored, and Shi (2014) presents an excellent introduction.
For example, the generalized beta of the second kind (GB2) distribution is used by Frees et al. (2016).
The specific severity distribution to use is an empirical question, and one may employ Q-Q plots or
other model diagnostic techniques to select a distribution family that fits the data best. In the research
presented here, the gamma GLM approach was used for simplicity.

5.2. Treatment Categories

The ICD-10 codes were used to encode the treatment category. The ICD-10 coding structure
has been produced by the World Health Organization (WHO) and is used in countries around the
world. The coding structure categorizes diseases into broad categories called “Chapters”, and these
broad categories are further categorized into specific disease areas termed “Sub-Chapters”. In our
data, the ICD variable contained either the ICD-9 or ICD-10 code for each treatment due to the dataset
spanning the United States’ adoption date of 1 October 2015. The ICD variable could be standardized
into ICD-10 code chapters using a custom R script. If a valid ICD-10 code is not identified, then the
treatment is removed from the dataset and thus the analysis. The treatment categories (chapters) used
in the analysis are provided in Table 1.

Table 1. Treatment categories (ICD-10 chapters).

Chapter Block Description

1 A00–B99 Certain infectious and parasitic diseases
2 C00–D48 Neoplasms
3 D50–D89 Diseases of the blood and blood-forming organs and certain disorders

involving the immune mechanism
4 E00–E90 Endocrine, nutritional and metabolic diseases
5 F00–F99 Mental and behavioral disorders
6 G00–G99 Diseases of the nervous system
7 H00–H59 Diseases of the eye and adnexa
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Table 1. Cont.

Chapter Block Description

8 H60–H95 Diseases of the ear and mastoid process
9 I00–I99 Diseases of the circulatory system
10 J00–J99 Diseases of the respiratory system
11 K00–K93 Diseases of the digestive system
12 L00–L99 Diseases of the skin and subcutaneous tissue
13 M00–M99 Diseases of the musculoskeletal system and connective tissue
14 N00–N99 Diseases of the genitourinary system
15 O00–O99 Pregnancy, childbirth and the puerperium
16 P00–P96 Certain conditions originating in the perinatal period
17 Q00–Q99 Congenital malformations, deformations and chromosomal

abnormalities
18 R00–R99 Symptoms, signs and abnormal clinical and laboratory findings,

not elsewhere classified
19 S00–T98 Injury, poisoning and certain other consequences of external causes
20 V01–Y98 External causes of morbidity and mortality
21 Z00–Z99 Factors influencing health status and contact with health services
22 U00–U99 Codes for special purposes

5.3. Patient Treatment Data

A set of explanatory variables (date of treatment, cost, department, and treatment category code)
may be present in the dataset, and the patient-level demographic information (age, gender, ethnicity,
height, and weight) may also be observed in the data. In our data, patient demographic information
was not observed. Table 2 describes the explanatory variables used in the modeling presented below for
the total number of patients visiting the clinics, and the number of treatments within each category of
department. For the expenditure severity model, only the treatment categories are used as explanatory
variables. The indicator variable ClinicOpen is a binary variable indicating whether Department 1 is
open, and this variable has been included to study the influence of the department’s operation on the
number of treatments at other departments.

Table 2. Explanatory variables for the number of patients model (for Ntk), number of treatments model
(for M1,tki, M2,tki, M3,tki), and the charge amounts model (for Y1,tkij, Y2,tkij, Y3,tkij).

Variable Name Description

ClinicOpen Indicator variable of whether Department 1 is open
WDay A categorical variable of the weekday.

(Categories: Sun, Mon, Tue, Wed, Thr, Fri, Sat)
Month A categorical variable of the month.

(Categories: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)
Chapter A categorical variable of the treatment category.

(Categories: shown in Table 1)
Time Numeric variable corresponding to the current day relative to a reference time

point. In our study, the reference time point is the first day in which data are available.

