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Abstract: This note provides a neat and enjoyable expansion and application of the magnificent
Ordentlich-Cover theory of “universal portfolios”. I generalize Cover’s benchmark of the best
constant-rebalanced portfolio (or 1-linear trading strategy) in hindsight by considering the best
bilinear trading strategy determined in hindsight for the realized sequence of asset prices. A bilinear
trading strategy is a mini two-period active strategy whose final capital growth factor is linear sepa-
rately in each period’s gross return vector for the asset market. I apply Thomas Cover’s ingenious
performance-weighted averaging technique to construct a universal bilinear portfolio that is guaran-
teed (uniformly for all possible market behavior) to compound its money at the same asymptotic rate
as the best bilinear trading strategy in hindsight. Thus, the universal bilinear portfolio asymptotically
dominates the original (1-linear) universal portfolio in the same technical sense that Cover’s universal
portfolios asymptotically dominate all constant-rebalanced portfolios and all buy-and-hold strategies.
In fact, like so many Russian dolls, one can get carried away and use these ideas to construct an
endless hierarchy of ever more dominant H-linear universal portfolios.

Keywords: on-line portfolio selection; universal portfolios; robust procedures; model uncertainty;
constant-rebalanced portfolios; asymptotic capital growth; kelly criterion

JEL Classification: D81; D83; G11

We first investigate what a natural goal might be for the growth of wealth for
arbitrary market sequences. For example, a natural goal might be to outperform
the best buy-and-hold strategy, thus beating an investor who is given a look at a
newspaper n days in the future. We propose a more ambitious goal.

—Thomas M. Cover, Universal Portfolios, 1991

In 1988, out of the blue, Paul Samuelson wrote a letter to Stanford information
theorist Thomas Cover. Samuelson had been sent one of Cover’s papers on
portfolio theory for review. “If I did use some of your procedures,” Samuelson
wrote, “I would not let that ... bias my portfolio choice toward choices my alien
cousin with log utility would make”. He chides Kelly, Latané, Markowitz, and
“various Ph.D’s who appear with Poisson-distribution probabilities most Junes”.

—William Poundstone, Fortune’s Formula, 2005

With four parameters I can fit an elephant, and with five I can make him wiggle
his trunk.

—John von Neumann

1. Introduction; Literature Review

This note contains a nice application and extension of the elegant universal portfo-
lio theory that was established by Thomas Cover (1991), Cover and Ordentlich (1996),
and Ordentlich and Cover (1998).

Universal portfolio theory is the on-line analogue of the log-optimal portfolio the-
ory (that is, the theory of asymptotic capital growth), whose brilliant simplicity came

Int. J. Financial Stud. 2021, 9, 11. https://doi.org/10.3390/ijfs9010011 https://www.mdpi.com/journal/ijfs

https://www.mdpi.com/journal/ijfs
https://www.mdpi.com
https://orcid.org/0000-0003-0944-8517
https://doi.org/10.3390/ijfs9010011
https://doi.org/10.3390/ijfs9010011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijfs9010011
https://www.mdpi.com/journal/ijfs
https://www.mdpi.com/2227-7072/9/1/11?type=check_update&version=1


Int. J. Financial Stud. 2021, 9, 11 2 of 17

down to us from such illustrative thinkers as John Kelly (1956), Henry Latané (1959),
Leo Breiman (1961), and card-counter Edward O. Thorp (1969). Under laboratory condi-
tions where the investor or gambler knows in advance the precise distribution of the profit-
and-loss outcomes on which he is betting, the tea leaves say (cf. with MacLean et al. (2011))
that log-optimal portfolios (or growth-optimal portfolios) enjoy tremendous optimality prop-
erties, quite apart from the fact that they saturate a very specific type of expected utility, as
pointed out so many times by Samuelson (1963, 1969, 1979).

Leo Breiman (1961) gave the first substantial results in this direction, namely, that
the so-called Kelly gambler will, under general conditions, asymptotically outperform any
“essentially different strategy” almost surely by an exponential factor. He also demonstrated
that, for the sake of goal-based investing, the Kelly criterion minimizes the expected waiting
time with respect to hitting a distant high-water mark.

In a pair of beautiful articles, Bell and Cover (1980, 1988) established that, actually,
the Kelly rule also possesses very strong short-term competitive optimality properties, even
for a single period’s fluctuation of a betting or investment market. They considered a
static, zero-sum investment φ-game whose payoff kernel is equal to the expected value of
an arbitrary increasing function φ(•) of the ratio of one trader’s wealth to that of another.
Subject to the proviso that, prior to the actual portfolio choice, each contestant is permitted
to make a fair randomization of his initial dollar (by exchanging it for any random capital
whose mean is at most 1), the saddle point of the game amounts to each player using the
log-optimal portfolio, together with fair randomizations that depend only on the criterion
φ(•), and not on any particular characteristic of the underlying investment opportunities.

Garivaltis (2018a) showed that the Bell-Cover theorem holds equally well for stochas-
tic differential investment φ-games in continuous time that exhibit state-dependent drift
and diffusion; Garivaltis (2019a) generalized this result even further, so as to cover lev-
ered investment φ-games over continuous time markets whereby the asset prices follow
jump-diffusion processes with compactly-supported jump returns. Some recent work
by Curatola (2019) investigates the strategic interaction of two large traders whose transac-
tions affect not just each other, but also the expected returns of the entire stock market. For
an illuminating discussion of competitive optimality as it relates to evolutionary contingen-
cies in mathematical biology, consult with Tal and Tran (2020).

Cover’s universal portfolio theory, which began in earnest with his empirical Bayes
stock portfolio (Cover and Gluss (1986)), takes its cue from the fact that for stock markets
with iid returns, the log-optimal portfolio amounts to a certain constant-rebalanced portfolio
(CRP); this consists in fixing the correct (growth-optimal) target percentages of wealth for
each asset, and continuously executing rebalancing trades so as to counteract allocation
drift. However, in the presence of model uncertainty (e.g., for actual stock markets), this
particular CRP is completely unknown to the practitioner.

