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Abstract: One of the main challenges investors have to face is model uncertainty. Typically,
the dynamic of the assets is modeled using two parameters: the drift vector and the covariance matrix,
which are both uncertain. Since the variance/covariance parameter is assumed to be estimated with a
certain level of confidence, we focus on drift uncertainty in this paper. Building on filtering techniques
and learning methods, we use a Bayesian learning approach to solve the Markowitz problem and
provide a simple and practical procedure to implement optimal strategy. To illustrate the value added
of using the optimal Bayesian learning strategy, we compare it with an optimal nonlearning strategy
that keeps the drift constant at all times. In order to emphasize the prevalence of the Bayesian learning
strategy above the nonlearning one in different situations, we experiment three different investment
universes: indices of various asset classes, currencies and smart beta strategies.

Keywords: Bayesian learning; Markowitz problem; optimal portfolio; portfolio selection

1. Introduction

The seminal work by Markowitz (1952) initiated modern portfolio theory and provided a solution
to the portfolio selection problem according to a mean-variance criterion. The mean-variance optimal
portfolio is the one that maximizes its expected return at a given level of risk, measured by its variance,
or conversely the one that minimizes its risk at a given level of expected return. This one period model
has known multiple extensions, among them the discrete time multi-period model by Samuelson (1969)
and the continuous time model by Merton (1969).

Initially, the parameters of these models have been considered known and constant, especially
the parameters that drive the behavior of the assets: drifts and covariances. It not only oversimplifies
the reality but also it raises the question of estimating these parameters. The most basic and widely
used method consists of estimating drifts and covariances from past data and fix them once and for all.
Estimating volatility in this way appears to give relatively good results in practice, while estimating
the drift seems to be more difficult or even impossible, see Merton (1980). Moreover, optimal portfolios
are very sensitive to the level of expected returns, as shown in Best and Grauer (1991), and a wrong
estimation can result in very suboptimal portfolios a posteriori. See also Elliott et al. (1998) and
Siegel and Woodgate (2007) for more details about these issues.

This explains the development of the literature on parameters uncertainty in portfolio analysis,
see for instance Barry (1974) and Klein and Bawa (1976), and especially on Bayesian statistics, see
(Aguilar and West 2000; Avramov and Zhou 2010; Bodnar et al. 2017; Frost and Savarino 1986).
Nonetheless, these models remain static and cannot benefit from the flow of information which results
in a nonadaptive strategy, unable to process the most recent information conveyed by the assets market
prices. It is one of the main reasons why literature on filtering and learning techniques in a partial
information framework has developed, see (Cvitanić et al. (2006); Rogers (2001); Lakner 1995, 1998).
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The Bayesian learning approach consists of modeling the uncertainty of a set of parameters by a prior
distribution, representing the beliefs of the investor on the potential values of the parameters, which is
updated with incoming information, for instance assets market prices. In particular, in our companion
paper De Franco et al. (2018), we have solved the multidimensional Markowitz problem in the case of
an uncertain drift using Bayesian learning with a Gaussian prior and have provided a brief analysis of
sensitivities of the optimal solution w.r.t. the different parameters.

In this paper, we adapt the results in De Franco et al. (2018) to implement the strategy in practice.
Indeed, the solution provided is in continuous time and the amounts invested in the assets are
unconstrained. Of course, in reality, trading is discrete and amounts invested in assets are limited,
so we discretize the optimal solution of the continuous Markowitz problem, turn amounts into
proportions and cap the optimal proportions to be invested in order to fit the portfolio management
constraints. Our purpose is to show the prevalence of the Bayesian learning strategy above the
nonlearning one which considers the drift constant. To do so, we illustrate our point by confronting
both strategies to different datasets representing different investment universes. First, we use a panel
of major indices in four different asset classes: corporate bonds, sovereign bonds, commodities and
equities completed with cash. Then, we consider bank accounts in foreign banks that pay the local
interest rate but are valued in EUR, in order to study the performance of both strategies with respect to
foreign exchange rates. Finally, we implement both strategies in an investment universe composed
of smart beta strategies. Moreover, using the first dataset, we provide a sensitivity analysis of both
strategies to various parameters: the uncertainty in the model, the impact of the leverage, the review
frequency and the rebalancing frequency. We do not show this analysis for the two other datasets since
we would find similar results.

The paper is organized as follows. Section 2 details the model and the discretized optimal
strategies while Section 3 depicts the market data and the workflow. Section 4 shows the results in the
case of the first dataset, and Section 5 is about the sensitivity analysis of the Bayesian learning and the
nonlearning strategies applied to this dataset. Finally, Section 6 deals with foreign exchange rates and
Section 7 with smart beta strategies.

2. The Framework

We consider a financial market consisting of one risk-free asset, whose return is denoted by r f ,
and n risky assets whose returns rt are modeled by{

rt = B + σξt
ξt ∼ N(0, In).

