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Abstract: In this paper, we compared the models for selecting the optimal portfolio based on different
risk measures to identify the periods in which some of the risk measures dominated over others. For
decades, the best known return-risk model has been Markowitz’s mean-variance model. Based on the
criticism of the classical Markowitz model, a whole series of risk measures and models for selecting
the optimal portfolio have been developed, which are divided into two groups: symmetrical and
downside risk measures. Based on the tools provided by game theory, we presented a minimax model
for selecting the optimal portfolio based on the maximum loss as a measure of risk. Recent research
has shown the adequacy of the application of this risk measure and its dominance concerning variance
in certain circumstances. Theoretically, the model based on maximum loss as a measure of risk relies
on a much smaller number of assumptions that must be satisfied. In the empirical part of the paper,
we analyzed the real return performance, structure, correlation, stability, and predictive efficiency of
the model based on maximum loss return as a measure of risk and compared it with the other famous
models to determine whether the maximum loss-based risk measure model is more suitable for
use in certain circumstances than conventional return-risk models. We compared portfolios created
based on different models over the period of 2000–2020 from a selected sample of stocks that are
components of the STOXX Europe 600 index, which covers 90% of the free market capitalization
in the European capital market. The observed period included 3 bear market periods, including
the period of market decline during the COVID-19 crisis. Our analysis showed that there was no
significant difference in portfolio returns depending on the selected model using the “buy-and-hold”
strategy, but there were crisis periods. The results showed a significantly higher stability of portfolios
selected on the criterion of minimizing the maximum loss than others. In periods of market decline,
this portfolio achieved the best performance and had a shorter recovery period than others. This
allowed superior use of the minimax model at least for investors with a pronounced risk aversion.

Keywords: portfolio risk; portfolio diversification; portfolio optimization; game theory; COVID-
19 crisis

1. Introduction

The problem of choosing the optimal portfolio has been one of the basic issues in
finance for decades, which is based on the trade-off between risk and return. Until the
middle of the last century, however, people were not able to quantify risk. They believed
that it was only necessary to diversify the portfolio sufficiently and that, in this way, risk
would be minimized. This approach is known as traditional portfolio theory (Nawrocki
1999). Markowitz’s (1952) work not only quantified risk but also made it possible to measure
the impact of the risk of each asset on the risk of the entire portfolio, which is known as
modern portfolio theory. Markowitz’s initial theory is based on a number of simplifying
assumptions and conditions that are extremely difficult to satisfy in practice. Despite its
widespread use in practice, the modern portfolio theory and Markowitz’s optimization
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approach, which is based on quadratic programming and the first two moments of the
distribution of return probability as the main parameters, have been met with criticism.

As a result, in recent decades, the standard mean-variance approach has been modified
by applying more appropriate risk measures in the optimization algorithm, and many
models for selecting the optimal portfolio and measuring portfolio performance have been
developed, aiming at simplifying the portfolio selection problem and making it applicable
in real investment practice. In this way, a whole set of theories and models were created,
which Sharma et al. (2017) called “giant tree whose seed was farmed by Markowitz.” All of
these approaches are commonly referred to as post-modern theory and all of these models
are primarily determined by the parameter used in them as a risk measure. Immediately
after they were introduced, a natural question was asked: Which of these risk measures is
the best?

In this paper, we conducted a study comparing models based on different risk mea-
sures: symmetric, such as variance, and lower risk measures, such as minimum return.

The paper is divided into five sections. Section 2 provides an overview of the literature
in which we review a set of most commonly used measures for selecting the optimal
portfolio. This section highlights the most significant features of each of these models, as
well as the advantages and disadvantages in theory and practice. In Section 3, we explain
the methodology and data used for the analysis. Section 4 presents the results with the
performance of the models in the verification period and the verification of their predictive
efficiency with the final consideration. Finally, concluding remarks and further directions
for research are given in Section 5.

2. Theoretical Background with Literature Review

Markowitz (1952) presented a mathematical framework for portfolio selection known
as the mean-variance model, because it is based on average return as a measure of expected
return and variance, or standard deviation, as a measure of risk. The basis of Markowitz’s
theory is that for a given level of risk, a rational investor chooses assets that realize a higher
return, or, for a given level of return, he chooses assets whose returns are less risky. Assets
and portfolios that satisfy this form an efficient frontier and all others are inefficient. In
addition, Markowitz highlights the impact of individual securities on the risk of the entire
portfolio and quantifies this impact using covariance. Markowitz’s optimization model is a
problem of quadratic programming whose solutions are the weights wi, i =1, N. The goal
is to minimize the risk of the portfolio expressed by the variance with a predetermined
expected rate of return C, the conditions of the budget constraint, and the impossibility of
short selling (mathematical constraint of nonnegativity).