Inspired by the analogies with information theory, Thomas Cover had the brilliant
insight that one should benchmark his on-line investment performance relative to that of
the best constant-rebalanced portfolio determined in hindsight for the actual (realized) sequence
of asset prices. The hindsight-optimized wealth can be interpreted as a financial derivative
that is susceptible of exact pricing and replication in the (complete) continuous time
market of Black and Scholes (1973). On that score, Ordentlich and Cover (1998) priced the
rebalancing option at time-0 for unlevered hindsight optimization over a single risk asset;
their work sat unfinished for twenty years, until it was completed by Garivaltis (2019b),
who demonstrated how to price and replicate Cover’s (levered) rebalancing option at any
time t, for any number of correlated stocks in geometric Brownian motion.

In discrete time, the empirical Bayes stock portfolio (Cover and Gluss (1986)), the
Dirichlet-weighted universal portfolio (Cover and Ordentlich (1996)), and the minimax
universal portfolio (Ordentlich and Cover (1998)) are all notable in that they guarantee to
achieve a high percentage of the final wealth of the best constant-rebalanced portfolio in
hindsight, uniformly for all possible sequences of asset prices. On account of the fact that
this percentage (or competitive ratio) converges to zero at a slow (polynomial) rate, the excess
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compound (logarithmic) growth rate of the best CRP in hindsight (over and above that of
the on-line portfolio) converges uniformly to zero. Thus, universal portfolios succeed in
matching the performance of the best CRP in hindsight “to first order in the exponent”.

The original universal portfolios (inspired as they were by iid stock markets) suffer
from the defect that they fail to recognize and exploit even very simple types of serial
dependence in the individual sequence of asset returns. For example, consider a two-asset
market whereby asset 2 is cash (that pays no interest), and asset 1 is a “hot stock” whose
price alternately doubles in odd periods and gets cut in half in even periods. Naturally,
one should hope that his portfolio selection algorithm is capable of detecting such a trivial
pattern, thereby learning to (asymptotically) double its capital every two periods. But
the original universal portfolios, when applied to this particular sequence of asset prices,
merely learn to use the constant-rebalanced portfolio that puts 50% of its wealth into
the stock and holds the rest in cash at the start of each investment period; this generates
asymptotic capital growth at a rate of log(9/8) = 11.8% every two periods, compounded
continuously—a far cry from the log 2 = 69.3% that accrues to perfect trading.

One way out of this conundrum is the use the universal portfolio with side information
(Cover and Ordentlich (1996)) along with a “signal” that indicates, say, whether or not
the current period is odd. The obvious objection here is that the efficacy of this particular
signal (as opposed to any other piece of side information) will only ever become apparent
in hindsight. Accordingly, this paper tackles the problem differently: we consider an ex-
panded parametric family of mini 2-period active trading strategies called bilinear portfolios,
which explicitly generalize the constant-rebalanced portfolios (here called 1-linear portfo-
lios). Accordingly, we apply the Ordentlich-Cover techniques to design a universal bilinear
portfolio that compounds its money at the same asymptotic rate as the best bilinear trading
strategy in hindsight (thereby learning to trade perfectly in the motivating example). Thus,
the universal bilinear portfolio will be shown to asymptotically dominate the universal
1-linear portfolio in the same technical sense (cf. with Cover and Thomas (2006)) that the
universal 1-linear portfolio asymptotically dominates all constant-rebalanced portfolios
and all buy-and-hold strategies. Once this is done, it will become readily apparent just
how one can go about constructing an endless hierarchy of ever more dominant universal
H-linear portfolios, for all possible mini-horizons H ∈ {1, 2, 3, . . . }.

2. Bilinear Trading Strategies

We start by defining the concept of a bilinear trading strategy (or bilinear portfolio), which
is a simple 2-period active strategy that generalizes the notion of a constant-rebalanced
portfolio (CRP). To this end, we assume that there are m assets called i, j ∈ {1, . . . , m}; we let
xi ≥ 0 denote the gross return1 of a $1 investment in asset i in period 1, and similarly we let
yj ≥ 0 denote the gross return of asset j in period 2. We let x := (x1, . . . , xm)′ ∈ Rm

+ − {0}
denote the gross return vector in period 1, and in the same vein, y := (y1, . . . , ym)′ ∈
Rm
+ − {0} is the gross return vector in period 2.

Definition 1. A bilinear trading strategy is a square matrix B :=
[
bij
]

m×m of non-negative
weights that sum to one. After two investment periods, the bilinear trading strategy B multiplies
the initial dollar by a factor of

TWO-PERIOD CAPITAL GROWTH FACTOR := x′By =
m

∑
i=1

m

∑
j=1

bijxiyj. (1)

The set of all bilinear trading strategies is denoted

B :=
{

B ∈ Matm,m(R) : B ≥ 0 and 1′B1 = 1
}

, (2)

1 e.g., if xi := 1.05 then asset i appreciated 5% in period 1; if xi := 0.98, then asset i lost 2% of its value in period 1, etc.
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where 1 := (1, ..., 1)′ is an m× 1 vector of ones.

Proposition 1. The bilinear2 final wealth x′By is uniquely replicated by the following 2-period
active trading strategy: in period 1, we use the initial portfolio p := (p1, ..., pm)′ = B1, where

pi =
m
∑

j=1
bij is the initial fraction of wealth that will be invested in asset i; in period 2, we must use

the portfolio

q(x) := (q1(x), ..., qm(x))′ =
B′x
p′x

=
B′x

x′B1
, (3)

e.g.,

qj(x) =

m
∑

i=1
bijxi

m
∑

i=1

m
∑

k=1
bikxi

. (4)

Proof. We start with the functional equation

(p′x) ·
(
q(x)′y

)
= x′By, (5)

e.g., the two-period growth factor is equal to the product of the individual growth factors
that were achieved in periods 1 and 2. To start, we substitute y := 1 = (1, ..., 1)′ and
x := ei = (0, ..., 0, 1

i
, 0, ..., 0)′, which is the ith unit basis vector for Rm. There lies pi = e′iB1 =

m
∑

j=1
bij, as promised. Next, in the identity

q(x)′y =
x′By
p′x

, (6)

we put y := ej. This leaves us with

qj(x) =

m
∑

i=1
bijxi

m
∑

i=1

m
∑

j=1
bikxi

, (7)

which is the desired result. In order to be logically complete, we must substitute our
expressions for p and q(x) into Equation (5) so as to verify that they turn it into an identity.
Here you go:

(B1)′x ·
(

B′x
x′B1

)′
y = x′By. (8)

Example 1. Every constant-rebalanced portfolio (cf. with Thomas Cover (1991)) c := (c1, ..., cm)′

amounts to a bilinear trading strategy that is represented by the outer product B := cc′, e.g.,
bij := cicj for all i, j ∈ {1, ..., m}. Here, the constant-rebalanced portfolio c resolves to maintain the

constant fraction ci of wealth in each asset i at all times3, where ci ≥ 0 and
m
∑

i=1
ci = 1.