(1)

We shall assume that the random vectors ξt are independent for all t. Model (1) includes
major linear models available in the financial literature, such as CAPM (Lintner 1965; Sharpe 1964),
discrete-time Black-Scholes (Black and Scholes 1973) or Fama-French models (Fama and French 1993,
2015, 2016). B ∈ Rn is the vector of the expected returns of the risky assets, while Σ := σσ′ ∈ Rn×n

is the covariance matrix of the risky assets. We assume that σ−1 exists. We denote by A the set of
admissible investment strategies. An admissible strategy w = (wt)t ∈ A represents the fraction of
wealth invested in the assets at any time t. Recalling from the self-financing condition that,

Xs+1 = Xs

(
1 + w′

srs+1 +
(
1−w′s1

)
r f
)

, s = 0, . . . , T − 1,

we write the wealth at maturity T > 0 as

Xw
T = X0

T−1

∏
s=0

(
1 + w′

srs+1 +
(
1−w′s1

)
r f
)

.
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We consider an investor who is aiming to solve the Markowitz problem:
max
w∈A

E [Xw
T ]

Var
(
Xw

T
)
≤ ϑ,

(2)

where ϑ > 0 is the risk tolerance for the investor.
The initial version of the Markowitz problem (Markowitz 1952), which was stated for a single

period, has been widely studied and solutions in the multi-period framework (such ours) in both
discrete and continuous time have been provided (see e.g., Karatzas et al. (1987); Merton 1969, 1975;
Samuelson (1969) among others). The common assumptions in previous works are that both expected
return and volatility coefficients (B and Σ in our framework) are known. In practice, these parameters
are not directly observable and must be estimated from the data or input by the investor at
inception. In both cases, biased parameters can significantly affect ex-post performance of the optimal
strategy. Although the parameter Σ can be estimated from the data with some degree of confidence,
the estimation of B turns out to be quite difficult, if not impossible. Because the optimal strategy
strongly depends on both B and Σ, a wrong estimation could significantly affect the optimal strategy.

To get closer to reality and account for model uncertainty, we assume reasonably that the investor
has an a priori view on the risky assets and their expected returns, but she is uncertain about how
good her forecast is. Introducing uncertainty into the problem brings it closer to the real-life situation,
where not only does the investor not know the parameters of the model, but is also forced to admit
that her estimates are uncertain. More precisely, the investor does not observe B and only assumes
that B ∼ µ, where µ is a probability distribution in Rn centered at b0 (E [B] = b0). The parameter b0 is
the vector of returns the investor is expecting, while µ translates her uncertainty about it.

Remark 1. When µ = δb0—the Dirac distribution at b0—the investor has no uncertainty about her forecast.

Remark 2 (Discretization). Implementing optimal strategies in practice leads to continuous adjustments to
the optimal solutions in time and makes them suboptimal. Here, we discretize the continuous optimal solutions
and controls, and cap them. To propose a solution to Problem (2), we suggest confronting the discretized
continuous optimal Bayesian learning and nonlearning solutions since the investor can observe assets prices
nearly continuously but trades in discrete time.

The paper De Franco et al. (2018) solved the continuous-time version of problem (1) for a large
class of distributions µ with E[|B|2] < ∞ in a Bayesian framework using dynamic programming
techniques. We report here the discretized version of the results in the Gaussian case µ = N(b0, Σ0):
Let µ = N(b0, Σ0) with Σ0 > 0. Then, the discretized version of the continuous-time optimal solution
of the Bayesian–Markowitz problem is given by (the Bayesian learning case, BL)

wBL
s = α

(
s, Xs, B̂s

)
/Xs (3)

where Xs is the wealth process at time s and

• B̂s =
(

Σ0
−1 + sΣ−1

) (
Σ0
−1b0 + (σ′)−1 Y s

)
,

• Ys is defined as [σY s]
i = ∏s−1

u=0
(
1 + ri

u
)
+ s

2 Σii,

• α (s, x, b) =
(

x0 − x +
√

ϑ eR(0,b0)√
eR(0,b0)−1

)(
Σ−1b−

(
ψ(s)σ−1)′∇bR(s, b)

)
,

• ψ(s) = Σ0 (Σ + sΣ0)
−1 σ,

• R is the unique solution to the following semi-linear parabolic PDE
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 0 = −∂tR−
1
2

tr
(

ψψ′D2
b R
)
+ 2

(
ψσ−1b

)′
∇bR− 1

2

∣∣ψ′∇bR
∣∣2 − ∣∣∣σ−1b

∣∣∣2 ,

0 = R(T, b),

which in the case of a Gaussian prior proves to be of the form R(s, b) = b′M(s)b + r(s), where M is
the solution to a multidimensional Riccati equation, for which the solution can be found explicitly,
and r is the solution to a first-order linear differential equation depending on ψ and M, which can also
be explicitly calculated. See De Franco et al. (2018) for further details.

The process B̂ is the conditional expectation of B given the current observation of the assets
returns, which are given by Y . The matrix Σ0 represents the uncertainty around b0. As time goes by,
we observe more returns which in turns improves our knowledge of B, as one can see from the fact
that when s→ T, more weight is put on Σ−1 in the definition of B̂. The matrix valued function ψ is
linked to the conditional covariance of B given Y .

Remark 3. When there is no uncertainty (µ = δb0), or when the investor directly inputs her estimate b0,
the structure of the discretized version of the optimal continuous solution is simplified as follows (the nonlearning
case, NL):

wNL
s = αNL (s, Xs) /Xs (4)

where

• αNL (s, x) =
(

x0 − x +
√

ϑ eR(0,b0)√
eR(0,b0)−1

)
Σ−1b0,

• R(s, b) = b′Σ−1b(T − s).