minσ2
P =

N

∑
j=1

N

∑
i=1

wiwjCovi,j (1)

N

∑
i=1

wiRi= C (2)

N

∑
i=1

wi= 1 (3)

wi ≥ 0, i =1, N (4)

The fundamental problem of applying any model to select the optimal portfolio is
caused by the inability to accurately predict all possible future returns. The use of historical
returns, which are the most common approximation of possible returns, is irrelevant for
predicting the future (Ibrahim et al. 2008). Given that Markowitz’s model crucially depends
on the quality and accuracy of the input data and a small change in the value of some of
them may affect the outcome, it is questionable to what extent variance is a stable measure
of risk (Chow et al. 1999). Given the possible errors in estimating input parameters, the
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Markowitz model is often viewed as a good model for obtaining an optimal solution, but
with erroneous data (Michaud 1989). Yuan et al. (2015) found that even small deviations in
the future from historical returns violate the assumption of exact knowledge of expected
returns, variances for stocks, as well as covariances between them.

Adequacy of standard deviation as a risk measure is also questionable, as investors
do not view positive deviations from expected returns as a bad thing. Therefore, the
definition of risk as a deviation of actual from expected return was very quickly corrected
to include only the negative deviation of the actual from the expected return, which is
called semivariance (Strong 2006). However, the condition of symmetry of the distribution
equals the probability of positive and negative deviations, so this adjustment has no real
effect and, mathematically, the standard deviation is never inferior to the semivariance. As
long as the assumption of normality of return, as one of the basic assumptions of the MV
model, is fulfilled, this condition is satisfied. Otherwise, the MV model can provide poor
and illogical solutions. However, the assumption of return normality, even if historical
returns correctly depict the future, is very rarely fulfilled (Young 1998).

Another problem with the MV model is the fact that a longer period of time needs to be
observed to better evaluate the parameters, which has two major negative consequences for
the efficiency of the model. First, over longer periods, due to compound returns, a normal
distribution is not an accurate estimate of the distribution of securities' return probabilities.
Instead, a lognormal distribution is more appropriate, which assigns higher probability to
extremely high values compared to extremely low values of a random variable (Levy 1973).
This distorts the symmetry of the distribution. On the other hand, observing a longer time
period also implies a greater possibility that in the future, the overall market movement
will change. In contrast, the assumption of the MV model is stationarity of the time series,
i.e., invariance of variance and expected returns over time. Blattberg and Gonedes (1974),
Castanias (1979), and Christie (1982) have also shown that the variance of returns changes
over time, i.e., that the assumption of homoskedasticity of returns is violated. In some
periods, the reactions and changes in return are greater than in others. The fact that return
variability changes over time was first established by Mandelbrot (1963), who observed
that the tails of the return distribution are longer than normal.

From the introduction of Markowitz’s model until today, many authors in finance
have focused on developing new models, which included many investor requirements in
terms of return, risk, portfolio structure, investment time, transaction costs, and the like.
One of the main goals of all previous research in modern portfolio theory was the setting
of alternative risk measures (Anagnostopoulos and Mamanis 2010) and, as Markowitz’s
initial model is a quadratic programming problem, many have aspired to linearize the
problem of portfolio optimization in this way. In this sense, some of the measures are based
on the same principle as the MV model, where risk is considered as a deviation of the
actual return from the expected return. The most famous among them is the MAD model
(Konno and Yamazaki 1991). In this model, variance has been replaced by mean absolute
deviation as a measure of risk, which has made the optimal portfolio selection model a
problem of linear programming. On the other hand, risk can be viewed as the possibility
of not achieving a certain return, which is called the shortfall risk measure (Mansini et al.
2014). Nawrocki (1999) pointed out that downside risk measures are supposedly a major
improvement over traditional portfolio theory. These measures quantify risk from different
perspectives. The two most significant models representing downside risk measures are
minimax (Young 1998) and CVaR (Rockafellar and Uryasev 2000). Minimax is an alternative
method of choosing the optimal portfolio based on game theory. The selection of the optimal
portfolio can be represented as a noncooperative game with two players. Based on historical
returns, it is possible to form a payoff matrix with an investor as a first player and the
market as a second player. The proportions invested in the shares of different issuers are
possible strategies for the investor, while the repetition of the past represents strategies
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for the market. The linear programming model derived from these assumptions can be
represented as follows:

maxR (5)

N

∑
i=1

Rij·wi ≥ R, j =1, m (6)

N

∑
i=1

wi= 1 (7)

wi ≥ 0, i = 1, N (8)

