
Le Floc’h, Fabien; Oosterlee, Cornelis Willebrordus

Article

Model-free stochastic collocation for an arbitrage-free
implied volatility, part II

Risks

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Le Floc’h, Fabien; Oosterlee, Cornelis Willebrordus (2019) : Model-free
stochastic collocation for an arbitrage-free implied volatility, part II, Risks, ISSN 2227-9091,
MDPI, Basel, Vol. 7, Iss. 1, pp. 1-21,
https://doi.org/10.3390/risks7010030

This Version is available at:
https://hdl.handle.net/10419/257868

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/risks7010030%0A
https://hdl.handle.net/10419/257868
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


risks

Article

Model-Free Stochastic Collocation for an
Arbitrage-Free Implied Volatility, Part II

Fabien Le Floc’h 1,* and Cornelis W. Oosterlee 1,2

1 Delft Institute of Applied Mathematics, TU Delft, 2628 XE Delft, The Netherlands
2 CWI-Centrum Wiskunde & Informatica, 1098 XE Amsterdam, The Netherlands; C.W.Oosterlee@cwi.nl
* Correspondence: F.L.Y.LeFloch@tudelft.nl

Received: 22 January 2019; Accepted: 20 February 2019; Published: 6 March 2019
����������
�������

Abstract: This paper explores the stochastic collocation technique, applied on a monotonic
spline, as an arbitrage-free and model-free interpolation of implied volatilities. We explore various
spline formulations, including B-spline representations. We explain how to calibrate the different
representations against market option prices, detail how to smooth out the market quotes, and choose
a proper initial guess. The technique is then applied to concrete market options and the stability of
the different approaches is analyzed. Finally, we consider a challenging example where convex spline
interpolations lead to oscillations in the implied volatility and compare the spline collocation results
with those obtained through arbitrage-free interpolation technique of Andreasen and Huge.

Keywords: stochastic collocation; implied volatility; quantitative finance; arbitrage-free; risk neutral
density; B-spline

1. Introduction

Financial markets provide option prices for a discrete set of strike prices and maturity dates.
In order to price over-the-counter vanilla options with different strikes, or to hedge complex derivatives
with vanilla options, it is useful to have a continuous arbitrage-free representation of the option prices,
or equivalently of their implied volatilities. For example, the variance swap replication of Carr and
Madan consists in integrating a specific function over a continuum of vanilla put and call option prices
(Carr and Madan 2001; Carr and Lee 2009). More generally, Breeden and Litzenberger (1978) have
shown that any path-independent claim can be valued by integrating over the probability density
implied by market option prices. An arbitrage-free representation is also particularly important for
the Dupire local volatility model (Dupire 1994), where arbitrage will translate to a negative local
variance. In this paper, we describe a new technique to interpolate the market option prices in an
arbitrage-free manner.

A rudimentary, but popular, representation is to interpolate market implied volatilities with a
cubic spline across option strikes. Unfortunately, this may not be arbitrage-free as it does not preserve
the convexity of option prices in general. A typical convex interpolation of the call option prices by
quadratic splines or rational splines is also not satisfactory in general since it may generate unrealistic
oscillations in the corresponding implied volatilities, as evidenced in (Jäckel 2014). Kahalé (2004)
designs an arbitrage-free interpolation of the call prices, which however requires convex input quotes,
employs two embedded non-linear minimizations, and it is not proven that the algorithm for the
interpolation function of class C2 converges. In reality, it is often not desirable to strictly interpolate
option prices as those fluctuate within a bid-ask spread. Interpolation will lead to a noisy estimate of the
probability density (which corresponds to the second derivative of the undiscounted call option price).

More recently, Andreasen and Huge (2011) have proposed to calibrate the discrete piecewise
constant local volatility corresponding to a single-step finite difference discretization of the forward
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Dupire equation. In their representation of the local volatility, the authors use as many constants
as the number of market option strikes for an optimal fit. It is thus sometimes considered to be
“non-parametric”. Their technique works well but often yields a noisy probability density estimate, as
the prices are typically over-fitted. Furthermore the output of their technique is a discrete set of option
prices, which, while relatively dense, must still be interpolated carefully to obtain the price of options
whose strike falls in between nodes.

This paper considers another approach, based on the stochastic collocation technique of
Grzelak and Oosterlee (2017). Instead of collocating on a polynomial as in Le Floc’h and
Oosterlee (2019), we explore various ways to use a monotonic spline, including B-spline
parametrizations. This allows for a richer representation, with as many parameters as there are
market option strikes. A direct consequence is the ability to capture more complex implied probability
distributions, such as multi-modal distributions. We pay attention to avoid over-fitting by adding
some appropriate regularization. This is reminiscent of the penalized B-spline technique for volatility
modelling of Corlay (2016), where a B-spline parameterization of the Radon–Nikodym derivative of
the underlying’s risk-neutral probability density with respect to a roughly calibrated base model is
used. Concretely, Corlay’s method translates to an explicit probability density representation where the
probability density is a spline multiplied by a base probability density function, such as the lognormal
or normal probability density function. Corlay’s technique however limits the implied volatility shapes
allowed, and often requires the use of a more elaborate base probability density function, such as the
one stemming from the SVI1 parameterization of Gatheral (2004), to properly fit the market in practice.
We will see that the stochastic collocation on a spline is more flexible and can fit the market very well
when collocating to a simple Gaussian variable.

The outline of the paper is as follows. Section 2 presents how to apply the stochastic collocation
on a monotonic cubic spline, while still preserving the first moment exactly. The collocation on an
exponential spline is explored in Section 3, which results in analytical formulas not only for the price
of vanilla options but also for the price of variance swaps. Section 4 considers B-spline representations
which take into account the monotonicity and the martingale constraints explicitly. Section 5 details
the calibration towards market option prices of each kind of representation. Section 6 explains how to
filter the market quotes so that the spline collocation technique can be applied directly. The filtering
may be used independently of the B-spline collocation. Finally, Section 7 explores the stability of the
calibration on concrete market data, for the different parametrizations considered. We compare the
quality of fit and the implied probability density with the Andreasen–Huge technique, regularized.
In Section 8, we look at a challenging example of Jäckel (2014), where interpolation splines applied to
call prices lead to oscillations in the interpolation.