2 Bilinearity (cf. with Serge Lang (1987)) refers to the fact that the capital growth factor x′By is linear separately in each of the vectors x and y. When
viewed jointly as a function of (x, y), the bilinear form x′By is a homogeneous quadratic polynomial in the 2m variables x1, ..., xm, y1, ..., ym.

3 On account of allocation drift, e.g., the fact that some constituent assets will outperform the portfolio each period (and some assets will underperform),
a CRP must generally trade each period so as to restore the target allocation c := (c1, ..., cm)′.
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Example 2. More generally, consider the trading strategy that always uses the portfolio c :=
(c1, ..., cm)′ ∈ ∆m in period 1 and then always uses the portfolio d := (d1, ..., dm)′ ∈ ∆m in period

2 (regardless of the observed value of x), where ∆m :=
{

c ∈ Rm
+ :

m
∑

i=1
ci = 1

}
denotes the unit

portfolio simplex in Rm
+. This scheme is a bilinear trading strategy that corresponds to the outer

product B := cd′, e.g., bij := cidj for all i, j ∈ {1, ..., m}.

Example 3. Every buy-and-hold strategy (that buys some initial portfolio c := (c1, ..., cm)′

and holds it for two periods, without rebalancing) amounts to a bilinear trading strategy that is
represented by the diagonal matrix B := diag(c1, ..., cm).

Inspired by Ordentlich and Cover (1998) and Cover and Thomas (2006), we note
that the concept of a bilinear trading strategy admits the following simple and lucid
interpretation. Let an extremal strategy4 be defined by the simple trading scheme: in
period 1, we put 100% of wealth into asset i, and then in period 2, we take all the proceeds
and roll them over into asset j. Hence, there are m2 different extremal strategies (i, j) ∈
{1, ..., m} × {1, ..., m}; since the (i, j)th extremal strategy yields a capital growth factor of
xiyj, it therefore amounts to the bilinear trading strategy B := eie′j, which is an extreme
point of B. The general bilinear portfolio B :=

[
bij
]

m×m is uniquely representable as a
convex combination

B =
m

∑
i=1

m

∑
j=1

bijeie′j (9)

of extremal strategies; this means that the practitioner of B has elected to invest the fraction
bij of his initial dollar into each extremal strategy (i, j). Thus, after the elapse of two periods,

the investor’s total wealth will be equal to
m
∑

i=1

m
∑

j=1
bijxiyj = x′By.

3. Universal Bilinear Portfolios

We now consider the on-line learning of the asymptotically dominant (or growth-
optimal) bilinear portfolio. To this end, we assume that there are T basic investment
periods t ∈ {1, ..., T}, each of which is divided into a “first half” (during which the gross
return vector is xt) and a “second half” (during which the gross return vector is yt.) We let
xt := (x1, ..., xt) ∈

(
Rm
+ − {0}

)t denote the history of returns in the first halves of periods
1, ..., t, and, likewise, we let yt := (y1, ..., yt) ∈

(
Rm
+ − {0}

)t denote the return history for
the latter halves of periods 1, ..., t. Thus, we have the transition laws xt+1 := (xt, xt+1) and
yt+1 := (yt, yt+1), where x0 and y0 denote empty histories. We let

WB(xt, yt) :=
t

∏
s=1

x′sBys (10)

denote the final wealth function5 of the bilinear trading strategy B against the return
history (xt, yt); similarly, we write

WB(xt, yt−1) :=

(
t−1

∏
s=1

x′sBys

)
×
(
x′tB1

)
= WB

(
xt, (yt−1, 1)

)
(11)

if period t has only been half-completed. We will consider sequential investment strategies
B̂(•, •) that, at the start of each period t, select some bilinear portfolio B̂

(
xt−1, yt−1) :=[

b̂ij
(

xt−1, yt−1)]
m×m

that is conditioned on the observed return history (xt−1, yt−1); this

4 Literally, an extreme point of B.
5 The initial monetary deposit into B is equal to the empty product WB(x0, y0) := $1.
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bilinear portfolio will be used for the entire duration of period t. The capital growth factor
achieved by an investment scheme B̂(•, •) against the history (xt, yt) is equal to

Ŵ(xt, yt) :=
t

∏
s=1

x′s B̂(xs−1, ys−1)ys, (12)

and, if period t is only half-finished, we write

Ŵ(xt, yt−1) :=

[
t−1

∏
s=1

x′s B̂(xs−1, ys−1)ys

]
×
[

x′t B̂(xt−1, yt−1)1
]
= Ŵ

(
xt, (yt−1, 1)

)
. (13)

Within a given period t, the on-line behavior of B̂(•, •) amounts to the portfolio vectors
p̂(xt−1, yt−1) := B̂(xt−1, yt−1)1 and

q̂(xt, yt−1) :=
B̂(xt−1, yt−1)′xt

x′t B̂(xt−1, yt−1)1
. (14)

In order to have a practical benchmark for the on-line performance of B̂(•, •) after
the elapse of t complete investment periods, we will consider the best bilinear trading
strategy in hindsight for the individual sequence (xt, yt):

B∗(xt, yt) := arg max
B∈B

WB(xt, yt) (15)

and
B∗(xt, yt−1) := arg max

B∈B
WB(xt, yt−1) = B∗

(
xt, (yt−1, 1)

)
. (16)

The final wealth that accrues to B∗(xt, yt) is a path-dependent financial derivative,
with payoff

D(xt, yt) := max
B∈B

WB(xt, yt) = WB∗(xt ,yt)(xt, yt) (17)

and
D(xt, yt−1) := max

B∈B
WB(xt, yt−1) = D

(
xt, (yt−1, 1)

)
. (18)

Proposition 2. The final wealth function WB(xT , yT) is a multilinear form in the vectors x1, y1,
x2, y2, ..., xT , yT , e.g., it is linear separately in each vector xt and also in each vector yt, for 1 ≤
t ≤ T. Consequently, the hindsight-optimized final wealth D(xT , yT) is convex and positively
homogeneous separately in each xt and also in each yt.

