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Abstract: We use the theory of coherent measures to look at the problem of surplus sharing in an
insurance business. The surplus share of an insured is calculated by the surplus premium in the
contract. The theory of coherent risk measures and the resulting capital allocation gives a way to divide
the surplus between the insured and the capital providers, i.e., the shareholders.

Keywords: coherence; monetary utility; insurance benefit; benefit sharing

1. Notation and Motivation

In the present work, we analyze a method to distribute the surplus of an insurance business
between the different agents taking part in the risk exchange. The insured pay premia to an insurance
company, and in exchange for this, the company takes over the risks, i.e., the company will pay
out the claims that otherwise would have to be covered by the insured. Besides these two players,
there is also the supervisor or the regulator. The task of the regulator is to make sure that the insurance
business is fair. That means for instance that all companies play with the same rules so that competition
can take place. The regulator must also see whether the companies have enough capital to cover the
risks, since otherwise—in case of bankruptcy—a substantial portion of the risk would be transferred
to society, i.e., to the tax payers or to other economic agents.

As already pointed out by Deprez and Gerber (1985), insurance premia should be dependent
on the whole portfolio of insurance contracts. That would mean that the premium to be charged for
a contract can only be calculated when all other contracts (signed or in the “pipeline”) are known.
In practice, this is impossible, and hence, premia are charged that are certainly higher than the fair
allocation of the total premium to the individual contracts. The result is that the extra part must be seen
as a contribution to the capital of the company and hence is entitled to a share in the eventual surplus.

In the present document, we will deal with a way to calculate the share of each economic agent,
be it the capital providers or shareholders or the insured through their extra premium. The problem
of how to fix the total amount of regulatory capital is the subject of joint ongoing work, which was
initiated by Artzner and Eisele (2018).

We also restrict our analysis to a one-period model. The surplus share is particularly important
for life insurance contracts, and handling these would necessitate a multi-period setup. The technical
and conceptual problems are not easy, so we “postponed” it to further research.

We will use the language of probability theory, as is usually done in financial and actuarial
mathematics. We will fix a probability space (Ω,F ,P) on which all random variables will be
defined. In particular, the claims will be seen as random variables defined on this probability space.
For simplicity, we will only work with bounded random variables. The vector space of bounded
random variables is denoted by L∞(Ω,F ,P) or simply L∞. The restriction to bounded random

Risks 2019, 7, 7; doi:10.3390/risks7010007 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
https://orcid.org/0000-0003-1915-052X
http://www.mdpi.com/2227-9091/7/1/7?type=check_update&version=1
http://dx.doi.org/10.3390/risks7010007
http://www.mdpi.com/journal/risks


Risks 2019, 7, 7 2 of 12

variables facilitates the modeling since we do not have to make assumptions on integrability, big tails,
and so on. However, it triggers some extra mathematical problems. The solution of these problems will
only be sketched, and for more details, we refer to Delbaen (2002, 2011). We assume that the insurance
company makes decisions using a coherent utility function.

Definition 1. A mapping u : L∞ → R is called a monetary utility function if the following properties hold:

1. if 0 ≤ ξ ∈ L∞, then u(ξ) ≥ 0;
2. u is concave, i.e., for all ξ, η ∈ L∞, 0 ≤ λ ≤ 1, we have u(λξ + (1− λ)η) ≥ λu(ξ) + (1− λ)u(η);
3. for a ∈ R and ξ ∈ L∞, u(ξ + a) = u(ξ) + a;
4. if ξn ↓ ξ (with ξn ∈ L∞), then u(ξn)→ u(ξ).

If moreover for all 0 ≤ λ ∈ R, u(λξ) = λu(ξ), we call u coherent.

