
Zeddouk, Fadoua; Devolder, Pierre

Article

Pricing of longevity derivatives and cost of capital

Risks

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Zeddouk, Fadoua; Devolder, Pierre (2019) : Pricing of longevity derivatives
and cost of capital, Risks, ISSN 2227-9091, MDPI, Basel, Vol. 7, Iss. 2, pp. 1-29,
https://doi.org/10.3390/risks7020041

This Version is available at:
https://hdl.handle.net/10419/257879

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/risks7020041%0A
https://hdl.handle.net/10419/257879
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


risks

Article

Pricing of Longevity Derivatives and Cost of Capital

Fadoua Zeddouk * and Pierre Devolder

Institute of Statistics, Biostatistics and Actuarial Sciences, Voie du Roman Pays 20,
1348 Louvain-La-Neuve, Belgium; Pierre.Devolder@uclouvain.be
* Correspondence: fadoua.zeddouk@uclouvain.be

Received: 13 March 2019; Accepted: 8 April 2019; Published: 15 April 2019
����������
�������

Abstract: Annuities providers become more and more exposed to longevity risk due to the increase
in life expectancy. To hedge this risk, new longevity derivatives have been proposed (longevity
bonds, q-forwards, S-swaps...). Although academic researchers, policy makers and practitioners have
talked about it for years, longevity-linked securities are not widely traded in financial markets, due in
particular to the pricing difficulty. In this paper, we compare different existing pricing methods and
propose a Cost of Capital approach. Our method is designed to be more consistent with Solvency II
requirement (longevity risk assessment is based on a one year time horizon). The price of longevity
risk is determined for a S-forward and a S-swap but can be used to price other longevity-linked
securities. We also compare this Cost of capital method with some classical pricing approaches. The
Hull and White and CIR extended models are used to represent the evolution of mortality over time.
We use data for Belgian population to derive prices for the proposed longevity linked securities based
on the different methods.

Keywords: stochastic longevity risk; S-forward; S-swap; solvency capital requirement

1. Introduction

Significant improvements in longevity have been experienced in most developed countries.
For annuity providers, longevity risk, i.e., the risk that future mortality trends differ from those
anticipated constitutes an important risk factor.

Under the new European regulatory environment for the insurance industry, Solvency
II, it becomes a requirement for insurers to measure and evaluate longevity risks
(Levantesi and Menzietti (2006)). As a consequence, the level of the capital required for longevity is
increasing ( EIOPA (2011)), and this creates the need for some longevity risk management solutions.

In the past, annuity providers were only able to transfer the longevity risk to reinsurer who
can offer a standardized, or a customized hedging with no residual basis risk, but this risk transfer
arrangement has become increasingly expensive and present a large counterparty credit risk. In
addition, the capacity of reinsurers is limited because longevity risk cannot be diversified, and, as
a consequence, just few reinsurers accept taking longevity risk (Blake 2008). Hence, finding other
alternatives to transfer the longevity risk, notably securitization, became a necessity (Cox et al. 2013;
Li et al. 2019). Another de-risking approach for a pension provider are the pension buy-in and the
pension buy-out (D’Amato et al. 2018).

In recent years, some longevity derivatives arose. These products are based on mortality/longevity
rates, similar to those existing in the financial market (Blake et al. 2011).

The two main longevity linked securities that were proposed in the literature are longevity bonds
(Blake and Burrows 2001), and survival swaps (Dowd et al. 2006).

Longevity swaps are considered better because their transaction costs are lower, are more flexible
and could be customized to suit individual circumstances. Moreover, they do not require the existence
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of a liquid market. Therefore, longevity swaps appear to be the most relevant derivative to consider
for hedging longevity risk.

Like the interest rate swaps, the survival swaps can be broken down into a collection of more
simple derivative: the Survival-forwards (Coughlan et al. 2007).

These derivatives have attracted many researchers and practitioners who have published many
papers on this subject, but because of the pricing difficulties, and the fact that these products remove
only the longevity risk, they are still not widely traded in the financial market (Lin et al. 2015).

Some authors have introduced a new methodology inspired by Solvency II: the pricing of longevity
derivatives using the Cost of Capital approach. A version of this method has been proposed by
(Levantesi and Menzietti 2006) in a discrete time model. In this paper, we generalize this approach in
two directions: first, we use a risk measurement more in line with Solvency II and based on successive
one-year time horizons; secondly, we model longevity risk with continuous time processes, as they
offer analytical tractability and can be used for the pricing of financial instruments. We also study the
consistency between this Cost of Capital approach (COC) and three important classical pricing methods
used in finance: risk-neutral pricing, Wang transform and Sharpe ratio. This paper is organized as
follows: in Section 2, we give the general pricing framework for the S-forward with the classical
COC approach, then the same framework is provided in Section 3 for the S-swaps. In Section 4,
we translate the theoretical framework into a numerical illustration, enabling the analysis of the
consistency between the proposed and the existing classical pricing approaches. We show that none
of these methods is completely consistent with the COC approach. Finally, in Section 5, we provide
conclusions.

2. Survival-Forwards

As an interest-rate swap is essentially a portfolio of forward-rate agreement (Hull 2009),
the survival swap can be broken down into a collection of a more simple derivative:
the Survival-forward. Therefore, we will begin our study by focusing on them.

2.1. Definition and Structure

A Survival forward (or S-forward) is an agreement between two counterparties to exchange at a
future date T (the maturity of the contract), an amount equal to the realized survival rate of a given
population cohort (floating leg), in return for a fixed survival rate agreed at the inception of the contract
(fixed rate payment), as shown in Figure 1.

Figure 1. S-forward.

For easiness of representation, we consider the notional amount equal to one monetary unit.
The payoff of the S-forward is then given by:

Payo f f (T) = T px − T p̂x , (1)

where T px is the realized survival rate (FT measurable), and T p̂x is a fixed probability of an individual
aged x at time 0 to be alive at age x + T (F 0 measurable).