Proof. The multi-linearity of WB(•, •) follows easily from the definition, e.g., WB(xT , yT) =(
t−1
∏

s=1
x′sBys

)
· (x′tByt) ·

(
T
∏

s=t+1
x′sBys

)
is clearly additive and homogeneous in xt and also

in yt. If we write D(xt) and view D(•, •) as a function of xt alone, then the convexity
and homogeneity with respect to xt (or with respect to yt) follow from the fact that the
mapping xt 7→ D(xt) is a pointwise maximum of a family of linear functions, namely,
(WB(xt))B∈B .
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For obvious reasons, the hindsight-optimized payoff D(•, •) is not achievable by any
causal (or non-anticipating) investment strategy B̂(•, •); however, it is possible to achieve6

any average

Ŵ(xt, yt) :=
∫

B∈B

WB(xt, yt) f (B)dB, (19)

where f (•) is a continuous density function overB. That is, inspired by Thomas Cover (1991)
and Cover and Ordentlich (1996), we make the following definition.

Definition 2. The universal bilinear portfolio (that corresponds to the prior density f (•)) is a
performance-weighted average of all bilinear-trading strategies:

B̂(xt, yt) :=

∫
B∈B

B ·WB(xt, yt) f (B)dB∫
B∈B

WB(xt, yt) f (B)dB
=

E f
[
B ·WB(xt, yt)

]
E f [WB(xt, yt)]

. (20)

So-defined, the matrix B̂(•, •) is indeed a valid bilinear portfolio, on account of the
fact that B̂(xt, yt) ≥ 0 and 1′ B̂(xt, yt)1 = 1. The initial bilinear portfolio B̂(x0, y0) is equal
to the center of mass

∫
B∈B

B f (B)dB = E f [B] that is induced by the prior density f (•).

Proposition 3. After T complete investment periods, the universal wealth Ŵ(xT , yT) is equal to
the average value

Ŵ(xT , yT) =
∫

B∈B

WB(xT , yT) f (B)dB = E f

[
WB(xT , yT)

]
. (21)

Proof. The gross return of the universal bilinear portfolio in period t is given by

x′t B̂(xt−1, yt−1)yt =

∫
B∈B

(x′tByt) ·WB(xt−1, yt−1) f (B)dB∫
B∈B

WB(xt−1, yt−1) f (B)dB

=

∫
B∈B

WB(xt, yt) f (B)dB∫
B∈B

WB(xt−1, yt−1) f (B)dB
. (22)

Taking the (telescopic) product of both sides of Equation (22) for t := 1, ..., T, and
bearing in mind that WB(x0, y0) = 1 =

∫
B∈B

f (B)dB, we arrive at the desired result:

Ŵ(xT , yT) =
∫

B∈B
WB(xT , yT) f (B)dB.

Following Cover (1991) and Cover and Thomas (2006), the intuition behind the uni-
versal bilinear portfolio is just this: we distribute the initial dollar (according to f (•))
among all the bilinear trading strategies B ∈ B, whereby the bilinear portfolios in the
neighborhood of a given B receive f (B)dB dollars to manage (from now until kingdom
come). After the elapse of t complete investment periods, the bilinear strategies in this
locale have grown their bankroll to WB(xt, yt) f (B)dB; the investor’s aggregate wealth is
thereby equal to

∫
B∈B

WB(xt, yt) f (B)dB. With this intuition in hand, the formula for B̂(xt, yt)

can be written down immediately, on account of the fact that the locale of a given B is re-

6 By the way, if a discrete-time payoff D(xt, yt) = Ŵ(xt, yt) can be exactly replicated (or hedged) by some causal (non-anticipating) trading strategy,
then that strategy is necessarily be unique. We have encountered this phenomenon already vis-á-vis the bilinear payoff x′By.
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sponsible for managing the fraction φ(B)dB := WB(xt, yt) f (B)dB
/ ∫

B∈B
WB(xt, yt) f (B)dB

of the aggregate wealth.
Hence, the overall bilinear portfolio is just the convex combination B̂ =

∫
B∈B

B · φ(B)dB.

Over long periods of time, the bilinear trading strategies in the neighborhood of B∗(xt, yt)
will come to control an ever-greater share of the aggregate wealth, on account of their
superior exponential growth rate, namely (1/t) log D(xt, yt). Thus, the aggregate bankroll
will (asymptotically) compound itself at this same rate; that is, we have the relation

lim
t→∞

(Excess Growth Rate of the Best Bilinear Portfolio in Hindsight)

= lim
t→∞

[
log D(xt, yt)

t
− log Ŵ(xt, yt)

t

]
= 0, (23)

regardless7 of the individual return sequence ω := (xt, yt)∞
t=1. The remainder of the paper

is concerned with fleshing out the necessary details. On that score, we make the definition:

Definition 3. The competitive ratio R(xT , yT) measures the percentage of hindsight-optimized
bilinear wealth that was actually achieved by the universal bilinear portfolio, e.g.,

R(xT , yT) :=
Ŵ(xT , yT)

D(xT , yT)
=

AVERAGE VALUE OF WB(xT , yT)

MAXIMUM VALUE OF WB(xT , yT)
. (24)

Lemma 1. The competitive ratio R(•, •) is always ≤ 1; it is homogeneous of degree 0 and quasi-
concave separately in each vector xt and also in each vector yt.

Proof. The fact that R(xT , yT) ≤ 1 follows immediately from the fact that any convex
combination (or weighted average) of the numbers (WB(xT , yT))B∈B cannot exceed their
maximum. The homogeneity of degree 0 follows from the fact that WB(•, •) and D(•, •) are
both linearly homogeneous (of degree 1) in each vector xt or yt. The multi-quasi-concavity
obtains from the fact that, when viewed as a function R(xt) of xt alone (or of yt alone), we
are dealing with the ratio of a positive linear function (namely, Ŵ(xt)) to a positive convex
function (viz., D(xt)). That is, if we consider the upper contour sets

Uα := {xt ∈ Rm
+ : R(xt) ≥ α} =

{
xt ∈ Rm

+ : Ŵ(xt)− αD(xt) ≥ 0
}

, (25)

then we see that Uα is a convex set for all α ∈ R. For, if α ≤ 0, then Uα = Rm
+, which

is convex; if α ≥ 0, then Uα is convex because it is an upper contour set of the concave
function xt 7→ Ŵ(xt)− αD(xt).

