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Abstract: We study a portfolio selection problem in a continuous-time Itô–Markov additive market
with prices of financial assets described by Markov additive processes that combine Lévy processes
and regime switching models. Thus, the model takes into account two sources of risk: the jump
diffusion risk and the regime switching risk. For this reason, the market is incomplete. We complete
the market by enlarging it with the use of a set of Markovian jump securities, Markovian power-jump
securities and impulse regime switching securities. Moreover, we give conditions under which the
market is asymptotic-arbitrage-free. We solve the portfolio selection problem in the Itô–Markov
additive market for the power utility and the logarithmic utility.

Keywords: Markov additive processes; Markov regime switching market; Markovian jump securities;
asymptotic arbitrage; complete market; optimal portfolio

1. Introduction

The portfolio selection problem is an important issue in financial mathematics. The problem is to
invest an initial wealth in financial assets so as to maximize the expected utility of the terminal wealth.
Markowitz (1952) for the first time used the quantitative methods for the optimal portfolio selection
problem and proposed the mean-variance approach for portfolio optimization. Explicit solutions for
the portfolio selection problem in continuous time were first given by Merton (1971, 1980).

Although Merton’s approach produces significant theoretical results, it has some shortcomings
coming from daily practice. The first is related to the assumption that the dynamics of a risky asset
follows a geometric Brownian motion. Many investigations (e.g., Black et al. (1972) and Merton (1976))
have suggested that this market model cannot describe perfectly some empirical behaviors of financial
markets, such as the asymmetry and heavy-tailedness of the distribution of returns of a time-varying
volatility. To model this, the stock price driven by a Lévy process is a better choice. The portfolio
selection problem on a Lévy market was considered by Niu (2008) and Corcuera et al. (2006).

The second important assumption in the original Black–Scholes–Merton model is that the
coefficients are fixed. However, this assumption may not be satisfied over long time period, where
structural changes in macroeconomic conditions may occur several times. Therefore, Markov
modulated models (otherwise called regime switching) were proposed instead. In such models, the set
of model parameters change in time according to a Markov chain, the transitions of which correspond
to changes in the state of the economy. Hence, regime switching models describe perfectly structural
macroeconomic changes and various business cycles (Zhang 2001). Hamilton (1989) pioneered
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econometric applications of regime switching models. These models have many applications in
finance (Buffington and Elliott 2002; Di Masi et al. 1994; Elliott et al. 2001, 2003, 2005; Goldfeld and
Quandt 1973; Guo 2001; Naik 1993; Tong 1978).

There is a growing literature dealing with portfolio optimization problems in markets with
non-constant coefficients. Most of these papers assume that the external process is a diffusion process
itself, like in the established volatility model of Heston (1993) or in the Ho–Lee and the Vasicek model
of Korn and Kraft (2001). Bäuerle and Rieder (2004) and Rieder and Bäuerle (2005) studied the portfolio
optimization problem with an observable and an unobservable Markov-modulated drift, respectively.
This problem under stochastic volatility was considered by Pham and Quenez (2001) and Fleming and
Hernández-Hernández (2003). In contrast to diffusion volatility, Markov chain volatility has the
advantage that many portfolio problems have explicit solution. Moreover, a diffusion process can be
approximated arbitrarily closely by a continuous-time Markov chain (Kushner and Dupuis 1992).

Portfolio optimization problems have also been studied in financial markets with regime
switching. One of the first papers was by Zariphopoulou (1992), who maximized the utility of
consumption under proportional transaction costs in a market where stock returns are determined by a
continuous-time Markov chain, and established a viscosity property of the value function. The results
of Zariphopoulou were extended by many authors, among them Bäuerle and Rieder (2004, 2007),
Fontana et al. (2015), Framstad et al. (2004), Zhang and Yin (2004) and Stockbridge (2002). To solve the
problem of maximizing the investor’s expected utility of terminal wealth, some authors used numerical
methods (Sass and Haussmann 2004; Nagai and Runggaldier 2008; Shen et al. 2012; Fu et al. 2014).
Zhang et al. (2010) solved the portfolio selection problem without transition cost in a continuous-time
Markovian regime switching Black–Scholes–Merton market. They obtained closed-form solutions for
the optimal portfolio strategies when utility function is logarithmic or power-type. Similar results
for a Black–Scholes market with regime switching were obtained by Liu (2014), Guo et al. (2005) and
Sotomayor and Cadenillas (2013). A discrete time set up was also considered by Yin and Zhou (2004).
For the mean-variance portfolio selection problem of this type, we refer to Zhou and Yin (2003). Regime
switching was also analyzed by Tu (2010) in a Bayesian setting with model uncertainty and parameter
uncertainty. He showed that the economic cost of ignoring regime switching can exceed two percent per
year. Bae et al. (2014) constructed a program to optimize portfolios in the above mentioned framework
and proved that adding Markov modulation improves risk management. Finally, further applications
include large investor models Busch et al. (2013) and optimal productmanagement Korn et al. (2017).

In this paper, we consider a market with the prices of financial assets described by Itô–Markov
additive processes, which combine Lévy processes and regime switching models. Such a process
evolves as an Itô–Lévy process between changes of states of a Markov chain, that is, its parameters
depend on the current state of the Markov chain. In addition, a transition of the Markov chain from
state i to state j triggers an additional jump. Itô–Markov additive processes are classical in modeling
queues, insurance risks, inventories, data communication, finance, environmental problems and in
many other applications (Asmussen 2003; Prabhu 1998, chp. 7, and references therein).

The goal of this paper is to construct a general approach of building the optimal portfolio taking
into account the asset jumps and possibility of changing environment by considering asset prices
modeled by Itô–Markov additive processes. In particular, we assume that the interest rate and the
volatility of the financial assets depend on a continuous-time finite-state Markov chain. Thus, our
model takes into account two sources of risk: the jump diffusion risk and the regime switching risk.
The jump diffusion risk refers to the source of risk due to fluctuations of market prices modeled by a
Poisson random measure, while the regime switching risk refers to the source of risk due to transitions
of economic conditions.

Due to the presence of these sources of risk, our market model is incomplete. In this paper,
we show how to complete the Itô–Markov additive market model by adding Markovian jump
securities, Markovian power-jump securities and impulse regime switching securities. Using these
securities, all contingent claims can be replicated by a self-financing portfolio. The main idea
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of completing a Markovian regime switching market is inspired by Corcuera et al. (2005, 2006),
Guo (2001), Karatzas et al. (1991), Niu (2008) and Zhang et al. (2012). However, adding the possibility
of jumps of underlying markets when Markov chain changes its state produces more complex analysis
that one presented in Corcuera et al. (2005, 2006).Moreover, we give conditions for the market to be
asymptotic-arbitrage-free, namely, we find a martingale measure under which all the discounted price
processes are martingales.

In this paper, we also consider the problem of identifying the optimal strategy that maximizes the
expected value of the utility function of the wealth process at the end of some fixed period. The analysis
is conducted for the logarithmic and power utility functions. To solve the main problem of determining
the optimal portfolio we do not use dynamic programming but the direct differentiation approach.

This paper is organized as follows. In Section 2, we present the dynamics of the price process in
an Itô–Markov additive market. In Section 3, we enlarge this market by Markovian jump securities,
Markovian power-jump securities and impulse regime switching securities. In Sections 4 and 5,
we show that the enlarged market is asymptotic-arbitrage-free and complete. In Section 6, we state the
portfolio optimization problem and solve it for the power utility with risk aversion and the logarithmic
utility function. Moreover, Section 7 gives a relationship between finite and infinite markets.

2. Market Model

Let (Ω,F ,P) be a complete probability space and let T := [0, T], for fixed 0 < T < ∞, represent
the maturity time for all economic activities. On this probability space, we consider the observable and
continuous-time Markov chain J := {J(t) : t ∈ T} with a finite state space. The role of the Markov
chain is to ensure that the parameters change according to the market environment and the different
states of the Markov chain represent the different states of the economy. For simplicity, we follow the
notation of Elliott et al. (1994) and we identify the state space with the standard basis E := {e1, . . . , eN}.
Here, ei ∈ RN and the jth component of ei is the Kronecker delta δij for each i, j = 1, . . . , N. Moreover,
the Markov chain J is characterized by an intensity matrix [λij]

N
i,j=1. The element λij is the transition

intensity of the Markov chain J jumping from state ei to state ej. We assume λij > 0 for i 6= j. Note that
N
∑

j=1
λij = 0, thus λii < 0.

2.1. Risk-Free Asset

Now, we describe the dynamic of the price process of risk-free asset B as follows:

dB(t) = r(t)B(t)dt, B(0) = 1. (1)

Here, r is the interest rate of B and it is modulated by Markov chain J

r(t) := 〈r, J(t)〉 =
N

∑
i=1

ri〈ei, J(t)〉,

where r = (r1, . . . , rN)
′ ∈ RN

+ and 〈·, ·〉 is a scalar product in RN . The value ri represents the value of
the interest rate when the Markov chain is in the state space ei.

2.2. Risky Asset

We consider the market with risky asset modeled by (non-anticipative) Itô–Markov
additive processes.

A process (J, X) = {(J(t), X(t)) : t ∈ T} on the state space {e1, . . . , eN} ×R is a Markov additive
process (MAP) if (J, X) is a Markov process and the conditional distribution of (J(s + t), X(s + t)−
X(s)) for s, t ∈ T, given (J(s), X(s)), depends only on J(s) (Çinlar 1972a, 1972b). Every MAP has a
very special structure. It is usually said that X is the additive component and J is the background
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process representing the environment. Moreover, the process X evolves as a Itô–Lévy process while
J(t) = ej, that is, X(t) = X j(t) for some Itô–Lévy process X j(t) with parameters depending on ej if

J(t) = ej. In addition, transition of J from ei to ej triggers a jump of X distributed as U(i)
n .