The main differences between the Bayesian learning and the nonlearning strategies arise from

• the market risk premium R in the leverage coefficient,
• the correction term

(
ψ(s)σ−1)′∇bR(s, b) which is zero for the nonlearning strategy.

As time goes by, we observe realized returns and we learn more about B. Indeed, with uncertainty,
the Bayesian learning strategy is updated with B̂, which is the conditional expectation of B given
the current observation (new knowledge). The trade Σ−1B̂ is modified with the corrective term(
ψ(s)σ−1)′∇bR(s, B̂).

Both wBL and wNL are unconstrained. In order to provide a realistic analysis on both strategies,
we consider capped versions of them.

Definition 1. The capping operator for an investment strategy w with a leverage l > 0 is

c(w, l) := w1|w|1≤l +
l
|w|1

w1|w|1>l ,

where |w|1 = ∑n
i=1 |wi|.

In Section 3, we will implement both the Bayesian learning and the nonlearning strategies in the
context of asset allocation with real market data, to get insights on the effect of learning and its value
added (value of information).

3. Market Data

We consider four asset classes across different regions, each of which is represented by a
well-known market index detailed in Table 1, and the EONIA rate as the risk-free rate for an investor
whose base currency is the Euro.
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Table 1. Major market indices relative to each currency and asset class.

Bloomberg Ticker Name Currency Asset Class

SPDYCITR Index S&P GSCI Dynamic Roll TR USD Commodity
GOLDLNPM Index LBMA Gold Price PM USD Commodity
LECPTREU Index Bloomberg Barclays Euro Aggregate Corporate TR Index EUR Corporate Bonds

IBOXHY Index iBoxx USD Liquid High Yield Index USD Corporate Bonds
IBOXIG Index iBoxx USD Liquid Investment Grade Index USD Corporate Bonds

IBOXXMJA Index EUR Corporate Liquid Hight Yield EUR Corporate Bonds
SPTR500N Index S&P 500 Net TR Index USD Equity

SX5T Index Eurostoxx 50 Net TR Index EUR Equity
TUKXG Index FTSE 100 TR Index GBP Equity

NDUEEGF Index MSCI Emerging Net TR Index USD Equity
SPTPXN Index S&P Topix 150 NR JPY Equity

LUATTRUU Index Bloomberg Barclays US Treasury TR Unhedged Index USD Sovereign Bonds
LEATTREU Index Bloomberg Barclays EurAgg Treasury TR Unhedged Index EUR Sovereign Bonds
JPEICORE Index JP Morgan EMBI Global Core Index USD Sovereign Bonds
FTFIBGT Index FTSE Actuaries UK Conv. GILTs All Stocks TR Index GBP Sovereign Bonds
EONIA Index EMMI EURO Overnight Index average EUR Cash

Non-Euro-denominated indices are hedged against the Euro simply by implementing a monthly
rolled hedging overlay with one-month forward contracts. We collected data from December 1998,
except for the EUR Corporate Liquid High Yield for which we only obtained data from January 2006.
Prices were sourced from Bloomberg, while currency spot and forward rates came from Datastream
and both refer to the 4 p.m. London fixing. Our choice of market indices is motivated by their
popularity among investors, their liquidity, and the wide range of financial products available in
the market that give exposures to these indices (such as listed futures and ETFs). While limited in
number, they provide well-diversified exposures to major global asset classes. Therefore, this suits the
underlying premises of the Markowitz problem which is less suited for asset allocation in presence of
many underlyings.

The testing period is from January 2000 to June 2018. To implement both BL and NL, we iteratively
followed the workflow outlined below and Table 2 collects the parameters (in bold in the workflow)
used for our test.

Work Flow 1.

• Let T > 0 and consider the time-frame {t0 < t1 < · · · tn = T}.
• We call t0 a Review date since at this date we estimate all the parameters and calculate the function R that

define wBL in (3) and wNL in (4). To ensure a realistic implementation of both strategies, all data-based
estimations are performed with data available before the Review date t0 and ending on t0 − Lag. The first
Review date is 21 January 2000.

• We call tk a Rebalancing date if, at this date, we updated the portfolio weights according to (3) and (4).
To limit turnover and transaction costs, the subsets of Rebalancing dates in [0, T] is relatively small.
We assume that both Review and Rebalancing dates are Fridays, so that the number of Rebalancing
dates in the [0, T] period is given by the frequency Freq.

• b0 is estimated as the sample mean over the past rw days ending on t0 − Lag or over the maximum data
available with a minimum of 30 data points. Σ is estimated as the sample covariance matrix over sw days
ending on t0 − Lag or over the maximum data available with a minimum of 30 data points.

• We consider a parametric function for ϑ as follows:

ϑ = ϑ(d) := T (d× Xt0)
2 /
(

1.962
)

, d ∈ (0, 1).

The motivation behind our choice comes from Problem (2). Indeed, we expect that

XT � E [XT ]− 1.96×
√

Var (XT)

T
≥ E [XT ]− 1.96×

√
ϑ

T
,
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and we set ϑ so that within our confidence interval, the gap to the expected value of XT is a fraction of the
initial wealth

1.96×
√

ϑ

T
∼ d× Xt0 .