On account of the (multi-) homogeneity of degree 0, the competitive ratio only cares
about the directions of the vectors xt or yt — their lengths do not affect the relative perfor-
mance of the universal bilinear portfolio. Thus, we are free to scale each xt (resp. yt) by a
factor of λ := 1/||xt||1 (resp. 1/||yt||1), so that the coordinates of xt (resp. yt) sum to one,
e.g., we may assume that each xt or yt belongs to the unit simplex ∆m. Hence, we have the
relation

R(xT , yT) := inf
(xT ,yT)∈(Rm

+−{0})
2T

R(xT , yT) = min
(xT ,yT)∈∆2T

m

R(xT , yT), (26)

e.g., the worst-case8 relative performance R(xT , yT) is achieved over the product of sim-
plices ∆2T

m . Even better, since R(•, •) is multi-quasi-concave, its minimum value must
in fact be realized at some extreme point (xT , yT) ∈ {e1, ..., em}2T , e.g., a return history

7 Not just almost everywhere; but everywhere, for all possible ω ∈
(
(Rm

+ − {0})
2
)N

.
8 Come what may — for all possible market behavior (xT , yT).



Int. J. Financial Stud. 2021, 9, 11 9 of 17

whereby all xt, yt are unit basis vectors. This happens on account of the fact that when
R(•, •) is viewed as a function solely of xt ∈ ∆m (or solely of yt ∈ ∆m), we have

R(xt) = R(xt1e1 + · · ·+ xtmem) ≥ min{R(e1), ..., R(em)} = R(ei∗), (27)

so that the competitive ratio can always be reduced by replacing any xt or yt by an
appropriate unit basis vector ei∗ .

In what follows, we will consider sequences of unit basis vectors xT := (ei1 , ..., eiT ) and
yT := (ej1 , ..., ejT ), where iT := (i1, ..., iT) ∈ {1, ..., m}T and jT := (j1, ..., jT) ∈ {1, ..., m}T .
For the sake of simplicity, we will abuse notation by writing the (self-evident) expressions
R(iT , jT), Ŵ(iT , jT), and D(iT , jT). Sequences of unit basis vectors will hereby be referred
to as extremal sequences, or Kelly horse race sequences, on account of the fact that they
correspond to betting markets (say, horse races or prediction markets) whereby only one of
the m assets has a positive gross return. For a given Kelly sequence (iT , jT), we will require
the counts, or relative frequencies

nij(iT , jT) := (number of times (it, jt) = (i, j)) = ∑
{t:(it ,jt)=(i,j)}

1, (28)

so that nij ≥ 0 and
m
∑

i=1

m
∑

j=1
nij = T.

Lemma 2. For any Kelly sequence (iT , jT), the final wealth of the best bilinear trading strategy in
hindsight is equal to D

([
nij
]m

i,j=1

)
= ∏

(i,j): nij>0
(nij/T)nij ; the universal wealth Ŵ(iT , jT) admits

the minorant

Ŵ(iT , jT) ≥
f

(T + m2 − 1)!

m

∏
i=1

m

∏
j=1

nij!, (29)

where f := min
B∈B

f (B) is the minimum weight assigned to any bilinear portfolio by the prior density

f (•).

Proof. Against the Kelly sequence (iT , jT), the final wealth of the bilinear trading strategy
B is given by

WB(iT , jT) =
T

∏
t=1

bit jt = ∏
(i,j): nij>0

b
nij(iT ,jT)

ij . (30)

Maximization of this quantity with respect to B amounts to a standard Cobb-Douglas
optimization problem over the unit simplex in Rm2

+ . Lagrange’s multipliers yield the
solution b∗ij = nij/T, so that D(iT , jT) = ∏

(i,j): nij>0
(nij/T)nij .

The stated minorant for Ŵ(iT , jT) will be gotten by direct integration of WB(iT , jT)
over the set of bilinear trading strategies. To this end, we will identify B with the solid
region{

(b11, ..., b1m, b21, ..., b2m, ..., bm1, ..., bm,m−1) ∈ Rm2−1
+ : b11 + · · ·+ bm,m−1 ≤ 1

}
, (31)

where bmm = 1− b11 − · · · − bm,m−1 is not a free variable. Thus, we must evaluate the
(m2 − 1)-fold integral

1∫
b11=0

1−b11∫
b12=0

· · ·
1−b11− ··· −bm,m−2∫

bm,m−1=0

 ∏
(i,j) 6=(m,m)

b
nij

ij

1− ∑
(i,j) 6=(m,m)

bij

nmm

f (B)dbm,m−1 · · · db11. (32)
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Using the fact that f (B) ≥ f , and recalling the general identity9

1∫
z1=0

1−z1∫
z2=0

· · ·
1−z1−···−zk−2∫

zk−1=0

zα1
1 zα2

2 · · · z
αk−1
k−1 (1− z1 − z2 − · · · − zk−1)

αk dzk−1 · · · dz2dz1

=
Γ(α1 + 1)Γ(α2 + 1) · · · Γ(αk + 1)

Γ(α1 + α2 + · · ·+ αk + k)
, (33)

where Γ(•) is the gamma function, we put k := m2 and obtain

Ŵ(iT , jT) ≥ f ·

m
∏
i=1

m
∏
j=1

Γ(nij + 1)

Γ

(
m2 +

m
∑

i=1

m
∑

j=1
nij

) = f ·

m
∏
i=1

m
∏
j=1

nij!

(T + m2 − 1)!
, (34)

as promised.