Following Asmussen and Kella (2000), we can decompose the process X as follows:

X(t) = X(t) + X(t), (2)

where

X(t) :=
N

∑
i=1

Ψi(t)

for
Ψi(t) := ∑

n≥1
U(i)

n 1{J(Tn−)=ei , Tn≤t} (3)

and for the jump epochs {Tn} of J. Here, U(i)
n (n ≥ 1, 1 ≤ i ≤ N) are independent random variables,

which are also independent of X such that, for every fixed i, the random variables U(i)
n are identically

distributed. Note that we can express the process Ψi as follows:

Ψi(t) =
∫ t

0

∫
R

x Πi
U(ds, dx)

for the point measure

Πi
U([0, t], dx) := ∑

n≥1
1
{U(i)

n ∈dx}
1{J(Tn)=ei , Tn≤t}, i = 1, . . . , N. (4)

Moreover, we define the compensated point measure Π̄i
U(dt, dx) := Πi

U(dt, dx)− λi(t)ηi(dx)dt

for λj(t) := ∑
i 6=j

1{J(t−)=ei}λij and ηi(dx) = P(U(i)
n ∈ dx).

Remark 1. One can consider jumps U(ij) with distribution depending also on the state ej the Markov chain is
jumping to by extending the state space to the pairs (ei, ej) (see Gautam et al. (1999, Thm. 5) for details).

The first component in the definition in Equation (2) is an Itô–Lévy process and it has the following
decomposition (Øksendal and Sulem 2004, p. 5):

X(t) := X(0) +
∫ t

0
µ0(s)ds +

∫ t

0
σ0(s)dW(s) +

∫ t

0

∫
R

γ(s−, x)Π̄(ds, dx), (5)

where W denotes the standard Brownian motion independent of J and Π̄(dt, dx) := Π(dt, dx) −
ν(dx)dt is the compensated Poisson random measure, which is independent of J and W. Furthermore,
we define

µ0(t) := 〈µ0, J(t)〉 =
N

∑
i=1

µi
0〈ei, J(t)〉, (6)

σ0(t) := 〈σ0, J(t)〉 =
N

∑
i=1

σi
0〈ei, J(t)〉, (7)

γ(t, x) := 〈γ(x), J(t)〉 =
N

∑
i=1

γi(x)〈ei, J(t)〉 (8)

for some vectors µ0 := (µ1
0, . . . , µN

0 )′ ∈ RN , σ0 := (σ1
0 , . . . , σN

0 )′ ∈ RN
+ with σ

j
0 > 0 and the

vector-valued measurable function γ(x) :=
(
γ1(x), . . . , γN(x)

)
. The measure ν is the so-called

jump-measure identifying the distribution of the sizes of the jumps of the Poisson measure Π.
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The components X and X in Equation (2) are conditionally, on the state of the Markov chain
J, independent.

Additionally, we suppose that the Lévy measure satisfies, for some ε > 0 and $ > 0,∫
(−ε,ε)c

exp
(
$|γ(s−, x)|

)
ν(dx) < ∞,

∫
(−ε,ε)c

exp($x)P
(
U(i) ∈ dx

)
< ∞, (9)

for i = 1, . . . , N. This implies that∫
R
|γ(s−, x)|kν(dx) < ∞, E

(
U(i))k

< ∞, i = 1, . . . , N, k ≥ 2,

and that the characteristic function E[exp(kiX)] is analytic in a neighborhood of 0. Moreover, X has
moments of all orders and the polynomials are dense in L2(R, dϕ(t, x)), where ϕ(t, x) := P

(
X(t) ≤ x

)
.

Itô–Markov additive processes are a natural generalization of Itô–Lévy processes and thus of Lévy
processes. Moreover, the structure in Equation (2) explains the used name and can be seen as
Markov-modulated Itô–Lévy process. Indeed, if γ(s, x) = x, then X is a Markov additive process.
If additionally N = 1, then X is a Lévy process. If U(i) ≡ 0 and N > 1 then X is a Markov modulated
Lévy process (Pacheco et al. 2009). If there are no jumps, that is, Π̄(ds, dx) = 0, we have a Markov
modulated Brownian motion.

We assume the evolution of the price process of the risky asset S0 is governed by the Itô–Markov
additive process as follows:dS0(t) = S0(t−)

[
µ0(t)dt + σ0(t)dW(t) +

∫
R γ(t−, x)Π̄(dt, dx) +

N
∑

i=1

∫
R xΠ̄i

U(dt, dx)
]

,

S0(0) = s0 > 0.
(10)

To ensure that S0(t) is non-negative, we additionally assume that

∆
∫
R

γ(t−, x)Π̄(dt, dx) > −1, ∆
∫
R

xΠ̄i
U(dt, dx) > −1, i = 1, . . . N, (11)

where ∆Zt = Zt−Zt− is a jump process related with a processes Z. The last assumption is equivalent to

∆Ψi(t) > −1

and it is satisfied when all Ui (i = 1, . . . , N) have support included in (−1,+∞). We interpret the
coefficient µ0 defined in Equation (6) as the appreciation rate and σ0 defined in Equation (7) as the
volatility of the risky asset for each i = 1, . . . , N. Similarly, µi

0 and σi
0 represent the appreciation rate

and the volatility of the risky asset, respectively, when the Markov chain is in state ei. We assume that

µi
0 > ri, i = 1, . . . , N.

Otherwise, stocks would be just a bad investment.

3. Enlarging the Itô–Markov Additive Market

Now, we enlarge the primary market by some financial assets: Markovian jump securities,
Markovian power-jump securities and impulse regime switching securities in order to complete
the market.

From now, we work with the following filtration on (Ω,F ,P):

Ft := Gt ∨N ,
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where N are the P-null sets of F and

Gt := σ{J(s), W(s), Γ(s), Π1
U([0, s], dx), . . . , ΠN

U ([0, s], dx); s ≤ t}

for

Γ(t) :=
∫ t

0

∫
R

γ(s−, x)Π(ds, dx).

Note that the filtration {Ft}t≥0 is right-continuous (Karatzas and Shreve 1998, Prop. 7.7 and also
Protter 2005, Thm. 31). By the same arguments as in the proof of Thm. 3.3. of Liao (2004), the filtration
{Gt}t≥0 can be represented as

σ{J(s), X(s), Π1
U([0, s], dx), . . . , ΠN

U ([0, s], dx); s ≤ t}.

3.1. Markovian Jump Securities

Let Tn (n = 1, 2, . . .) denote the jump epochs of the chain J, where 0 < T1 < T2 < . . . We observe
that the Markov chain J can be represented in terms of a marked point process Φj defined by

Φj(t) := Φ([0, t]× ej) = ∑
n≥1

1{J(Tn)=ej , Tn≤t}, j = 1, . . . , N.

Note that the process Φj describes the number of jumps into state ej up to time t. Let φj be the
dual predictable projection of Φj (sometimes called the compensator). That is, the process

Φj(t) := Φj(t)− φj(t), j = 1, . . . , N, (12)

is an {Ft}-martingale and it is called the jth Markovian jump martingale. Note that φj is unique and

φj(t) :=
∫ t

0
λj(s)ds,

for
λj(t) := ∑

i 6=j
1{J(t−)=ei}λij; (13)

see Zhang et al. (2012, p. 290).
Now, we consider geometric Markovian jump securities Sj (for j = 1, . . . , N) with evolution of

prices described by marked point local martingales as follows:dSj(t) = Sj(t−)
[
µj(t)dt + σj(t−)dΦj(t)

]
,

Sj(0) > 0,
(14)

where the appreciation rate µj and the volatility σj are given by

µj(t) := 〈µj, J(t)〉 =
N

∑
i=1

µi
j〈ei, J(t)〉,

σj(t) := 〈σ j, J(t)〉 =
N

∑
i=1

σi
j 〈ei, J(t)〉

with µj := (µ1
j , . . . , µN

j )
′ ∈ RN and σ j := (σ1

j , . . . , σN
j )′ ∈ RN

+ .
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3.2. Markovian Power-Jump Securities

Following Corcuera et al. (2005), we introduce the power-jump processes

X(k)(t) := ∑
0<s≤t

(∆X(s))k, k ≥ 2,

where ∆X(s) = X(s)− X(s−). We set X(1)(t) = X(t). The process X(k) is also an Itô–Lévy process
with the same jump times as the original process X but with their sizes being the kth powers of the
jump sizes of X. From Protter (2005, p. 29), we have

E
[
X(k)(t)

∣∣Jt
]
= E

(
∑

0<s≤t
(∆X(s))k∣∣Jt

)
=
∫ t

0

∫
R

γk(s−, x)ν(dx)ds < ∞,P− a.e. k ≥ 2,

for Jt := σ{J(s) : s ≤ t}. Hence, the processes

X(k)
(t) := X(k)(t)−

∫ t

0

∫
R

γk(s−, x)ν(dx)ds, k ≥ 2,

are {Ft}-martingales (called Teugels martingales of order k; see Schoutens (1999) for details).
We additionally enlarge the market with a series of Markovian kth-power-jump assets

S(k) (for k ≥ 2). The price process of S(k) is described by the stochastic differential equationdS(k)(t) = S(k)(t−)
[
µ(k)(t)dt + σ(k)(t−)dX(k)

(t)
]
,

S(k)(0) > 0,
(15)

where the coefficients are determined by the Markov chain J, namely:

µ(k)(t) := 〈µ(k), J(t)〉 =
N

∑
j=1

µ
(k)
j 〈ej, J(t)〉 and σ(k)(t) := 〈σ(k), J(t)〉 =

N

∑
j=1

σ
(k)
j 〈ej, J(t)〉

for µ(k) := (µ
(k)
1 , . . . , µ

(k)
N )′ ∈ RN and σ(k) := (σ

(k)
1 , . . . , σ

(k)
N )′ ∈ RN

+ . The positivity of these asset prices
follow from assumption in Equation (11).

3.3. Impulse Regime Switching Securities

We will also need power martingales related to the second component of X given in Equation (2),
namely to X or to Ψi, defined in Equation (3). For l ≥ 1 and i = 1, . . . , N we define

Ψ(l)
i (t) := ∑

n≥1

(
U(i)

n

)l
1{J(Tn)=ei , Tn≤t} =

∫ t

0

∫
R

xl Πi
U(ds, dx)

for Πi
U given by Equation (4). The compensated version of Ψ(l)

i is called an impulse regime switching
martingale if

Ψ(l)
i (t) := Ψ(l)

i (t)−E
(
U(i)

n
)l

φi(t) =
∫ t

0

∫
R

xl Π̄i
U(ds, dx),

where Π̄i
U(dt, dx) = Πi

U(dt, dx)−λi(t)ηi(dx)dt for λi defined in Equation (13) and ηi(dx) = P(U(i)
n ∈ dx).