• The uncertainty around the estimate b0 is measured by Σ0. We assume Σ0 to be diagonal. Therefore, each
diagonal entry measures the degree of confidence we have on the relative entry of b0. Each diagonal entry is
modeled as follows:

Σii
0 = Σii

0 (unc) := unc×
(

pcti
95 − pcti

5
2

)2

,

where pcti
95 (pcti

5) is the 95% (5%) quantile of the empirical distribution of the return ri. To calculate
these quantiles, we consider the time series of the returns ri spanning for rq days and ending on t0 − Lag.
Up to the parameter unc, the square root of Σii

0 is half of the segment, centered at the median, that contains
90% of the empirical distribution over rq days.

• Strategies wBL and wNL are considered in their capped versions according to Definition 1 with a maximum
leverage L.

• At time T, we rerun the workflow by setting t0 = T and update all parameters according to the new data
available.

It should be noted that the choice of diagonal Σ0 does not imply that assets are uncorrelated. The
matrix Σ0 represents the uncertainty the investor has around her initial prior b0. While assets are
correlated, we assume that the investor makes her initial expectations on B and she only includes her
anticipated error due to uncertainty on her expectations. To simplify, we do not include off-diagonal
terms (uncertainty on pairwise cross-expectations), because this allows for a simple, one-parameter
modeling of uncertainty in Σ0.

Our choice of Σii
0 reflects the assumption that investors anticipate the assets returns to be equal to

b0 + error, and the error, which is unknown and represents their uncertainty around the expectation
b0, depends on the width of the empirical distribution of returns. In practice, if we decide to proxy
expected returns with the average of past returns (which of course is known to be a very poor indicator
of future returns), then the width of the empirical distribution, here measured by the difference
between the 95% and 5% quantiles, serves as a proxy for uncertainty. The fine-tuning parameter unc is
a simple way to increase the uncertainty in the initial guess b0.

Table 2. Parameters used in the implementation of BL and NL as defined in the workflow.

Parameter Value

X0 100
T 3 months

Lag 1 day
Freq Monthly, 3rd Friday of each month.
rw 750 days
sw 125 days
d 10%

unc 100
rq 125
L 200%

The workflow above and Table 2 represent the Base Case. In Section 4, we report the results for
both the Bayesian learning (BL) and the nonlearning (NL) strategies over the last 18 years. In Section 5,
we will assess the sensitivity of both strategies to changes in the parameters of the Base Case to get a
better grasp of the value added of learning in the context of portfolio construction.
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4. The Base Case Result

We implemented the workflow to build the wealth processes XBL and XNL as in (2) related to
the BL and NL strategies in the Base Case framework (Table 2). For the sake of simplicity, we refer to
BL as either the strategy weights wBL or the associated wealth process XBL and we do the same for
NL. Table 3 collects some long term statistics for both strategies. Although our choice of statistics is
limited and many other interesting properties could have been easily derived, such as skew, kurtosis,
VaR, CVaR or turnover (as e.g., in Scaillet (2004)), we prefer to show the statistics that are usually
considered at any initial due diligence for investment strategies, such as annualized performance,
volatility, maximum drawdown, Sharpe ratios and information ratios. The main reason behind our
choice is to provide evidence on the effect of learning in the improvement of long-term performance.

Table 3. Statistics for the BL and NL strategies. The Sharpe Ratio is calculated as the ratio between
annualized performance and annualized volatility. In this case, the difference is given in relative terms.
Data from January 2000 to June 2018.

Statistics BL NL Difference

Ann. Performance 5.96% 3.96% 2.00%
Ann. Volatility 5.51% 4.92% 0.59%

Max. Drawdown −8.51% −11.2% 2.70%
Sharpe ratio 1.08 0.80 34.26%

Information ratio 0.55 - -

Over the period from January 2000 to June 2018, BL delivered an annualized performance of
5.96% while NL reached 3.96%. Incorporating uncertainty and learning from the data yielded an
annualized 2% excess return. In terms of risk metrics, annualized volatility is slightly higher for BL
(0.59% difference) but also shows a better maximum drawdown figure (−8.51% for BL versus −11.20%
for NL). Finally, the Sharpe ratio is 1.08 for BL versus 0.80 for NL, or a 34.26% improvement in relative
terms. The information ratio of BL over NL is about 0.55, meaning that the performance of BL comes
from a better ability to process incoming information.

Figure 1a shows the historical levels of the wealth processes BL and NL, while Figure 1b provides
the relative strength of BL over NL as well as the growth line. An increasing relative strength index
signals outperformance of BL over NL, while a decreasing index shows underperformance.

(a) (b)

Figure 1. Historical values of the portfolios calculated with both wBL and wNL in the Base Case (a)
and their ratio (b).

Looking at Figure 1b, BL mostly delivers a more robust and more regular performance than NL.
Integrating uncertainty in the drift, learning from the data and adjusting the strategy accordingly clearly
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adds value over time. Specifically, we identify three distinct periods: from inception until February 2006
the ratio BL/NL has an upward trend at moderate pace, reaching 1.13 (or equivalently 13% cumulated
outperformance); then BL underperforms NL until October 2008; and finally, from October 2008 to June
2018, BL strongly dominates NL with 40% of cumulated outperformance.