2. Spline Collocation

Collocation methods are commonly used to solve ordinary or partial differential equations
(LeVeque 2007). The underlying principle is to solve the equations in a specific finite dimensional
space of solutions, such as polynomials up to a certain degree. In contrast, the stochastic collocation
method (Mathelin and Hussaini 2003) consists in mapping a physical random variable Y to a point X
in an artificial stochastic space. Collocation points xi are used to approximate the function mapping X
to Y, F−1

X ◦ FY, typically by a polynomial, where FX, FY are respectively the cumulative distribution
functions (CDF) of X and Y. Thus, only a small number of inversions of Y (and evaluations of FY) are
used. This allows the problem to be solved in the “cheaper” artificial space.

1 SVI stands for Stochastic Volatility Inspired. The SVI model consists in five parameters which define the scaled sum of a
linear function with a multiquadric function.
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In the context of option price interpolation, the stochastic collocation allows us to interpolate the
market CDF in a better set of coordinates. In particular, we follow Grzelak and Oosterlee (2017) and
use a Gaussian distribution for X.

In (Grzelak and Oosterlee 2017), the stochastic collocation is applied to the survival distribution
function GY, where GY(y) = 1− FY(y) with FY being the cumulative density function of the asset
price process. When the survival density function is known for a range of strikes, their method can be
summarized by the following steps:

1. Given a set of collocation strikes yi, i = 0, ..., N, compute the survival density pi at those points:
pi = GY(yi).

2. Project on the Gaussian distribution by transforming the pi using the inverse cumulative normal
distribution Φ−1 resulting in xi = Φ−1(1− pi).

3. Interpolate (xi, yi) with a monotonic and derivable function g on R. Grzelak and Oosterlee (2017)
use a Lagrange polynomial for g but the technique can be applied to any derivable and monotonic
function. Further on, we will consider a monotonic spline.

4. Price by integrating the density with the integration variable x = Φ−1(1− GY(y)), using the
approximation g to map the coordinates x to the strikes y.

In order to illustrate the mapping involved in the stochastic collocation technique, we consider
four options with strikes y0 = 40, y1 = 70, y2 = 120, y3 = 215 and maturity time T = 2 in the
Black–Scholes model with constant volatility σ = 20% and forward price to maturity F = 100.
Figure 1a details the mapping from the four market strikes yi to the cumulative probability density pi
(step 1) and Figure 1b shows the mapping from the coordinate xi to yi (step 2). The initial goal of step
3 is to find a smooth function that approximates the theoretical mapping in the coordinates from x to y
well. The mapping function only needs to be monotonic, and to conserve the first moment, in order
for the collocation method to be arbitrage-free. The figures show the mapping with the Black–Scholes
model, which constitutes the reference, and with the B-spline collocation presented in this paper, based
on the four options. The cumulative density for the B-spline collocation is obtained after computing
the optimal collocation B-spline in the x, y coordinates, based on the four points (xi, yi)i=0,...,3.
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In reality, we are really interested in minimizing the error in terms of option prices (or equivalently
implied volatilities). The discrete set of reference option prices either come directly from the financial
markets, or from a prior model. This is where step 4 also becomes critical.

Let us now detail step 4. The undiscounted price of an option with strike price K is obtained by
integrating over the probability density Breeden and Litzenberger (1978):

C(K) =
∫ +∞

0
max (y− K, 0) f (y)dy ,

where f is the probability density implied by the options prices. We then perform the change of
variable x = Φ−1(1− GY(y)) to obtain

C(K) =
∫ Φ−1(1)

Φ−1(0)
max

(
G−1

Y (1−Φ(x))− K, 0
)

φ(x)dx .

As g(x) ≈ G−1
Y (1−Φ(x)), we have

C(K) ≈
∫ ∞

−∞
max (g(x)− K, 0) φ(x)dx

=
∫ ∞

xK
(g(x)− K) φ(x)dx , (1)

where φ(x) is the Gaussian density function and

xK = g−1(K) . (2)

The change of variables is valid when the survival density is continuous and its derivative is
integrable. In particular, it is not necessary for the derivative to be continuous.

When g is a piecewise cubic polynomial defined on the knots (xi, yi)i=0,...,N , the call option
price can be obtained analytically. Let g(x) = gi(x) = ai + bi(x − xi) + ci(x − xi)

2 + di(x − xi)
3

for x ∈ [xi, xi+1], and k the index such that yk ≤ K < yk+1, assuming that 0 ≤ i < N exists,
Equation (1) becomes

C(K) = I(x̃−1, x0) + I(x̃N , ∞)− KΦ(−x̃k)

+
N−1

∑
i=k

[
ai − (bi + di(x̃2

i + 3))xi + ci(x2
i + 1)

]
(Φ(−x̃i)−Φ(−x̃i+1))

+
N−1

∑
i=k

[
bi + ci(x̃i − 2xi) + di(3x2

i − 3x̃ixi + x̃2
i + 2)

]
φ(x̃i)

−
N−1

∑
i=k

[
bi + ci(x̃i+1 − 2xi) + di(3x2

i − 3xi x̃i+1 + x̃2
i+1 + 2)

]
φ(x̃i+1) ,

(3)

with x̃k = g−1(K), x̃−1 = x0 and x̃i = xi for i > k. The integral I corresponding to the left and right
extrapolations is defined by

I(a, b) =
∫ b

a
g(x)φ(x)dx .

In the case of a linear extrapolation with slope s and starting at the point (x, y), we have

IL(a, b) = (y− sx)(Φ(b)−Φ(a))− s(φ(b)− φ(a)) .

with the abuse of notation Φ(∞) = 1, Φ(−∞) = 0 and φ(∞) = φ(−∞) = 0. We use s = sL, and
x = x0, y = y0 for the left wing extrapolation, and s = sR, and x = xN , y = yN for the right
wing extrapolatioin.
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When K < y0 and in the case of a linear extrapolation, Equation (3) is still valid, but with
x̃−1 = K−y0

sL
+ x0. When K > yN , CK = IR(x̃N , ∞) with x̃N = K−yN

sR
+ xN .