We characterize the evolution of impulse regime switching securities S(l)
i as follows:dS(l)

i (t) = S(l)
i (t−)

[
µ
(l)
i (t)dt + σ

(l)
i (t−)dΨ(l)

i (t)
]
,

S(l)
i (0) > 0,

(16)
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where the coefficients are determined by the Markov chain J, namely:

µ
(l)
i (t) := 〈µ(l)

i , J(t)〉 =
N

∑
j=1

µ
(l)
i,j 〈ej, J(t)〉; σ

(l)
i (t) := 〈σ(l)

i , J(t)〉 =
N

∑
j=1

σ
(l)
i,j 〈ej, J(t)〉

for µ
(l)
i := (µ

(l)
i,1 , . . . , µ

(l)
i,N)
′ ∈ RN and σ

(l)
i := (σ

(l)
i,1 , . . . , σ

(l)
i,N)
′ ∈ RN

+ (i = 1, . . . , N and l ≥ 1).
The positivity of these asset prices follow from assumption in Equation (11).

Combining Equations (1), (10), (14)–(16), we get an enlarged Itô–Markov additive market:

dB(t) = r(t)B(t)dt,

dS0(t) = S0(t−)
[

µ0(t)dt + σ0(t)dW(t) +
∫
R γ(t−, x)Π̄(dt, dx) +

N
∑

i=1

∫
R xΠ̄i

U(dt, dx)
]

,

dSj(t) = Sj(t−)
[
µj(t)dt + σj(t−)dΦj(t)

]
,

dS(k)(t) = S(k)(t−)
[
µ(k)(t)dt + σ(k)(t−)dX(k)

(t)
]
,

dS(l)
i (t) = S(l)

i (t−)
[
µ
(l)
i (t)dt + σ

(l)
i (t−)dΨ(l)

i (t)
]
,

(17)

for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1. Note that this enlarged market has infinitely many securities.
In Section 5, we prove that under a new martingale measure this market is complete. Note that µj, µ(k),

µ
(l)
i , σj, σ(k) and σ

(l)
i are artificial parameters and can be changed later.

Following Corcuera et al. (2005), the use of power-jump assets of order two can be motivated
by a quadratic variation process (Barndorff-Nielsen and Shephard 2003, 2004) and so-called
realized variance. Contracts on realized variance are traded regularly on OTC markets. Typically,
a 3rd-power-jump asset measures a kind of asymmetry (“skewness”) and a 4th-power-jump process
measures extremal movements (“kurtosis”). This type of contracts could be also traded. Moreover,
one can construct an insurance contracts against a crash based on 4th-power-jump (or ith-power-jump,
i > 4) assets. Power-jumps processes appear in other financial-insurance contracts that hedge Lévy
jumps as well, e.g., in COS and CDS contracts.

4. Martingale Measure and Asymptotic Arbitrage

Considering a financial market containing an infinite number of assets, Kabanov and
Kramkov (1994) introduced the notion of large financial market. This type of market is described
by a sequence of market models with a finite number of securities each, also called small markets.
Kabanov and Kramkov (1994) introduced an extension of the classical approach to arbitrage theory,
namely arbitrage in a large financial market, called asymptotic arbitrage. A deep study of asymptotic
arbitrage was carried out by Kabanov and Kramkov (1998) and Björk and Näslund (1998).

In this section we identify a martingale measure in our Itô–Markov additive market and prove
that this market model is asymptotic-arbitrage-free.

Let us start with the definition of asymptotic arbitrage. Following (Björk and Näslund 1998, Def. 6.1),
we say that there is an asymptotic arbitrage opportunity if we have a sequence of strategies such that,
for some real number c > 0, the value process Vn on a finite market satisfies:

• Vn(t) ≥ −c for each 0 < t ≤ T and for each n ∈ N;
• Vn(0) = 0 for each n ∈ N;
• lim inf

n→∞
Vn(T) ≥ 0, P-a.s; and

• P
(

lim inf
n→∞

Vn(T) > 0
)
> 0.

Proposition 1 (Björk and Näslund 1998, Prop. 6.1). If there exists a martingale measure Q equivalent to P,
then the market is asymptotic-arbitrage-free.
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In this paper, we formulate the sufficient condition for absence of asymptotic arbitrage in a form of
the existence of a martingale measure. Equivalent conditions for the existence of a so-called separated
martingale measure can be found in Cuchiero et al. (2016) who introduced No Asymptotic Free Lunch
with Vanishing Risk (NALFVR) condition (see also Kreps (1981)).

Now, we find a measure Q under which the discounted price processes are martingales.
Let L2(W) be the set of all predictable, {Ft}-adapted processes ξ such that E

∫ T
0 ξ2(s)ds < ∞.

Similarly, we define L1(φj), that is, ξ ∈ L1(φj) iff ξ is predictable, {Ft}-adapted and satisfies

E
∫ T

0 |ξ(s)|λjds < ∞.

Proposition 2 (Boel and Kohlmann 1980, p. 515). Let ψ0 ∈ L2(W), ψj ∈ L1(φj) for all j = 1, . . . , N and

ψj(s) > −1. (18)

Then,

`(t) := exp

[ ∫ t

0
ψ0(s)dW(s)− 1

2

∫ t

0
ψ2

0(s)ds−
N

∑
j=1

∫ t

0
ψj(s)φj(ds)

]
(19)

×
N

∏
j=1

∏
J(t−) 6=J(t)

J(t)=ej

(1 + ψj(t))

is a non-negative local martingale. If additionally E`(t) = 1, then it is a true martingale.

From now on, we assume that
E`(t) = 1. (20)

Let Q be the probability measure defined by the Radon–Nikodym derivative

`(t) =
dQ
dP


Ft

.

Then, `, given in Equation (19), is the density process for the new martingale measureQ. By adding
a superscript Q, we denote processes observed under this new measure. By a generalized version of
Girsanov’s theorem for jump-diffusion processes, we have the following theorem:

Theorem 1 (Boel and Kohlmann 1980, p. 517). The process X given in Equation (5) under the new
martingale measure Q has the form

XQ
(t) =

∫ t

0
σ0(s)dWQ(s) +

∫ t

0

∫
R

γ(s−, x)Π̄(ds, dx),

where

WQ(t) = W(t)−
∫ t

0
ψ0(s)ds

is a standard Q-Brownian motion.
Moreover, for j = 1, . . . , N, the process Φj given in Equation (12) under the measure Q is a martingale

and takes the form

ΦQ
j (t) = Φj(t)−

∫ t

0

(
1 + ψj(s)

)
φj(ds),

that is, the unique predictable projection of Φj under Q is given by

φQ
j (t) =

∫ t

0

(
1 + ψj(s)

)
φj(ds).
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Similarly, for j = 1, . . . , N and l ≥ 1, the process Ψ(l)
j given in Equation (12) under the measure Q is a

martingale and takes the form

Ψ(l),Q
j (t) = Ψ(l)

j (t)−E
(
U(i)

n
)l

φQ
j (t).

Remark 2. If ψ0 and ψj (j = 1, . . . , N) are bounded, then E`(t) = 1 (see the Novikov condition in Karatzas
and Shreve (1998, Cor. 3.5.13, p. 199) and Resnick (2007, Thm. 5.1, p. 135)).

Note that X(k) for k ≥ 2 do not change their laws under the new measure Q. Moreover, under Q,
the price processes are represented as follows:

dB(t) = r(t)B(t)dt,

dS0(t) = S0(t−)
[(

µ0(t) + σ0(t)ψ0(t)
)

dt + σ0(t)dWQ(t) +
∫
R

γ(t−, x)Π̄(dt, dx) +
N
∑

i=1

∫
R

xΠ̄i
U(dt, dx)

]
,

dSj(t) = Sj(t−)
[(

µj(t) + σj(t)λj(t)ψj(t)
)

dt + σj(t−)dΦQ
j (t)

]
,

dS(k)(t) = S(k)(t−)
[
µ(k)(t)dt + σ(k)(t−)dX(k)

(t)
]
,

dS(l)
i (t) = S(l)

i (t−)
[
µ
(l)
i (t)dt + σ

(l)
i (t−)dΨ(l),Q

i (t)
]
,

for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1. Note that in the above equation we can take r(t) = r(t−),
µj(t) = µj(t−) and σj(t) = σj(t−) (for j = 0, 1, . . . , N). In fact, by stochastic integration by parts,
the discounted price processes are governed by



dS̃0(t) = S̃0(t−)
[(

µ0(t−) + σ0(t−)ψ0(t)− r(t−)
)

dt + σ0(t)dWQ(t) +
∫
R

γ(t−, x)Π̄(dt, dx)

+
N
∑

i=1

∫
R

xΠ̄i
U(dt, dx)

]
,

dS̃j(t) = S̃j(t−)
[(

µj(t−) + σj(t−)λj(t)ψj(t)− r(t−)
)

dt + σj(t−)dΦQ
j (t)

]
,

dS̃(k)(t) = S̃(k)(t−)
[(

µ(k)(t)− r(t)
)

dt + σ(k)(t−)dX(k)
(t)
]
,

dS̃(l)
i (t) = S̃(l)

i (t−)
[(

µ
(l)
i (t)− r(t)

)
dt + σ

(l)
i (t−)dΨ(l),Q

i (t)
]
,

(21)

where S̃0(t) := B−1(t)S0(t), S̃j(t) := B−1(t)Sj(t), S̃(k)(t) := B−1(t)S(k)(t) and S̃(l)
i (t) := B−1(t)S(l)

i (t).

Hence, we require S̃0, S̃j, S̃(k) and S̃(l)
i to be local martingales (for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1).