5. Sensitivity Analysis

In the following paragraphs, we will stress-test the BL strategy by measuring the effects of the
main parameters on long term results. Our stress-test methodology consists in fixing all but one of the
parameters detailed in Table 2 and varying the remaining parameter across plausible values.

5.1. Impact of Uncertainty

Here, we study the effect of the uncertainty parameter unc in the strategy. Higher values of
unc signal a higher volatility of the estimate b0, hence a higher uncertainty on the estimate of the
expected returns. We study the BLstrategy for unc ∈ {10, 50, 100, 200, 300}, where the value unc = 100
corresponds to the Base Case detailed in Section 4. Table 4 shows the results.

Table 4. Statistics for BL strategies with different values of unc and NL as defined in the workflow. The
Sharpe ratio improvement is relative to NL.

BL NL

unc 10 50 100 200 300

Ann. Performance 4.59% 5.76% 5.96% 6.41% 6.51% 3.96%
Ann. Volatility 5.25% 5.49% 5.51% 5.62% 5.76% 4.92%

Max. Drawdown −10.21% −8.56% −8.51% −8.27% −8.58% −11.2%
Sharpe ratio 0.87 1.05 1.08 1.14 1.13 0.8

Sharpe ratio impr. 8.64% 30.45% 34.26% 41.72% 40.54% -
Information ratio 0.34 0.58 0.55 0.57 0.54 -

Intuitively, among the BL strategies detailed in Table 4, the strategy with unc = 10 is the closest to
NL and this is confirmed by the performance and volatility figures. Indeed, with such a low level of
uncertainty, we are confident in our initial estimate b0. As we increase unc, the confidence we place in
b0 decreases.

Very interestingly, as unc increases, the excess return of the corresponding BL strategy over NL
increases without significantly increasing the risk. Therefore, Sharpe ratios increase with unc from 0.87
for unc = 10 to 1.13 for unc = 300. More striking is the relative increase in Sharpe ratios with respect to
NL—for unc = 10 we only have an increase of 8.64% and for unc = 300 the relative increase is 40.54%.
Finally, the Information ratio rapidly stabilizes around 0.5.

Figure 2a,b graphically renders the increase in both annualized performances, excess returns and
Sharpe ratios with respect to NL as a function of unc.

Figure 3 shows the historical levels of the strategy BL with unc = 10 (minimum uncertainty),
unc = 300 (high uncertainty) and unc = 100 (Base Case) compared to NL. The BL strategies share the
same profile, but the higher the unc parameter, the higher the excess return we find in the long run.

Clearly, the standard solution to the Markowitz problem suffers from the poor estimate of b0,
while the BL strategy is able to adjust and react to new observable data. Moreover, the higher the
uncertainty, the better BL behaves compared to NL.

Unreported tests showed us that with this particular dataset, we can increase the unc parameter
even further. At some point though, around 10,000, the BL strategy underperforms NL. Indeed, when
uncertainty is extremely high, the matrix Σ0 that controls the a priori knowledge we have on B is simply
uninformative because we are allowing B to span too vast a region of potential values. Therefore,
the learning process, over a relatively short period of time of three months, is slow and does not
add value.
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(a) (b)

Figure 2. Annualized performances and excess returns of BL as a function of unc (a); Sharpe ratios and
relative improvement (b).

Figure 3. Historical values of the BL portfolios calculated with unc = 10, 100, 300 and NL.

5.2. Impact of Leverage

We now look at the maximum leverage parameter L in both strategies. Higher values
of L make both c(wBL, L) and c(wNL, L) closer to the unconstrained weights. We test L ∈
{100%, 150%, 200%, 250%, 300%}, where the value L = 200% corresponds to the Base Case detailed in
Section 4. Table 5 collects the results, while Figure 4a,b gives a graphical overview of the impact on
long term statistics.

Table 5. Statistics for BL and NL strategies with different levels of maximum leverage L. The Sharpe
ratio improvement is calculated as the relative difference between BL and NL Sharpe ratios for the
same level of maximum leverage.

L 100% 150% 200% 250% 300%

BL NL BL NL BL NL BL NL BL NL

Ann. Performance 3.78% 2.48% 4.89% 3.23% 5.96% 3.96% 7.06% 4.39% 7.96% 5.00%
Ann. Volatility 2.78% 2.48% 4.12% 3.64% 5.51% 4.92% 6.85% 6.09% 8.11% 7.23%

Max. Drawdown −3.96% −5.59% −5.92% −8.43% −8.51% −11.2% −12.49% −13.01% −16.33% −14.07%
Sharpe ratio 1.36 1 1.19 0.89 1.08 0.8 1.03 0.72 0.98 0.69

Sharpe ratio impr. 36.36% - 33.96% - 34.26% - 42.89% - 41.88% -
Information Ratio 0.69 - 0.65 - 0.55 - 0.58 - 0.53 -
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As the maximum leverage L increases, the corresponding excess return of the BL strategy over NL
increases. For L = 100%, the excess return is 1.30% and goes up to 2.96% for L = 300%.