2.2. Assumptions

In order to price the S-forward and S-swap, we will need to make some assumptions. For the
whole paper, we will consider the following:
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• The longevity is stochastic through one explanatory variable, the mortality intensity denoted by
µx(t, ω), which represents the force of mortality for an individual aged x + t at time t.

• For this mortality intensity, we consider two affine stochastic time-continuous models
(Luciano and Vigna 2015):

1. Hull and White model (HW):

dµx(t) = b(ξ(t)− µx(t))dt + σdw(t), (2)

2. Cox-Ingersoll-Ross (CIR) extended model:

dµx(t) = b(ξ(t)− µx(t))dt + σ
√

µx(t)dw(t). (3)

With ξ(t) = AeBt

b and A, B, b, σ all positive numbers, w a standard Brownian motion under the
real world probability measure P.

The CIR model guarantees the positivity of the force of mortality.

• The spot interest rate r(t, ω) is stochastic and is solution of an SDE (Stochastic Differential
Equation) of the form:

dr(t, ω) = h(t, r)dt + z(t, r)dw̄(t, ω), (4)

where h and z are two given functions.
• w and w̄ are independent standard Brownian motions under the real probability measure P.
• We denote by V(t, T) the price at a given time t of an S-forward with maturity T.
• The survival index at time t of an individual initially aged x, alive at time t and surviving T-t

years more is given by the following process:

I(x + t, T − t) = e−
∫ T

t µx(u,ω)du. (5)

• t pobs
x = e−

∫ t
0 µx(s)ds is the observed survival function (F t measurable).

• The two models being affine, the expectation of their survival index is directly given by
(Dowd et al. 2006):

EP(I(x + t, T − t) | F t) = eαP(t,T)−βP(t,T)µx(t). (6)

1. In the HW model, we have:{
α

HW

P (t, T) = A
b [e
−bT e(B+b)T−e(B+b)t

B+b − eBT−eBt

B ]− σ2

2b2 [
1
b (1− e−b(T−t))− T + t]− σ2

4b3 (1− e−b(T−t))2,

β
HW

P (t, T) = 1
b (1− e−b(T−t)).

(7)

2. In the CIR extended model, we have:α
CIR

P (t, T) = 2A
∫ T

t
eBs(eγ(T−s)−e−γ(T−s))

(2γ+b)eγ(T−s)+(2γ−b)e−γ(T−s) ds,

β
CIR

P (t, T) = sinh(γ(T−t))
γ cosh(γ(T−t)+ 1

2 b sinh(γ(T−t))
.

(8)

with γ = (b2+2σ2)
1
2

2

• P(t, T) = EQ(e−
∫ T

t r(s)ds | F t) is the price at time t of a zero coupon bound with maturity T under
the risk-neutral probability measure Q.

• There is no basis risk: the insurer’s reference population is the same as in the longevity
linked security.

• There is no counterparty default risk.
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2.3. S-Forward Pricing by Cost of Capital

There is an ongoing debate and many authors have addressed the question of how to price
longevity-linked securities, but the calibration of the market price of longevity risk remains an open
question as “ in one hand, there is a quest for actuarial or economic methods of how to derive prices
“conceptually” and, on the other hand, there is the problem of how to derive prices given a certain
methodology, i.e., what data to use for calibration purposes ” (Bauer et al. 2010).

Some authors have suggested that, following the directive of Solvency II, the price of longevity
linked securities could be associated with the Solvency Capital Requirement (SCR) to cover unexpected
losses (Börger 2010).

Levantesi and Menzietti (2006) have proposed to price a S-forward using the risk margin implicit
within the calculation of the technical provisions as defined by Solvency II.

The overall idea is based on linking the price of longevity-linked securities with the capital that
the insurer should hold to cover unexpected losses: according to Solvency II, insurance liabilities that
cannot be hedged are evaluated as the sum of a best estimate and a risk margin (RM), which is the
market value of the uncertainty on insurance liabilities. The RM is determined by the cost of capital
approach based on the SCR, the capital required to cover with 99.5% probability the unexpected losses
on a one-year time horizon.

In other words, by entering an S-forward, the insurer can lower its exposition to the longevity
risk and, in consequence, the SCR for longevity risk can be mitigated, or even reduced to zero if
the longevity risk is completely covered, and so does the corresponding RM. Hence, the price of an
S-forward shouldn’t be higher than the cost of holding the SCR; otherwise, insurers won’t be interested
in buying it. In fact, this approach provides an estimation of the maximum price that the insurer would
be willing to pay to transfer longevity risk.

Let’s consider a T-years S-forward contract (Figure 2).

Figure 2. T-years S-forward contract.

Under this approach, the price of the S-forward at time t is given by:

VCOC (t, T) = BEPt + RMt, (9)

where BEPt is the best estimate, equal to the discounted expectation of the payoff of the S-forward at
time t under the real-world measure, and RMt the risk margin.

At time 0, we obtain:
VCOC (0, T) = BEP0 + RM0, (10)

where BEP0 is as follows:
BEP0 = P(0, T)(EP(I(x, T)− T p̂x). (11)

The risk margin is defined as the present value of future returns on the successive SCRs:

RM0 = C%
T−1

∑
i=0

SCRi P(0, i + 1), (12)

where SCRi is the solvency capital Requirement to cover with 99.5% probability the unexpected losses
for year i, and C is the Cost of Capital rate (6% in Solvency II).

These future SCRi are random variables. In order to compute the initial risk margin RM0, we need
to use their estimation at time 0 denoted by: ˆSCRi = SCRi |0 .
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The risk margin at time 0 becomes then:

RM0 = C%
T−1

∑
i=0

ˆSCRi P(0, i + 1). (13)

In order to determine the price of an S-forward, we will need to calculate the estimation the future
solvency capitals. Solvency II provides different methods to calculate these capitals. We will consider
the VaR (Value at Risk) method, which measures the potential loss in value of a risky asset or liability
over a defined time horizon for a given confidence level, say 99.5% (Solvency II standard).

2.3.1. Levantesi and Menzietti’s Specification

A first approach developed by (Levantesi and Menzietti 2006) is based on the VaR of the payoff at
99.5% from the moment of calculation until maturity, as represented by Figure 3:

Figure 3. Computation of the successive SCRi in the Levantesi and Menzietti’s specification.