The cut-off point x̃k = g−1
k (K) can be found analytically through Cardano’s formula

(Nonweiler 1968).
The first moment is given by

M1(g) = I(−∞, x0) + I(xN , ∞)

+
N−1

∑
i=0

[
ai − (bi + di(x2

i + 3))xi + ci(x2
i + 1)

]
(Φ(xi+1)−Φ(xi))

+
N−1

∑
i=0

[
bi − cixi + di(x2

i + 2)
]

φ(xi) (4)

−
N−1

∑
i=0

[
bi + ci(xi+1 − 2xi) + di(3x2

i − 3xixi+1 + x2
i+1 + 2)

]
φ(xi+1) .

In practice, the preservation of the martingale property (and the put-call parity relation) imposes
M1 = F where F is the market forward price to maturity T.

The put option price is calculated through the put-call parity relation, namely

C(K)− P(K) = F− K , (5)

where P(K) is the undiscounted price today of a put option of maturity T, and F is the forward price
to maturity.

When put option prices are very small, and assuming that the first moment equals exactly the
forward price, it is preferable to use a more direct approach. Equation (5) does not allow to compute
prices below machine epsilon. Using the same change of variables as for the call option (Equation (1)),
we have for a put option with strike K:

P(K) =
∫ +∞

0
max (K− y, 0) f (y)dy

=
∫ xK

−∞
(g(x)− K)φ(x)dx .

This leads to

P(K) = KΦ(x̃k)− I(−∞, x̃−1)− I(x̃N , xN)

+
k−1

∑
i=0

[
ai − (bi + di(x2

i + 3))xi + ci(x2
i + 1)

]
(Φ(x̃i+1)−Φ(x̃i))

+
k−1

∑
i=0

[
bi + ci(x̃i − 2xi) + di(3x2

i − 3xi x̃i + x̃2
i + 2)

]
φ(x̃i) (6)

−
k−1

∑
i=0

[
bi + ci(x̃i+1 − 2xi) + di(3x2

i − 3xi x̃i+1 + x̃2
i+1 + 2)

]
φ(x̃i+1) ,

with x̃k = g−1(K), x̃−1 = x0 and x̃i = xi for 0 ≤ i < k.

3. Exponential Spline Collocation

3.1. Vanilla Options

Instead of interpolating on the strikes (the points (xi, yi)i=0,...,N), we will interpolate the log strikes
(the points (xi, ln yi)i=0,...,N) with a piecewise polynomial. This presupposes that the strikes are strictly
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positive and that the probability of the asset being negative equals zero. The undiscounted call price of
an option with strike K is then

C(K) =
∫ ∞

−∞
max(eg(x) − K, 0)φ(x)dx , (7)

where g is a monotonic piecewise polynomial function interpolating (xi, ln yi)i=0,...,N . We cannot obtain
a closed-form formula for a general g function, if we assume that g is a quadratic spline. Let (x̄j)j=0,...,M
be the spline knots, and g(x) = aj + bj(x− x̄j) + cj(x− x̄j)

2 on [x̄j, x̄j+1], with k the index such that
ȳk ≤ K < ȳk+1, we have then

C(K) = I(x̃−1, x̄0) + I(x̃M, ∞) + KΦ(−x̃k)

+
M−1

∑
j=k

eaj−bj x̄j+cj x̄2
j +

1
2 m2

j
Φ
(
x̄j+1

√
1− 2cj −mj

)
−Φ

(
x̃j
√

1− 2cj −mj
)√

1− 2cj
,

with mj =
bj−2cj x̄j√

1−2cj
and defining x̃k = g−1(ln K), x̃i = x̄i for i > k. When 1− 2cj < 0, we can use the

imaginary error function erfi as we have for a, b ∈ R,

−i
Φ(ib

√
2cj − 1)−Φ(ia

√
2cj − 1)√

2cj − 1
=

erfi
(

b
√

2cj−1
2

)
− erfi

(
a
√

2cj−1
2

)
2
√

2cj − 1
.

For a linear extrapolation with slope s and passing by the point (x, y), corresponding to
g(u) = s(u− x) + y, we find

I(a, b) =
∫ b

a
es(u−x)+yφ(u)du

= ey−sx+ 1
2 s2

(Φ(b− s)−Φ(a− s)) , (8)

with some abuse of notation Φ(−∞) = 0, Φ(∞) = 1. The left wing extrapolation corresponds to
x = x̄0 and y = ȳ0, with s = sL a free parameter and the right wing extrapolation corresponds to
x = x̄M, y = ȳM with s = sR. In order to keep the continuity of the derivative at the boundaries,
we choose sR = g′(xN) and sL = g′(x0).

The first moment is given by

M1 =
∫ ∞

−∞
eg(x)φ(x)dx

= I(−∞, x̄0) + I(x̄M, ∞)

+
M−1

∑
j=0

eaj−bj x̄j+cj x̄2
j +

1
2 m2

j
Φ
(
x̄j+1

√
1− 2cj −mj

)
−Φ

(
x̄j
√

1− 2cj −mj
)√

1− 2cj
(9)

= I(−∞, x̄0) + I(x̄M, ∞)

+
M−1

∑
j=0

e
aj+

b2
j −2bj x̄j+2cj x̄2

j
2(1−2cj)

Φ
(

x̄j+1
√

1− 2cj −mj
)
−Φ

(
x̄j
√

1− 2cj −mj
)√

1− 2cj
.

3.2. Variance Swap

Variance swaps contracts allow a buyer to receive the future realized variance of the price changes
until a specific maturity date against a fixed strike price, paid at maturity. Conventionally, these
price changes are daily log returns of a specific stock, equity index, or exchange rate based upon the
most commonly used closing price (or exchange rate reset price). Variance swaps became particularly
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popular after Demeterfi et al. showed that a single contract could be statically replicated by a portfolio
of vanilla options (Demeterfi et al. 1999). In the absence of jumps2 and assuming the observations to
be continuous, the problem of pricing a variance swap can be reduced to the pricing of a log-contract.
The price V of a variance swap, by continuous replication, has a particularly simple closed-form
expression with the exponential spline parametrization. For a newly issued variance swap with zero
strike, and a transition probability density f from t = 0 to t = T, following Carr and Lee (2009),
we have

V(0, T) = − 2
T

∫ ∞

0
ln
[

y
F(0, T)

]
f (y)dy (10)

= − 2
T

∫ ∞

−∞
(g(x)− ln F(0, T)) φ(x)dx .