Clearly, and as expected, the excess return increases with the leverage and on average we observe
that adding 100% of leverage brings 0.80% in extra excess return. When we look at the Sharpe
ratios, we see that BL always outperforms NL but the relation is more complex than the previous one.
Both BL and NL Sharpe ratios decrease with L. Indeed, as L increases, we observe higher performances
but also higher volatilities, and the volatility grows faster than the performance. This is obvious,
because when L increases the strategy becomes more sensitive to any error in the estimated parameters,
which is reflected in higher volatility. As L→ ∞, the strategies become unconstrained and bring all
the instability that is well known to go alongside with price-based strategies. On a relative basis,
the improvement in the Sharpe ratios first decreases as L reaches 200% and then increases.

To conclude, it appears that the impact of the maximum leverage L is as expected—it brings extra
performance at the cost of higher risk. Because we know real data do not need to follow model (1),
unconstrained BL and NL (as any price-based strategies) tend to amplify any model error, making the
leverage constraint a wise feature to consider.

(a) (b)

Figure 4. Annualized performances and excess returns of BL as a function of L (a); Sharpe ratios and
relative improvement (b).

5.3. Impact of the Review Frequency

Probably one of the most important features of the learning effect on the portfolio is the frequency
at which we recalibrate the parameters of the model. We have chosen a three-month frequency in the
Base Case. In other words, every three months we compute new estimates of b0 and Σ and input a
new matrix Σ0, driving the uncertainty. We expected that the lower the frequency, the better BL would
compare to NL. The main reason behind this thesis is that the strategy NL will be stuck with parameters
b0 and Σ for a long period of time, during which we know that they will most likely become obsolete
as the market evolves and new information is processed. As investors know very well, forecasting is
difficult and outdated forecasts are badly suited for portfolio construction1. On the other side, BL can
adapt over time because it embeds uncertainty about b0.

1 It’s tough to make predictions, especially about the future. The quote, which clearly applies in the context of portfolio construction,
has been reported by many different people. According to https://quoteinvestigator.com/2013/10/20/no-predict/, it first
appeared in Danish documents, but well known personalities such as Neils Bohr, Mark Kac, Stanislaw M. Ulam, and,
probably misattributed, Mark Twain and Yogi Berra.

https://quoteinvestigator.com/2013/10/20/no-predict/
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Let us consider the frequency parameter Freq in both strategies varying from three to twelve
months, Freq ∈ {3 M, 6 M, 9 M, 12 M}, where the value Freq = 3 M corresponds to the Base Case
detailed in Section 4. Table 6 shows the results.

Table 6. Statistics for BL and NL strategies with different levels of the review frequency Freq. The Sharpe
ratio improvement is calculated as the relative difference between BL and NL Sharpe ratios for the
same review frequency.

Freq 3 M 6 M 9 M 12 M

BL NL BL NL BL NL BL NL

Ann. Performance 5.96% 3.96% 4.74% 3.25% 4.28% 2.41% 4.75% 2.21%
Ann. Volatility 5.51% 4.92% 5.5% 5.35% 5.71% 5.45% 5.36% 4.5%

Max. Drawdown −8.51% −11.2% −11.62% −13.71% −12.44% −16.15% −8.9% −16.05%
Sharpe ratio 1.08 0.8 0.86 0.61 0.75 0.44 0.89 0.49

Sharpe ratio impr. 34.26% - 41.74% - 69.38% - 80.4% -
Information Ratio 0.55 - 0.33 - 0.35 - 0.57 -

As we lower the review frequency, we see the performances of both BL and NL decreasing.
Nevertheless, the excess return of BL over NL actually increases at frequencies lower than 6-month.
The fact that it is not monotonic is related to the timing effect. The best metric to assess the value added
of the learning feature remains the relative improvement in Sharpe ratios, as shown in Figure 5b. Here
we see that as the frequency lowers, more risk-adjusted value added comes from the learning effect:
at 3 months, the relative improvement in Sharpe ratio between BL and NL is 34.26%. At 6 months it
goes up to 41.47%, then 69.38% at 9 months and finally 80.4% relative improvement at the 12-month
frequency. Clearly, BL outperforms NL if we do not review the parameters of the model quite often,
and this is clearly attributable to the fact that BL can adjust over time according to the data observed
and the adjustments it can make on the a priori distribution of B.

For the sake of simplicity, we do not report the results here, but it is possible to increase the
efficiency of BL compared to NL if we simultaneously modify the frequency Freq and the uncertainty
parameter unc in Σ0. Over long investment horizons, the investor would definitely habr more
uncertainty on her a priori estimate b0, therefore it makes perfect sense to consider Freq = 12 coupled
with unc = 1600 or higher2.

2 We suggest 1600 simply as a rule of thumb: the ratio of frequency between 3 M and 12 M is 4 so that we pass a 42 = 16
factor in unc. Of course, we do not expect this parameter to be the best choice since, empirically, uncertainty grows more
than linearly with time, but even this, provides slightly higher Sharpe ratio improvements.
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(a) (b)

Figure 5. Annualized performances and excess returns of BL as a function of L (a); Sharpe ratios and
relative improvement (b).