Explicitly, the SCRi are given by:

SCRi = VaR99,5%(P(i, T)Payo f f
VaR99,5%

T
− BEPi ) (14)

= P(i, T)VaR99,5%(I(x, T)T p̂x)−P(i, T)(EP( I(x, T)− T p̂x )) (15)

= VaR99,5%(P(i, T)(I(x, T)T p̂x ))−P(i, T)(EP(I(x, T)− T p̂x )) (16)

= P(i, T)(I(x, i)[VaR99,5%(I(x + i, T − i))− EP( I(x, T))], (17)

SCRi |0 = P(i, T)[EP(I(x, i))VaR99,5%(I(x + i, T − i)− EP( I(x, T))]. (18)

From expression (18), we can see that the Value at Risk is measured on the whole interval [i, T].
The price of the S-forward is then equal to:

VCOC (0, T) = P(0, T)(EP(I(x, T))− T p̂x )

+ 6% ∑T−1
i=0 P(i, T)P(0, i + 1)[EP((I(x, i))VAR99,5%(I(x + i, T − i))− EP( I(x, T))].

(19)

2.3.2. Our Specification

To be more consistent with the logic of Solvency II, we propose to adopt another formulation:
the SCR at time i should cover with 99.5% probability the unexpected losses on a one-year time horizon
(the interval [i, i + 1]), and we consider mortality evolution’s up to time i, and from i + 1 to T according
to their best estimates (Figure 4) :
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Figure 4. Computation of the successive SCRi at time 0 in our specification.

Then, the expression of the SCRi becomes:

SCRi = VaR99,5%[BEPi+1P(i, i + 1)− BEPi ], (20)

where
BEPi+1 = (I(x, i + 1)EP( I(x + i + 1, T − i− 1)− T p̂x ))P(i + 1, T). (21)

In addition,
BEPi = (I(x, i)EP( I(x + i, T − i)− T p̂x ))P(i, T). (22)

The SCRi is then given by:

SCRi = P(i, T)VaR99,5%[I(x, i + 1)EP( I(x + i + 1, T − i− 1))− I(x, i)EP( I(x + i, T − i))]

= P(i, T)I(x, i)[VaR99,5%(I(x + i, 1))EP( I(x + i + 1, T − i− 1))− EP( I(x + i, T − i))].
(23)

Therefore, the estimation of SCRi |0 can be given by:

SCRi |0= P(i, T)EP(I(x, i))[VaR99,5%(I(x + i, 1))− EP( I(x + i, 1))]EP( I(x + i + 1, T − i− 1)). (24)

The risk margin at time 0 is then equal to:

RM0 = 6% ∑T−1
i=0 [EP(I(x, i))[VaR99,5%(I(x + i, 1))− EP( I(x + i, 1))]EP( I(x + i + 1, T − i− 1))P(0, i + 1)P(i, T). (25)

Finally, the price of the S-forward with the COC approach is:

VCOC (0, T) = P(0, T) (EP[ I(x, T)− T p̂x])

+ 6%
T−1

∑
i=0

[EP(I(x, i))[VaR99,5%(I(x + i, 1))− EP( I(x + i, 1))] (26)

EP( I(x + i + 1, T − i− 1))P(0, i + 1)P(i, T).

Let us apply these methods in two particular mortality models.

HW Model

In order to determine the explicit expression of the price, we need to compute:

VaR99,5%(I(x + i, 1)) = VaR99,5%(e−
∫ i+1

i µx(s)ds).

In general, we have:

VaR(I(x + t, T − t)) = VaR99,5%(e−
∫ T

t µx(s)ds) = VaR(eX(t,T)). (27)

We know that:
I(x + t, T − t) = e−

∫ T
t µPx (u,ω)du = eX(t,T). (28)
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One can show that, under the real-world risk measure P, we have :

X(t, T) ∼ N(m(t, T), n(t, T)2). (29)

Thus, the survival index I is log-normally distributed with:m(t, T) = µx(t)
(e−b(T−t)−1)

b − AeBt

B(b+B) (e
B(T−t) − 1)− AeBt

b(b+B) (e
−b(T−t) − 1),

n2(t, T) = σ2

b2 [T − t− 1−e−b(T−t)

b − (1−e−b(T−t))2

2b ].
(30)

Then, we have:
VaR99,5%(I(x + t, T − t)) = em(t,T)+zηn(t,T), (31)

where zη = η is the quantile of a normal distribution N(0, 1) .
We consider η = 0, 995, zη = 2, 58 (Solvency II standard). Finally, the price of the S-forward at

time 0 becomes:

V
HW

COC
(0, T) = P(0, T)(eα

HW
P (0,T)−β

HW
P (0,T)µx(0) − T p̂x )

+ 6% ∑T−1
i=0 [(eα

HW
P (0,i)−βHW

P (0,i)µx(0)[em(i,i+1)+zηn(i,i+1)

− eα
HW
P (i,i+1)−β

HW
P (i,i+1)µx(i)]eα

HW
P (i+1,T)−β

HW
P (i+1,T)µx(i+1)]P(0, i + 1)P(i, T),

(32)

with µx(i) = EP(µx(i)) and α
HW

P (., T), β
HW

P (., T) are given by Equation (7).

CIR Model

Let us here consider that the intensity of mortality follows the CIR process. The same as in the

HW model, we will need to determine VaR(e−
∫ i+1

i µx(s)ds), but as it is not easy to find an analytical
solution, we will simulate it in Section 4. The price of the S-swap is then given by:

V
CIR

COC
(0, T) = P(0, T)(eαCIR

P (0,T)−βCIR
P (0,T)µx(0) − T p̂x )

+ 6% ∑T−1
i=0 [(eαCIR

P (0,i)−βCIR
P (0,i)µx(0)[VaR(e−

∫ i+1
i µx(s)ds)

− eαCIR
P (i,i+1)−βCIR

P (i,i+1)µx(i)]eαCIR
P (i+1,T)−βCIR

P (i+1,T)µx(i+1)]P(0, i + 1)P(i, T),

(33)

where α
CIR

P (., T) and β
CIR

P (., T) are given by Equation (8).