Young (1998) developed their minimax model on a similar basis, adding a constraint
of the lowest acceptable return, and explaining the possibility of including transaction
costs and taxes in the model. With the minimax model, there is no assumption of a normal
return distribution. We conclude that the minimax model has an advantage when returns
are not normally distributed. However, under conditions where returns follow a normal
distribution, these two risk measures will give approximately equal results. Consequently,
for any portfolio with a given average return, the portfolio with the lowest variance
simultaneously represents the portfolio with the highest minimum return. The reason the
MV model works outside the principle of rationality, in this case, is that the investor who
has risk aversion through the portfolio wants to avoid low returns, while MV gives equal
importance to a deviation of the actual from the expected return, even if the returns are
high enough. Therefore, the minimax rule has an advantage over the MV model, as it gives
good results regardless of the distribution (Young 1998).

On the other hand, Morgan JP presented Value-at-Risk (VaR) in 1994 as a synthetic
measure of risk that measures the exposure of a particular asset or portfolio to the possibility
of loss. However, VaR had a major drawback—this measure did not observe the principle
of subadditivity, so it was not coherent, meaning that the effects of diversification on risk
do not exist (Artzner et al. 1999). As a consequence, the Conditional Value-at-Risk (CVaR)
measure was introduced by Rockafellar and Uryasev (2000), which can be used by a linear
risk optimization model. CVaR measures the expected value of losses that exceed the value
of VaR and attempts to minimize it.

With the exception of the MV model, none of these models pay attention to the
correlation coefficients, which makes computation easier. This is supported by the fact that
in times of financial crisis, correlation coefficients tend to 1 and the benefits of diversification
disappear (Campbell et al. 2002). A similar behavior of correlation coefficients is predicted
by Konno and Yamazaki (1991). They find that in cases where the overall market is
declining, they state that correlations between stocks become irrelevant. In this case, these
models have a theoretical advantage over the MV model. Moreover, in times of crisis,
investors are generally more afraid of losses, so it is more appropriate to consider risk in
this way.

Kalayci et al. (2019) provided a comprehensive review of deterministic models that
included 175 papers. They cited the work Konno and Yamazaki (1991), Young (1998), and
Krokhmal et al. (2001) as the most important papers that point out the shortcomings of
mean-variance models. As one of the conclusions, they noted that most researchers have
tried to present an algorithm for decision making and that it is necessary to find ways to
measure performance differently to verify portfolio efficiency in practice.

Righi and Borenstein (2018) compared 11 measures from different classes in the U.S.
capital market. For each time period, they ranked portfolios according to performance from
best to worst and used nonparametric tests to test for differences. They showed that there
is no dominant risk measure.

Hunjra et al. (2020) considered mean-variance, semivariance, mean absolute deviation,
and CVaR as risk measures comparing their performance to understand their appropriate-
ness for effective portfolio management for investors using return data for stocks listed
in Pakistan, India, and Bangladesh. They analyzed the structure and realized returns
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and showed that the downside risk measure CVaR gives the best results in all scenarios,
supporting the conclusion that variance is not an appropriate risk measure for all markets
and all economic scenarios.

Subramaniam and Chakraborty (2021) analyzed the impact of investors’ mood related
to the COVID-19 pandemic on stock market returns by creating a unique COVID-19 fear
index. The study highlighted that COVID-19 fear strongly impacts the stock market and
found a strong negative association between COVID-19 fear and stock returns. Increased
fear and volatility are caused by the fact that the media plays a role in transmitting fi-
nancial contagion during the COVID-19 pandemic, which was especially pronounced at
the beginning of the pandemic (Akhtaruzzaman et al. 2022). On the same track, Shehzad
et al. (2020) showed that there are differences in volatility depending on the market in this
period. Similarly, Duttilo et al. (2021) investigated the impact of two COVID-19 waves on
return volatility in the Euro area stock market. The results revealed that Euro area stock
markets responded differently to the COVID-19 pandemic. Specifically, the first wave of
COVID-19 infections had a notable impact on stock market volatility of Euro area countries
with middle-large financial centers, while the second wave had a significant impact only
on the stock market volatility of Belgium. However, spillovers were transferred between
countries during the COVID-19 period, which increased the hedging costs to optimize
portfolios (Akhtaruzzaman et al. 2021).

Delis et al. (2021) examined the impact of the coronavirus crisis on returns and risk.
They assumed that the coronavirus market collapse was much deeper than the previous
crisis, but that due to the exogenous nature of the crisis, the recovery was much faster. The
results of their study showed that the coronavirus crisis caused a strong negative reaction
on the skewness and total market price of risk, which was even more negative than other
financial crises in history. On this basis, they pointed to the need to adjust variance as a
measure of risk.