Corollary 1. The competitive ratio has the following (uniform) bounds, for all xT , yT :

1 ≥ R(xT , yT) ≥
f

(T + 1)(T + 2) · · · (T + m2 − 1)
∼ 10

f

Tm2−1
. (35)

Hence, the excess continuously-compounded per-period growth rate11 of the best bilinear portfolio
in hindsight (namely, −(1/T) log R(xT , yT)) is sandwiched by

0 ≤ EXCESS GROWTH RATE ≤
log
(

1/ f
)

T
+

1
T

m2−1

∑
j=1

log(T + j). (36)

That is, at worst, the excess growth rate is asymptotically equivalent to the quantity (m2 −
1) log(T)/T.

Proof. For any Kelly sequence (iT , jT), Lemma 1 implies that

R(iT , jT) =
Ŵ(iT , jT)

∏
(i,j): nij>0

(nij/T)nij
≥ f · TT

(T + m2 − 1)!

m

∏
i=1

m

∏
j=1

nij!

n
nij
ij

, (37)

where the right-hand side makes use of the convention that 00 := 1. Now, note that the
integer program

min{
[nij ]≥0:

m
∑

i=1

m
∑

j=1
nij=T

} m

∏
i=1

m

∏
j=1

nij!

n
nij
ij

(38)

is solved by setting any entry of the matrix
[
nij
]

m×m to T and setting all the other entries to
zero, e.g., we have the well-known inequality (cf. with Cover and Ordentlich (1996))

m

∏
i=1

m

∏
j=1

nij!

n
nij
ij

≥ T!
TT . (39)

9 This identity follows by direct evaluation of the iterated integral (33). In order to accomplish this, one must repeatedly invoke the special case k := 2,

e.g.,
1∫

z=0
zα(1− z)βdz = Γ(α + 1)Γ(β + 1)/Γ(α + β + 2), which is the beta function, or Euler integral of the first kind (cf. with David Widder (1989)).

10 The relation ∼ signifies that the two sequences are asymptotically equivalent, e.g., an ∼ bn means that lim
n→∞

an/bn = 1.
11 That is, per complete investment period (both halves).
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Hence, there lies

R(xT , yT) ≥ min
(iT ,jT)∈{1,...,m}2T

R(iT , jT) ≥
f

(T + 1)(T + 2) · · · (T + m2 − 1)
. (40)

Theorem 1. The universal bilinear portfolio asymptotically dominates the original (1-linear)
universal portfolio in precisely the same technical sense that the universal 1-linear portfolio asymp-
totically dominates all constant-rebalanced portfolios and all buy-and-hold strategies.

If it turns out that the best bilinear trading strategy in hindsight sustains a higher asymptotic
capital growth rate than the best constant-rebalanced portfolio in hindsight, then the universal
bilinear portfolio will asymptotically outperform the universal 1-linear portfolio by an exponential
factor.

Proof. We let

Ŝ(xt, yt) :=
∫

c∈∆m

[
t

∏
s=1

(
c′xs

)(
c′ys

)]
g(c)dc = Eg

[
t

∏
s=1

(
c′xs

)(
c′ys

)]
(41)

denote the wealth of the universal 1-linear portfolio (cf. with Thomas Cover (1991) and
Cover and Ordentlich (1996)) after the elapse of t complete investment periods, where ∆m
is the unit portfolio simplex in Rm

+ and g(•) is a prior density over ∆m. The final wealth of
the best constant-rebalanced portfolio in hindsight will be denoted

S∗(xt, yt) := max
c∈∆m

t

∏
s=1

(
c′xs

)(
c′ys

)
. (42)

On account of the lower bound

Ŵ(xt, yt)

Ŝ(xt, yt)
=

Ŵ(xt, yt)

D(xt, yt)
· D(xt, yt)

S∗(xt, yt)
· S∗(xt, yt)

Ŝ(xt, yt)
≥

f
m2−1

∏
j=1

(t + j)
· D(xt, yt)

S∗(xt, yt)
· 1, (43)

we can minorize the asymptotic excess growth rate (of the universal bilinear portfolio
relative to the universal 1-linear portfolio) as follows:

lim inf
t→∞

[
log Ŵ(xt, yt)

t
− log Ŝ(xt, yt)

t

]

≥ lim inf
t→∞

(1/t) log

(
f
/ m2−1

∏
j=1

(t + j)

)
+ lim inf

t→∞

[
log D(xt, yt)

t
− log S∗(xt, yt)

t

]

= lim inf
t→∞

[
log D(xt, yt)

t
− log S∗(xt, yt)

t

]
≥ 0, (44)

where we have made use of the fact that the relations S∗(xt, yt) ≥ Ŝ(xt, yt) and D(xt, yt) ≥
S∗(xt, yt) hold for all xt and all yt.

Thus, we have shown that even the smallest subsequential limit of the excess growth
rate (1/t) log

(
Ŵ/Ŝ

)
is non-negative; if the best bilinear trading strategy in hindsight hap-

pens to achieve a higher asymptotic growth rate than the best constant-rebalanced portfolio
in hindsight12 (in the sense that the smallest subsequential limit of (1/t) log(D/S∗) is

12 The practitioner of the universal bilinear portfolio must hope against hope that the individual return sequence ω := (xt, yt)∞
t=1 has this pleasant

feature.
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strictly positive), then the universal bilinear portfolio will asymptotically outperform the
universal 1-linear portfolio by an exponential factor.

3.1. Resolution of the Motivating Example

To close out the paper, this subsection provides exact formulas for the behavior of the
universal bilinear portfolio in the context of our original motivating example (as discussed
in the introduction) for the case of m := 2 assets. Accordingly, we will assume that asset 2
is cash (which pays no interest) and that asset 1 is a “hot stock” that always doubles in the
first half of each investment period and then loses 50% of its value in the latter half of each
investment period. Thus, we have the individual return sequence defined by xt :≡ (2, 1)′

and yt :≡ (1/2, 1)′. The set of all bilinear trading strategies is now a family of 2× 2 matrices

B :=
{
(b11, b12, b21, b22) ∈ R4

+ : b11 + b12 + b21 ≤ 1, b22 = 1− b11 − b12 − b21

}
, (45)

where the variable b22 is bound by the relation b22 := 1− b11 − b12 − b21. As depicted in
Figure 1, this set of matrices amounts to a tetrahedron in R3

+.