In Equation (10), g̃ = g − F(0, T) is a piecewise quadratic spline. The value of the integral
corresponds to the first moment of the collocation variable with the spline g̃, which is given explicitly
by Equation (4). The standard replication formula from Carr and Madan (2001) implies to choose
an integration cut-off and to use of a numerical quadrature, typically an adaptive Gauss–Lobatto
quadrature. This is not necessary with the exponential spline collocation approach. The price of the
variance swap can be adjusted by changing the slope of the linear extrapolation. This allows for a fast
joint calibration of the collocating B-spline to market option prices and variance swaps. The market
variance swap prices give some additional information on the tail of the distribution, not covered by
vanilla options.

4. B-Spline Collocation

We recall that the goal of the stochastic collocation is to find a smooth monotonic function to
represent the function g mapping the abscissas (xi)i=0,...,N to the ordinates (the strikes) (yi)i=0,...,N
(see Figure 1b), by minimizing the error in option prices in a least-squares sense. From the previous
sections, we now know how to price vanilla options by collocating on a spline, which passes through
the specific points (xi, yi)i=0,...N . We can then choose to optimize either the abscissas or the ordinates
of those points in order to minimize the least squares error in option prices, on the condition that we
use a monotonicity preserving spline and make sure to conserve the first moment in the optimization.

Instead of using an exact interpolation function on a set of points, and optimizing this interpolation
through the choice of points, we can rely on a B-spline representation and optimize directly the B-spline
coefficients. The method will work both on the direct strikes, or on the log strikes. We consider a
quadratic B-spline representation, that is, B-splines of order k = 3. The B-spline representation of g on
N + 1 + k knots reads (De Boor 1978)

g(x) =
N

∑
i=0

αiBi,3(x) . (11)

We choose the nearly optimal knots ti+3 =
xi+1+xi+2

2 for i = 0, ..., N − 3 according to
(De Boor 1978, p. 193) with the boundary knots t0 = t1 = t2 = x0 and tN+1 = tN+2 = tN+3 = xN .
This choice of knots ensures that g is C1 on [x0, xN ].

Because the derivative of the equivalent piecewise polynomial representation is linear between
two distinct knots, g will be monotonically increasing on an interval [ti−1, ti] if and only if the derivative
at the endpoints is positive. Thus, g will be monotonically increasing on the interval [x0, xN ] if and
only if αi − αi−1 > 0 for i = 1, ..., N in Equation (11).

2 Although such a hypothesis may seem very strong, most practitioners value the variance swaps by replication.
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It is then particularly simple to impose the monotonicity constraints when we optimize the
coefficients αi during the calibration to market quotes. Furthermore, a least-squares fit of g directly to
some input (xi, yi)i=0,...,N reduces to a simple quadratic programming problem:

α̃ = arg min
α∈RN+1

1
2

αTQα + qTα (12)

subject to αi − αi−1 > 0 for i = 1, ..., N, with Q = PT P, q = −PTy and P the matrix defined by
Pi,j = Bi,3(yj). In particular, P is a banded matrix (De Boor 1978).

The quadratic programming problem is fast to solve using a standard optimization library such as
CVXOPT (Andersen et al. 2013), OSQP (Stellato et al. 2017), or quadprog (Turlach and Weingessel 2007),
when compared to the total time taken to calibrate the spline. This will allow starting the optimization
from a reasonable initial guess.

In order to price an option or to evaluate the first moment, we simply transform the B-spline
representation to a piecewise quadratic polynomial (De Boor 1978, p. 117–19) and rely on
Sections 2 and 3 in this paper, for respectively a direct B-spline collocation, and an exponential
B-spline collocation.

In the case of the direct B-spline collocation, the first moment is a linear combination of the B-spline
coefficients. Indeed, the first moment is a linear combination of the piecewise polynomial coefficients
in Equation (4) and the piecewise polynomial coefficients themselves are a linear combination of the
B-spline coefficients:

aj =
tj+2 − tj+1

tj+3 − tj+1

(
αj+1 − αj

)
+ αj , (13)

bj = 2
αj+1 − αj

tj+3 − tj+1
, (14)

cj =
1

tj+3 − tj+2

(
αj+2 − αj+1

tj+4 − tj+2
+

αj − αj+1

tj+3 − tj+1

)
. (15)

We can thus add the martingale constraint directly to the quadratic programming problem as an
additional equality constraint.

5. Calibration of the Spline Collocation to Market Quotes

We wish to minimize the weighted `2 error norm between the volatilities implied from the prices
obtained by spline collocation and the market implied volatilities. For this, we can optimize the
location of either the spline knots abscissas xi or the spline knots ordinates yi, or in the case of the
B-spline representation, the coefficients αi.

5.1. Coordinate Transformation

In order to preserve the order of the knots, we rely on the following mapping:{
zi = xi − xi−1 , for i > 0 ,

z0 = x0 ,

and enforce zi ≥ 0 as box constraints in the least-squares minimization. Box constraints can be added
in a relatively straightforward manner to any Levenberg-Marquardt algorithm, such as the one of
Klare and Miller (2013), through the projection technique described in (Kanzow et al. 2004).