6. GAMs

In order to capture the nonlinear relationship between the Time variable and the response
variables, we utilized the generalized additive models (GAM) framework, which is an extension
of the GLM framework. The GLM model for the patient frequency Ntk is:

ln {E[Ntk]} = xT
tkβ

In matrix form, this can be expressed as:
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ln


E[N1,k]

E[N2,k]
...

E[NT,K]

 =


1 x1,k,1 x1,k,2 . . . x1,k,p−1 x1,k,p
1 x2,k,1 x2,k,2 . . . x2,k,p−2 x2,k,p
...

...
. . .

...
1 xT,K,1 xT,K,2 . . . xT,K,p−2 xT,K,p




β0

β1
...

βp


where we assume that xt,k,1 . . . xt,k,p−1 correspond to the explanatory variables other than Time and
xt,k,p corresponds to Time. The motivation for using a GAM model is that a polynomial of xt,k,p may
be included in the design matrix. In this case, we may include the extra terms into the model matrix
using the function:

f (x) = x + x2 + . . . + xr

subject to the identifiability constraint

K

∑
k=1

T

∑
t=1

f (xt,k,p) = 0

which states that the function f must sum to zero over the observed values of xt,k,p; this concept is
detailed on page 211 of Wood’s book on GAMs Wood (2017). In this case, we have:

ln


E[N1,k]

E[N2,k]
...

E[NT,K]

 =


1 x1,k,1 x1,k,2 . . . x1,k,p−1 x1,k,p x2

1,k,p . . . xr
1,k,p

1 x2,k,1 x2,k,2 . . . x2,k,p−1 x2,k,p x2
2,k,p . . . xr

2,k,p
...

...
. . .

...
... . . .

...
...

1 xT,K,1 xT,K,2 . . . xT,K,p−1 xT,K,p x2
T,K,p . . . xr

T,K,p





β0

β1
...

βp−1

ψ1
...

ψr


where r is the degree of the polynomial. In other words,

ln E[yk] = β0 + X(1)β(1) + X(2)β(2)

where:

X(1) =


1 x1,k,1 x1,k,2 . . . x1,k,p−1
1 x2,k,1 x2,k,2 . . . x2,k,p−1
...

...
. . .

1 xT,K,1 xT,K,2 . . . xT,K,p−1

 X(2) =


x1,k,p x2

1,k,p . . . xR
1,k,p

x2,k,p x2
2,k,p . . . xR

2,k,p
...

... . . .
...

xT,K,p x2
T,K,p . . . xR

T,K,p


and the coefficients are:

β0 and β(1) = (β1, β2, . . . , βp−1)
T and β(2) = (ψ1, ψ2, . . . , ψR)

T

In practice, a basis other than the polynomial may be used to implement a GAM. In this case, we
first define:

Φ(2) =


B(x1,k,p, 1) B(x1,k,p, 2) . . . B(x1,k,p, R)
B(x2,k,p, 1) B(x2,k,p, 2) . . . B(x2,k,p, R)

...
... . . .

...
B(xT,K,p, 1) B(xT,K,p, 2) . . . B(xT,K,p, R)
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where B(x, r) for r = 1, . . . , R are basis functions; for our project, the B-spline basis was used.
A recursive definition for the B-spline basis can also be found in Wood’s book Wood (2017). Once the
matrix Φ(2) is defined, we QR decompose the vector ΦT

(2)1 so that:

ΦT
(2)1 =

[
Q1 Q2

] [R
0

]

Then, we select:
X(2) = Φ(2)Q2

Selecting the model matrix this way imposes an identifiability constraint, which states that the
smooth function defined by the basis functions must satisfy:

K

∑
k=1

T

∑
t=1

f (xt,k,p) = 1TX(2)β(2) = 0

Notice that:

1TX(2)β(2) = 1TΦ(2)Q2β(2) =
[

R 0
] [Q1

Q2

]
Q2β(2) = RQ1Q2β(2) = 0

since Q1 and Q2 are orthogonal. Simply stated, if f (x) is a spline, the coefficients for the spline are
now given by Q2β(2) instead of β(2) after the transformation. One more detail is that with the Poisson
model, the likelihood:

ln L =
K

∑
k=1

T

∑
t=1

{
ytkθtk − b(θtk)

a(φ)
+ c(ytk, φ)