3. Materials and Methods

The main purpose of the research was to identify potential differences between the
models and to determine the conditions under which targeting downside risk instead of
variance actually works in practical applications by testing the following hypotheses:

Hypothesis 1 (H1). There are significant differences in portfolio structure depending on which
portfolio selection model is chosen based on different risk measures.

Hypothesis 2 (H2). Models based on lower risk measures have better predictive power than models
based on symmetric risk measures, especially in crisis and post-crisis periods.

The portfolio models used in the study were: (1) MV1—minimum variance portfolio
model, (2) MV2—the portfolio model with the highest Sharpe ratio, (3) Minimax model
based on game theory, (4) CVaR model, and (5) MAD model. MV1, MV2, and MAD
represent symmetric risk measures, and minimax and CVaR represent downside risk
measures. All models are listed in Table 1.
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Table 1. List of various asset allocation models.

Objective Function Constraints Symbols Description

1 Minimum variance (MV1)

min

(
N
∑

i=1

N
∑

j=1
wiwjCovi,j

)
N
∑

i=1
wi= 1, wi ≥ 0,

N—number of shares
wi—weights in shares i
Covi,j—covariance of returns between shares i and j

2 Maximum Sharpe ratio (MV2)

max
(

Rp−rf
σp

)
Rp =

N
∑

i=1
wiRi

σp =

√
N
∑

i=1

N
∑

j=1
wiwjCovi,j

N
∑

i=1
wi= 1,

wi ≥ 0, i =1, N

Rp—expected (mean) portfolio return
rf—risk-free rate
σp—portfolio standard deviations
Ri—expected return on shares i
N—number of shares

3 Minimax model

maxR

N
∑

i=1
Rit·wi ≥ R, t = 1, m

N
∑

i=1
wi= 1

wi ≥ 0, i =1, N

Rit—returns on shares i in period t
m—number of periods
N—number of shares
R—portfolio return that is calculated as the
maximum lower boundary for all possible
investment weight combinations

4 CVaR model

min 1
mα

m
∑

t=1
dt −VaR

dt= max
(

VaR−
N
∑

i=1
Rit·wi, 0

)
t =1, m

N
∑

i=1
wi = 1

wi ≥ 0, i = 1, N

VaR —Value at risk
α—the probability of a return less than VaR is (at
least) α (we used α = 5%)
dt—deviations below the VaR

5 MAD model

min MAD

MAD =
N
∑

i=1
wi|Ri − Ri|∣∣∣∣ N

∑
i=1

(Rit − Ri)·wi

∣∣∣∣≤ MAD, t = 1, m

N
∑

i=1
wi = 1,

wi ≥ 0, i = 1, N

wi—weights in shares i
Rit—returns on shares i in period t
Ri—expected return on shares i
m—number of periods
N—number of shares

For this research, a sample of 10% of the stocks from the population was selected
using the method of simple random sampling based on the components that make up the
STOXX Europe 600 Index at the end of 2020. The STOXX Europe 600 is an index composed
of 600 components representing small, medium, and large companies from 17 European
countries and covers 90% of the free market capitalization in the European region capital
market, so we can assume that this index adequately approximates the movement of the
entire European market. Due to missing data and nonsynchronous trading issues or the
fact that some stocks were not publicly traded during the entire observed period, the final
number of stocks in the sample was 57. The stocks included in the sample are listed in
Table 2.
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Table 2. List of stocks.

Stock Exchange Stocks

London SE FERG.L, SGRO.L, AVV.L, RR.L, BKG.L, RMV.L, ITV.L, SXS.L, GSK.L, IMB.L, SVT.L, AAL.L, RIO.L

DB Xetra BAS.DE, FRE.DE, HNR1.DE, HEI.DE, VNA.DE, CBK.DE, RHM.DE, DAI.DE, RWE.DE

Euronext Paris MC.PA, SAN.PA, BN.PA, RNO.PA, ATO.PA, ICAD.PA, AC.PA, EL.PA

Stockholm SE VOLV-B.ST, NIBE-B.ST, TEL2-A.ST, SKA-B.ST, ERIC-A.ST

Euronext Amsterdam AKZA.AS, AGN.AS, HEIA.AS, RDSA. AS, ING.AS

SIX Swiss Exchange NOVN.SW, SREN.SW, CLN.SW, BEAN.SW, GIVN.SW, NESN.SW

Madrid SE BBVA.MC, ANA.MC, REP.MC

Italian Bourse EXO.MI, ISP.MI, ENI.MI

Copenhagen SE NOVO-B.CO, DANSKE.CO

Euronext Brussels SOF.BR

Vienna SE OMV.VI

Oslo SE SALM.OL

Based on historical weekly prices, we calculated discrete returns over the period
from 2000 to 2019 and divided this period into 20 parts—each year represents one period.
Based on these data, we created 20 sets of 6 portfolios. We tested the success, stability, and
predictive power of the model in the following period (from 2001 to 2020, for an appropriate
model).