The number u(ξ) can be seen as a risk-adjusted valuation of the future uncertain position ξ.
Property (1) in the definition is therefore clear. Risk adverseness is usually translated by concavity
properties, and it is believed that combinations are less risky than individual positions. This explains
Property (2). Property (3) means that risk-adjusted valuations are measured in money units. Of course,
money today (date of the valuation) is different from money at the end of the period. Introducing
a deflator or discounting—as has been the practice in actuarial business for hundreds of years—solves
this problem. It complicates notation, and as long as there is only one currency involved, it does not lead
to confusion if one supposes that this discounting is already incorporated in the variables. The fourth
property is a continuity property. Using monotonicity (a consequence of the previous properties;
see Delbaen 2011), we can also require that u(ξn) ↓ u(ξ). In this text, we will use the stronger property
where ↓’s are replaced by ↑’s; see Delbaen (2011). This avoids some mathematical problems that are
easily overcome, but they obscure the philosophy of the approach. The homogeneity property is a strong
property. Later in this paper, where we use commonotonicity, positive homogeneity is already satisfied.

Sometimes, the value u(ξ) only depends on the distribution or law of the random variable ξ.
In this case, we say “law invariant”, “law determined”, etc. An example of such a mapping is the distorted
probability. These were introduced in insurance by Yaari (1987), Denneberg (1989), and Denneberg and
Kaplan (1998). They were later used by Wang (2002). An example of such a utility function is (for ξ ≥ 0)
the Choquet integral

∫ ∞
0 f (P[ξ > t]) dt where f : [0, 1]→ [0, 1] is convex, f (0) = 0, f (1) = 1. See Delbaen

(2011, 1974), Shapley (1972), and Schmeidler (1986) for more details and for the relations between convex
games and commonotonicity. See also Remark 5 below, where we explain that our models cover the
concave distortion as a subcase.

We say that a random variable ξ is acceptable if u(ξ) ≥ 0. We remark that ξ − u(ξ) is always
acceptable. If u is coherent, then the acceptability set A = {ξ | u(ξ) ≥ 0} is a convex cone.
The continuity assumption allows one to apply convex duality theory and leads to the following
representation theorem:

Theorem 1. If u is coherent, there exists a convex closed set S ⊂ L1 (with L1 being the vector space of random
variables on (Ω,F ,P) that are integrable), consisting of probability measures, absolutely continuous with
respect to P, such that for all ξ ∈ L∞:

u(ξ) = inf
Q∈S

EQ[ξ].

Conversely, each such set S defines a coherent utility function.

Remark 1. We identify an absolutely-continuous probability measure Q � P with its Radon–Nikodym
derivative dQ

dP .

Remark 2. Replacing the true or physical probability P by other measures is a practice that is well known in
insurance. Standard techniques that can be described are, e.g., “tilting” and increasing or decreasing ages in
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life insurance contracts. To calculate premia, more weight is then given to unfavorable events, and favorable
events get less weight. The existence of such a set S says that the change in probability is done in a systematic
and consistent way.

Remark 3. We can show that the upward sequential continuity in the definition of coherent utility functions is
equivalent to the existence of a minimizer Q0 ∈ S . This equivalence follows from a deep mathematical result in
functional analysis (the theorem of R.James), Delbaen (2011). That the inf can be replaced by min simplifies
some of the proofs. We call this property the weak compactness property of S .

Definition 2. We say that two random variables ξ, η are commonotonic if there exist a random variable ζ,
as well as two non-decreasing functions f , g : R→ R such that ξ = f (ζ) and η = g(ζ).

Remark 4. Loosely speaking, two risks are commonotonic if they are bets on the same event. Indeed, ξ and η

being nondecreasing functions of ζ, neither of them is a hedge against the other, as both risks ineluctably move in
the same direction. It is a non-trivial exercise to show that we can always take ζ = ξ + η (see Delbaen 2011,
p. 20 for a proof of this result).

Definition 3. We say that u : L∞ → R is commonotonic if for each couple ξ, η of commonotonic random
variables, we have u(ξ + η) = u(ξ) + u(η).