A necessary and sufficient condition for this to hold is given by the following equations:

µ0(t−) + σ0(t−)ψ0(t)− r(t−) = 0,

µj(t−) + σj(t−)λj(t)ψj(t)− r(t−) = 0,

µ(k)(t)− r(t) = 0,

µ
(l)
i (t)− r(t) = 0,

ψj(t) > −1,

(22)

for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1.
Note that λj(t) = 0 if J(t−) = ej. Thus, in this case, if µ

j
j 6= rj, the martingale condition would

never be satisfied. Therefore, the discounted price processes of all securities in the enlarged market
would not be local martingales under Q. Thus, we have to assume that µ

j
j = rj for all j = 1, . . . , N
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to make the market asymptotic-arbitrage-free. From Equation (22), when λj(t) 6= 0 (i.e., J(t−) 6= ej),
the processes ψ0 and ψj are determined by

ψ0(t) =
r(t−)− µ0(t−)

σ0(t−)
,

ψj(t) =
r(t−)− µj(t−)

σj(t−)λj(t)
, j = 1, . . . , N,

(23)

where we assume that
r(t−) > µj(t−)− σj(t−)λj(t) (24)

to satisfy the condition in Equation (18).
Note that ψ0 and ψj (j = 1, . . . , N) are bounded. Hence, by Remark 2, the density process ` is

a true martingale. Note that ψj (j = 1, . . . , N) satisfies the assumptions of Proposition 2. We can
only determine ψj when J(t−) 6= ej for j = 1, . . . , N but this is sufficient to determine the equivalent
martingale measure Q. Indeed, if J(t−) = ej for j = 1, . . . , N, then φj(t) = 0 and ψj has no influence
on the value of the right side of Equation (19). The above analysis yields the following theorem.

Theorem 2. Assume that µ
j
j = rj for all j = 1, . . . , N and ψ0 and ψj are given by Equation (23). Then,

the discounted price processes of the securities in the enlarged market (Equation (21)) are local martingales under
Q and this market is asymptotic-arbitrage-free.

From now on, we assume that µ
j
j = rj for all j = 1, . . . , N.

5. Asymptotic Completeness of the Enlarged Market

Now, we analyze asymptotic completeness of the enlarged Itô–Markov additive market. A market
is said to be complete if each claim can be replicated by a strategy, that is, the claim can be represented
as a stochastic integral with respect to the asset prices. We take as class of contingent claims the set
L2(Ω,F ,Q) of square integrable random variables under the equivalent martingale measure; then, a
self-financing strategy is represented as an integrable process and the value of a self-financing portfolio
is represented as the stochastic integral of the strategy with respect to the assets. In the case of market
models with an infinite number of assets, we define completeness in terms of approximate replication
of claims.

For finite market asset, completeness is equivalent to uniqueness of the equivalent martingale
measure. In the case of large markets, this property does not occur. Artzner and Heath (1995)
constructed a financial market with countably many securities for which there are two equivalent
martingale measures under which the market is approximately complete. In the context of a large
financial market, Bättig (1999) and Bättig and Jarrow (1999) suggested a definition of completeness that
uses neither the notion of arbitrage-free nor equivalent martingale measures. Bättig (1999) constructed
an example showing that the existence of an equivalent martingale measure excludes the possibility
of replicating a claim, hence proving that the notions of arbitrage-free and completeness could be
unrelated to each other in daily practice.
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Under Q, the price processes of the securities in the arbitrage-free market have the
following representations:

dB(t) = r(t)B(t)dt,

dS0(t) = S0(t−)
[

r(t)dt + σ0(t)dWQ(t) +
∫
R γ(t−, x)Π̄(dt, dx) +

N
∑

i=1

∫
R xΠ̄i

U(dt, dx)
]

,

dSj(t) = Sj(t−)
[
r(t)dt + σj(t−)dΦQ

j (t)
]
,

dS(k)(t) = S(k)(t−)
[
r(t)dt + σ(k)(t−)dX(k)

(t)
]
,

dS(l)
i (t) = S(l)

i (t−)
[
r(t)dt + σ

(l)
i (t−)dΨ(l),Q

i (t)
]
,

(25)

for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1.
We show that the enlarged market (Equation (25)) is asymptotically complete in the sense that for

every square-integrable contingent claim A (i.e., a non-negative square-integrable random variable
in L2(Ω,F ,Q)) we can set up a sequence of self-financing portfolios whose final values converge in
L2(Ω,F ,Q) to A.

These portfolios consist of a finite number of risk-free asset, risky asset, kth-power-jump assets,
jth geometric Markovian jump security and impulse regime switching securities. We use the following
martingale representation property.

Theorem 3 (Palmowski et al. 2018). Any square-integrable, {Ft}-adapted Q-martingale M can be
represented as follows:

M(t) = M(0) +
∫ t

0
h0(s)dXQ(s) +

N

∑
j=1

∫ t

0
hj(s)dΦQ

j (s) +
∞

∑
k=2

∫ t

0
h(k)(s)dX(k)

(s) (26)

+
N

∑
i=1

∞

∑
l=1

∫ t

0
h(l)i (s)dΨ(l),Q

i (s),

where h0, hj, h(k) and h(l)i are predictable processes (for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1).

Remark 3. The right-hand side of Equation (26) is understood as follows. We take finite sums

K

∑
k=2

∫ t

0
h(k)(s)dX(k)

(s) and
K

∑
l=1

∫ t

0
h(l)i (s)dΨ(l),Q

i (s)

in L2(Ω,F ,Q). Since L2(Ω,F ,Q) is a Hilbert space, the right-hand side of Equation (26) is understood as the
limit of the above expressions in L2(Ω,F ,Q) as K → ∞.

We are ready to prove the main result of this section.

Theorem 4. The market (Equation (25)) under Q is asymptotically complete.

Proof. We consider a square-integrable contingent claim A with maturity T. Let

M(t) := EQ

[
exp

(
−
∫ T

0
r(s)ds

)
A
Ft

]



Risks 2019, 7, 34 13 of 32

and

MK(t) := MK(0) +
∫ t

0
h0(s)dXQ(s) +

N

∑
j=1

∫ t

0
hj(s)dΦQ

j (s) +
K

∑
k=2

∫ t

0
h(k)(s)dX(k)

(s) (27)

+
N

∑
i=1

K

∑
l=1

∫ t

0
h(l)i (s)dΨ(l),Q

i (s).

By the martingale representation property given in Theorem 3, we see that

lim
K→∞

MK(t) = M(t) (28)

in L2(Ω,F ,Q). For K ≥ 2, we introduce the sequence of portfolios

θK(t) :=
(

αK(t), β0(t), β1(t), . . . , βN(t), β(2)(t), . . . , β(K)(t), β
(1)
1 (t), . . . , β

(K)
N (t)

)
.

We assume that all processes in θK are predictable and

EQ

∫ t

0

(
αK(s)

)2ds < ∞, EQ

∫ t

0

(
β0(s)

)2d〈S0〉(s) < ∞, EQ

∫ t

0

(
β j(s)

)2d〈Sj〉(s) < ∞, (29)

EQ

∫ t

0

(
β(k)(s)

)2d〈S(k)〉(s) < ∞, EQ

∫ t

0

(
β
(l)
i (s)

)2d〈S(l)
i 〉(s) < ∞. (30)

Here, αK corresponds to the number of risk-free assets, β0 is the number of stocks, β j (j = 1, . . . , N)

is the number of units of the jth geometric Markovian jump security, β(k) (k = 2, . . . , K) is the number
of assets S(k), and β

(l)
i (i = 1, . . . , N, l = 1, . . . , K) is the number of assets S(l)

i .
We construct the portfolio θK as follows:

αK(t) := MK(t−)− β0(t)B−1(t)S0(t−)−
N

∑
j=1

β j(t)B−1(t)Sj(t−)

−
K

∑
k=2

β(k)(t)B−1(t)S(k)(t−)−
N

∑
i=1

K

∑
l=1

β
(l)
i (t)B−1(t)S(l)

i (t−),

β0(t) := h0(t)B(t)S−1
0 (t−),

β j(t) :=
hj(t)

σj(t−)
B(t)S−1

j (t−), (31)

β(k)(t) :=
h(k)(t)

σ(k)(t−)
B(t)(S(k))−1(t−),

β
(l)
i (t) :=

h(l)i (t)

σ
(l)
i (t−)

B(t)(S(l)
i )−1(t−).

Observe that for this choice of portfolio, the moment conditions in Equations (29) and (30) are
satisfied, hence all stochastic integrals for this portfolio are well-defined. For example, we prove that

EQ

∫ t

0

(
β0(s)

)2d〈S0〉(s) < ∞. (32)

The proofs of other conditions are similar. To show (32) note that

d〈S0〉(s) = S2
0(t−)

[
σ2

0 (t)dt +
∫
R

γ2(t−, x)Π̄(dt, dx) +
N

∑
i=1

∫
R

x2Π̄i
U(dt, dx)

]
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and this condition is equivalent to requirement that∫ ∞

0
h2

0(t)e
2r(t)σ2

0 (t)dt < ∞,
∫ ∞

0
h2

0(t)e
2r(t)λi(t)

∫
R

γ2(t−, x)ν(dx)dt < ∞,

∫
R

x2ηi(dx)
∫ ∞

0
h2

0(t)e
2r(t)λi(t)dt < ∞.

The above conditions follow from Theorem 3 because
∫ ∞

0 h2
0(t)dt < ∞. Note that,

∆MK(t) = h0(t)∆XQ(t) +
N

∑
j=1

hj(t)∆ΦQ
j (t) +

K

∑
k=2

h(k)(t)∆X(k)
(t) +

N

∑
i=1

K

∑
l=1

h(l)i (t)∆Ψ(l),Q
i (t),

∆S0(t) = S0(t−)∆XQ(t), (33)

∆Sj(t) = Sj(t−)σj(t−)∆ΦQ
j (t),

∆S(k)(t) = S(k)(t−)σ(k)(t−)∆X(k)
(t), ∆S(l)

i (t) = S(l)
i (t−)σ(l)

i (t−)∆Ψ(l),Q
i (t).

We claim that {θK, K ≥ 2} is the sequence of self-financing portfolios which replicates A. Indeed,
by Equations (31) and (33), the value VK of the portfolio θK is expressed by

VK(t) = αK(t)B(t) + β0(t)S0(t) +
N

∑
j=1

β j(t)Sj(t) +
K

∑
k=2

β(k)(t)S(k)(t) +
N

∑
i=1

K

∑
l=1

β
(l)
i (t)S(l)

i (t)

= MK(t)B(t)− ∆MK(t)B(t) + β0(t)∆S0(t) +
N

∑
j=1

β j(t)∆Sj(t) +
K

∑
k=2

β(k)(t)∆S(k)(t)

+
N

∑
i=1

K

∑
l=1

β
(l)
i (t)∆S(l)

i (t) = MK(t)B(t).