For portfolio weights in the different model calculations, we used our own model-
based algorithm implemented in Visual Basic for Applications and run in an Excel envi-
ronment, and for model assumptions, comparisons, and conclusions, we used statistical
software. Testing the hypothesis that stock returns follow a normal distribution, descriptive
statistics, and correlation analyses were performed in STATA, and appropriate nonpara-
metric tests for comparing performance were performed in SPSS.

Following the above, we compared the deviations in the theoretical predictions given
by the MV and minimax models with the realized values. Cheng and Wolverton (2001)
pointed out problems in comparing portfolios that use different risk measures as criteria.
Each model will give the best results in its own space and any other portfolio will be
inferior. Therefore, we conducted a five-part analysis. The structure of the portfolio was
first compared by examining whether there is a difference in the number of shares according
to different approaches. We then performed a portfolio return analysis by comparing the
value of the portfolio formed at the beginning of the year throughout the year for all
20 periods observed. We extended this analysis with a correlation analysis with special
reference to the years of market decline. In the last two sections, we examined the stability
and predictive power of each of the models. We used the Sharpe ratio (Sharpe 1994) to test
for stability. Although many other measures for portfolio stability have been developed
over the years (Sharma et al. 2017), the Sharpe ratio is still the most widely used and best
understood. To measure predictive power, we compared the returns again. For the minimax
model, the minimum return is also a risk, so we compared the lowest realized return with
this value, but for other portfolios, we can calculate the actual return and compare it with
the expected one.

During the analysis period, the market went through several phases (Figure 1). From
the beginning of the observed period in 2000 until the first quarter of 2003, the value of
the Euro Stoxx 600 Index showed a negative trend. During this period, which spanned
150 weeks, the index lost 60% of its value, which is known as the early 2000s recession.
In the period that followed, the market recovered and grew, reaching the same value in
mid-2007 as in the early 2000s. This was followed by a period of global financial crisis,
and the index lost 60% of its value again in less than 90 weeks. The recovery, with minor
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periods of instability, lasted 300 weeks. This was followed by a period of stability with
minor fluctuations until the first quarter of 2020 when the index lost a third of its value in 4
weeks due to the COVID-19 pandemic. A special focus of the work was on the periods of
market decline, i.e., bear markets in 2002, 2007–2008, and 2020.
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Figure 1. Change in the value of STOXX Europe 600 index during the observed period.

4. Results and Discussion

As we have already mentioned, the basic problem in the practical application of the MV
model relates to the fact that the presence of higher moments of distribution significantly
affects the formation of the portfolio. Under conditions when there are higher moments,
the variance is not a representative measure of risk. Based on the conducted Jarque–Bera
test, we conclude that only several stocks from the sample meet the assumption of normal
distribution of returns in the observed periods and that most stocks have pronounced
negative asymmetry, which indicates the appropriateness of using alternative risk measures.

4.1. Portfolio Structure Analysis

Table 3 shows the average number of stocks in the portfolio structure based on different
models and criteria over a twenty-year period. We can see that both portfolios based on
the MV model in 11 of the 20 periods have more stocks in their structure compared to
all other models and, in 19 of the 20 periods, at least one MV model has more stocks in
its structure than any other. We tested the hypothesis that there are differences in the
number of stocks depending on the chosen optimization model. The Kruskal–Wallis test
performed confirmed the hypothesis that the average number of shares in the selected
portfolios is different (Appendix A). As it is based on a different principle, the portfolio
structure chosen by the minimax model is the most diverse compared to the others. This is
consistent with the findings of research by Byrne and Lee (2004) and will lead to different
results when measuring the portfolio performance achieved. In addition, Keyzer and
Schaepmeester (2014) suggested that individual investors need a smaller number of stocks
for a well-diversified portfolio with higher correlations to the market. This conclusion
could be even more significant if a multi-period model with transaction costs is considered
as an additional drawback of the mean-variance model.

Zaimovic et al. (2021) found that the number of stocks leading to optimal diversi-
fication is impacted by a variety of factors: the way risk is measured, size, asset classes
and features of the asset classes, investor characteristics, the model of diversification (i.e.,
equally weighted or optimal allocation), frequency of data, time horizon, market condi-
tions, etc. Our results are consistent with their findings. The number of stocks required to
diversify risk differs depending on the optimization model and risk measure chosen.
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Table 3. Number of stocks in the structure of selected portfolios.