}
with θtk = ln{E[Ntk]}, is modified to:

ln Lnew =
K

∑
k=1

T

∑
t=1

{
ytkθtk − b(θtk)

a(φ)
+ c(ytk, φ)

}
+ λβT

(2)Q
T
2 SQ2β(2)

where S is a matrix that penalizes the wiggliness of the function f (x). In case the B-spline basis is used,
difference penalties are imposed, as specified on page 206 of Wood’s book Wood (2017). This procedure
is implemented in the R library mgcv.

7. Results

In this section, we show the result of a simulation study using synthetically-generated data,
similar to the real data that were analyzed during the project. Section 7.1 provides the details of the
simulation study. In Section 7.2, we provide qualitative descriptions of the results obtained from the
real data study.

7.1. Simulation Study

In order to perform a simulation study, synthetic data have been generated. The data have been
generated according to the following rules to mimic the structure of the medical data, which we were
unable to directly use for publication purposes due to a non-disclosure agreement.

• For each t, randomly generate the total number of patients from a Poisson distribution, so that
Nt ∼ Poisson

[
5
{

sin
( t

365 π
)
+ 2
} {

sin
( t

365 2π
)
+ 2
}]

, where t is the number of days elapsed
since 1 January 2010, with the maximum t corresponding to 1 January 2019.

• Each patient i receives one treatment, whose ICD-10 code chapter is randomly generated from
a multinomial distribution with the probability of each category following pk, for k = 1, . . . , 22,
sampled from a Dirichlet distribution.
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• Department 1 opens at time 1 January 2017.
• Each treatment is assigned to either Department 1, 2, or 3 using a multinomial distribution with

probability (0, q2, q3), sampled from a Dirichlet distribution. We fixed q1 = 0 before the opening
of Department 1, because the probability that a treatment is assigned to Department 1 should be
zero before its opening. We used a different set of probabilities (q′1, q′2, q′3), also sampled from
a Dirichlet distribution, after Department 1 opens.

• Each treatment results in a positive charge with probability 0.95.
• Given that a charge in ICD-10 code chapter k is positive, it results in a charge amount sampled

from a gamma distribution with its scale parameter sampled from an exponential distribution
with rate 0.001 and shape parameters fixed to one.

• The total number of days in the synthetic data is 3287, with a total of 67,983 patients.

The modeling framework described in Section 5.1 has been used for the analysis of the
synthetically-generated data. The regression coefficients are shown in Tables 3 and 4. From the regression
coefficients for the number of patients, we see that the number of patients varied by month and chapter.
From the charge severity models for Departments 1, 2, and 3, we see that the ICD-10 code chapters were
a significant predictor of the charge amount. In Table 4, notice that the ClinicOpen variable was negative
and significant for Department 2, indicating that the introduction of Department 1 has reduced the
number of treatments given in Department 2. The time since 1 January 2010 has been used in conjunction
with a smooth function constructed using the B-spline basis with order 10. Figure 1 shows a plot of the
smooth function, which has been estimated using the GAM modeling approach described in Section 6.
The plot illustrates that there is a nonlinear effect of the time variable on the number of patients.
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Figure 1. Fitted smooth function with respect to time.

Figure 2 shows the out-of-sample comparisons of the predicted expenditures and the
synthetically-generated actual expenditures. Here, the out-of-sample data consisted of expenditures
falling in the period between 1 January 2018 and 1 January 2019. Each panel shows the predictions
when the result was aggregated at a daily, weekly, or monthly level. The Spearman correlation with
the out-of-sample claims was 54.40%, 84.46%, and 95.78%, respectively. The Gini indices (explained
more in Section 7.3) were 59.57%, 60.08%, and 62.37%, respectively.
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Figure 2. Log daily, weekly, and monthly charges (predicted versus actual out-of-sample charges).
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Table 3. Model for number of patients and the treatments in Department 1.