Thus, the sequence of portfolios {θK, K ≥ 2} replicates the claim A. We denote

GK(u) :=
∫ u

0
αK(t)dB(t) +

∫ u

0
β0(t)dS0(t) +

N

∑
j=1

∫ u

0
β j(t)dSj(t) (34)

+
K

∑
k=2

∫ u

0
β(k)(t)dS(k)(t) +

N

∑
i=1

K

∑
l=1

∫ u

0
β
(l)
i (t)dS(l)

i (t)

the gain process, i.e., the gains or losses obtained up to time u by following θK. We show

GK(u) + MK(0) = MK(u)B(u), (35)

which implies that the portfolio is self-financing. Note that, from Equation (28), we have

lim
K→∞

GK(u) = lim
K→∞

MK(u)B(u)− lim
K→∞

MK(0) = M(u)B(u)−M(0).
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Thus, the portfolios with infinitely many assets are self-financing as well. Inserting Equation (31)
into Equation (34), we derive

GK(u) =
∫ u

0
MK(t−)dB(t)−

∫ u

0
h0(t)dB(t)−

K

∑
k=2

∫ u

0

h(k)(t)
σ(k)(t−)

dB(t)

−
N

∑
j=1

∫ u

0

hj(t)
σj(t−)

dB(t)−
N

∑
i=1

K

∑
l=1

∫ u

0

h(l)i (t)

σ
(l)
i (t−)

dB(t) +
∫ u

0
h0(t)B(t)S−1

0 (t−)dS0(t) (36)

+
N

∑
j=1

∫ u

0

hj(t)
σj(t−)

B(t)S−1
j (t−)dSj(t) +

K

∑
k=2

∫ u

0

h(k)(t)
σ(k)(t−)

B(t)(S(k))−1(t−)dS(k)(t)

+
N

∑
i=1

K

∑
l=1

∫ u

0

h(l)i (t)

σ
(l)
i (t−)

B(t)(S(l)
i )−1(t−)dS(l)

i (t).

From the martingale representation property given in Theorem 3, the first component of the above
sum has the form

∫ u

0
MK(t−)dB(t) =

∫ u

0

(
MK(0) +

∫ t−

0
h0(s)dXQ(s) +

N

∑
j=1

∫ t−

0
hj(s)dΦQ

j (s)

+
K

∑
k=2

∫ t−

0
h(k)(s)dX(k)

(s) +
N

∑
i=1

K

∑
l=1

∫ t−

0
h(l)i (s)dΨ(l)Q

i (s)
)

dB(t)

= MK(0)(B(u)− B(0)) +
∫ u

0
h0(s)(B(u)− B(s))dXQ(s) +

N

∑
j=1

∫ u

0
hj(s)(B(u)− B(s))dΦQ

j (s)

+
K

∑
k=2

∫ u

0
h(k)(s)(B(u)− B(s))dX(k)

(s) +
N

∑
i=1

K

∑
l=1

∫ u

0
h(l)i (s)(B(u)− B(s))dΨ(l),Q

i (s).

Now, using Equation (27) and fact that B(0) = 1, we can rewrite the above as follows:

∫ u

0
MK(t−)dB(t) = MK(0)(B(u)− B(0)) + B(u)(MK(u)−MK(0))−

∫ u

0
h0(s)B(s)dXQ

(s)

−
N

∑
j=1

∫ u

0
hj(s)B(s)dΦQ

j (s)−
K

∑
k=2

∫ u

0
h(k)(s)B(s)dX(k)

(s)−
N

∑
i=1

K

∑
l=1

∫ u

0
h(l)i (s)B(s)dΨ(l),Q

i (s)

= MK(u)B(u)−MK(0)−
∫ u

0
h0(s)B(s)dXQ(s)−

N

∑
j=1

∫ u

0
hj(s)B(s)dΦQ

j (s)

−
K

∑
k=2

∫ u

0
h(k)(s)B(s)dX(k)

(s)−
N

∑
i=1

K

∑
l=1

∫ u

0
h(l)i (s)B(s)dΨ(l),Q

i (s).
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Inserting the above equality into Equation (36), the gain process can be written as:

GK(u) = MK(u)B(u)−MK(0)−
∫ u

0
h0(t)B(t)dXQ(t)−

N

∑
j=1

∫ u

0
hj(t)B(t)dΦQ

j (t)

−
K

∑
k=2

∫ u

0
h(k)(t)B(t)dX(k)

(t)−
N

∑
i=1

K

∑
l=1

∫ u

0
h(l)i (t)B(t)dΨ(l),Q

i (t)−
∫ u

0
h0(t)dB(t)

−
K

∑
k=2

∫ u

0

h(k)(t)
σ(k)(t−)

dB(t)−
N

∑
j=1

∫ u

0

hj(t)
σj(t−)

dB(t)−
N

∑
i=1

K

∑
l=1

∫ u

0

h(l)i (t)

σ
(l)
i (t−)

dB(t)

+
∫ u

0
h0(t)B(t)S−1

0 (t−)dS0(t) +
N

∑
j=1

∫ u

0

hj(t)
σj(t−)

B(t)S−1
j (t−)dSj(t)

+
K

∑
k=2

∫ u

0

h(k)(t)
σ(k)(t−)

B(t)(S(k))−1(t−)dS(k)(t) +
N

∑
i=1

K

∑
l=1

∫ u

0

h(l)i (t)

σ
(l)
i (t−)

B(t)(S(l)
i )−1(t−)dS(l)

i (t)

= MK(u)B(u)−M(0).

Thus, Equation (35) holds true and the portfolio θK is self-financing.

6. Optimal Portfolio Selection in an Itô–Markov Additive Market

In this section we solve the optimization problem related to identifying the optimal strategy that
maximizes the expected value of the utility function of the wealth process at the end of some fixed
period. The analysis is conducted for the logarithmic and power utility functions.

Recall that our Itô–Markov additive market is given by Equation (17). Equations (15) and (16) can
be rewritten as follows:

dS(k)(t) = S(k)(t−)
[

µ(k)(t)dt +
∫
R

σ(k)(t−)γk(t−, x)Π̄(dt, dx)
]

,

dS(l)
i (t) = S(l)

i (t−)
[

µ
(l)
i (t)dt +

∫
R

xlσ
(l)
i (t−)Π̄i

U(dt, dx)
]

for i = 1, . . . , N, k ≥ 2 and l ≥ 1. Note that we consider the price processes with respect the original
probability measure P.

We restrict ourselves to self-financing portfolio strategies. Denote by π0 the proportion of
wealth invested in stock. Let πj (j = 1, . . . , N), π(k) (k ≥ 2) and π

(l)
i (i = 1, . . . , N, l ≥ 1)

be the proportions of wealth invested in the jth geometric Markovian jump security Sj, in the

Markovian power-jump securities S(k) and in the impulse regime switching securities S(l)
i , respectively.

The balance of the investor’s wealth is invested in the risk-free asset. We denote by π(t) =

(π0(t), π1(t), . . . , πN(t), π(2)(t), . . . , π
(1)
1 (t), π

(1)
2 (t), . . .) a portfolio strategy. We do allow short selling,

but we assume that the wealth process is nonnegative at any instant (Teplá 2000).
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Let K < ∞ be the number of different assets held by the investor in his portfolio. The wealth
process RK

π for the first K assets is governed by the following stochastic differential equation
(for t ∈ [0, T]):

dRK
π(t)

RK
π(t−)

:=
(

r(t) +
N

∑
j=0

πj(t)
(
µj(t)− r(t)

)
+

K

∑
k=2

π(k)(t)
(
µ(k)(t)− r(t)

)
+

N

∑
i=1

K

∑
l=1

π
(l)
i (t)

(
µ
(l)
i (t)− r(t)

))
dt + π0(t)σ0(t−)dW(t) +

N

∑
j=1

πj(t)σj(t−)dΦj(t) (37)

+
∫
R

(
π0(t)γ(t−, x) +

K

∑
k=2

π(k)(t)σ(k)(t−)γk(t−, x)
)

Π̄(dt, dx)

+
N

∑
i=1

∫
R

(
xπ0(t) +

K

∑
l=1

xlπ
(l)
i (t)σ(l)

i (t−)
)

Π̄i
U(dt, dx).

Note that in Equation (37) we can take r(t) = r(t−), µj(t) = µj(t−) (j = 0, 1, . . . , N), µ(k)(t) =

µ(k)(t−) (k ≥ 2) and µ
(l)
i (t) = µ

(l)
i (t−) (i = 1, . . . , N, l ≥ 1).

Let A be the class of admissible portfolio strategies π such that π is predictable,

RK
π > 0,

T∫
0
|π(t)|2dt < ∞ P− a.s.,

∫
R

(
π0(t)γ(t−, x) + ∑K

k=2 π(k)(t)σ(k)(t−)γk(t−, x)
)
Π̄(dt, dx) < ∞,∫

R
∑N

i=1
(

xπ0(t) + ∑K
l=1 xlπ

(l)
i (t)σ(l)

i (t−)
)
Π̄i

U(dt, dx) < ∞ and π satisfies the following convergence:

the wealth process RK
π converges to a process Rπ in L2(Ω,F ,P), where RK

π is the solution of the SDE
in Equation (37) (see Itô’s formula in Protter (2005, Thm. 32)), that is,

RK
π(t) = RK

π(0) exp

[ ∫ t

0

(
r(s−) +

N

∑
j=0

πj(s)(µj(s−)− r(s−)) +
K

∑
k=2

π(k)(s)
(
µ(k)(s)− r(s−)

)
+

N

∑
i=1

K

∑
l=1

π
(l)
i (s)

(
µ
(l)
i (s)− r(s−)

)
− 1

2
π2

0(s)σ
2
0 (s−)

)
ds

+
∫ t

0
π0(s)σ0(s−)dW(s) +

N

∑
j=1

∫ t

0

(
log
(
1 + πj(s)σj(s−)

)
− πj(s)σj(s−)

)
λj(s)ds

+
∫ t

0

∫
R

log
(

1 + π0(s)γ(s−, x) +
K

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

Π̄(ds, dx)

+
∫ t

0

∫
R

(
log
(

1 + π0(s)γ(s−, x) +
K

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)
− π0(s)γ(s−, x)

−
K

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)ds +
N

∑
j=1

∫ t

0
log
(
1 + πj(s)σj(s−)

)
dΦj(s)

+
N

∑
i=1

∫ t

0

∫
R

log
(

1 + xπ0(s) +
K

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

Π̄i
U(ds, dx)

+
N

∑
i=1

∫ t

0

∫
R

(
log
(

1 + xπ0(s) +
K

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)
− xπ0(s)

−
K

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx)ds

]
.