We use the same mapping if the ordinates or the B-spline coefficients are optimized, using yi,
respectively αi, instead of xi in the above equations.
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5.2. Moment Conservation

We also wish to preserve the first moment exactly in order for the spline representation to be fully
arbitrage-free. Let M1(g) be the first moment computed by Equation (4) and F be the market forward
price to the option maturity time T. In order to make M1 match F, we shift the coefficient ai of each
piecewise polynomial (gi)i=0,...,N−1 and use

âi = ai + F−M1 , for 0 ≤ i ≤ N . (16)

For the exponential spline representation on M + 1 unique knots, the adjustment is almost the
same, but based on the log values we use

âi = ai + ln F− ln M1 , for 0 ≤ i ≤ M . (17)

The new spline ĝ with updated coefficients âi will satisfy exactly M1 = F.
With this adjustment, there is a fundamental difference between the optimization of the abscissas

xi and the ordinates yi: when the abscissas are optimized, the adjustment will also implicitly adjust
the yi as we have yi = âi. Furthermore, when optimizing the ordinates yi or the B-spline coefficients
αi, the first coordinate y0 (respectively α0) can be directly deduced from the martingale adjustment.
Indeed, the adjustment only impacts the value of z0 and has no effect on zi = u−1(yi − yi−1) for i > 0.
This allows to reduce the number of dimensions of the optimization problem by one.

5.3. Choice of Coordinates

In our experiments, the optimization of the abscissas (xi)i=0,...,N appeared to be the least
stable. In particular, the outcome was highly dependent on the initial guess. Only with a proper
regularization and a good smooth initial guess (for example, the constant Bachelier guess) was the
outcome satisfactory.

In comparison, the optimization of the ordinates (yi)i=0,...,N was found to be more stable, and the
optimization of the B-spline coefficients was the most stable of all choices. One reason for this stability,
is the initial guess for the B-spline coefficients respects the martingale constraint. Another is that the
B-spline formulation is simply more stable than the piecewise-polynomial version (De Boor 1978).
Values from the B-spline representation are obtained from a linear combination of the coefficients,
while values obtained from the monotonic cubic spline representation are neither a linear combination
of the abscissas nor of the ordinates, because of the monotonicity constraint.

The flexibility of choosing a different variety of monotonic splines such as the cubic spline of
Hyman (1983) or Huynh (1993) when optimizing the knots abscissas or ordinates does not translate to
a better fit of the reference option prices. In some specific cases, such as the one we explore in Section 8,
the optimization the abscissas led to a better fit, but this consists in fitting towards the prices of a
pre-existing model at hypothetical strikes, and not directly towards the market prices.

From now on, for clarity, we will thus focus only on the B-spline or exponential B-spline
collocations where the B-spline coefficients are optimized.

5.4. Regularization

We will see through real examples that it can be useful to add regularization to the minimization
as well, in order to avoid an implied probability density with many spikes. An interesting candidate
for the regularization is to minimize the strain energy of the beam that is forced to pass through the
given data points (Glass 1966):

E =
m

∑
i=0

µ2
i (σ(ξ, Ki)− σi)

2 + λ2
m−1

∑
i=0

µ2
i g′′(xi)

2

[1 + g′(xi)2]
5
2
(xi+1 − xi) , (18)
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where σ(ξ, K) is the implied volatility corresponding to the option prices obtained with the spline
collocation and σi is the market implied volatility at strike Ki. For the maturity T considered, m + 1
is the number of market strikes. We allow the number of strikes to be greater than or equal to the
number of spline interpolation nodes N + 1. The parameter ξ represents a specific spline configuration
on N + 1 nodes. For a B-spline, we have ξ = (αj)j=0,...,N , where (αj)j=0,...,N are the coefficients of the
B-spline representation.

The first term of the objective E corresponds to the square of the root mean square error (RMSE),
while the second term is the regularization. The regularization parameter λ controls the smoothness of
the spline interpolation.

In the case of the B-spline representation, Eilers and Marx (1996) propose a simpler
regularization. Their penalized spline (P-spline) minimizes the total variation of the second derivative.
This regularization, expressed in terms of the B-spline coefficients, reads

E =
m

∑
i=0

µ2
i (σ(ξ, Ki)− σi)

2 + λ2
N−1

∑
j=1

4µ2
i

(tj+2 − tj+1)2

(
αj+1 − αj

tj+3 − tj+1
+

αj−1 − αj

tj+2 − tj

)2

, (19)

where (tj)j=0,...,N+3 are the spline knots. In particular, the latter regularization is linear in the coefficients
(αj)j=0,...,N and can thus be directly included in the quadratic programming problem described in
Section 4.

6. Making Market Call Prices Arbitrage-Free

For each strike and maturity, at a given time, the market quotes two prices for an option contract:
the bid price and the ask price. In order to calibrate directly the collocation spline to the market quotes,
we need a single estimate of the implied cumulative probability density. It is common practice to use
the average of the bid and ask prices, the mid price for this purpose. Alternatively, we could also build
two distinct representations: one for the bid prices and one or the ask prices.

When considered separately, the bid, ask, or mid prices are not guaranteed to be arbitrage-free in
theory: there can be theoretical arbitrages within the bid-ask spread that cannot be taken advantage
of in practice. Like most financial models, the collocation method is really only well defined in the
absence of arbitrage: the implied cumulative probability density needs to be monotonic. We will
explore in this section different ways to smooth the quotes and make them arbitrage-free. The goal is
to obtain a good initial guess of the implied cumulative probability density in order to calibrate the
spline nodes to the market prices afterwards.

6.1. No-Arbitrage Properties

Let (yi)i=0,...,m be the market strikes and (ci)i=0,...,m the undiscounted market call option prices
corresponding to each strike, with y0 < y1 < ... < yn. Lemma 1 of Kahalé (2004) states that there is no
arbitrage in those prices if and only if

− 1 <
ci − ci−1

yi − yi−1
<

ci+1 − ci
yi+1 − yi

< 0 , for i = 1, ..., m− 1 . (20)

To be more precise, we should also have max(F − yi, 0) < ci < F, where F is the underlying
forward price to the option maturity.

6.2. A Quadratic Programming Problem

When the undiscounted call option prices ci contain some arbitrage, we need to solve the following
quadratic programming problem:

c̃ = arg min
z∈Rn+1

‖W · (z− c)‖2
2 (21)
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subject to

− 1 <
zi − zi−1

yi − yi−1
<

zi+1 − zi
yi+1 − yi

< 0 , for i = 1, ..., m− 1 , (22)

where W is a diagonal matrix of weights. For equal weights W is the identity matrix In+1. We can
include information on the bid-ask spread, for example by taking wi to be the inverse of the bid-ask
spread at strike yi.