Model for Number of Patients

Estimate Std. Err.

(Intercept) −0.034 0.026
ClinicOpen 0.017 0.050
Month:2 0.131 0.019 ***
Month:3 0.196 0.018 ***
Month:4 0.180 0.018 ***
Month:5 0.079 0.019 ***
Month:6 −0.136 0.020 ***
Month:7 −0.405 0.021 ***
Month:8 −0.666 0.023 ***
Month:9 −0.895 0.025 ***
Month:10 −0.821 0.025 ***
Month:11 −0.550 0.024 ***
Month:12 −0.294 0.022 ***
Chapter:2 0.824 0.024 ***
Chapter:3 −1.869 0.055 ***
Chapter:4 −0.278 0.031 ***
Chapter:5 0.234 0.027 ***
Chapter:6 −0.176 0.030 ***
Chapter:7 0.531 0.025 ***
Chapter:8 1.501 0.022 ***
Chapter:9 0.357 0.026 ***
Chapter:10 −1.801 0.053 ***
Chapter:11 −1.217 0.042 ***
Chapter:12 −1.288 0.043 ***
Chapter:13 −0.800 0.036 ***
Chapter:14 0.191 0.027 ***
Chapter:15 −0.493 0.033 ***
Chapter:16 0.269 0.027 ***
Chapter:17 −0.494 0.033 ***
Chapter:18 −1.584 0.049 ***
Chapter:19 −2.909 0.088 ***
Chapter:20 1.174 0.023 ***
Chapter:21 −2.052 0.060 ***
Chapter:22 0.078 0.028 **

Number of Treatments (Department 1)

Estimate Std. Err.

(Intercept) −1.550 0.030 **

Probability of Positive Charge (Department 1)

Estimate Std. Err.

(Intercept) 0.952 0.004 ***

Charge Severity Model (Department 1)

Estimate Std. Err.

(Intercept) 5.902 0.115 ***
Chapter:2 −0.223 0.153
Chapter:3 1.168 0.491 *
Chapter:4 1.309 0.216 ***
Chapter:5 1.033 0.175 ***
Chapter:6 0.936 0.223 ***
Chapter:7 0.648 0.166 ***
Chapter:8 −1.584 0.140 ***
Chapter:9 −0.133 0.179
Chapter:10 −1.271 0.394 **
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Table 3. Cont.

Charge Severity Model (Department 1)

Estimate Std. Err.

Chapter:11 0.712 0.298 *
Chapter:12 0.282 0.419
Chapter:13 0.917 0.232 ***
Chapter:14 0.963 0.193 ***
Chapter:15 −0.246 0.229
Chapter:17 0.741 0.223 ***
Chapter:18 1.197 0.419 **
Chapter:19 1.710 1.073
Chapter:20 1.399 0.145 ***
Chapter:21 1.097 0.491 *
Chapter:22 −0.266 0.201
Significance: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05, ‘.’: 0.1

7.2. Real Data Analysis

In this section, we present a qualitative analysis of the results from the treatment-level medical
data modeling using real data. Because of the non-disclosure agreement, we provide qualitative
results only. The model for the total number of patients Ntk showed that WDay, Month, Chapter,
and ClinicOpen (all explanatory variables) were statistically significant. There was also a nonlinear
relationship between the number of patients arriving and time, which could be inferred from the GAM
approach to using the Time variable as the independent variable for a smooth function. The coefficient
for the variable ClinicOpen could be used to infer the relationship between the total number of patients
and the opening of Department 1. The number of treatments model for M2,tki and M3,tki provided
interesting results. The ClinicOpen variable indicated that the number of treatments in the other
two departments changed following the opening of Department 1.