In other words, for π ∈ A, we require that

lim
K→∞

RK
π(t) = Rπ(t) (38)
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in L2(Ω,F ,P).

Remark 4. Note that Equation (38) holds true if

Et,z,i
(

RK
π(t)

)2
< ∞, Et,z,i

(
Rπ(t)

)2
< ∞,

and

Et,z,i

 ∫ t

0

∞

∑
k=K+1

π(k)(s)
(
µ(k)(s)− r(s−)

)
ds
2

,

Et,z,i

 ∫ t

0

N

∑
i=1

∞

∑
l=K+1

π
(l)
i (s)

(
µ
(l)
i (s)− r(s−)

)
ds
2

,

Et,z,i

 ∫ t

0

∫
R

log
(

1 + π0(s)γ(s−, x) + ∑∞
k=2 π(k)(s)σ(k)(s−)γk(s−, x)

1 + π0(s)γ(s−, x) + ∑K
k=2 π(k)(s)σ(k)(s−)γk(s−, x)

)
Π̄(ds, dx)

2

,

Et,z,i

 ∫ t

0

∫
R

(
log
(1 + π0(s)γ(s−, x) + ∑∞

k=2 π(k)(s)σ(k)(s−)γk(s−, x)
1 + π0(s)γ(s−, x) + ∑K

k=2 π(k)(s)σ(k)(s−)γk(s−, x)

)

−
∞

∑
k=K+1

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)ds
2

,

Et,z,i

 ∫ t

0

∫
R

log
(

1 + xπ0(s) + ∑∞
l=2 π

(l)
i (s)σ(l)

i (s−)xl

1 + xπ0(s) + ∑K
l=2 π

(l)
i (s)σ(l)

i (s−)xl

)
Π̄i

U(ds, dx)
2

,

Et,z,i

 N

∑
i=1

∫ t

0

∫
R

(
log
(1 + xπ0(s) + ∑∞

l=2 π
(l)
i (s)σ(l)

i (s−)xl

1 + xπ0(s) + ∑K
l=2 π

(l)
i (s)σ(l)

i (s−)xl

)

−
∞

∑
l=K+1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx)ds
2

tend to 0 as K → ∞. Indeed, the convergence of Equation (38) follows directly from our assumptions: from the
triangle inequality and the inequality (Fechner 2008)

2| exp(a1)− exp(a2)| ≤ |a1 − a2|| exp(a1) + exp(a2)|, a1, a2 ∈ R.

Then, we get

E
Rπ(t)− RK

π(t)
2 ≤ E

 log
Rπ(t)
RK

π(t)

2(
E|Rπ(t)|2 +E|RK

π(t)|2
)
< ∞

and we can use the following equation

log
Rπ(t)
RK

π(t)
= log

Rπ(0)
RK

π(0)
+

[ ∫ t

0

( ∞

∑
k=K+1

π(k)(s)
(
µ(k)(s)− r(s−)

)
+

N

∑
i=1

∞

∑
l=K+1

π
(l)
i (s)

(
µ
(l)
i (s)− r(s−)

)
− 1

2
π2

0(s)σ
2
0 (s−)

)
ds
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+
∫ t

0

∫
R

log
(

1 + π0(s)γ(s−, x) +
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

Π̄(ds, dx)

−
∫ t

0

∫
R

log
(

1 + π0(s)γ(s−, x) +
K

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

Π̄(ds, dx)

+
∫ t

0

∫
R

(
log
(

1 + π0(s)γ(s−, x) +
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

−
∞

∑
k=K+1

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)ds

−
∫ t

0

∫
R

log
(

1 + π0(s)γ(s−, x) +
K

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)ds

+
N

∑
i=1

∫ t

0

∫
R

log
(

1 + xπ0(s) +
∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

Π̄i
U(ds, dx)

−
N

∑
i=1

∫ t

0

∫
R

log
(

1 + xπ0(s) +
K

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

Π̄i
U(ds, dx)

+
N

∑
i=1

∫ t

0

∫
R

(
log
(

1 + xπ0(s) +
∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

−
∞

∑
l=K+1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx)ds

−
N

∑
i=1

∫ t

0

∫
R

log
(

1 + xπ0(s) +
K

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx)ds

]
.

Let U denote a utility function of the investor, which is strictly increasing, strictly concave and
twice differentiable, that is, U′ > 0 and U′′ < 0.

For each (t, z) ∈ T×R+ and each i = 1, . . . , N we define

Vπ(t, z, ei) := Et,z,i
[
U(Rπ(T))

]
,

where Et,z,i is the conditional expectation given Rπ(0) = z and J(t) = ei under P.
The expectation above is understood in the limiting sense, that is, we limit the set of admissible

strategies A to the strategies π such that lim
K→∞

Et,z,i
[
U
(

RK
π(T)

)]
exists and is finite. In other words,

lim
K→∞

Et,z,i
[
U
(

RK
π(T)

)]
= Et,z,i

[
U
(

Rπ(T)
)]

< ∞. (39)

Then, the value function of the investor’s portfolio selection problem is defined by

V(t, z, ei) := sup
π∈A

Vπ(t, z, ei) = sup
π∈A

Et,z,i
[
U(Rπ(T))

]
. (40)

Lemma 1. Under the assumption in Equation (38), Equation (39) holds true.

The proof of this Lemma is given in Appendix A.
Our main goal is to identify the value function given in Equation (40). In what follows, we

consider two risk-averse utility functions, namely, the logarithmic utility and the power utility.
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6.1. Logarithmic Utility

In this subsection, we derive the optimal portfolio strategy in the case of a logarithmic utility
function of wealth, namely

U(z) = log(z).

Recall that in A we consider only the strategies for which

lim
K→∞

Et,z,i
[

log RK
π(T)

]
= Et,z,i

[
log Rπ(T)

]
< ∞. (41)

Theorem 5. Assume that there exists a solution

π?(t) := (π?
0 (t), π?

1 (t), . . . , π?
N(t), π(2)?(t), π(3)?(t), . . . , π

(1)?
1 (t), π

(1)?
2 (t), . . .)

of the following system of equations (for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1 ):

r(t−)− µ0(t−) = π?
0 (t)σ

2
0 (t−) +

N

∑
i=1

r(t−)− µ
(1)
i (t−)

σ
(1)
i (t−)

+
∫
R

γ(t−, x)
((

1 + π?
0 (t)γ(t−, x)

+
∞

∑
k=2

π(k)?(t)σ(k)(t−)γk(t−, x)
)−1
− 1
)

ν(dx),

π?
j (t) =

µj(t−)− r(t−)(
r(t−)− µj(t−)

)
σj(t−) + λj(t)σ2

j (t−)
, (42)

r(t−)− µ(k)(t−)
σ(k)(t−)

=
∫
R

γk(t−, x)
((

1 + π?
0 (t)γ(t−, x)

+
∞

∑
k=2

π(k)?(t)σ(k)(t−)γk(t−, x)
)−1
− 1
)

ν(dx),

r(t−)− µ
(l)
i (t−)

σ
(l)
i (t−)

=
∫
R

xl
((

1 + xπ?
0 (t) +

∞

∑
l=1

π
(l)?
i (t)σ(l)

i (t−)xl
)−1
− 1
)

λi(t)η(dx),

which belongs to A, that is, in particular, satisfies Equations (38) and (41). Then, the optimal portfolio
strategy for the portfolio selection problem in Equation (40) with logarithmic utility function of wealth is one of
those solutions.

Proof. The conditional expectation of the logarithm of the wealth process has the following form
(for t ∈ [0, T)):

Et,z,i
[

log Rπ(T)
]
= log Rπ(t) +Et,z,i

∫ T

t

[
r(s−) +

N

∑
j=0

πj(s)
(
µj(s−)− r(s−)

)
+

∞

∑
k=2

π(k)(s)
(
µ(k)(s)− r(s−)

)
+

N

∑
i=0

∞

∑
l=1

π
(l)
i (s)

(
µ
(l)
i (s)− r(s−)

)
− 1

2
π2

0(s)σ
2
0 (s−)

+
N

∑
j=1

(
log
(
1 + πj(s)σj(s−)

)
− πj(s)σj(s−)

)
λj(s)

+
∫
R

(
log
(

1 + π0(s)γ(s−, x) +
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

− π0(s)γ(s−, x)−
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)
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+
N

∑
i=1

∫
R

(
log
(

1 + xπ0(s) +
∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)
− xπ0(s)−

∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx)
]

ds.

Therefore, the optimal value function V can be written as

V(t, z, ei) = log(z) + sup
π∈A

hπ(t, ei),

where

hπ(t, ei) := Et,z,i

∫ T

t
F
(
π0(s), π1(s), . . . , πN(s), π(2)(s), . . . , π

(1)
1 (s), . . .

)
ds

for

F
(
π0(s), π1(s), . . . , πN(s), π(2)(s), . . . , π

(1)
1 (s), . . .

)
:= r(s−) +

N

∑
j=0

πj(s)(µj(s−)− r(s−))

+
∞

∑
k=2

π(k)(s)
(
µ(k)(s)− r(s−)

)
+

N

∑
i=0

∞

∑
l=1

π
(l)
i (s)

(
µ
(l)
i (s)− r(s−)

)
− 1

2
π2

0(s)σ
2
0 (s−)

+
N

∑
j=1

(
log
(
1 + πj(s)σj(s−)

)
− πj(s)σj(s−)

)
λj(s)

+
∫
R

(
log
(

1 + π0(s)γ(s−, x) +
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

− π0(s)γ(s−, x)−
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)

+
N

∑
i=1

∫
R

(
log
(

1 + xπ0(s) +
∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)
− xπ0(s)−

∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx).

Thus, to determine the optimal portfolio strategy, it is sufficient to maximize F. Indeed,
the maximization of the function F

(
π0(s), π1(s), . . . , πN(s), π(2)(s), . . . , π

(1)
1 (s), . . .

)
at each time point

s ∈ [0, T] maximizes the integral of F on [0, T]. By direct differentiation with respect to π0, πj, π(k), π
(l)
i

we obtain conditions (Equation (42)) that the optimal strategies have to satisfy. Observe that, from
Equation (9), the integrals

∫
R

(
log
(

1 + π0(s)γ(s−, x) +
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)
− π0(s)γ(s−, x)

−
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)

and (for i = 1, . . . , N)

∫
R

(
log
(

1 + xπ0(s) +
∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)
− xπ0(s)−

∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx)

are well-defined. Hence, by the Leibniz integral rule, we can interchange the above mentioned
derivatives and the integrals.