2.3.3. Pricing at Any Time t

Following our same reasoning, we give the expression of SCRi at any time t (0 < t < i) under the
COC approach (Figure 5):

VCOC (t, T) = P(t, T)I(x, t)EP( I(x + t, T − t))

+ 6% ∑T−1
i=t I(x, t)EP( I(x + t, i− t))[VaR99,5%(I(x + i, 1))− EP( I(x + i, 1))]

EP( I(x + i + 1, T − i− 1))P(i, T)P(t, i + 1).

(34)
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Figure 5. Computation of the successive SCRi at any time t in our specification.

HW Model

We determine under our philosophy the price of an S-forward at time t (0 < t < T) using the Hull
and White model:

V
HW

COC
(t, T) = P(t, T)[t pobs

x .eα
HW
P (t,T)−β

HW
P (t,T)µx(t) − T p̂x ]

+ 6% ∑T−1
i=t [t pobs

x .eα
HW
P (t,i)−β

HW
P (t,i)µx(t)[em(i,i+1)+zηn(i,i+1)

− eα
HW
P (i,i+1)−β

HW
P (i,i+1)µx(i)]eα

HW
P (i+1,T)−β

HW
P (i+1,T)µx(i+1)]P(i, T)P(t, i + 1).

(35)

CIR Model

Let us here consider that the intensity of mortality follows a CIR process. The price of the
S-forward at time t (0 < t < T) becomes:

V
CIR

COC
(t, T) = P(t, T)[t pobs

x .eα
CIR
P (t,T)−β

CIR
P (t,T)µx(t) − T p̂x ]

+ 6% ∑T−1
i=t [t pobs

x .eα
CIR
P (t,i)−β

CIR
P (t,i)µx(t)[VaR(e−

∫ i+1
i µx(s)ds)

− eα
CIR
P (i,i+1)−β

CIR
P (i,i+1)µx(i)]eα

CIR
P (i+1,T)−β

CIR
P (i+1,T)µx(i+1)]P(i, T)P(t, i + 1).

(36)

2.4. Comparison with Classical Methods

We develop in this section the pricing of the S-forward contract, following other alternative
theoretical formulas to compare with formula (34):

• The risk-neutral approach (Cairns et al. 2006a),
• The Wang transform (Wang 2002),
• Sharpe ratio (Milevsky et al. 2005).

Numerical comparisons will be given in Section 4.

2.4.1. Risk-Neutral Approach

The risk-neutral pricing is a technique widely used in quantitative finance to compute the values
of derivatives, and could be adapted to price longevity-linked securities.

As discussed in some papers, (see for example (Cairns et al. 2006b)), this approach is not ideal
to price longevity derivatives as the longevity market is immature, and this method requires the
availability of a considered amount of data. However, it is interesting to explore the risk-neutral
pricing formula for comparison purpose.

Under the risk-neutral probability measure Qλ, the price of an S-forward at time t is given by:

VQλ
(t, T) = P(t, T)[t pobs

x EQλ
(I(x + t, T − t))− T p̂x | F t], (37)
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where λ is the market price of longevity risk.
We first consider the HW model to get an explicit expression of the S-forward price. We assume

that µx(t) follows the HW process given by (2).
Let’s introduce the market prices λ(t, µx(t)) associated with longevity risk, and let w∗(t, ω) =

w(t, ω)−
∫ t

0 λ(t, µx(s))ds.
We consider a model with a constant market price of risk λ(t, µx(t)) = λ.
The SDE of the force of mortality under the risk-neutral measure becomes:

dµ
Qλ
x (t) = (ξ(t)− bµx(t) + σλ)dt + σdw∗(t). (38)

From Equation (38), we see that a positive value of λ would increase the drift of the force of
mortality. To follow the same insurer’s logic, by overestimating the survival process expected value
and underestimating the mortality, we have to choose a negative value for λ.

Under the risk-neutral measure, the survival probability takes the form:

EQλ
(I(x + t, T − t)) = eαHW

Qλ
(t,T)−βHW

Qλ
(t,T)µx(t), (39)

where αHW
Qλ

(t, T) and βHW
Qλ

(t, T) are given by:


α

HW

Qλ
(t, T) = A

b [e
−bT e(B+b)T−e(B+b)t

B+b − eBT−eBt

B ]− σ2

2b2 [
1
b (1− e−b(T−t))− T + t]− σ2

4b3 (1− e−b(T−t))2 − σλ
b (1− exp(−b(T − t)),

β
HW

Qλ
(t, T) = 1

b (1− e(−b(T−t)).

(40)

Hence, the price of the S-forward at time t with the risk-neutral approach is as follows:

V
HW

Qλ
(t, T) = P(t, T)(t pobs

x eαHW
Qλ

(t,T)−βHW
Qλ

(t,T)µx(t) − T p̂x ). (41)

CIR Model

Let us now assume that µx(t) follows the CIR process given by (3).
We introduce the market prices λ(t, µx(t)) associated with longevity risk, w∗(t, ω) = w(t, ω)−∫ t

0 λ(t, µx(s))ds
Under the real-world probability measure P, w∗ is a Brownian motion with drift, and therefore is

not a martingale. According to Girsanov’s theorem, w∗(t, ω) is a standard Brownian motion under the
risk-neutral measure Q.