7.3. Model Validation

After estimating all the parameters for the hierarchical model, the model can be validated using
an external test set—commonly called an “out-of-sample” comparison—where a subset of the initial
dataset observations was set aside. In our analysis, the subset of observations from a particular year
was the out-of-sample set (test set), and the remaining samples (training set) were used to estimate
the parameters (train the model). The predicted values of the out-of-sample observations determined
using the model were compared with their observed values. A graphical approach plots the observed
out-of-sample expenditures with their predicted expenditures to visualize how close the points fell
near the 45-degree identity line. The Spearman correlation between the predicted expenditures and the
out-of-sample expenditures is a good initial method to measure whether the ranks of the observations
were predicted well. A new and more informative measure was developed by Frees et al. (2011)
employing the Gini index. The Gini index is defined as twice the area underneath the ordered Lorenz
curve. In order to obtain the ordered Lorenz curve, let:

F̂Π(s) =
∑T

t=1 ∑K
k=1 Π(xtk)I(R(xtk) ≤ s)

∑T
t=1 ∑K

k=1 Π(xtk)
and F̂L(s) =

∑T
t=1 ∑K

k=1 ytk I(R(xtk) ≤ s)

∑T
t=1 ∑K

k=1 ytk
,

where we define the relativity R(xtk) as:

R(xtk) =
S(xtk)

Π(xtk)
, S(xtk) = insurance score, Π(xtk) = constant score.
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The ordered Lorenz curve can be obtained by plotting the points:(
F̂Π(s), F̂L(s)

)
.

The constant charge model assumes that the charge for a day in every treatment category is the
average cost over all treatment-days for the in-sample (training set) subset of observations. Our model
validation approaches demonstrated that our model had a positive and significant Gini index.

7.4. Dependence Modeling

The Spearman correlation is a measure of dependency among the ranks of random variables.
We tested the Spearman correlation among the number of treatments M1,tki, M2,tki, and M3,tki and
discovered that there was evidence of negative dependence. Because there was evidence of dependence,
a potentially interesting avenue of future work is the application of copula models to the discrete
number of treatment variables. For an introduction to copula models, the reader is referred to Nelsen’s
introduction to copulas Nelsen (1999), while Joe (2014) presented an in-depth monograph for the use
of copulas to model complex dependence structures. One final consideration is the validity of the
independence assumption between the number of patients Ntk, the number of treatments M1,tki, M2,tki,
M3,tki, the positivity of the treatment charges P1,tkij, P2,tkij, P3,tkij, and the charge amounts Y1,tkij, Y2,tkij,
Y3,tkij. We emphasize that it is an important assumption to treat these variables to be independent in
order for our modeling approach to be valid.

Table 4. Model for the treatments at Departments 2 and 3.

Number of treatments (Department 2)

Estimate Std. Err.

(Intercept) −0.370 0.005 ***
ClinicOpen −0.451 0.022 **

Probability of Positive Charge (Department 2)

Estimate Std. Err.

(Intercept) 0.949 0.001 **

Charge Severity Model (Department 2)

Estimate Std. Err.

(Intercept) 6.826 0.020 ***
Chapter:2 −1.121 0.026 ***
Chapter:3 0.199 0.067 **
Chapter:4 0.436 0.035 ***
Chapter:5 0.049 0.030
Chapter:6 0.233 0.034 ***
Chapter:7 −0.392 0.028 ***
Chapter:8 −2.479 0.023 ***
Chapter:9 −1.212 0.029 ***
Chapter:10 −1.759 0.067 ***
Chapter:11 −0.236 0.050 ***
Chapter:12 −0.835 0.052 ***
Chapter:13 −0.433 0.043 ***
Chapter:14 0.004 0.031
Chapter:15 −1.411 0.038 ***
Chapter:16 −2.991 0.030 ***
Chapter:18 0.436 0.059 ***
Chapter:19 0.184 0.110 .
Chapter:20 0.491 0.024 ***
Chapter:21 −0.014 0.071
Chapter:22 −1.393 0.031 ***
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Table 4. Cont.

Number of Treatments (Department 3)

Estimate Std. Err.

(Intercept) −1.094 0.007 ***
ClinicOpen 0.079 0.024 **

Probability of Positive Charge (Department 3)

Estimate Std. Err.

(Intercept) 0.948 0.002 ***

Charge Severity Model (Department 3)

Estimate Std. Err.