Remark 5. Commonotonic concave monetary utility functions are positively homogeneous and hence coherent.
In general, coherent utility functions satisfy u(ξ + η) ≥ u(ξ) + u(η). That means that by diversifying,
the risk-adjusted valuation gets better. Commonotonic random variables form the opposite of diversification,
as explained in Remark 4. Roughly speaking: what is worse for ξ is worse for η. The commonotonicity of u can
therefore be seen as a translation of the rule: if there is no diversification, there is also no gain in putting these
claims together. Including commonotonicity as an economic principle is desirable for the purpose of premium
calculation or risk measurement in insurance, and many actuarial models are built on the assumption that the
premium principles are commonotonic. For instance, the popular class of concave distortions mentioned above is
comprised of commonotonic utilities; hence, they can be seen as particular examples fitting in the framework we
develop below.

2. Description of the Model

We use the following setup. There are N agents to be insured, indexed i = 1, . . . , N. There is
one insurer denoted by the index 0. There is also a “super”-reinsurer, whose role will be explained
later. He/she will be denoted by r. The agents have liabilities that they want to insure. The liability
for agent i is Xi ≥ 0. Without insurance, his/her position will be −Xi. There are different premium
principles, which will be described in the examples below. The utility functions of the agents are
denoted by ui. The coherent utility function of the insurer is u0 and, to reduce complexity, supposed
to be commonotonic. The utility functions of the agents are more restrictive than the insurer’s utility
function u0; meaning: when a random variable is not acceptable for the insurer, then it is not acceptable
for the agents. Equivalently, we can say that acceptable elements for the agent i are acceptable for the
insurer. This is a translation of the fact that the agent i feels a need for insurance and that an insurer
can fulfill this need. Because of the translation property, we then have for all ξ and all i ≥ 1:

u0(ξ) ≥ ui(ξ).

We assume the utilities ui, i = 1, . . . , N to be monetary utility functions as in Definition 1 and
satisfying the above inequality, with no further assumptions.

The insurer also brings in an initial capital k0. He/she will take the insurance only if he/she
can obtain a better outcome. Because u0 is coherent, the total premium, π0, must be at least π0 =

−u0

(
−∑N

i=1 Xi

)
. Indeed, the insurer takes the random variable −∑i Xi and receives π0. The deal is
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only acceptable for the insurer if u0(π0 −∑i Xi) ≥ 0. We suppose that the scenario set for u0, S0 is
weakly compact so that there is a Q0 ∈ S0 such that:

EQ0

[
N

∑
i=1

Xi

]
= sup

Q∈S0

EQ

[
N

∑
i=1

Xi

]
= −u0

(
−

N

∑
i=1

Xi

)
.

In case u0 is commonotonic, we can (and shall) even choose Q0 so that for all Y commonotonic
with ∑i Xi and such that the distribution of Y has no other points of increase as ∑i Xi, we have
u0(Y) = EQ0 [Y]. This applies for cases such as Y = min(R, ∑i Xi) or Y = (∑i Xi − R)+), where R ∈ R.

From Delbaen (2002, 2011), using the capital allocation principle, we find that the individual “fair”
premia should be:

πi = EQ0 [Xi]. (1)

In Delbaen (2002, 2011) it is shown that the allocation principle can also be obtained as
an application of the marginal contribution of one agent. The latter was the approach given
in Deprez and Gerber (1985). The equivalence requires some technical assumptions that go beyond
the scope of this paper. What this means is that under these extra assumptions, we have:

πi = lim
ε↓0

(−1)
u0(−∑j Xj − εXi)− u0(−∑j Xj)

ε

The equality πi = EQ0 [Xi] immediately implies:

−πi = EQ0 [−Xi] ≥ u0(−Xi) ≥ ui(−Xi).

For the agent i, this is a good deal, provided that the insurance pays entirely the claim Xi at Date
1, since −πi ≥ ui(−Xi). What he/she pays for insurance is better than paying Xi.