Year 20– 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 Average

M1 15 9 14 13 25 9 24 12 14 23 13 30 19 18 17 9 7 14 12 16 15.90
M2 22 6 12 10 14 20 20 17 32 21 14 7 10 19 16 25 6 8 10 5 15.30

Minmax 11 14 16 9 12 12 12 11 11 13 6 9 9 7 12 4 7 10 11 10 10.30
CVaR 11 18 18 21 17 10 9 9 11 7 5 8 9 6 12 9 8 16 12 13 11.45
MAD 11 7 9 13 11 9 9 11 9 14 7 11 6 6 2 6 8 16 18 10 9.65

Notation: We excluded stocks with a portfolio weight of less than 0.01% from the analysis.

4.2. Portfolio Return Analysis

We continued the analysis by comparing the returns achieved by the portfolio selected
using different models, given that the primary interest of each investor is to achieve the
highest possible return. We calculated the average return of the created portfolio depending
on the holding period, i.e., the assumption is that we buy the portfolio at the beginning of
the observed period and hold it for a year. No portfolio has consistently better performance
than other portfolios (Table 4).

Table 4. Results of Kruskal–Wallis one-way ANOVA on ranks test for average return by portfolio.

Independent-Samples Kruskal–Wallis Test Summary

Total N 100

Test Statistic 0.714

Degree Of Freedom 4

Asymptotic Sig. (2-sided test) 0.950
Notation: Multiple comparisons are not performed, because the overall test does not show significant differences
across samples.

However, in the periods of identified market declines caused by different crises,
different changes in portfolio returns are noticeable. The largest average decline in value
of all portfolios was recorded in 2002. Although the minimax portfolio also lost 17% of
its value during this period, it is significantly better than other portfolios (value decline
from 25% to 28%). With the stabilization of the market in 2003, other portfolios became
competitive. During the 2007–2008 crisis, the portfolio created with the minimax model
outperformed the other portfolios again. In fact, the return of the minimax portfolio was
almost unaffected by the crisis. For only 8 weeks in 2007, the value of the portfolio was
slightly lower than at the beginning of the year. All other portfolios failed to return to their
initial value after February 2007 until the end of the year.

The same effect can be observed as a consequence of the crisis caused by the COVID-19
pandemic. The differences were more pronounced in the case of the 2007–2008 financial
crisis. In late February and beginning of March 2020, the STOXX Europe 600 market index
lost more than a third of its value in just four weeks, falling to 67% of its value compared
to the beginning of the year (Figure 2). The portfolio values created with the MV model
and MAD and Naïve diversification experienced an almost identical decline. On the other
hand, the minimax portfolio lost 15% of its value, as with the portfolio created with the
CVaR model. Already at the end of May, i.e., 8 weeks after the big market crash, the value
of the minimax portfolio exceeded the value at the beginning of the year. The value of the
STOXX Europe 600 Index did not reach the value from the beginning of the year until the
end of 2020, and the Naïve diversification, MV1, and CVaR portfolio reached the value
from the beginning of the year 12 weeks after the minimax portfolio. The MV model with
the highest Sharpe ratio reached that value just after 25 weeks. This can be seen in Figure 2,
where we present a fixed-based index value of selected portfolios, where the first week for
each year is the base period.

We can see that the returns of the selected portfolios are mostly highly positively
correlated in the year when the world met financial crisis or the COVID-19 crisis. Figure 2
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shows the change in value of the different portfolios during these periods. In 2002, all
correlation coefficients between portfolio values were at least 0.92. In 2007 and 2008,
the correlation coefficients were at least 0.50, excluding the CVaR portfolio. Except for
the portfolio created to minimize the MAD, during the COVID-19 crisis year, no single
correlation coefficient between portfolios was less than 0.91, which supports the thesis
put forward by Campbell et al. (2002) that, in times of crisis, the correlation coefficients
converge toward 1 and the measurement of covariance does not make sense. In all other
years, the correlation coefficients were lower, and between some portfolios, even negative,
in the years of market growth. Correlation matrices can be found in Appendix B.
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4.3. Portfolio Stability Analysis

We verified the stability of the portfolio by calculating the Sharpe ratio for each
portfolio in the individual verification period, year by year. Within each year, we ranked
portfolios from 1 to 5 according to the Sharpe ratio, from best to worst (Appendix C).
According to this criterion, the portfolio created with the minimax model was best in 7 of
20 periods with an average rank of 2.7. We tested the difference in ranks using the Kruskal–
Wallis one-way ANOVA on the ranks test (Table 5). The test rejected the hypothesis that the
distribution of ranks was equal. In addition, a pairwise comparison of the model showed
statistically significant differences in stability between minimax and MV1, minimax and
MV2, CVaR and MV1, MAD and MV1, and MAD and MV2 at all conventional levels of
significance. Significance values were adjusted by the Bonferroni correction for multiple
tests (Table 6).
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Table 5. Results of Kruskal–Wallis one-way ANOVA on ranks test for Sharpe ratio ranking.