Remark 5. We have not been able to prove that a solution of the system in Equation (42) exists and is unique.
On a complete Itô–Markov additive market, we have an infinite number of assets, so the optimal portfolio strategy
π? is an infinite dimensional vector. The value function in Equation (40) is understood in the limiting sense and
therefore numerically it can be approximated by the finite strategy counterpart. In the case of finite dimensional
approximations by Kramkov and Schachermayer (1999, Thm. 2.2), the optimal wealth process exists and is
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unique. Under additional conditions, such as absence of redundant assets, the optimal strategy exists and
is unique.

6.2. Power Utility

In this subsection, we derive the optimal portfolio strategy in the case of the power utility
function, namely

U(z) = zα for α ∈ (0, 1).

We assume that, for each π ∈ A,

lim
K→∞

Et,z,i
(

RK
π(T)

)α
= Et,z,i

(
Rπ(T)

)α
< ∞. (43)

Theorem 6. Assume that there exists a solution

π?(t) := (π?
0 (t), π?

1 (t), . . . , π?
N(t), π(2)?(t), π(3)?(t), . . . , π

(1)?
1 (t), π

(1)?
2 (t), . . .)

of the following system of equations (for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1):

r(t−)− µ0(t) = (α− 1)π?
0 (t)σ

2
0 (t−) +

N

∑
i=1

µ
(1)
i (t−)− r(t−)

σ
(1)
i (t−)

+
∫
R

γ(t−, x)
((

1 + π?
0 (t)γ(t−, x)

+
∞

∑
k=2

π(k)?(t)σ(k)(t−)γk(t−, x)
)α−1

− 1
)

ν(dx),

π?
j (t) =

(
1− µj(t−)−r(t−)

λi(t)σj(t−)

) 1
α−1

− 1

σj(t−)
, (44)

r(t−)− µ(k)(t) =
∫
R

σ(k)(t−)γk(t−, x)
((

1 + π?
0 (t)γ(t−, x)

+
∞

∑
k=2

π(k)?(t)σ(k)(t−)γk(t−, x)
)α−1

− 1
)

ν(dx),

r(t−)− µ
(l)
i (t) =

∫
R

σ
(l)
i (t−)xl

((
1 + xπ?

0 (t) +
∞

∑
l=1

π
?(l)
i (t)xlσ

(l)
i (t−)

)α−1
− 1
)

λi(t)η(dx)dt,

which belongs toA, that is, in particular, it satisfies Equations (38) and (43). Then, the optimal portfolio strategy
for the portfolio selection problem in Equation (40) with power utility function of wealth is one of those solutions.

Proof. From Itô’s formula (see Protter (2005, Thm. 32)) for the power utility function of wealth,
we obtain (for s ∈ [t, T] and t ∈ [0, T])

(Rπ(T))α − (Rπ(t))α =
∫ T

t
α(Rπ(s))α

(
r(s−) +

N

∑
j=0

πj(s)
(
µj(s−)− r(s−)

)
+

∞

∑
k=2

π(k)(s)
(
µ(k)(s)− r(s−)

)
+

N

∑
i=0

∞

∑
l=1

π
(l)
i (s)

(
µ
(l)
i (s)− r(s−)

))
ds +

∫ T

t
α(Rπ(s))απ0(s)σ0(s−)dW(s)

+
∫ T

t

1
2

α(α− 1)(Rπ(s))απ2
0(s)σ

2
0 (s−)ds +

N

∑
j=1

∫ T

t

((
Rπ(s) + Rπ(s)πj(s)σj(s−)

)α − (Rπ(s))α

)
dΦj(s)

+
N

∑
j=1

∫ T

t

((
Rπ(s) + Rπ(s)πj(s)σj(s−)

)α − (Rπ(s))α − α(Rπ(s))απj(s)σj(s−)
)

λj(s)ds
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+
∫ T

t

∫
R

((
Rπ(s−) + Rπ(s)

(
π0(s)γ(s−, x) +

∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
))α

− (Rπ(s−))α − α(Rπ(s−))α
(

π0(s)γ(s−, x) +
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
))

ν(dx)ds

+
∫ T

t

∫
R

((
Rπ(s−) + Rπ(s)

(
π0(s)γ(s−, x) +

∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
))α

− (Rπ(s−))α

)
Π̄(ds, dx)

+
N

∑
i=1

∫ T

t

∫
R

((
Rπ(s−) + Rπ(s)

(
xπ0(s) +

∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
))α

− (Rπ(s−))α

− α(Rπ(s−))α

(
xπ0(s) +

∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
))

λi(s)η(dx)ds

+
N

∑
i=1

∫ T

t

∫
R

((
Rπ(s−) + Rπ(s)

(
xπ0(s) +

∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
))α

−
(

Rπ(s−)
)α

)
Π̄i

U(ds, dx).

From this and Equation (40), the value function is given by

V(t, z, ei) = zα + sup
π∈A

Et,z,i

∫ T

t
zα

[
α

(
r(s−) +

N

∑
j=0

πj(s)
(
µj(s−)− r(s−)

)
+

∞

∑
k=2

π(k)(s)
(
µ(k)(s)− r(s−)

)
+

N

∑
i=0

∞

∑
l=1

π
(l)
i (s)

(
µ
(l)
i (s)− r(s−)

)
+

1
2
(α− 1)π2

0(s)σ
2
0 (s−)

)

+
N

∑
j=1

((
1 + πj(s)σj(s−)

)α − 1− απj(s)σj(s−)
)

λj(s)

+
∫
R

((
1 + π0(s)γ(s−, x) +

∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)α

− 1− α
(

π0(s)γ(s−, x) +
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
))

ν(dx)

+
N

∑
i=1

∫
R

((
1 + xπ0(s) +

∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
)α

− 1

− α
(

xπ0(s) +
∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
))

λi(s)η(dx)

]
ds.

By direct differentiation with respect to each strategy, this supremum is attained if the strategies
satisfy the system in Equation (44). Observe that, from Equation (9), the integrals

∫
R

((
1 + π0(s)γ(s−, x) +

∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)α

− 1− α
(

π0(s)γ(s−, x) +
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
))

ν(dx)

and (for i = 1, . . . , N)

∫
R

((
1 + xπ0(s) +

∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
)α

− 1− α
(

xπ0(s) +
∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
))

λi(s)η(dx)

are well-defined. Hence, by the Leibniz integral rule, we can interchange the derivatives
and integrals.
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Remark 6. We have not been able to prove that a solution of Equation (44) exists and is unique. However, if we
consider a finite market, then this solution exists and is unique and must be the optimal portfolio by Kramkov and
Schachermayer (1999, Thm. 2.2). In π∗j (t), one can observe the dependence of this strategy on Sharpe ratio.

Remark 7. If the prices of assets in the Black–Scholes–Merton market are described by processes without jumps
(that is, Π̄(dt, dx) = 0 and Π̄i

U(dt, dx) = 0), then we obtain closed-form solutions to the optimal portfolio
selection problem in Equation (40) for the logarithmic and power utilities (Zhang et al. 2010). In addition,
the value function in the primary market is the same as in the enlarged market, while in our market this does
not occur.

7. Optimal Portfolio Selection in the Original Market

In this section, we find conditions for optimal portfolio strategies in the original market, i.e., in the
market with one risk-free asset and one share.

Let π̃0 be the proportion of wealth invested in share S0 in the original market. Then,
the corresponding wealth process, denoted as Rπ̃0 , is given by the stochastic differential equation

dRπ̃0(t)
Rπ̃0(t−)

:=
(

r(t−) + π̃0(t)
(
µ0(t−)− r(t−)

))
dt + π̃0(t)σ0(t−)dW(t)

+ π̃0(t)
∫
R

γ(t−, x)Π̄(dt, dx) + π̃0(t)
N

∑
i=1

∫
R

xΠ̄i
U(dt, dx).

LetA0 be the class of admissible portfolio strategies π̃0 such that π̃0 is predictable, {Ft}-adaptable
and satisfies the condition

∫ T
t |π̃0(s)|2ds < ∞,P− a.s. Similar to the definition of the value function in

the enlarged market, we define the value function in the original incomplete market as

V0(t, z, ei) := sup
π̃0∈A0

Et,z,i
[
U(Rπ̃0(T))

]
. (45)

We assume Et,z,i
[
U(Rπ̃0(T))

]
< ∞ for i = 1, . . . , N.

First, we consider the logarithmic utility function. We have

Et,z,i
[

log Rπ̃0(T)
]

= log z +Et,z,i

∫ T

t

[
r(s−) + π̃0(s)

(
µ0(s−)− r(s−)

)
− 1

2
π̃2

0(s)σ
2
0 (s−)

+
∫
R

(
log
(
1 + π̃0(s)γ(s−, x)

)
− π̃0(s)γ(s−, x)

)
ν(dx)

+
N

∑
i=1

∫
R

(
log
(
1 + xπ̃0(s)

)
− xπ̃0(s)

)
λi(s)η(dx)

]
ds,

that is, for the logarithmic utility, the value function V0 can be written as follows:

V0(t, z, ei) = log z + sup
π̃0∈A0

Et,z,i

∫ T

t

[
r(s−) + π̃0(s)

(
µ0(s−)− r(s−)

)
− 1

2
π̃2

0(s)σ
2
0 (s−)

+
∫
R

(
log
(
1 + π̃0(s)γ(s−, x)

)
− π̃0(s)γ(s−, x)

)
ν(dx)

+
N

∑
i=1

∫
R

(
log
(
1 + xπ̃0(s)

)
− xπ̃0(s)

)
λi(s)η(dx)

]
ds.

From Equation (9), the integrals

∫
R

(
log
(
1 + π̃0(s)γ(s−, x)

)
− π̃0(s)γ(s−, x)

)
ν(dx)
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and (for i = 1, . . . , N) ∫
R

(
log
(
1 + xπ̃0(s)

)
− xπ̃0(s)

)
λi(s)η(dx)

are well-defined. Hence, by the Leibniz integral rule, we can differentiate the above integrals with
respect to π̃0. The above supremum is attained if π̃0 solves the equation

µ0(s−)− r(s)− σ2
0 (s−)π̃0(s) +

∫
R

(
γ(s−, x)

1 + π̃0(s)γ(s−, x)
− γ(s−, x)

)
ν(dx) (46)

+
N

∑
i=1

∫
R

(
x

1 + xπ̃0(s)
− x
)

λi(s)η(dx) = 0.