The SDE of the force of mortality becomes:

dµ
Qλ
x (t) = (ξ(t)− bµx(t) + λσ

√
µx(t))dt + σ

√
µx(t)dw∗(t). (42)

The survival probability also takes the form: EP(I(x + t, T − t)) = e
αCIR
Qλ

(t,T)−βCIR
Qλ

(t,T)µx(t).
We assume that the market price of longevity risk has the following classical form: λ = κ

√
µx(t)

with κ is a constant.
Equation (42) then becomes:

dµ
Qλ
x (t) = (ξ(t)− (b− σκ)µx(t))dt + σ

√
µx(t)dw∗(t). (43)
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The parameters αCIR
Qλ

(t, T) and βCIR
Qλ

(t, T) are given by:
α

CIR

Qλ
(t, T) = 2A

∫ T
t

eBs(eγ(T−s)−e−γ(T−s))

(2γ+b−σκ)eγ(T−s)+(2γ−b+σκ)e−γ(T−s) ds,

β
CIR

Qλ
(t, T) = sinh(γ(T−t))

γ cosh(γ(T−t)+ 1
2 (b−σκ) sinh(γ(T−t))

,

(44)

with γ = ((b−σκ)2+2σ2)
1
2

2 .
Finally, the price is given by:

V
CIR

Qλ
(t, T) = P(t, T)[t pobs

x e
αCIR
Qλ

(t,T)−βCIR
Q�

(t,T)µx(t)
− T p̂x ]. (45)

2.4.2. Wang Transform Approach

The Wang transform method is a distortion approach that is based on a distortion operator
(Leung et al. 2018). In the insurance context, this operator converts the best estimate of the survival
index into its risk equivalent using a specific price of risk. This procedure was presented by
(Dowd et al. 2006) as a pricing method used in the pricing of several over-the-counter longevity
swaps in practice, and used for instance by (Denuit et al. 2007).

The Wang distortion risk measure is given by:

ρgδ
(x) =

∫ ∞

0
gδ(F̄x(s))ds, (46)

where x is a continuous non-negative random variable.
F̄x(s) is its decumulative function, and gδ is the distortion function assiciated with the distortion

parameter δ and given by:
gδ(s) = Φ(Φ−1(s) + δ), (47)

where Φ(.) is the cumulative standard normal distribution
Then:

ρg
δ
(I(x + t, T − t)) =

∫ ∞

0
Φ(Φ−1(F̄I(x+t,T−t)(s)) + δ)ds. (48)

The price of the S-forward at time t is then given by:

VWang(t, T) = P(t, T)[t pobs
x ρg

δ
(I(x + t, T − t))− T p̂x | F t]. (49)

HW Model

To obtain an explicit expression of the S-forward price with the HW model, we need to determine
the formula of ρg

δ
(I(x + t, T − t)).

The Wang distortion of a log-normal distribution is still log-normal with a corrected
drift parameter:

eN(m(t,T), n2(t,T)) −→ eN(m(t,T)+δn(t,T),n2(t,T)). (50)

Thus:

ρgδ
(I(x + t, T − t)) = em(t,T)+δn(t,T)+ n(t,T)2

2 . (51)
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The price of S-forward with Wang approach at time t is finally given by:

V
HW

Wang
(t, T) = P(t, T)[t pobs

x em(t,T)+δn(t,T)+ n(t,T)2
2 − T p̂x )]. (52)

CIR Model

Because of its complicated distribution, it is not easy to find an explicit formula for
ρgδ

(I(x + t, T − t)). Hence, we will need an SDE discretization scheme.
For the CIR model, the Euler discretization scheme is as follows:

µx(t + ∆t) = µx(t) + (ξ(t)− bµx(t))∆t + σ
√

µx(t)∆w(t). (53)

In order to simulate the survival index I(x + t, T − t), we will make a classical assumption often
encountered in life insurance theory: we will suppose that the force of mortality is piecewise constant
between each point computed by the above Euler discretization.

We will use an R numerical simulation to determine the price of the S-forward; the algorithm will
be described in Section 4.

2.4.3. The Sharpe Ratio Approach

The Sharpe ratio method was used for instance by (Milevsky et al. 2005) and by (Loeys et al. 2007)
to price q-forwards. It is a standard deviation principle that does not use a transformation of
survival probabilities.

In liquid financial markets, the Sharpe ratio provides a benchmark for the determination of risk
premia. The Sharpe ratio is given by:

S
market

=
rp − r f

σp
, (54)

where rp is the expected return of the portfolio, r f is the risk free rate and σp is the standard deviation
of the portfolio return.

Using the analogy to the Sharpe ratio in financial market, the Sharpe ratio in the insurance context
(Barrieu and Veraart 2014) is equal to the excess payoff on the longevity-linked securities over its best
estimate divided by its standard deviation:

S
Insurance

=
V(X)− EP(X)

σP(X)
. (55)

According to this approach, the price of the S-forward is given by:

VSharpe(t, T) = P(t, T)(t pobs
x EP( I(x + t, T − t))− T p̂x + St pobs

x

√
varP(I(x + t, T − t))), (56)

where S is the chosen fixed Sharpe ratio, and varP(I(x + t, T− t)) is the variance of the survival index.

HW Model

The variance of the survival process is as follows:

varP(I(x + t, T − t)) = VP(eX(t,T)) = VP(eN(m(t,T), n(t,T)2)). (57)

Then:
varP(I(x + t, T − t)) = (en(t,T)2 − 1)e2m(t,T)+n(t,T)2

. (58)
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The price of the S-forward at time t is then given by:

V
HW

Sharpe
(t, T) = P(t, T)(t pobs

x EP[ I(x + t, T − t)]− T p̂x − St pobs
x

√
(en(t,T)2 − 1)e2m(t,T)+n(t,T)2

). (59)

CIR Model

We have:

varP(I(x + t, T − t)) = EP[ I(x + t, T − t)]− EP[ I(x + t, T − t)]2, (60)

where:
EP[ I(x + t, T − t)2] = EP(e−

∫ T
t 2µx(s)ds) = eαCIR∗

P (t,T)−βCIR∗
P (t,T)2µx(t) (61)

and:
d2µx(t) = ((2ξ(t)− 2bµx(t))dt +

√
2σ

√
2µx(t)dw(t). (62)

α
CIR∗
P (t, T) and β

CIR∗
P (t, T) are then given by:α

CIR∗
P (t, T) = 4A

∫ T
t

eBs(eγ∗(T−s)−e−γ∗(T−s))

(2γ∗+b)eγ∗(T−s)+(2γ∗−b)e−γ∗(T−s) ds,

β
CIR∗
P (t, T) = sinh(γ∗(T−t))

γ∗ cosh(γ∗(T−t)+ 1
2 b sinh(γ∗(T−t))

,
(63)

with γ∗ = (b2+4σ2)
1
2

2 .