Independent-Samples Kruskal–Wallis Test Summary

Total N 100

Test Statistic 16.308

Degree Of Freedom 4

Asymptotic Sig. (2-sided test) 0.003

Table 6. Results of pairwise comparisons of model for Sharpe ratio ranking.

Pairwise Comparisons of Model 1

Sample 1-Sample 2 Test Statistic Std. Error Std. Test Statistic Sig. Adj. Sig.

MAD-Minimax 6.100 9.149 0.667 0.505 1.000
MAD-CVaR 9.725 9.149 1.063 0.288 1.000
MAD-MV2 23.300 9.149 2.547 0.011 0.109
MAD-MV1 31.875 9.149 3.484 0.000 0.005

Minimax-CVaR −3.625 9.149 −0.396 0.692 1.000
Minimax-MV2 17.200 9.149 1.880 0.060 0.601
Minimax-MV1 25.775 9.149 2.817 0.005 0.048

CVaR-MV2 13.575 9.149 1.484 0.138 1.000
CVaR-MV1 22.150 9.149 2.421 0.015 0.155
MV2-MV1 8.575 9.149 .937 0.349 1.000

1 Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same.

4.4. Portfolio Predictive Power Analysis

Let us now consider the predictive power of each model. We performed this in two
ways. First, for each model, we calculated the average return week by week realized over
52 weeks in the following verification year and compared it to the expected return for the
MV model and MAD model, CVaR value for the CVaR model, and the lowest expected
return for the minimax model. The realized returns of portfolios created using the MV
model converge to an expected value or a value that is close to the expected value 15 to
20 weeks after portfolio creation. In the first few weeks after portfolio creation, returns
are extremely volatile. This means that investors need to hold the portfolio for at least
15 to 20 weeks to achieve the expected returns. However, even that does not apply to all
portfolios at the efficient frontier. The model based on maximizing the Sharpe ratio proved
to be the least accurate of the selected models. In all observed time periods, the deviation
from the expected return was significantly negative for this model. A model based on
minimization of variance and the MAD model obtained similar results. As deviations
of the actual return from the estimated return of the model do not follow the normal
distribution, we tested the differences using the Kruskal–Wallis one-way ANOVA on the
ranks test for each year. The test rejected the hypothesis that the distribution of differences
between expected and actual returns is the same for all portfolios (Table 7). In addition,
pairwise comparison confirmed the existence of a statistically significant difference between
comparing the minimax portfolio with any other.

Table 7. Results of Kruskal–Wallis one-way ANOVA on ranks test for model predictions.

Independent-Samples Kruskal–Wallis Test Summary

Total N 5200

Test Statistic 19.255

Degree Of Freedom 4

Asymptotic Sig. (2-sided test) 0.000
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However, the minimax model almost always provided returns that exceed the expected
minimum return. During the observed 20 year period, the realized return was below the
expected minimum return in only 29 weeks or 2.79% of the time. Moreover, in 25 of the
27 time periods, this negative deviation was negligible, less than 0.005, compared to the
MV1 model in 631 weeks (60.67%), MV2 in 953 weeks (91.63%), CVaR at 19 weeks (1.83%),
and MAD in 727 weeks (69.90%).

The differences were especially significant during the COVID-19 crisis. The minimax
model provided better absorption of the crisis and faster recovery. In 2020, all other models
had a negative deviation of the actual return from the expected return in over 90% of the
weeks. In just 12 weeks during 2020, the minimax portfolio had a value below expectations
according to the model. On the other hand, the MV1 portfolio’s return was outside the
three-standard-deviation rule during 16 weeks and in MV2 even in 39 weeks. Neither the
CVaR nor the MAD model showed better predictive power in the crisis year, with returns 22
and 44 times below the benchmark, respectively. Thus, we can conclude that the minimax
goal function value represents a safety measure for the investor, especially at a time when
the whole market is declining, and other models show larger deviations from expected
performance.

We also calculated how many standard deviations the minimum return obtained by
the minimax model is distant from the expected return obtained by the mean-variance
model. The minimum return was always in the range of 0.78 to 2.03 standard deviations
from the expected one. As the minimum return refers to the left tail of the distribution, we
can compare this value with the Value-at-Risk. If the returns are not normally distributed,
we cannot use Value-at-Risk. Thus, we recommend using data about the minimum return
from minimax to obtain Value-at-risk.