0
0

0.5

b 2
1

b11

0.5
1

The Set of Bilinear Trading Strategies Over Two Assets

1

b12

0.5
1 0

b11 + b12 + b21 5 1,
bij 6 0,
b22 := 1! b11 ! b12 ! b21:

Figure 1. Geometric depiction of the set B of all possible bilinear trading strategies B :=
[
bij

]
2×2

over two assets. The defining relations are B ≥ 0; b11 + b12 + b21 ≤ 1; and b22 := 1− b11 − b12 − b21.
The volume of this tetrahedron is 1/6.

Analogous to Thomas Cover (1991), we will use the uniform prior density
f (b11, b12, b21) ≡ 6, e.g., the volume of the tetrahedron B is given by

Volume(B) =
1∫

b11=0

1−b11∫
b12=0

1−b11−b12∫
b21=0

db21db12db11 =
1
6

. (46)

During each (complete) investment period, the (intra-period) capital growth factor
achieved by the bilinear trading strategy B amounts to

x′tByt =
[
2 1

][b11 b12
b21 1− b11 − b12 − b21

][
1/2

1

]
= 1 + b12 −

b21

2
, (47)
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so that WB(xt, yt) = (1 + b12 − b21/2)t. Thus, the universal wealth Ŵ(xt, yt) that obtains
after the elapse of t complete investment periods is found by evaluating the triple integral

6
1∫

b11=0

1−b11∫
b12=0

1−b11−b12∫
b21=0

(
1 + b12 −

b21

2

)t
db21db12db11

=
2t+5 − 12(t + 2)− 21−t

(t + 1)(t + 2)(t + 3)
∼ 32

t3 · 2
t. (48)

The best bilinear trading strategy in hindsight is obviously

B∗(xt, yt) ≡
[

0 1
0 0

]
, (49)

e.g., the extremal strategy that bets the ranch on the stock in the first half of each investment
period, and then cashes out completely in the latter half of each investment period. This
(perfect trading) yields the hindsight-optimized wealth D(xt, yt) = D(xt, yt−1) = 2t,
which corresponds to the asymptotic growth rate lim

t→∞
(1/t) log D(xt, yt) = log 2 = 69.3%

per complete investment period, compounded continuously. The competitive ratio after t
full periods is equal to

R(xt, yt) =
32− 12(t + 2)2−t − 21−2t

(t + 1)(t + 2)(t + 3)
∼ 32

t3 . (50)

Note well that Corollary 1 promised us the minorant

R(xt, yt) ≥ 6
(t + 1)(t + 2)(t + 3)

, (51)

which is indeed correct; we of course have lim
t→∞

(1/t) log R(xt, yt) = 0, so that the universal

bilinear portfolio compounds its money at the same asymptotic rate as the best bilinear
trading strategy in hindsight.

Against this individual return sequence, the universal bilinear portfolio finds its
expression in the triple integral

6
Ŵ(xt, yt)

1∫
b11=0

1−b11∫
b12=0

1−b11−b12∫
b21=0

(
1 + b12 −

b21
2

)t
[

b11 b12

b21 1− b11 − b12 − b21

]
db21db12db11. (52)

With some effort, one can explicitly evaluate the on-line bilinear weights, as follows:

b̂11(xt, yt) =
2 · 4t+2 − 3 · 2t(t2 + 5t + 10) + 1
(t + 4)[4t+2 − 3 · 2t+1(t + 2)− 1]

∼ 2
t
→ 0, (53)

b̂12(xt, yt) =
2t+4(3t− 4) + 18(t + 4) + 2−t

3(t + 4)[2t+4 − 6(t + 2)− 2−t]
→ 1, (54)

b̂21(xt, yt) =
2t+6 − 36(t + 1)− 2−t(3t + 19)
3(t + 4)[2t+4 − 6(t + 2)− 2−t]

∼ 4
3t
→ 0, (55)

b̂22(xt, yt) = b̂11(xt, yt) ∼ 2
t
→ 0. (56)

Notice that the (1, 1) and (2, 2) extremal strategies (which both amount to buy-and-
hold strategies) are assigned equal weights by the universal bilinear portfolio (in the sense
that b̂22 = b̂11); this happens on account of the fact that both assets produce identical results
for a buy-and-hold investor over any complete investment period.
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Thus, the universal bilinear portfolio learns to trade perfectly in as much as

lim
t→∞

B̂(xt, yt) =

[
0 1
0 0

]
. (57)

The same cannot be said for the universal 1-linear portfolio, which achieves the capital
growth factor13

Ŝ(xt, yt) =

1∫
c=0

(1 + c)t(1− c/2)tdc

=
t

∑
k1=0

t−k1

∑
k2=0

(
t

k1, k2, t− k1 − k2

)
(−1)k2

2k1+k2(k1 + 2k2 + 1)
. (58)

After t complete investment periods, the best constant-rebalanced portfolio in hind-
sight is equal to (1/2, 1/2)′, which corresponds to the (sub-optimal) bilinear trading

strategy B =

[
1/4 1/4
1/4 1/4

]
. The final wealth of the best constant-rebalanced portfolio in

hindsight is thereby S∗(xt, yt) = (9/8)t. Thus, the excess asymptotic growth rate of the
universal bilinear portfolio (over and above that of the universal 1-linear portfolio) is
log 2− log(9/8) = 57.5% per (complete) investment period, compounded continuously.

For the sake of visualization, Figure 2 plots the bankroll of the universal bilinear
portfolio in comparison to that of the universal 1-linear portfolio and the wealth achieved
by a perfect trader. The lower panel illustrates the parameter learning that obtains from
the performance-weighted average of all bilinear trading strategies.

13 Here, we have used the uniform prior density g(c) ≡ 1 over the unit interval [0, 1].
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Figure 2. Superior performance of the universal bilinear portfolio against the individual return sequence xt :≡ (2, 1)′

and yt :≡ (0.5, 1)′. Asset 2 is cash (that pays no interest); asset 1 is a “hot stock” that doubles in the first half of each
investment period and loses 50% of its value in the latter half of each investment period. Note that in the bottom plot, we
have limt→∞ b̂12(xt, yt) = 1 and b̂11(xt, yt) ≡ b̂22(xt, yt) ∼ 1/t→ 0.