α
CIR

P (t, T) and α
CIR∗
P (t, T) can be solved numerically. The variance of the survival index under the

real world probability is:

varP(I(x + t, T − t)) = eαCIR∗
P (t,T)−βCIR∗

P (t,T)2µx(t) − e2[αCIR
P (t,T)−βCIR

P (t,T)µx(t)]. (64)

Finally, the price of the S-forward is as follows:

V
CIR

Sharpe
(t, T) = P(t, T)(t pobs

x eαCIR
P (t,T)−βCIR

P (t,T)µx(t) − T p̂x

+t pobs
x S

√
eαCIR∗
P (t,T)−βCIR∗

P (t,T)2µx(t) − e2[αCIR
P (t,T)−βCIR

P (t,T)µx(t)]).
(65)

3. Survival-Swaps

As we mentioned previously, the S-swap is considered as the sum of S-forward contracts.

3.1. Definition and Structure

A Survival swap (or S-swap) is a collection of S-forwards exchanged at a predetermined calendar
times [t1, ...., tn]. Schematically, an S-swap can be represented as follows (Figure 6):
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Figure 6. S-swap structure.

3.2. S-Swap Pricing under the Cost of Capital Approach

Let P(s, t1, t2, ..., tn) denote the price of an S-swap at time s (with s < t1 < t < ... < tn). Under the
assumption of non-existence of arbitrage opportunities, the price at time s of an S-Swap with t1, t2, ..., tn

as exchange dates is given by:

P(s, t1, t2, ..., tn) =
n

∑
i=1

V(s, ti), (66)

where V(s, ti) is the S-forward price in an approach and a model that have to be specified.
Let us consider an S-swap with n cash flows. The price at time s of an S-swap is given by:

PCOC (s, t1, t2, ..., tn) =
n

∑
j=1

BEs,tj +
n

∑
j=1

RMs,tj , (67)

where BEs,tj and RMs,tj are as follows:

BEs,tj = P(s, tj)[I(x, s)EP( I(x + s, tj − s)− tj p̂x], (68)

RMs,tj = 6%
tj−1

∑
i=s

SCRi,tj |s P(s, i + 1). (69)

We finally find the price of the S-swap at time s:

PCOC (s, t1, t2, ..., tn) = ∑n
j=1[P(s, tj)(I(x, s) EP( I(x + s, tj − s)− tj p̂x)

+ 6% ∑
tj−1
i=s P(i, tj)P(s, i + 1)I(x, s) EP( I(x + s, i− s)[VaR99,5%(I(x + i, 1))

− EP( I(x + i, 1)]EP( I(x + i + 1, tj − i− 1)].

(70)

HW Model

If we consider that the force of mortality follows the HW process, the price under the Cost of
Capital approach is given by:

P
HW

COC
(s, t1, t2, ..., tn) = ∑n

i=1[P(s, tj)(s pobs
x eαHW

P (s,ti)−βHW
P (s,ti)µx(s) − tj p̂x)

+ 6% ∑
tj−1
i=s P(i, tj)P(s, i + 1)s pobs

x [eαHW
P (s,i)−βHW

P (s,i)µx(s)(em(i,i+1)+zαn(i,i+1)

− eαHW
P (i,i+1)−βHW

P (i,i+1)µx(i))eαHW
P (i+1,ti)−βHW

P (i+1,ti)µx(i+1)].

(71)

CIR Model
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If we consider that the force of mortality follows the CIR process, the price under the Cost of
Capital approach is given by:

P
CIR

COC
(s, t1, t2, ..., tn) = ∑n

i=1[P(s, tj)(s pobs
x eαCIR

P (s,ti)−βCIR
P (s,ti)µx(s) − tj p̂x)

+ 6% ∑
tj−1
i=s P(i, tj)P(s, i + 1)s pobs

x [eαCIR
P (s,i)−βCIR

P (s,i)µx(s)(VaR99,5%(e−
∫ i+1

i µx(s)ds)

− eαCIR
P (i,i+1)−βCIR

P (i,i+1)µx(i))eαCIR
P (i+1,ti)−βCIR

P (i+1,ti)µx(i+1)].

(72)

4. Numerical Illustration

In this section, we give the numerical results of the prices of different S-forwards, using the
approaches studied previously for the Belgian population.

We use the following assumptions:

• An insurer with a portfolio of pure endowment contracts paying a lump sum of 1 € at maturity T,
and who is interested in hedging its longevity risk.

• N0 = 10,000 initial policyholders for each cohort
• Individuals aged 65, 70, or 75 years old in 2015
• Payment of 1 € to each policyholder alive at time T
• Calibration and fixed leg based on projected data from the IABE unisex projected generational

mortality table1.
• The riskless interest rate is constant (equals to 1%).

The fixed rates used for different ages and maturities are reported in Table 1:

Table 1. The fixed survival rates T p̂x for different ages and maturities.

T/Age 65 70 75

µx(0) 0.0105677 0.01608859 0.02633591
T = 5 0.9419321 0.9101241 0.850733508

T = 10 0.8658090 0.7865578 0.647397474

4.1. Calibration

We calibrate our models to the data, using the Least Square Estimation method.

HW Model

In order to determine the parameters of the survival function, we calibrate the HW model on
projected mortality data for each cohort as explained in the beginning of this section.

The optimal parameters are given by Table 2:

Table 2. Optimal parameters values for the survival function in the HW model.

Age A B b σ

65 0.002317753 0.115622207 0.250629489 0.017700069
70 0.00517446 0.11645594 0.32024870 0.02352572
75 0.01008112 0.11656453 0.32687591 0.06456541

CIR Model

The optimal parameters for the three generations are summarized in Table 3:

1 IA|BE Mortality projection for the Belgian population, 2015. Available from: https://www.iabe.be/nl/iabe-mortality-tables.

https://www.iabe.be/nl/iabe-mortality-tables
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Table 3. Optimal parameters values for the survival function in the CIR model.