In the following, we propose four different models, that is four different ways in which the premia
can be fixed by the insurer in situations where there is either a government guarantee or a reinsurance
possibility. There is a distinction between the fair premia and what is actually charged, which may
be higher. We argue that the difference should be regarded as a contributionto the capital by the
insured agents, and be remunerated by a share of the surplus. We provide conditions that the deals are
acceptable by all agents and the insurer. More precisely, we consider that a deal is acceptable for the
insurer whenever the utility u0 of the profit received by the insurer exceeds k0. We say that the deal
is acceptable for agent i whenever the insurance deal generates an increase in the agent’s utility ui,
as compared with the situation without insurance.

3. Model 1

In this example, we suppose that the insurer has limited liability. We take for the total premium:

π0 = −u0

(
−

N

∑
i=1

Xi

)
.

We distinguish several cases:

1. ∑i Xi > π0 + k0. In this case, the total claim size exceeds the available capital. The excess
is supposed to be covered by, for instance, the government, and this at no cost. The initial
capital should then be sufficiently high to make the deal acceptable for the government. The
determination of this level is beyond the contents of this paper. We denote by A the set A =

{∑i Xi > π0 + k0}.
2. π0 ≤ ∑i Xi ≤ π0 + k0. In this case, there is no surplus, and the insurer will lose part of his/her

investment. We denote by B the set B = {π0 ≤ ∑i Xi ≤ π0 + k0}.
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3. π0 > ∑i Xi. In this case, there is a surplus. The insurer will keep the surplus entirely. This can be
defended since the agents already “gained” from the allocation principle, which is their share
when entering the insurance. Furthermore, they do not take any risk. We denote by C the set
C = {π0 > ∑i Xi}.

Theorem 2. The deal is acceptable for the insurer.

Proof. The insurer will accept the deal if:

u0((π0 + k0 −∑
i

Xi)1B∪C) ≥ k0.

This is easily proven. By the definition of π0, we have u0(π0 −∑i Xi) = 0; hence u0(π0 −∑i Xi +

k0) = k0; therefore, by monotonicity, u0 ((π0 −∑i Xi + k0)
+) ≥ k0.

Remark 6. We remark that there must be a regulator, who requires a minimum capital k0. Otherwise, the
company would choose k0 = 0, take the profit in the event C, and leave the trouble to “society” in the event A.
As said in the introduction, the rules used by the regulators and the implementation in models is the topic of
research by Artzner and Eisele.

4. Model 2

This is almost the same as Model 1, but this time, we require a premium for covering the excess.
We also assume that the reinsurer has no default. The reinsurance premium will be calculated by
the same coherent utility function, i.e., the same set S0. It is here that we use the commonotonicity.
The retention will be denoted by R, and this results in the splitting:

∑
i

Xi =

(
∑

i
Xi

)
∧ R +

(
∑

i
Xi − R

)+

.

The two terms are commonotonic, and hence, the premium satisfies:

π0 = πR + ρR; πR = EQ0

[(
∑

i
Xi

)
∧ R

]
; ρR = EQ0

(∑
i

Xi − R

)+
 .

The retention level needs to be chosen so that the claims are fully covered, that is the available
funds (given by k0 + πR) are not below the retention level. We define the optimal retention R as the
maximal retention level that results in the full coverage of the claims:

R := max{x | x ≤ k0 + πR}.

The existence and uniqueness of R follow from an easy analysis of the function Φ defined as:

R+ → R+; x → x−EQ0

[(
∑

i
Xi

)
∧ x

]
.

As x − EQ0 [(∑i Xi) ∧ x] = EQ0

[
(x−∑i Xi)

+
]

=
∫ x

0 Q0 (∑i Xi ≤ a) da, the function Φ(x) is
continuous, convex, strictly increasing after it leaves zero, is zero at zero, and tends to ∞ for x → +∞.

Hence, the optimal retention R satisfies:

R = k0 + πR,
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that is, the available capital is R, which is also the maximum the insurer has to pay out. The surplus
is therefore:

R−
(

∑
i

Xi

)
∧ R.