(Intercept) 6.625 0.036 ***
Chapter:2 −0.928 0.043 ***
Chapter:3 0.456 0.101 ***
Chapter:4 0.636 0.054 ***
Chapter:5 0.244 0.048 ***
Chapter:6 0.374 0.053 ***
Chapter:7 −0.186 0.045 ***
Chapter:8 −2.267 0.039 ***
Chapter:9 −0.978 0.047 ***
Chapter:10 −1.469 0.092 ***
Chapter:11 −0.019 0.075
Chapter:12 −0.532 0.077 ***
Chapter:13 −0.069 0.063
Chapter:14 0.206 0.048 ***
Chapter:15 −1.152 0.058 ***
Chapter:16 −2.827 0.048 ***
Chapter:17 0.404 0.058 ***
Chapter:18 0.671 0.087 ***
Chapter:19 0.373 0.157 *
Chapter:20 0.682 0.041 ***
Chapter:21 −0.124 0.113
Chapter:22 −1.150 0.050 ***

Significance: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05, ‘.’: 0.1

8. Conclusions

In this paper, we have presented two unique analysis and modeling endeavors, (1) store-level sales
modeling project and (2) a medical treatment-healthcare expenditure modeling project. The store sales
project demonstrated the need to combine nearby business with residential demographics information.
While the store sales project is not a traditional actuarial science project, it demonstrated to the students
the wide applicability of the tools and methods they have learned during their undergraduate career.
The store sales project also demonstrated the power (and need) to identify and harvest data outside of
the provided dataset to produce informative predictive models.

The medical treatment-healthcare expenditure project was a more traditional actuarial science
project and introduced the undergraduate students to real-world and messy medical data.
The treatment-level healthcare data resulted in expenditure models that were motivated by the
traditional hierarchical insurance claims models typically found in actuarial science. The healthcare
cost models provided insights into the effect of the explanatory variables on the component response
variables. In a way, the store-level sales modeling was a general introduction to generalized linear
models that lead into frequency-severity and hierarchical models.

The presented research provides an overview of our generalized philosophy on modeling and
analyzing healthcare expenditures that includes the creation of informative and predictive models
to help understand the provided data, answer questions about the system of interest, and provide
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insights, all while ensuring the models are robust and predictive. The store sales models indicated that
the store’s total size and the population count within certain miles of the stores are key features driving
store sales for the year of interest. For the medical treatment analysis, our research indicated that the
overall number of patients have a nonlinear relationship with the time variable, and this changed
after the introduction of Department 1 into the healthcare network. The number of treatments for
a given patient also changed in Departments 2 and 3 after the opening of Department 1 to the public.
These analyses give insights into the impact of the explanatory variables on the response variables of
interest. In addition, we demonstrated a treatment-level approach to estimating the total expenditures
incurred to a healthcare system by patients.

We believe that our approach can be useful for predicting healthcare expenditures for the
healthcare services sector. The approach can be applied to any healthcare services network with
multiple departments and treatment-level records of patients. More information at the patient level
(for example, demographic information) may improve the model. Because our model has the ability
to predict the number of patients arriving at each department under each category of treatment,
we believe that the modeling approach can help efficiently allocate resources (including physician
times) at each healthcare department. We believe that this can contribute to improving the quality of
healthcare services provided to the patients.