Age A B b σ

65 0.002398110 0.115379365 0.261814487 0.001864268
70 0.005079817 0.116501598 0.311927223 0.006213681
75 0.01573756 0.11389749 0.55079961 0.02816582

4.2. S-Forwards COC Prices

Table 4 gives the the prices found under the COC approach, using HW and CIR models
for mortality, the different values of the best estimates (BE), and the Risk Margins (RM):

Table 4. Comparison between the prices of the different S-forwards with HW and CIR models.

HW Model CIR Model

BE RM Price BE% RM% BE RM Price BE% RM%

x0 = 65, T = 5 45.87512 6.756132 52.63125 87.16% 12.83% 44.28595 10.68733 54.97327 80.55% 19.44%
x0 = 65, T = 10 76.53061 11.86875 88.39936 86.57% 13.42% 74.69407 22.70057 97.39464 76.69% 23.30%
x0 = 70, T = 5 28.58322 21.38396 49.96718 57.20% 42.79% 28.47494 16.53768 45.01261 63.25% 36.74%
x0 = 70, T = 10 26.35731 35.16336 61.52067 42.84% 57.15% 24.18322 33.45732 57.64054 41.95% 58.04%
x0 = 75, T = 5 7.247361 75.30577 82.5531 91.22% 8.78% −4.960416 55.56708 50.60666 −9.80% 109.8%
x0 = 75, T = 10 −11.20288 112.8399 101.6371 −11.02% 111.02% −14.28582 90.50064 76.21482 −18.74% 118.74%

In order to have a better idea of the magnitude of these S-forward prices, we can link them with
the original price of the pure endowment contract received by the insurer.

The premium P of this pure endowment contract is given by: T Ex = T p̂x
(1+i)T , with i the technical

interest rate.
Table 5 reports a comparison between the premium P and the price of the S forward S_price,

considering a technical rate of 0.5% and using COC approach for both models of longevity. HC is the
the hedging cost by HC = S_price

P

Table 5. Comparison between the prices of the pure endowment and S-forward contracts.

HW Model CIR Model

P S_price HC P S_price HC

x0 = 65, T = 5 9187.329 52.63125 0.57% 9187.329 54.97327 0.6%
x0 = 65, T = 10 8444.847 88.39936 1.04% 8444.847 97.39464 1.15%
x0 = 70, T = 5 8297.805 49.96718 0.6% 8297.805 45.01261 0.54%
x0 = 70, T = 10 7671.854 61.52067 0.8% 7671.854 57.64054 0.75%
x0 = 75, T = 5 8877.084 82.5531 0.93% 8877.084 50.60666 0.57%
x0 = 75, T = 10 6314.525 101.6371 1.61% 6314.525 76.21482 1.2%

We can see that HC is around 1%.

4.3. Consistency with Other Pricing Methods

In this section, we compare numerically the COC approach with other methods developed in
Section 2.4. In order to check the consistency between COC and each of these methods, we compute
the value of the parameters of the three methods; these parameters are computed such that the COC
price is equal to the price given by the considered methods. We can say that a method is consistent
with the COC approach if its parameters are quiet stable for different ages and maturities.

4.3.1. Risk Neutral Approach

In this method, we determine the market price of longevity risk, generating the same price as the
one found with the COC method.
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HW Model

Under the risk-neutral method, and under the assumptions considered previously, the price at
time 0 is:

V
HW

Qλ
(0, T) = e−rT( eα

HW
Qλ

(0,T)−β
HW
Qλ

(0,T)µx(0) − T p̂x ). (73)

The market price of risk λ is determined such that this risk-neutral price is equal to the cost of
capital price. If this coefficient is stable, it means that the two methods are consistent. Table 6 gives the
values of λ when we use the HW model for longevity:

Table 6. Equivalent market price of longevity risk in the risk-neutral approach, HW model.

S-Forward COC Price Market Price of Longevity Risk

x0 = 65, T = 5 52.63125 λ = −14.40%
x0 = 65, T = 10 88.39936 λ= −22.61%
x0 = 70, T = 5 49.96718 λ = −15.53%
x0 = 70, T = 10 61.52067 λ = −25.47%
x0 = 75, T = 5 82.5531 λ = −19.33%
x0 = 75, T = 10 101.6371 λ = −37.53%

CIR Model

Under the risk-neutral approach, and considering that the intensity of mortality follows the CIR
model, the price of the S-forward is:

V
HW

Qλ
(0, T) = e−rT( eα

CIR
Qλ

(0,T)−β
CIR
Qλ

(0,T)µx(0) − T p̂x ). (74)

Table 7 represents the different values of the market price of longevity risk.

Table 7. Equivalent market price of longevity risk in the risk-neutral approach, CIR model.

S-Forward COC Price κ Market Price of Longevity Risk λ = κ
√

µx(0)

x0 = 65, T = 5 54.97327 −0.743 λ = −7.64%
x0 = 65, T = 10 97.39464 −0.533 λ = −5.48%
x0 = 70, T = 5 45.01261 −0.609 λ = −7.72%

x0 = 70, T = 10 57.64054 −0.436 λ = −5.53%
x0 = 75, T = 5 50.60666 −0.468 λ = −7.06%

x0 = 75, T = 10 76.21482 −0.297 λ = −4.83%

Clearly, the two methods are not completely consistent, even if the parameters seem to be more
stable in the CIR model.

4.3.2. Consistency with Sharpe Ratio

We will now compute the value of the Sharpe ratio corresponding to the S-forward price found
with the COC method.

HW Model

The price with this approach using HW model is given by:

V
HW

Sharpe
(0, T) = e−rT(eαHW

P (0,T)−βHW
P (0,T)µx(0) − T p̂x + S

√
(en(0,T)2 − 1)e2m(0,T)+n(0,T)2

). (75)

Table 8 gives the equivalent Sharpe ratio generating the prices found with the COC approach.
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Table 8. Equivalent Sharpe parameters, HW model.