The agents again do not take any risk, and hence, they should not participate in the surplus.
The insurer finds it a good deal if:

u0

(
R−

(
∑

i
Xi

)
∧ R

)
≥ k0.

However, the definition of R shows that u0 (R− (∑i Xi) ∧ R) = k0. That means there is no
incentive to do business, and the insurer must get all the profit to have an equivalent outcome.

5. Model 3

This is an extension of the previous models. The agents pay a premium equal to pi ≥ πi,
where πi is the fair premium, introduced in Equation (1). This has the advantage that the insurer
can announce the premium without having to calculate the total premium necessary to cover the
total losses. Of course, this procedure should lead to a premium greater than the fair premium,
as calculated in the previous models. An example of such a premium calculation could be the amount
supQ∈S0

EQ[Xi] = −u0(−Xi). The extra premium pi −πi can be seen as a contribution of agent i to the
capital; hence, agents should be entitled to a share in the surplus. All investors must be treated in the
same way, and hence, the share of agent i is proportional to his/her contribution, namely pi−πi

∑j(pj−πj)+k0
.

The investor will get a proportion k0
∑j(pj−πj)+k0

. These fractions are paid out regardless of having

caused a claim or not.
The retention is now defined by the relation:

∑
i
(pi − πi) + k0 + πR = R.

The existence and uniqueness of R are proven in the same way. This time, we must see whether
this is a good deal for the insurer, as well as for the agents.

Theorem 3. The deal is acceptable for the insurer.

Proof. For the insurer, we must check the inequality:

u0

 k0

k0 + ∑i (pi − πi)

(
R−∑

i
Xi

)+
 ≥ k0.

By positive homogeneity of u0, this is the same as:

u0

(R−∑
i

Xi

)+
 ≥ k0 + ∑

i
(pi − πi) .

As in the previous example, this follows from the definition of R, which implies:

u0

(
R−

(
∑

i
Xi

)
∧ R

)
= R− πR = k0 + ∑

i
(pi − πi) .
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Theorem 4. The deal is acceptable for the insured as soon as pi ≤ supQ∈S0
EQ[Xi].

Proof. For agent i, we must check:

ui

−pi +
pi − πi

k0 + ∑j
(

pj − πj
) (R−∑

i
Xi

)+
 ≥ ui (−Xi) .

This is equivalent to:

ui

 pi − πi

k0 + ∑j
(

pj − πj
) (R−∑

i
Xi

)+
 ≥ ui (pi − Xi) .

The left-hand side is positive, whereas the right-hand side is negative, provided the premium
pi is not too big. For instance, if pi ≤ supQ∈S0

EQ[Xi], we have u0 (pi − Xi) ≤ 0 and, hence, also
ui (pi − Xi) ≤ 0.

Remark 7. In any case, the agent i will not pay a premium pi that is bigger than −ui(−Xi). Paying a higher
premium and counting on surplus participation is not realistic since the surplus share also depends on the claims
incurred through the other agents.

6. Model 4

We continue the building of stepwise more complicated models. We suppose that there are
two insurers. The first one has a utility function u0, described by the scenario set S0. This insurer
acts as the direct insurer. The second insurer acts as a reinsurer with utility function ur described by the
scenario-set Sr. For a claim 0 ≤ ξ, the reinsurer would charge a premium supQ∈Sr

EQ[ξ].
Both utility functions u0 and ur are supposed to be commonotone. Their scenario-sets are

therefore determined as cores of convex games, say v0 ≥ vr. For simplicity, we suppose that both
scenario-setsS0,Sr are weakly compact. We can therefore suppose that there are elementsQ0 ∈ S0,Qr ∈ Sr,
such that for all a:

sup
Q∈Sr

EQ

[
∑

j
Xj

]
= EQr

[
∑

j
Xj

]

sup
Q∈Sr

EQ

[(
∑

j
Xj

)
∧ a

]
= EQr

[(
∑

j
Xj

)
∧ a

]