5.4. Impact of Rebalancing Frequency

We conclude this section with an overview on the impact of the rebalancing frequency on both BL
and NL. This exercise is only theoretical, since within the Base Case we only performed three trades
(one each month before the next review). A lower rebalancing frequency of trading would mean
that we do not fully exploit the power of learning by adjusting the portfolio. Higher rebalancing
frequency carries a turnover (and transaction cost) issue, that would make any benefit only hypothetical.
Furthermore, when we rebalance too often, we embark significant amount of noise coming from daily,
short term, price movements. Usually, practitioners consider higher rebalancing frequencies only for
a small portion of the portfolio, i.e., they only rebalance a fraction x of their portfolio while keeping
the remaining 1− x unchanged and they roll over. Because this goes beyond the scope of this paper,
we limit ourselves to monthly versus biweekly rebalancing frequency. Table 7 collects summary
statistics for BL and NL when the optimal weights in the Base Case are implemented on both monthly
and biweekly frequencies.

Table 7. Statistics for BL and NL strategies with different rebalancing frequencies Reb Freq, monthly
versus biweekly. The Sharpe ratio improvement is calculated as the relative difference between BL and
NL Sharpe ratios for the same rebalancing frequency.

Reb Freq Monthly Bi-Weekly

BL NL BL NL

Ann. Performance 5.96% 3.96% 5.42% 2.43%
Ann. Volatility 5.51% 4.92% 5.18% 4.93%

Max. Drawdown −8.51% −11.2% −13.62% −14.08%
Sharpe ratio 1.08 0.8 1.05 0.49

Sharpe ratio impr. 34.26% - 112.01% -
Information Ratio 0.55 - 0.77 -

As we go from the monthly to the biweekly rebalancing frequency, we observe a small decrease
in annualized performance of BL, while the drop is more significant for NL. Although these numbers
should not be taken as very informative due to the timing effect, there is clearly not a strong incentive
for BL to rebalance more often, since performance goes down slightly, as does volatility. In the end,
the Sharpe ratio seems fairly stable. On the other hand, NL experiences a large drop in performance
as well as an important increase in its maximum drawdown. Indeed, when we look at the structure
of the strategy NL in (4), we see that the trade Σ−1b0 does not change at higher frequency. So, NL
will implement the same trade (up to the maximum leverage). If, for example, the NL strategy was
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successful in the first two weeks, at the next rebalancing it will most likely reverse this successful trade
because of the xt0 − xt part of wNL. Conversely, if the NL strategy was unsuccessful over a two-week
period with a trade, at the next rebalancing it will increase this trade for the same reason. Therefore,
NL tends to have a reversal feature at short horizon/high frequency.

As far as BL is concerned, because of uncertainty, the strategy can accommodate for larger
deviation of the process B relatively to the forecast b0, so that it does not necessarily have to reverse a
successful trade or leverage an unsuccessful one. Indeed, when we look at (3), a successful trade will
lower the leverage, but this can be compensated by the corrective term in the trade, which depends on
ψ and ∇bR, so that in theory BL does not systematically have a reversal feature.

Finally, given our dataset and the fact that the momentum premium (see for example
Asness et al. (2013); Blitz and Van Vliet (2008); Carhart (1997); Geczy and Samonov (2017)) exists
in the multi-asset framework, it is not surprising that NL experiences a drop in performance while BL
is almost unaffected.

This is confirmed by the significant Sharpe ratio improvement: from a +34.26% in the Base Case,
we improve the final Sharpe ratio at the biweekly frequency by 112.01% (mainly driven by the drop in
NL Sharpe ratio). Furthermore, we see how BL is able to extract more information (or alpha) from the
market because the Information ratio increases from 0.55 with the monthly rebalancing to 0.77 (a 40%
increase) with the biweekly rebalancing.

6. Investing in Foreign Currencies

In our second example, we consider investing in different currencies: the Australian Dollar (AUD),
the Canadian Dollar (CAD), the Euro (EUR), the British Pound (GBP), the Japanese Yen (JPY) and
the U.S. Dollar (USD). Usually set by the central banks, the local risk-free interest rate, such as the
federal funds rate in the U.S., together with the foreign exchange rate of currencies versus the Euro are
the sources of performance for the investor. Therefore, the underlying assets available to the investor
are bank accounts in foreign banks that pay the local interest rate but are valued in EUR. Details are
collected in Table 8.

Table 8. Currency and their reference rates.

Currency Rate Source

AUD Thomson Reuters Australian Dollar Overnight Deposit Thomson Reuters
CAD Canada Money Market Overnight Bank of Canada
EUR Eonia (Euro OverNight Index Average) European Banking Federation
GBP United Kingdom Sonia Wholesale Markets Brokers’ Association
JPY Japan Uncollateralized Overnight Bank of Japan
USD United States Federal Funds Effective Rate Federal Reserve, United States

The workflow detailed in Section 3 was implemented with the parameters listed in Table 9.

Table 9. Parameters used in the implementation of BL and NL as defined in the workflow for the
foreign currency strategy.

Parameter Value

X0 100
T 12 months

Lag 1 day
Freq Weekly, Friday
rw 60 days
sw 250 days
d 10%

unc 100
rq 30
L 100%
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With respect to Table 2, here we consider a longer investment horizon (one year), we rebalance
more often (weekly) because of reduced transaction costs in highly liquid foreign currencies,
we consider short windows for estimating the drift parameter and we do not allow leverage.