S-Forward COC Price Sharpe Parameter

x0 = 65, T = 5 52.63125 S = 9.62%
x0 = 65, T = 10 88.39936 S = 9.55%
x0 = 70, T = 5 49.96718 S = 10.13%

x0 = 70, T = 10 61.52067 S = 10.43%
x0 = 75, T = 5 82.5531 S = 11.47%

x0 = 75, T = 10 101.6371 S = 13.91%

CIR Model

With the CIR model, the price of the S-forward at time 0 is given by:

V
CIR

Sharpe
(0, T) = e−rT( eαCIR

P (0,T)−βCIR
P (t,T)µx(t) − T p̂x + S

√
eαCIR∗
P (0,T)−βCIR∗

P (0,T)2µx(0) − e2[αCIR
P (0,T)−βCIR

P (0,T)µx(0)]). (76)

Table 9 presents the different values of the Sharpe parameter under the CIR model:

Table 9. Equivalent Sharpe parameters, CIR model.

S-Forward COC Price Sharpe Parameter

x0 = 65, T = 5 54.97327 S = 15.35%
x0 = 65, T = 10 97.39464 S = 17.44%
x0 = 70, T = 5 45.01261 S = 16.17%

x0 = 70, T = 10 57.64054 S = 17.55%
x0 = 75, T = 5 50.60666 S = 16.45%

x0 = 75, T = 10 76.21482 S = 17.61%

We can see that, for both mortality models, Sharpe parameters have a better stability.

4.3.3. Consistency with Wang Transform

We will now compute the value of the Wang transform parameter corresponding to the COC
S-forward price.

HW Model

Table 10 gives the different values of the Wang parameter under the CIR model:

Table 10. Equivalent Wang parameters, HW model.

S-Forward COC Price Wang Parameter

x0 = 65, T = 5 52.63125 δ = 9.62%
x0 = 65, T = 10 88.39936 δ = 9.55%
x0 = 70, T = 5 49.96718 δ = 10.12%

x0 = 70, T = 10 61.52067 δ = 10.41%
x0 = 75, T = 5 82.5531 δ = 11.44%

x0 = 75, T = 10 101.6371 δ = 13.48%

CIR Model

For the CIR model, we use numerical simulation to compute the the Wang Transform parameters
corresponding to the COC prices. We get the following results:

Table 11 gives the different values of the Wang parameter under the CIR model:
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Table 11. Equivalent Wang parameters, CIR model.

S-Forward COC Price Wang Parameter

x0 = 65, T = 5 54.97327 δ = 16.29%
x0 = 65, T = 10 97.39464 δ = 16.49%
x0 = 70, T = 5 45.01261 δ = 16.89%

x0 = 70, T = 10 57.64054 δ = 17.91%
x0 = 75, T = 5 50.60666 δ = 16.55%

x0 = 75, T = 10 76.21482 δ = 17.75%

4.3.4. Synthesis

The Cost of Capital approach is parameterized by one variable: the Cost of Capital rate, which is
fixed by regulation (6% in Solvency II nowadays). This legal and unique parameter value can be seen
as a benchmark, and allows us to find equivalent values of the parameters in the three other methods.
The simulations presented above show that:

• None of the classical pricing methods is completely consistent with the COC approach, which is
not surprising (the COC price (Formula (26)) is based on a multiperiod formula).

• Sharpe ratio and Wang transform methods seem closer to COC than risk-neutral approach.
• The absolute values found for Sharpe and Wang methods are quite similar. In Appendix A, we

present for the HW model complete results for ages between 55 and 85, and maturities from T = 1
to T = 15.

4.3.5. Remark: Smoothing

Taking into account the irregular form of all these prices due to the use of gross mortality
parameters for each age (Formulas (2) and (3)), we can smooth these parameters. Appendix B gives
the methods used for this smoothing. Appendix B gives then the smoothed prices with COC method
in the HW model.

5. Conclusions

In this paper, we have developed in continuous time a new way to price longevity linked securities
based on the Cost of Capital approach, consistent with the directive of Solvency II. We considered two
examples of stochastic time continuous processes for longevity: Hull and White and CIR extended.
This COC method has been compared with three classical methods used in finance: the risk-neutral,
Wang and Sharpe methods. More precisely, we have found the parameters of these three methods
giving equivalent prices to the COC approach with 6% COC charge, as mentioned in the Solvency II
regulation. Even if none of these methods is consistent with the COC approach, it appears that Wang
transform and Sharpe ratio methods are more similar to COC than the risk-neutral method. In this
paper, we didn’t take into account the basis risk. We could use this proposed COC method to price
other longevity linked securities that take into account this risk—for instance, the exchange forwards
and exchanged options.
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Appendix A

Figure A1. Prices of S-forward prices under the Cost of Capital approach, HW model.
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Figure A2. Consistency between risk-neutral and Cost of Capital method, HW model.
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Figure A3. Consistency between Sharpe and Cost of Capital method, HW model.
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Figure A4. Consistency between Sharpe and Cost of Capital method, HW model.
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Figure A5. 3D presentation of the S-forwards prices and the corresponding parameters with the
other methods.

Appendix B

Table A1. Nonlinear regression results, HW model.

Parameter Fitted Model Error Pseudo-R2

A

a + bx + cx2 0.004228 0.9300884
a = 2.675 × 10−1

b = −8.947 × 10−3

c = 7.481 × 10−5

B

a + bx + cx2 0.001877 0.5578862
a = 1.968 × 10−2

b = 2.872 × 10−3

c = −2.154 × 10−5

b ax4 0.1431 0.5408143
a = 1.968 × 10−2

σ
ae−bx 0.02138 0.1448673

a = 0.0002570
b = −0.0560466
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Appendix C

Figure A6. Prices of S-forward prices under the Cost of Capital approach with smooth parameters, HW model.
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Figure A7. Consistency between risk neutral and Cost of Capital method with smooth parameters, HW model.
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Figure A8. Consistency between Sharpe and Cost of Capital method with smooth parameters, HW model.



Risks 2019, 7, 41 27 of 29

Figure A9. Consistency between Wang and Cost of Capital method with smooth parameters, HW model.
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Figure A10. 3D presentation of the S-forwards prices and the corresponding parameters with the
other methods.
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