sup
Q∈Sr

EQ

(∑
j

Xj − a

)+
 = EQr

(∑
j

Xj − a

)+


sup
Q∈S0

EQ

[
∑

j
Xj

]
= EQ0

[
∑

j
Xj

]

sup
Q∈S0

EQ

[(
∑

j
Xj

)
∧ a

]
= EQ0

[(
∑

j
Xj

)
∧ a

]

sup
Q∈S0

EQ

(∑
j

Xj − a

)+
 = EQ0

(∑
j

Xj − a

)+
 .
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The reinsurer is supposed to be default-free (it could be a government institution or a solidarity
fund of the insurance industry). We suppose that the agents have access to this reinsurer. We
assume that:

ui ≤ ur ≤ u0 for all i,

in particular S0 ⊂ Sr. This reflects the fact that on the one hand, the agents are more risk-adverse than
the insurers, and on the other hand, the reinsurer being default free, the premia for the reinsurer are
higher than for the direct insurer.

The actions of the direct insurer are subject to the rule that after reinsurance, the claims must
be covered completely. The direct insurer will therefore take a reinsurance with a retention R,
to be determined later. For the retention level R, the cost of the reinsurance is given by (using the
commonotonicity of ur):

ρR := −ur

−(∑
j

Xj − R

)+
 = EQr

(∑
j

Xj − R

)+
 .

To get full coverage of their risks without the input of any capital (that is, k0 = R = 0), the agents
should pay a total premium:

ρ0 = −ur

(
−∑

j
Xj

)
= EQr

[
∑

j
Xj

]
,

as the direct insurer can transfer the totality of the claims to the reinsurer at the cost ρ0. Using the
capital allocation principle, we deduce that the premium for such a coverage to be paid by agent j is:

πr
j := EQr

[
Xj
]

.

For the moment, we consider the amounts πr
j as the premium-input of the agent j; if they pay

higher premia, pj, the differences, pj − πr
j , are regarded as capital-input. In practice however, the direct

insurer brings in a capital k0 > 0 (again, we consider this to be fixed by a regulator), and hence, the
retention R will not be zero. This means that whenever R > 0, the premia πr

j that we are considering are
not exactly the fair premia (see also Remark 8 below).

As the insurer participates with capital k0, we must determine the retention level R; as before, we
consider R to be the maximal retention level that results in full coverage. The full coverage condition
is now given by: R ≤ k0 + ∑j pj − ρR, so that the optimal retention is:

R = max{x | x ≤ k0 + ∑
j

pj − ρR}.

The full coverage condition can be written as: R−EQr

[(
∑j Xj

)
∧ R

]
≤ k0 + ∑j(pj − πr

j ).
Therefore, the existence and unicity of optimal retention comes using identical arguments as

before for Φ, but this time for the function Ψ, defined as:

R+ → R+; x → x−EQr

[(
∑

j
Xj

)
∧ x

]
.

From now on, we always assume R to be the optimal retention, that is: R = k0 + ∑j pj − ρR,
or, alternatively:

Ψ(R) = k0 + ∑
j
(pj − πr

j ).

In Remark 9, we analyze the dependence of the optimal reserve on the level of the capital.
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With the capital input of the insurer being k0 and the retention level R, the outcome (i.e., surplus)
at the end of the contract is:

S := k0 + ∑
j

pj − ρR −
(

∑
j

Xj

)
∧ R ≥ 0.

We denote by λ0 = k0
k0+∑j(pj−πr

j )
the proportion of the surplus that the direct insurer is keeping

and by λi =
pi−πr

i
k0+∑j(pj−πr

j )
the proportion of the surplus that agent i is keeping.

We now prove that this procedure of surplus sharing is beneficial for the insurer and for the
insured. Let us fist check the utility for the direct insurer.

Theorem 5. The deal is acceptable for the direct insurer.

Proof. For the direct insurer, the deal is acceptable if and only if the utility of his/her share of the
surplus is not less that k0, that is u0(λ0S) ≥ k0. The utility of his share is given by:

u0(λ0S) = λ0

(
k0 + ∑

j
pj − ρR −EQ0

[(
∑

j
Xj

)
∧ R

])
.