We have

‖W · (z− c)‖2
2 = zTWTWz− 2(WTWc)Tz + (Wc)TWc .

The minimization problem can thus be formulated as a quadratic programming problem:

c̃ = arg min
z∈Rn+1,Gz≤h

1
2

zTQz + qTz (23)

with

Q = WTW ,

q = −WTWc ,

and the elements Gi,j of the matrix G, that specifies the linear constraints in (23), are

Gi,i−1 = − 1
yi − yi−1

, Gi,i =
1

yi − yi−1
+

1
yi+1 − yi

, Gi,i+1 = − 1
yi+1 − yi

,

for i = 1, ..., n− 1, and

G0,0 =
1

y1 − y0
, G0,1 = − 1

y1 − y0
,

Gn,n =
1

yn − yn−1
, Gn,n−1 = − 1

yn − yn−1
.

and the vector h by h0 = 1.0− ε, hi = −ε for i > 0. The constant ε defines a maximum acceptable
slope and ensures that the call prices are strictly convex.

In order to tune the smoothing of option prices, we could add a Tikhonov regularization, using
the matrix of second order differences as Tikhonov matrix. This is, however, not necessary for the
B-spline collocation, as we already add a regularization when computing the B-spline representation
based on the initial guess.

Once the quadratic programming problem has been solved3, we can estimate the call price slope c′i
at each strike yi using the parabola that passes through the three points ci−1, ci, ci+1 (see Le Floc’h and
Oosterlee (2019)):

c′i ≈
li(yi+1 − yi) + li+1(yi − yi−1)

yi+1 − yi−1
where li =

ci − ci−1

yi − yi−1
(24)

for i = 1, ..., m− 1, and with c′0 = l1, c′m = lm. It will lead to −1 < c′i < 0 and increasing c′i assuming
that the call prices ci obeys the conditions of lemma 1 of Kahalé (2004). This gives a direct estimate of
the survival density pi = −c′i and thus of the abscissa xi.

Another approach to find an initial guess is to rely on a very rough estimate, which may be a
good starting point for the optimization. A straightforward initial guess for the implied cumulative

3 We used quadprog (Turlach and Weingessel 2007) in our numerical examples.
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probability density is to consider the density implied by a flat Bachelier volatility. The at-the-money
market implied volatility is a natural choice. For a given option price, the Bachelier implied volatility
σN can be found in closed form using the rational expansions of Le Floc’h (2016). The collocation
points can then be obtained directly:

xi = −
F− yi

σ
√

T
. (25)

With a constant Bachelier volatility, x is an affine function of y and vice-versa.

7. Example of Calibration on TSLA Options

We consider options on the stock with ticker TSLA expiring on 17 January 2020 as of 15 June
2018. We first imply the forward price from the put-call parity relation at-the-money and then imply
the Black–Scholes volatility from the mid price for each option strike (Table A1). In this example, the
options mid prices are not arbitrage free.

We will measure the RMSE between the volatilities implied by the calibrated stochastic collocation
and the market implied volatilities, with and without regularization. We use equal weights in this
example. Although it is not particularly realistic, it has the advantage of making the plots of the
implied volatility more explicit.

The calibration consists firstly in computing an arbitrage-free (convex) set of call option prices
from the market mid quotes according to Section 6.2, secondly in computing the B-spline initial guess
following Section 4, and thirdly in minimizing the error measure represented by Equation (18) with a
Levenberg–Marquardt minimizer.

7.1. B-Spline

With a small (or zero) regularization parameter λ, the resulting implied probability density
possesses many spurious spikes (Figure 2a). The use of a larger regularization parameter λ, during
the non-linear minimization of the objective E described in Equation (18), helps smoothing the spikes,
but it increases the RMSE slightly (see Table 1).

Table 1. Root mean square error (RMSE) of the collocation method implied volatilities against the
market implied volatilities of the TSLA 1 m options as of 18 June 2018.

Method Regularization RMSE Time (ms)

Exponential B-spline collocation λ = 1× 10−3 0.00437 43
B-spline collocation λ = 6× 10−6 0.00397 71
Andreasen–Huge none 0.00356 890

Exponential B-spline collocation λ = 1× 10−7 0.00345 150
B-spline collocation λ = 1× 10−10 0.00326 37

Schumarker quadratic spline none 0.00313 0.5

In Table 1, we also compute the RMSE with a simple convexity preserving quadratic spline
(Schumaker 1983) on the filtered market option prices (Equation (23)). This interpolation leads to
a positive and piecewise-constant probability density. On convex prices, the interpolation is exact.
The RMSE is thus purely due to the filtering of the market quotes by quadratic programming.

Andreasen and Huge (2011) propose a different non-parametric arbitrage-free volatility
interpolation, where a discrete local volatility is calibrated to market option prices in a one-step
finite-difference discretization of the forward Dupire partial differential equation. The number of free
parameters corresponds effectively to the number of quotes, as in the spline collocation, and their
technique will also tend to overfit. It is known to lead to a nearly exact interpolation on arbitrage-free
option prices. It does however not lead to a more accurate representation of the market implied
volatilities than the B-spline collocation with a small regularization constant. The corresponding
implied probability density also possesses spikes.
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(a) Probability density implied by the prices obtained with a calibrated B-spline collocation
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(b) Volatility smile implied by the prices obtained with B-spline collocation with regularization λ = 6× 10−6

Figure 2. Implied probability density and implied volatility for the B-spline collocation, calibrated to 1
m TSLA options.

The B-spline collocation is not only at least as accurate as the technique of Andreasen and
Huge (2011) on this example, it is also significantly faster. In the latter, the involved finite difference
grid must be relatively large (we used 800 points) and the corresponding tridiagonal system must
be solved for each set of piecewise constant volatilities considered by the minimizer. Furthermore,
the B-spline collocation offers a continuous interpolation of the option prices. In the technique of
Andreasen and Huge (2011), options prices are given only at the finite difference grid points. Another
careful4 arbitrage-free interpolation must be used to compute the price in between grid points. Finally,
the B-spline collocation offers the ability to tune the probability density smoothness against the RMSE.