5. Conclusions

Although the mean-variance model is the most common framework for portfolio anal-
ysis and selection, the inability to satisfy the model assumptions in practice has allowed the
creation of new models based on minimum return as a measure of risk. This risk measure is
particularly dominant over variance when returns do not follow a normal distribution. We
showed that financial time series exhibit many anomalies relative to the normal distribution
and that this assumption is rarely satisfied. Under such circumstances, it is appropriate
to use the minimax approach, which is an attractive alternative to the conventional mean-
variance approach in portfolio analysis. The results of research conducted on the European
capital market during the period from 2000 to 2020 showed higher stability and predictive
power of the minimax model compared to the mean-variance model. The realized return
was lower than the expected minimum return in less than 3% of the cases during the
observed period. The minimax model was particularly dominant in a period when the
entire market is declining or in a recovery period. These results are in favor of investors
who have a pronounced risk aversion and want to reduce the probability of high loss. In
addition, based on the results of this study, we can also conclude that the minimax goal
function value, or minimum return from the minimax model, can be used as an alternative
to the Value-at-Risk method of analysis in further studies when returns are not normally
distributed.
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Appendix A

Table A1. Results of Kruskal–Wallis one-way ANOVA on ranks test for average number of stocks by
portfolio.

Independent-Samples Kruskal–Wallis Test Summary

Total N 100

Test Statistic 17.522

Degree Of Freedom 4

Asymptotic Sig. (2-sided test) 0.002

Table A2. Results of pairwise comparisons of model for Sharpe ratio ranking.

Pairwise Comparisons of Model 1

Sample 1-Sample 2 Test Statistic Std. Error Std. Test Statistic Sig. Adj.Sig.

MAD-Minimax −5.950 9.148 −0.650 0.515 1.000
MAD-CVaR 10.175 9.148 1.112 0.266 1.000
MAD-MV2 23.100 9.148 2.525 0.012 0.116
MAD-MV1 33.400 9.148 3.651 0.000 0.003

Minimax-CVaR 4.225 9.148 0.462 0.644 1.000
Minimax-MV2 17.150 9.148 1.875 0.061 0.608
Minimax-MV1 27.450 9.148 3.001 0.003 0.027

CVaR-MV2 −12.925 9.148 −1.413 0.158 1.000
CVaR-MV1 −23.225 9.148 −2.539 0.011 0.111
MV2-MV1 10.300 9.148 1.126 0.260 1.000

1 Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same.

Appendix B

Table A3. Correlation coefficients among portfolio values based on “buy and hold” strategy in 2002.

2002 MV1 MV2 Minimax CVaR MAD

MV1 1
MV2 0.983195 1

Minimax 0.94487 0.945888 1
CVaR 0.993267 0.975987 0.956333 1
MAD 0.939578 0.973847 0.930642 0.924487 1

Table A4. Correlation coefficients among portfolio values based on “buy and hold” strategy in 2007.

2007 MV1 MV2 Minimax CVaR MAD

MV1 1
MV2 0.985913 1

Minimax 0.403336 0.340911 1
CVaR −0.16957 −0.0977 0.271037 1
MAD 0.597813 0.712324 0.035441 0.365443 1
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Table A5. Correlation coefficients among portfolio values based on “buy and hold” strategy in 2008.

2008 MV1 MV2 Minimax CVaR MAD

MV1 1
MV2 0.838272 1

Minimax 0.410638 0.77029 1
CVaR 0.782393 0.702936 0.458958 1
MAD 0.702328 0.586507 0.429805 0.943927 1

Table A6. Correlation coefficients among portfolio values based on “buy and hold” strategy in 2020.

2020 MV1 MV2 Minimax CVaR MAD

MV1 1
MV2 0.960801 1

Minimax 0.931854 0.907509 1
CVaR 0.950296 0.938846 0.937209 1
MAD 0.827818 0.797511 0.590115 0.706412 1

Appendix C

Table A7. Portfolio ranks by Sharpe ratios for each period.

Year M1 M2 Minimax CVaR MAD

2001 2 3 1 6 5
2002 3 2 4 6 1
2003 5 1 3 4 6
2004 3 1 2 5 6
2005 2 5 1 3 6
2006 2 6 1 3 4
2007 3 5 1 4 6
2008 5 4 1 2 6
2009 5 4 3 1 6
2010 5 6 1 4 3
2011 6 2 4 1 5
2012 1 6 4 5 2
2013 3 4 2 6 5
2014 6 3 5 2 1
2015 6 4 2 5 3
2016 1 5 4 3 6
2017 2 6 5 4 3
2018 2 1 6 5 3
2019 4 6 5 3 1
2020 4 1 2 3 6
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