This quantity is bigger than k0 if and only if:

−EQ0

[(
∑

j
Xj

)
∧ R

]
−EQr

(∑
j

Xj − R

)+
 ≥∑

j
(−πr

j ) = −EQr

[
∑

j
Xj

]
= ur

(
−∑

j
Xj

)
.

The utility functions u0 and ur are commonotone, and therefore, we have that:

u0

(
−
(

∑
j

Xj

)
∧ R

)
= −EQ0

[(
∑

j
Xj

)
∧ R

]

ur

−(∑
j

Xj − R

)+
 = −EQr

(∑
j

Xj − R

)+
 .

Therefore, the inequality is obvious, given u0 ≥ ur.

Theorem 6. The deal is acceptable for the insured as soon as pi ≤ supQ∈Sr
EQ[Xi].

Proof. To check the advantage for the insured i, we must show that ui(λiS− pi) ≥ ui(−Xi), that is:

ui(λiS) ≥ pi + ui(−Xi)

The surplus being nonnegative, the left-hand side is nonnegative. The right side is negative
provided the premium pi is not too big. For instance, if pi ≤ supQ∈Sr

EQ[Xi], we have ur (pi − Xi) ≤ 0
and, hence, also ui (pi − Xi) ≤ 0.

Remark 8. For each agent, the cost pi was split into two parts: premium-input πr
i and capital-input pi −

πr
i , with all premia-input summing up to EQr [∑j Xj] = −ur

(
−∑j Xj

)
. This is higher than the total

required premium, which should be the cost of the reinsurance contract plus the cost of the direct insurance of the
claims up to the retention level, given as:
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−ur

−(∑
j

Xj − R

)+
− u0

(
−
(

∑
j

Xj

)
∧ R

)

= EQr

(∑
j

Xj − R

)+
+EQ0

[(
∑

j
Xj

)
∧ R

]
.

Indeed, from our assumptions on the utility functions, we have:

EQr

(∑
j

Xj − R

)+
+EQ0

[(
∑

j
Xj

)
∧ R

]
≤ EQr

[
∑

j
Xj

]
.

Probably, a more fair way to split the cost pi is to consider:

πi = EQr

[
Xi1{∑j Xj>R}

]
+EQ0

[
Xi1{∑j Xj≤R}

]
as being the premium-input of agent i and the remaining pi − πi as being the capital-input of agent i (provided
this is positive). This different way of splitting the cost does not affect (of course) the way of computing the optimal
retention level, nor the surplus S available after payment of all claims. It is only meant to provide an alternative
rule for sharing the surplus: now, k0

k0+∑j(pj−πj)
is the proportion of the surplus that the direct insurer is keeping

and pi−πi
k0+∑j(pj−πj)

the proportion of the surplus that agent i is keeping. Nevertheless, for such allocations of the

surplus, we did not find a simple condition for the premia pi that ensures that the deals are acceptable for the
agents, while respecting pi ≥ πi. By a simple rule, we mean a condition on all pi that does not involve the agent’s
utility directly.

However, the reader can easily check that for the direct insurer, any allocation among the insured agents of

the quantity EQr

[(
∑j Xj − R

)+]
+EQ0

[(
∑j Xj

)
∧ R

]
leaves the insurer with an outcome that in u0 utility

is equivalent to the initial capital k0. This is even independent of the retention limit.

Remark 9. We will now show that with increasing capital k0, the utility for the direct insurer goes up. Let us
denote by R(k0) the solution of:

R−EQr

[(
∑

j
Xj

)
∧ R

]
= k0 + ∑

j
(pj − πr

j ).

We recall that the function Ψ(R) = R−EQr

[(
∑j Xj

)
∧ R

]
satisfies Ψ(0) = 0 and is continuous with

Ψ′(R) = Q
(

∑j Xj ≤ R
)

. Hence, it is strictly increasing after it leaves zero and tends to ∞ when R tends to

∞. Furthermore, it is convex. These properties ensure that Ψ−1 is well defined on (0, ∞) and is continuous,
strictly increasing, and concave.