The optimal regularization parameter can be found using the L-curve method (Hansen 1992).
On Figure 3b we plot the L-curve for the calibrated B-spline collocation, that is the regularization

4 In practice, we solve the Fokker-Planck forward PDE instead of the Dupire forward PDE, and then integrate the option payoff
on the known probability density as in Hagan et al. (2014); Le Floc’h and Kennedy (2017) in order to obtain arbitrage-free
prices everywhere.
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norm against residual norm, in logarithmic scale, or equivalently, the second sum against the first
sum of Equation (19), varying the regularization parameter λ. For most regularization techniques,
such a curve is L-shaped, because, on linear problems, the regularization norm is a strictly decreasing
function of the regularization parameter λ, and the residual norm is a strictly increasing function of λ.
A good regularization parameter will achieve a good compromise between the two errors, and will
correspond to a regularized solution near the “corner” of the L-curve. On non-linear least-squares
problems in general, the regularization and residual norms will not be strictly monotonic, they will
however be nearly monotonic and the L-curve method may still be applied (Aster et al. 2018, p. 241).

Our choice λ = 6 × 10−6 is the point located in the corner of the L-curve (see Figure 3b).
Performing multiple calibrations to find the optimal regularization parameter, following one of the
algorithms of Hansen and O’Leary (1993), may be time-consuming. An alternative is to apply the
L-curve method to the B-spline initial guess based on the convex option prices5 (Figure 3a).
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(b) Calibrated collocation

Figure 3. L-curves of the B-spline corresponding to the initial guess, and the calibration result on
TSLA options.

7.2. Exponential B-Spline

The exponential B-spline initial guess does not preserve the first moment. As a consequence, its
calibration tends to be less stable than the calibration of the regular B-spline. The choice of initial
guess plays then an important role, and the inclusion of the regularization in the calculation of the
exponential B-spline initial guess is particularly important. The RMSE in the implied volatilities is
comparable to the one obtained by the Andreasen and Huge technique, and is larger than the RMSE of
the regular B-spline collocation (Table 1). In spite of the larger error, the implied probability density is
not as smooth as the one implied from the regular B-spline collocation (Figure 4). A smoother initial
guess, such as the constant Bachelier volatility, is then preferable.

5 We use inverse Vega weights to fit the B-spline guess to the option prices.
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Figure 4. Implied probability density for the exponential B-spline collocation, calibrated to 1 m TSLA
options, with different regularization constants.

7.3. Starting from Arbitrage-Free Prices

It is also interesting to take the filtered convex option prices (from Equation (23)) as a basis to
compare the different techniques. We expect the RMSE to be lower, eventually zero, if the interpolation
is exact at the market strikes. For example, the convexity-preserving Schumaker quadratic spline results
in an RMSE of exactly zero (but the associated implied probability density is a staircase). The B-spline
collocation results in an RMSE of around 0.0005 without regularization constant. This is lower than the
RMSE produced by the Andreasen–Huge technique. In theory, their technique should be able to attain
a lower RMSE, but the number of strikes, and thus the number of constants to optimize is relatively
large on our problem and this creates difficulties for the numerical optimization. The collocation
on an exponential B-spline leads to an RMSE similar to the one obtained with the Andreasen–Huge
technique (Table 2). Of course, with a small regularization constant, the corresponding probability
density possesses many spikes and is not very practical.

Table 2. Root mean square error (RMSE) of the collocation method implied volatilities against the
implied volatilities of the TSLA 1 m options as of 18 June 2018, based on convexity adjusted prices.

Method Regularization RMSE Time (ms)

Exponential B-spline collocation λ = 10−3 0.00287 35
B-spline collocation λ = 6× 10−6 0.00239 39

Exponential B-spline collocation λ = 10−7 0.00118 160
Andreasen–Huge none 0.00112 890

B-spline collocation λ = 10−10 0.00042 78
Schumaker quadratic spline none 0 0.02

On other market data, for example, options on NFLX from July 2018, the same conclusions can
be drawn.

8. A More Extreme Example—Wiggles in the Implied Volatility

Jäckel (2014) shows that undesired oscillations can appear in the graph of the implied volatility
against the option strikes when the option prices are interpolated by a monotonic and convex
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spline. Table A2 in Appendix A presents a concrete example6. Here, the option quotes are not
direct market quotes, but the solution of a sparse finite difference discretization of a local stochastic
volatility model: the market never quotes so far out-of-the-money option prices. His data has a few
interesting properties:

• some of the option prices are extremely small: the interpolation must be very accurate numerically.
• the option prices are free of arbitrage. In theory, an arbitrage-free interpolation can be exact.
• a cubic spline interpolation on the volatilities or the variances, often used by practitioners,

is not arbitrage-free.
• a convexity preserving C1-quadratic, or C2-rational spline results in strong oscillations in the

implied volatility.

The interpolation proposed in (Jäckel 2014) possesses unnatural spikes at the points of clamping,
in particular, the implied density is not continuous.

For this example, the B-spline collocation leads to a relatively large RMSE when compared
to Andreasen–Huge method. As a consequence, we can see an oscillation of small amplitude in
the corresponding implied volatility for large strikes (Figure 5b). This is very mild compared to
the spline interpolations presented in (Jäckel 2014). The higher error is mostly located in the left
wing. The exponential B-spline collocation results in a much lower RMSE, albeit still larger than the
Andreasen and Huge technique (Table 3). The volatility implied by the exponential B-spline collocation
does not oscillate.

The optimal implied probability density is relatively smooth, but possesses a few visible modes
(Figure 5a). This makes the monotonic polynomial collocation of Le Floc’h and Oosterlee (2019)
ineffective, even when using a high degree polynomial. Polynomials of degree seven and higher lead
to a RMSE larger than one vol point.

Table 3. Root mean square error (RMSE) of the collocation method implied volatilities against the
implied volatilities of Table A2 in Appendix A.