The result of the BL and NL strategies from January 2002 to June 2018 are reported in Table 10,
while the historical performance is shown in Figure 6.

Table 10. Statistics for the BL and NL strategies. The Sharpe Ratio is calculated as the ratio between
annualized performance and annualized volatility. For this case, the difference is given in relative
terms. Data from January 2002 to June 2018.

BL NL Difference

Ann. Performance 4.00% 2.83% 1.17%
Ann. Volatility 5.97% 4.93% 1.04%

Max. Drawdown −14.17% −10.51% −3.66%
Sharpe ratio 0.67 0.57 17.5%

Information Ratio 0.42 - -

Over the period used, BL outperformed NL by 1.17% annualized. This is quite impressive given
the low yields of developed countries’ currencies (mainly EUR and JPY) that can usually be observed
in the market. Therefore, the effect of learning clearly brings value to the investor by adding extra
performance, although this comes at slightly higher risk (roughly 1% more volatile and 3.66% larger
maximum drawdown). Nevertheless, the improvement in the Sharpe ratio is consistent. Figure 6b
shows the relative strength of BL over NL and the growth line. We can see that, except for a few
months in the second half of 2008 where BL strongly underperformed, after that time it regularly
outperformed NL.

(a) (b)

Figure 6. Historical values of the portfolios calculated with both wBL and wNL under the Base Case (a)
and their ratio (b).

7. Investing in Factor Strategies

In the last few years, investors have embraced alternative strategies that target specific,
well-established equity factors (such as size, value, volatility or momentum). These strategies offer an
efficient and direct exposure to the main driving factors of equity markets and allow for an optimal
allocation across factors. The main challenge is to invest in the right factor at the right time, as their
performance usually shows cyclical patterns. Table 11 contains more details on the strategies we
considered. All of them are based on the U.S. large capitalization equity market.
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Table 11. Factor-based strategies and cash. For the volatility factor, we chained two strategies on 18
December 2009. Data in USD.

Factor Name Source

Dividend S&P 500 Dividend Aristocrats Net Total Return Index S&P
Growth MSCI USA Growth Net Total Return Index MSCI

Momentum MSCI USA Momentum USD Net Total Return Index MSCI
Quality MSCI USA Quality Net Total Return Index MSCI

Size MSCI USA Small Cap Net Total Return Index MSCI
Value Shiller Barclays CAPE US Sector Value Net TR Index Barclays

Volatility Ossiam US Minimum Variance Index Net Return/ ESG
US Minimum Variance Index

S&P, Solactive

Cash United States Federal Funds Effective Rate Federal Reserve, United States

We follow the workflow of Section 3 with the parameters listed in Table 12 to derive both BL and
NL strategies.

Table 12. Parameters used in the implementation of the BL and NL factor rotation strategies as defined
in the workflow.

Parameter Value

X0 100
T 12 months

Lag 1 day
Freq Monthly, 3rd Friday of each month.
rw 90 days
sw 250 days
d 10%

unc 100
rq 60
L 100%

The results from January 2002 to June 2018 are shown in Table 13. In this example as well, the BL
strategy has significantly outperformed the NL strategy. Again, the learning effect clearly brings
value to the investor. On an annualized basis, BL improves the performance by a bit more than 2%,
with a lower maximum drawdown (−8.24% versus −10.43% for NL) but a slightly higher annualized
volatility (3.61% for BL versus 2.26% for NL).

Table 13. Statistics for the BL and NL strategies. The Sharpe Ratio is calculated as the ratio between
annualized performance and annualized volatility. For this case, the difference is given in relative
terms. Data from January 2002 to June 2018.

BL NL Difference

Ann. Performance 3.1% 1.03% 2.07%
Ann. Volatility 3.61% 2.26% 1.34%

Max. Drawdown −8.24% −10.43% 2.2%
Sharpe ratio 0.86 0.45 91.11%

Information Ratio 0.55 - -

The improvement in the Sharpe ratio is particularly high—0.86 for the BL factor rotation strategy
versus 0.45 for the NL strategy (an improvement of 91.11%). Figure 7 shows the historical performance
(Figure 7a) and the strength ratio (Figure 7b) of the BL strategy over NL. Clearly, learning over time
produces regular outperformance, as shown by the regular upwardly increasing ratio between BL
and NL.
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(a) (b)

Figure 7. Historical values of the portfolios calculated with both wBL and wNL under the Base Case (a)
and their ratio (b).
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Abbreviations

The following abbreviations are used in this manuscript:

CAPM Capital Asset Pricing Model
AUD Australian Dollar
BL Bayesian learning (strategy)
CAD Canadian Dollar
CAPE Cyclically Adjusted Price-to-Earnings
Conv. Conventional
EONIA Euro OverNight Index Average
ETF Exchange-Traded Fund
FTSE Financial Times Stock Exchange
EMBI Emerging Markets Bond Index
EMMI European Money Markets Institute
EUR Euro
EurAgg Euro Aggregate
GBP Great British Pound
GSCI Goldman Sachs Commodities Index
JPY Japanese Yen
LBMA London Bullion Market Association
MSCI Morgan Stanley Capital International
NL nonlearning (strategy)
NR Net Return
S&P Standard and Poors
Topix Tokyo Stock Price Index
TR Total Return
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