9. Disclaimer

This paper is the result of a project that took place in the form of an undergraduate Teamwork
Experience course (MTH491B) at Michigan State University (MSU) during the fall semester of 2017 and
continued on to the 2018 spring semester. A non-profit healthcare provider approached the Actuarial
Science department of MSU with a treatment-level dataset. Their request was for us to analyze and
provide insights to aid their operation. The MSU team consisted of three undergraduate students,
a graduate student in the Department of Statistics and Probability Ph.D. program, an Assistant
Professor with a joint appointment in the Department of Statistics and Probability and the Department
of Mathematics, and a professional predictive analytics modeling consultant. The project initially
focused on discovering treatment-and patient-level characteristics of the data and creating summary
statistics of the data, along with predicting the total amount of cost for the operation of the healthcare
provider. Through the application of statistical analysis and models, the goal was to uncover new
aspects of the data for the non-profit’s management team. In addition to the medical data, the non-profit
healthcare provider supplied an additional and unrelated dataset of stores containing the sales
volume and store features maintained within the non-profit’s network. As there were two datasets
to analyze, the project consisted of two components, one being the analysis of the store data, and
the other being the treatment-level analysis. The store sales analysis portion of the project turned
into a University Undergraduate Research and Arts Forum (UURAF) presentation at MSU by the
undergraduate students involved in the project at the end of the spring 2018 semester. The title of the
poster presentation was “Combining Population and Nearby Store Information to Aid in Selection of
Future Store Locations.” In this paper, we have discussed both components of the project with the goal
of reviewing the general approaches that could be used in order to analyze healthcare data at the store
level and the treatment level.

Author Contributions: All authors contributed substantially to this work.

Funding: This research received no external funding.

Acknowledgments: This work was made possible by the generous support and resources provided by
an anonymous non-profit healthcare provider in Michigan. The authors are grateful for their support throughout
the project.

Conflicts of Interest: The authors declare no conflict of interest.



Risks 2019, 7, 43 21 of 22

References

Boucher, Jean-Philippe. 2014. Regression with count dependent variables. In Predictive Modeling Applications in
Actuarial Science. Cambridge: Cambridge University Press.

De Jong, Piet, and Gillian Z. Heller. 2008. Generalized Linear Models for Insurance Data. Cambridge: Cambridge
University Press.

Dobson, Annette J., and Barnett Adrian G. 2008. An Introduction to Generalized Linear Models. Boca Raton: Chapman
and Hall/CRC, Taylor & Francis Group.

Frees, Edward W. 2004. Longitudinal and Panel Data: Analysis and Applications in the Social Sciences. Cambridge:
Cambridge University Press.

Frees, Edward W. 2009. Regression Modeling with Actuarial and Financial Applications. Cambridge: Cambridge
University Press.

Frees, Edward W. 2014. Frequency and severity models. In Predictive Modeling Applications in Actuarial Science.
Cambridge: Cambridge University Press.

Frees, Edward W. 2015. Analytics of insurance markets. Annual Review of Finacial Economics 7: 253–77. [CrossRef]
Frees, Edward W., Jie Gao, and Marjorie A Rosenberg. 2011. Predicting the frequency and amount of health care

expenditures. North American Actuarial Journal 15: 377–92. [CrossRef]
Frees, Edward W., and Gee Lee. 2016. Rating endorsements using generalized linear models. Variance 10: 51–74.
Frees, Edward W., Gee Y. Lee, and Lu Yang. 2016. Multivariate frequency-severity regression models in insurance.

Risks 4: 4. [CrossRef]
Frees, Edward W., Glenn Meyers, and A. David Cummings. 2011. Summarizing insurance scores using a gini

index. Journal of the American Statistical Association 106: 495. [CrossRef]
Frees, Edward W., and Emiliano A. Valdez. 2008. Hierarchical insurance claims modeling. Journal of the American

Statistical Association 103: 1457–69. [CrossRef]
Guillén, Montserrat. 2014. Regression with categorical dependent variables. In Predictive Modeling Applications in

Actuarial Science. Cambridge: Cambridge University Press.
Joe, Harry. 2014. Dependence Modeling with Copulas. Boca Raton: CRC Press.
Keeler, Emmett B., and John E. Rolph. 1988. The demand for episodes of treatment in the health insurance

experiment. Journal of Health Economics 7: 337–67. [CrossRef]
Klugman, Stuart A., Harry H. Panjer, and Gordon E. Willmot. 2012. Loss Models: From Data to Decisions. Hoboken:

John Wiley & Sons, Inc.
Mildenhall, Stephen J. 1999. A systematic relationship between minimum bias and generalized linear models.