In the case of the power utility, the value function V0 can be written as

V0(t, z, ei) = zα + sup
π̃0∈A0

Et,z,i

∫ T

t

[
αzα

(
r(s−) + π̃0(s)

(
µ0(s−)− r(s−)

)
+

1
2
(α− 1)π̃2

0(s)σ
2
0 (s−)

)

+
∫
R

zα

((
1 + π̃0(s)γ(s−, x)

)α

− 1− απ̃0(s)γ(s−, x)

)
ν(dx)

+
N

∑
i=1

∫
R

zα

((
1 + xπ̃0(s)

)α

− 1− αxπ̃0(s)

)
λi(s)η(dx)

]
ds.

Note that, from Equation (9), the integrals

∫
R

zα

((
1 + π̃0(s)γ(s−, x)

)α

− 1− απ̃0(s)γ(s−, x)

)
ν(dx)

and (for i = 1, . . . , N)

∫
R

zα

((
1 + xπ̃0(s)

)α

− 1− αxπ̃0(s)

)
λi(s)η(dx)

are well-defined. By direct differentiation in Equation (47) with respect to π̃0, we get

µ0(s−)− r(s)− (α− 1)σ2
0 (s−)π̃0(s) +

∫
R

(
γ(s−, x)

(
1 + π̃0(s)γ(s−, x)

)α−1 − γ(s−, x)
)

ν(dx)

+
N

∑
i=1

∫
R

(
x
(
1 + xπ̃0(s)

)α−1 − x
)

λi(s)η(dx) = 0. (47)

Lemma 2. The solutions of Equations (46) and (47) are optimal strategies for the portfolio selection problem in
Equation (45) for the logarithmic and power utilities, respectively.

Proof. We prove that solutions of Equations (46) and (47) are optimal portfolio strategies; their
existence was proved by Kramkov and Schachermayer (1999). Let π̃ε

0 := π̃0 + ε be a perturbed
portfolio strategy for ε > 0.

We define the value function Vε
0 related to the strategy π̃ε

0 (Fouque et al. 2017a, 2017b; Mokkhavesa and
Atkinson 2002) as follows:

Vε
0 (t, z, ei) := sup

π̃ε
0∈A0

Et,z,i
[
U(Rπ̃ε

0
(T))

]
.
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In the case of the logarithmic utility,

Vε
0 (t, z, ei) = log z + sup

π̃0∈A0

Et,z,i

∫ T

t

[
r(s−) + (π̃0(s) + ε)

(
µ0(s−)− r(s−)

)
− 1

2
(π̃0(s) + ε)2σ2

0 (s−)

+
∫
R

(
log
(
1 + (π̃0(s) + ε)γ(s−, x)

)
− (π̃0(s) + ε)γ(s−, x)

)
ν(dx)

+
N

∑
i=1

∫
R

(
log
(
1 + x(π̃0(s) + ε)

)
− x(π̃0(s) + ε)

)
λi(s)η(dx)

]
ds,

and for the power utility,

Vε
0 (t, z, ei) = zα + sup

π̃0∈A0

Et,z,i

∫ T

t

[
αzα

(
r(s−) + (π̃0(s) + ε)

(
µ0(s−)− r(s−)

)
+

1
2
(α− 1)(π̃0(s) + ε)2σ2

0 (s−)
)

+
∫
R

zα

((
1 + (π̃0(s) + ε)γ(s−, x)

)α

− 1− α(π̃0(s) + ε)γ(s−, x)

)
ν(dx)

+
N

∑
i=1

∫
R

zα

((
1 + x(π̃0(s) + ε)

)α

− 1− αx(π̃0(s) + ε)

)
λi(s)η(dx)

]
ds.

Note that π̃0 is a portfolio strategy that maximizes the value function, so ∂
∂ε Vε

0


ε=0

= 0.

Calculating this derivative for Vε
0 in both cases, we get Equations (46) and (47).

Thus, the optimal portfolio strategies solve these equations. The existence and uniqueness of
the optimal strategies follows from Kramkov and Schachermayer (1999). In that paper, the main
assumption concerns the utility function, which has to have asymptotic elasticity strictly less than 1,
that is,

lim
z→∞

zU′(z)
U(z)

< 1.

Note that the power and logarithmic utilities satisfy this condition.

Remark 8. In a general semi-martingale market model, Goll and Kallsen (2000, 2003) obtained the optimal
solution explicitly in terms of semi-martingale characteristics of the price process for the logarithmic utility.
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Appendix A

Proof of Lemma 1. We define
UM(z) := U(z)1{z:|U(z)|≤M}.

The convergence of RK
π to Rπ in L2(Ω,F ,P) given in Equation (38) implies the convergence in

probability of RK
π to Rπ as K → ∞ (see Jacod and Protter (2004, Thm. 17.2)).

Thus, for the bounded and continuous function UM given above, we have

lim
K→∞

Et,z,i
[
UM

(
RK

π(T)
)]

= Et,z,i
[
UM

(
Rπ(T)

)]
(A1)

(see Jacod and Protter (2004, Thm. 18.1)). Note that

Et,z,i
[
U
(

RK
π(T)

)]
= Et,z,i

[
UM

(
RK

π(T)
)]

+Et,z,i
[
U
(

RK
π(T)

)
1{RK

π(T):|U(RK
π(T))|>M}

]
. (A2)

From the concavity of U, it follows that U(z) ≤ b + cz for each z ≥ 0 and some real b, c ≥ 0. Thus,
the second term on the right-hand side of Equation (A2) satisfies

Et,z,i
[
U
(

RK
π(T)

)
1{RK

π(T):|U(RK
π(T))|>M}

]
≤ b + c Et,z,i

[
RK

π(T)1{RK
π(T):|U(RK

π(T))|>M}
]
.

Now, we prove that

lim
K→∞

Et,z,i
[
RK

π(T)IK(T)
]
= Et,z,i

[
Rπ(T)I(T)

]
, (A3)

where
IK(T) := 1{RK

π(T):|U(RK
π(T))|>M} and I(T) := 1{Rπ(T):|U(Rπ(T))|>M}.

Note that

Et,z,i
∣∣RK

π(T)IK(T)− Rπ(T)I(T)
∣∣

≤
[
Et,z,i

(
RK

π(T)− Rπ(T)
)2
] 1

2
[
Et,z,i

(
I(T)

)] 1
2

(A4)

+

[
Et,z,i

(
Rπ(T)

)2
] 1

2
[
Et,z,i

(
I(T)− IK(T)

)2
] 1

2

+

[
Et,z,i

(
RK

π(T)
)2
] 1

2
[
Et,z,i

(
IK(T)− I(T)

)2
] 1

2

+

[
Et,z,i

(
Rπ(T)

)2
] 1

2
[
Et,z,i

(
IK(T)− I(T)

)2
] 1

2

.

Indeed, from the triangle inequality, we obtain

Et,z,i
∣∣RK

π(T)IK(T)− Rπ(T)I(T)
∣∣ (A5)

≤ Et,z,i
∣∣RK

π(T)IK(T)− RK
π(T)I(T)

∣∣+Et,z,i

∣∣∣RK
π(T)I(T)− Rπ(T)IK(T)

∣∣∣
+ Et,z,i

∣∣∣Rπ(T)IK(T)− Rπ(T)I(T)
∣∣∣.

Moreover, using Hölder’s inequality, we get

Et,z,i

∣∣∣RK
π(T)IK(T)− RK

π(T)I(T)
∣∣∣ ≤ [Et,z,i

(
RK

π(T)
)2
] 1

2
[
Et,z,i

(
IK(T)− I(T)

)2
] 1

2

(A6)
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and

Et,z,i

∣∣∣Rπ(T)IK(T)− Rπ(T)I(T)
∣∣∣ ≤ [Et,z,i

(
Rπ(T)

)2
] 1

2
[
Et,z,i

(
IK(T)− I(T)

)2
] 1

2

. (A7)

Finally, from the triangle inequality and Hölder’s inequality, we derive

Et,z,i

∣∣∣RK
π(T)I(T)− Rπ(T)IK(T)

∣∣∣ (A8)

≤
[
Et,z,i

(
RK

π(T)− Rπ(T)
)2
] 1

2
[
Et,z,i

(
I(T)

)] 1
2

+

[
Et,z,i

(
Rπ(T)

)2
] 1

2
[
Et,z,i

(
I(T)− IK(T)

)2
] 1

2

.

Combining Equations (A5)–(A8), we get the inequality in Equation (A4).
Now, we prove that

IK → I (A9)

in L2(Ω,F ,P) as K → ∞.
First, we verify this convergence in probability. Indeed, for any ε > 0, there exists δ > 0 such that

P(|IK(T)− I(T)| > ε) = P({U(RK
π(T)) > M, U(Rπ(T)) < M} ∪ {U(RK

π(T)) < M, U(Rπ(T)) > M})

≤ P(|U(RK
π(T))−U(Rπ(T))| > δ).

The right-hand side of the above inequality tends to zero as K → ∞, since the convergence
in probability of RK

π to Rπ yields the convergence in probability of U(RK
π) to U(Rπ) (see Jacod and

Protter (2004, Thm. 17.5)).
Moreover, we have

IK(T) ≤ 1,

thus {IK}∞
K=2 is uniformly integrable and

lim
K→∞

IK(T) = I(T)

in L2(Ω,F ,P) (see Gut (2005, Thm. 4.5, p. 216 and Thm. 5.4, p. 221 )). This completes the proof
of Equation (A9).

By Equations (38) and (A9), the right-hand side of the inequality in Equation (A4) tends to 0 as
K → ∞. This completes the proof of Equation (A3).

From Equation (A3), it follows that

lim
K→∞

Et,z,i
[
U
(

RK
π(T)

)
1{RK

π(T):|U(RK
π(T))|>M}

]
is well-defined. Thus, as M → ∞, the second term on the right-hand side of Equation (A2) tends to
zero. Moreover, the first term converges to Et,z,i

[
U
(

Rπ(T)
)]

by (A1). This completes the proof.
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