Furthermore, we recall, that we consider that all pj ≥ πr
j so that ∑j(pj − πr

j ) ≥ 0. We can consider
k0 > 0, to ensure the positivity of the quantity k0 + ∑j(pj − πr

j ). The implicit function theorem then shows

that dR
dk0
≥ 0.
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The utility of the insurer’s share of the surplus u0(λ0S) can be written as:

λ0

k0 + ∑
j

pj −EQ0

[(
∑

j
Xj

)
∧ R

]
−EQr

(∑
j

Xj − R

)+


=
k0

k0 + ∑j(pj − πr
j )

(
k0 + ∑

j
(pj − πr

j )−EQr

[(
∑

j
Xj

)
∧ R

]
−EQ0

[(
∑

j
Xj

)
∧ R

])

=
k0

k0 + ∑j(pj − πr
j )

(
R−EQ0

[(
∑

j
Xj

)
∧ R

])

=
k0

k0 + ∑j(pj − πr
j )
EQ0

(R−∑
j

Xj

)+
 .

The first factor is clearly increasing in k0, and the second factor is increasing in R, hence also in k0.
More important is the difference between this utility and the initial capital k0:

u0(λ0S)− k0 =
k0

k0 + ∑j(pj − πr
j )

(
R−EQ0

[(
∑

j
Xj

)
∧ R

])
− k0

= k0

 R−EQ0

[(
∑j Xj

)
∧ R

]
k0 + ∑j pj −EQr

[
∑j Xj

] − 1


= k0

EQr

[(
∑j Xj

)
∧ R

]
−EQ0

[(
∑j Xj

)
∧ R

]
k0 + ∑j pj −EQr

[
∑j Xj

]
 .

This shows that when k0 → ∞, the extra return tends to EQr

[
∑j Xj

]
−EQ0

[
∑j Xj

]
, but also shows that

the return on the initial capital tends to zero.

7. Discussion of the Models

There are different shortcomings of the models used. The premia paid by the agents are augmented
by the administration or handling costs. Here, we might argue that in the case of a claim, the agents
incur these costs themselves. In the handling costs, there is also included the commission paid out to
the intermediaries, the brokers. These commissions should not be too high since otherwise, the agents
could keep their liabilities or take insurance only for the larger part of the claims, the so-called tail of
the distribution.

We believe that in general, the utility functions of the insured agents should not be supposed
positively homogeneous. They should be concave. For this reason, we did not make any assumption
on the utility function of an agent, except that it is more restrictive than that of an insurer, which
seemed to us to be a realistic property. The inequalities ui ≤ ur ≤ u0 can be verified in case u0 and ur

are positively homogeneous and ui is only concave. However, the inequality implies some geometric
restrictions on the acceptability set of agent i. For instance, the function ui cannot be differentiable at
0 ∈ L∞. Note also that whenever commonotonicity is used, one must suppose that the utility functions
are positively homogeneous, as this is a consequence of commonotonicity, Delbaen (2011). In the
current paper, we only used coherence and commonotonicity for the utility functions of the insurer and
the reinsurer, but these properties were not used for the insured (where we used only the monotonicity
of the utility functions and the inequalities implied by the more restrictive utilities).

We supposed the presence of a reinsurer who is default free. In some cases, a government
can provide a guarantee, but in general, we must include the possibility of default of the reinsurer.
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Some countries require guarantees from the reinsurer either under the form of deposits or under the
form of letters of credit issued by “bona fide” financial institutions.

In the case of liability insurance, there might be a rule that in case of the default of the insurer
and of the reinsurer, the agent is not liable for the remaining losses. Especially in high-end insurance
contracts, such rules and exceptions make the modeling extremely difficult.

In our models, there is a reward for those who take the risk. This is in contradiction with some
life insurance practices, where only the amount of the total premium is important.
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