Proceedings of the Casualty Actuarial Society 86: 393–487.
Myers, Raymond, Douglas C. Montgomery, G. Geoffrey Vining, and Timothy J. Robinson. 2002. Generlized Linear

Models with Applications in Engineering and the Sciences. New York: John Wiley & Sons, Inc.
Nelder, John, and Robert Wedderburn. 1972. Generalized linear models. Journal of the Royal Statistical Society.

Series A (General) 135: 370–84. [CrossRef]
Nelsen, Roger B. 1999. An Introduction to Copulas. New York: Springer Science & Business Media, Inc.
Ohlsson, Esbjörn, and Björn Johansson. 2010. Non-Life Insurance Pricing with Generalized Linear Models. Berlin

Heidelberg: Springer Verlag.
Rosenberg, Marjorie A., and Phillip M. Farrell. 2008. Predictive modeling of costs for a chronic disease with acute

high-cost episodes. North American Actuarial Journal 12: 1–19. [CrossRef]
Ruscone, Marta Nai, and Silvia Angela Osmetti. 2016. Modelling the Dependence in Multivariate Longitudinal Data by

Pair Copula Decomposition. Basel: Springer International Publishing Switzerland.
Shi, Peng. 2012. Multivariate longitudinal modeling of insurance company expenses. Insurance: Mathematics and

Economics 51: 204–15. [CrossRef]
Shi, Peng. 2014. Fat-tailed regression models. In Predictive Modeling Applications in Actuarial Science. Cambridge:

Cambridge University Press.
Shi, Peng, and Emiliano Valdez. 2014. Longitudinal modeling of insurance claim counts using jitters. Scandinavian

Actuarial Journal 2014: 159–79. [CrossRef]
Smith, Michael, Aleksey Min, Carlos Almeida, and Claudia Czado. 2010. Modeling longitudinal data using

a pair-copula decomposition of serial dependence. Journal of the American Statistical Association 105: 1467–79.
[CrossRef]

http://dx.doi.org/10.1146/annurev-financial-111914-041815
http://dx.doi.org/10.1080/10920277.2011.10597626
http://dx.doi.org/10.3390/risks4010004
http://dx.doi.org/10.1198/jasa.2011.tm10506
http://dx.doi.org/10.1198/016214508000000823
http://dx.doi.org/10.1016/0167-6296(88)90020-3
http://dx.doi.org/10.2307/2344614
http://dx.doi.org/10.1080/10920277.2008.10597497
http://dx.doi.org/10.1016/j.insmatheco.2011.08.011
http://dx.doi.org/10.1080/03461238.2012.670611
http://dx.doi.org/10.1198/jasa.2010.tm09572


Risks 2019, 7, 43 22 of 22

Sun, Jiafeng, Edward W. Frees, and Marjorie A. Rosenberg. 2008. Heavy-tailed longitudinal data modeling using
copulas. Insurance: Mathematics and Economics 42: 817–30. [CrossRef]

Wood, Simon N. 2017. Generalized Additive Models: An Introduction with R, Second Edition. Boca Raon: CRC Press.
Yang, Xipei. 2011. Multivariate Long-Tailed Regression With New Copulas. Ph.D. thesis, University of

Wisconsin-Madison, Madison, WI, USA.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.insmatheco.2007.09.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature
	Frequency-Severity Modeling
	Longitudinal Modeling
	Medical Data Analysis

	Lognormal Regression
	Model
	Specific Example

	GLMs
	Motivation
	Poisson Regression for Count Data
	Other GLM Models
	The Frequency-Severity Model

	Treatment-Level Analysis
	Model
	Modeling Ntk Using GLMs
	Modeling M1,tki, M2,tki, M3,tki Using GLMs
	Modeling P1,tkij, P2,tkij, P3,tkij Using GLMs
	Modeling the Conditional Expenditure Severity

	Treatment Categories
	Patient Treatment Data

	GAMs
	Results
	Simulation Study
	Real Data Analysis
	Model Validation
	Dependence Modeling

	Conclusions
	Disclaimer
	References