Method Regularization RMSE Time (ms)

Septic polynomial none 1× 10−2 230
B-spline λ = 10−12 2× 10−4 10

Exponential B-spline λ = 10−7 6× 10−5 10
Andreasen–Huge (800 nodes) none 1× 10−6 25
Andreasen–Huge (3200 nodes) none 9× 10−8 67

Schumaker convex spline none 0 0.02

It is possible to obtain a better fit with the B-spline collocation with a better choice of knots, for
example, if we compute the knots implied by the calibrated B-spline collocation, and calibrate one
more time. In Table 4, we denote this technique as “Best”. It improves significantly the accuracy on the
example of Peter Jäckel, but not on the filtered and non filtered TSLA market option quotes, where the
different choices for the initial knots lead to a very similar RMSE.

On Peter Jäckel’s example, the optimal implied probability density is relatively smooth
everywhere, and especially for strike moneyness larger than one. Figure 6 shows however that
the probability density implied by technique of Andreasen and Huge (2011) exhibits a staircase shape
when zoomed-in. This is due to the interpolation in between the finite difference grid nodes. In contrast,
the probability density implied by the (exponential) B-spline collocation stays very smooth, and is
continuous by construction.

6 We are grateful to Peter Jäckel for kindly providing this data.
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Figure 5. Implied probability density and implied volatility for the spline collocations of the market
data of Table A2 in appendix A.

Table 4. Root mean square error (RMSE) of the collocation method implied volatilities starting
the calibration with the Bachelier, the convex, or the “best” initial guess, and using a small
regularization constant.

Market Data Collocation Method Bachelier Convex Best

Peter Jäckel B-spline 0.00063 0.00025 0.00001
Exponential B-spline 0.00016 0.00006 0.00003

TSLA raw B-spline 0.00330 0.00326 0.00322
Exponential B-spline 0.00343 0.00345 0.00343

TSLA convex B-spline 0.00054 0.00042 0.00034
Exponential B-spline 0.00108 0.00118 0.00108
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Figure 6. Implied probability density for the exponential B-spline collocation and Andreasen–Huge
techniques, for strike moneyness K ∈ [2.5, 3.0], calibrated to the market data of Table A2 in Appendix A.
The B-spline has a knot located at K = 2.679.

9. Conclusions

The monotonic B-spline and exponential B-spline collocations allow a more flexible arbitrage-free
representation as compared to the monotonic polynomial collocation. They can capture multi-modal
distributions well. In practice, when the goal is to fit market option prices, we have shown that
is important to add a regularization during the optimization in order to stabilize the calibration
and produce a smooth implied probability density, and we have described which regularization
is appropriate.

We have also presented a simple non-parametric technique to de-arbitrage a set of option prices,
which may be used independently of the B-spline collocation method.

In some specific cases, such as the example from Jäckel (2014), the outcome of the B-spline
calibration may be dependent on the choice of the initial fixed knots. In the latter example, the
exponential B-spline collocation behaved better, however.

On actual market options quotes, corresponding to various equity or equity indices, we did not
observe this strong dependence on the choice of initial knots. We observed a quality of fit in terms of
implied volatilities similar to or better than the best non-parametric arbitrage-free methods, such as
the technique of Andreasen and Huge (2011). Compared to the latter, the spline collocation has the
advantage of providing a natural continuous interpolation and extrapolation. The technique from
Andreasen and Huge is based on a fine discretization of the problem, and requires an additional
careful arbitrage-free interpolation scheme to compute the prices for option strikes not placed on the
discretization grid. The B-spline collocation is also less computationally intensive, as the Andreasen
and Huge technique mainly works well on a dense grid, typically composed of thousand points
or more.

An additional interesting property of the exponential B-spline representation is the simple
analytical expression we obtain for the price of a variance swap. The latter is a linear combination of
the B-spline parameters. This allows including the market prices of variance swaps very easily into the
calibration and thus obtaining a better representation of the wings of the implied volatility.

Finally, the B-spline and exponential B-spline collocations can be used directly to price exotic
derivatives within the collocated local volatility model of Grzelak (2016).

We leave for further research the definition of an algorithm for an automatic selection of the best
B-spline knots, as well as an extension to B-splines of order four.
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Appendix A. Market Data

Table A1. Implied volatilities against strikes K for TSLA options expiring on 17 January 2020 as of
15 June 2018. This corresponds to a maturity T = 1.59178 and the forward is f = 356.73.

Strike Implied Volatility Strike Implied Volatility

20 1.217 45 330 0.507 12
25 1.152 97 335 0.504 29
50 1.001 35 340 0.501 40
55 1.008 70 350 0.496 19
75 0.905 59 360 0.491 45

100 0.819 65 370 0.485 71
120 0.779 70 380 0.482 10
125 0.753 93 390 0.477 66
140 0.725 53 400 0.468 23
150 0.703 70 410 0.469 13
160 0.687 09 420 0.465 20
175 0.663 15 430 0.462 10
180 0.654 28 440 0.459 70
195 0.631 00 450 0.456 14
200 0.623 20 460 0.454 18
210 0.615 45 470 0.451 55
230 0.586 62 480 0.445 42
240 0.578 38 490 0.445 28
250 0.562 50 500 0.443 04
255 0.562 55 510 0.439 39
260 0.557 23 520 0.441 32
270 0.548 52 550 0.433 63
275 0.545 61 580 0.429 71
280 0.540 06 590 0.428 44
285 0.538 48 600 0.424 11
290 0.532 53 650 0.422 27
300 0.522 24 670 0.420 34
310 0.520 24 680 0.419 34
315 0.516 84 690 0.419 35
320 0.512 74 700 0.417 59
325 0.510 04
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Table A2. Implied volatilities against moneyness K
F for an option of maturity T = 5.0722, corresponding

to the example 1 of Jäckel (2014).

Moneyness Implied volatility

0.035 12 0.642 41
0.049 10 0.621 68
0.068 62 0.590 58
0.095 92 0.553 14
0.134 08 0.511 40
0.187 41 0.466 70
0.261 96 0.420 23
0.366 17 0.373 30
0.511 82 0.327 56
0.715 42 0.285 11
1 0.249 33
1.397 78 0.228 97
1.953 80 0.220 86
2.730 99 0.218 76
3.817 33 0.218 74
5.335 80 0.218 43
7.458 29 0.217 20

10.425 07 0.215 74
14.572 00 0.214 62
20.368 49 0.214 11
28.470 74 0.214 58
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