4. Summary and Conclusions

In this note, we constructed a neat application and extension of the brilliantly lucid
Ordentlich-Cover theory of “universal portfolios”. The original (1-linear) universal portfo-
lios guarantee to achieve a high percentage of the final wealth that would have accrued
to the best constant-rebalanced portfolio in hindsight for the actual (realized) sequence of
asset prices.

The constant-rebalanced portfolios constitute a very simple parametric family of active
trading strategies, where the “activity” amounts to continuously executing rebalancing
trades so as to restore the portfolio to a given target allocation. Inspired by the fact that a
constant-rebalanced portfolio is a (horizon-1) trading strategy whose capital growth factor
in any given period is a linear function of the market’s gross return vector, we decided to
consider the wider class of bilinear trading strategies (or bilinear portfolios), which are mini
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2-period active strategies whose capital growth factors are linear separately in the two
gross return vectors.

Accordingly, we hit upon the more powerful benchmark of the best bilinear trading
strategy in hindsight for the actual sequence of asset prices. This led us to apply Cover’s
ingenious (Cover 1991) performance-weighted averaging technique to this new situation,
e.g., the universal bilinear portfolio is a performance-weighted average of all possible bilinear
trading strategies.

Applying Cover and Ordentlich’s elegant (Cover and Ordentlich 1996) methodology,
we showed that for any financial market with m assets14, at worst, the percentage of
hindsight-optimized wealth achieved by the universal bilinear portfolio will tend to zero
like the quantity T−(m

2−1) as T → ∞, where T denotes the number of complete (bipartite)
investment periods. Consequently, the universal bilinear portfolio succeeds in matching
the performance of the best bilinear trading strategy in hindsight to “first order in the
exponent,” e.g., the excess continuously-compounded per-period capital growth rate of the
best bilinear trading strategy in hindsight converges (uniformly) to zero, regardless of the
individual sequence of asset prices.

Thus, we showed that the universal bilinear portfolio asymptotically dominates the
universal 1-linear portfolio in the same technical sense that the universal 1-linear portfolio
asymptotically dominates all constant-rebalanced portfolios and all buy-and-hold strategies.
The universal bilinear portfolio will beat the universal 1-linear portfolio by an exponential
factor, provided that the individual sequence of asset prices enjoys the property that the
best bilinear trading strategy in hindsight achieves an asymptotic growth rate that is strictly
greater than that of the best constant-rebalanced portfolio in hindsight.

Analogously, we can get carried away and define the concept of a trilinear trading
strategy B := (bijk)

m
i,j,k=1, whose (horizon-3) capital growth factor in any (tripartite) period t

is equal to the trilinear form

〈xt, yt, zt〉B :=
m

∑
i=1

m

∑
j=1

m

∑
k=1

bijkxtiytjztk, (59)

where bijk ≥ 0 and
m
∑

i=1

m
∑

j=1

m
∑

k=1
bijk = 1. This leads to a universal trilinear portfolio whose

worst-case competitive ratio behaves like T−(m
3−1) as T → ∞. In general, an H-linear

trading strategy (cf. with Garivaltis (2018b)) divides each period t into H sub-periods,
wherein the gross return vectors are denoted (x1

t , x2
t , ..., xh

t , ..., xH
t ) = (xh

t )
H
h=1. Intra-period

capital growth is now generated by the H-linear form (cf. with Serge Lang (1987))

〈x1
t , ..., xH

t 〉B := ∑
(i1,...,iH)∈{1,...,m}H

{
B(i1, ..., iH)

H

∏
h=1

xh
tih

}
, (60)

where B(i1, ..., iH) ≥ 0 and ∑
(i1,...,iH)∈{1,...,m}H

B(i1, ..., iH) = 1; the attendant universal H-

linear portfolio asymptotically achieves, at worst, the fraction T−(m
H−1) of the final wealth

of the best H-linear trading strategy in hindsight.
Hence, one can use this method to construct an endless hierarchy of ever more

dominant universal portfolios. If the horizon H2 is an integer multiple of the horizon
H1, say H2 := q · H1, then the act of repeating a given H1-linear portfolio B for q times in
succession constitutes a special type of H2-linear portfolio; the universal H2-linear portfolio
thereby asymptotically outperforms the universal H1-linear portfolio “to first order in the
exponent,” á la Cover.

14 One of which can be cash, or a risk-free bond.



Int. J. Financial Stud. 2021, 9, 11 17 of 17

Disclosures

This paper is solely the work of the author, who declares that he has no conflicts
of interest; the work was funded entirely through his regular academic appointment at
Northern Illinois University.

Author Contributions: This is solely the work of the author.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares that he has no conflicts of interest.

References
Bell, R.M. and Cover, T.M., 1980. Competitive Optimality of Logarithmic Investment. Mathematics of Operations Research 5(2): 161-166.
Bell, R.M. and Cover, T.M., 1988. Game-Theoretic Optimal Portfolios. Management Science 34(6): 724-733.
Black, Fischer, and Myron Scholes. 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81: 637–54.
Breiman, Leo. 1961. Optimal Gambling Systems for Favorable Games. Paper presented at the Fourth Berkeley Symposium on

Mathematical Statistics and Probability, vol. 1, Berkeley, California, June 20-July 30, 1960. pp. 63–68.
Cover, Thomas M. 1991. Universal Portfolios. Mathematical Finance 1: 1–29.
Cover, Thomas M., and David H. Gluss. 1986. Empirical Bayes Stock Market Portfolios. Advances in Applied Mathematics 7: 170–81.
Cover, Thomas M., and Erik Ordentlich. 1996. Universal Portfolios With Side Information. IEEE Transactions on Information Theory 42:

348–63.
Cover, Thomas M., and Joy A. Thomas. 2006. Elements of Information Theory. Hoboken: John Wiley & Sons.
Curatola, Giuliano. 2019. Portfolio Choice of Large Investors Who Interact Strategically. Working paper, University of Siena.
Garivaltis, Alex. 2018a. Game-Theoretic Optimal Portfolios in Continuous Time. Economic Theory Bulletin 7: 235–43.
Garivaltis, Alex. 2018b. Multilinear Superhedging of Lookback Options. Working paper, Northern Illinois University.
Garivaltis, Alex. 2019a. Game-Theoretic Optimal Portfolios for Jump Diffusions. Games 10: 8.
Garivaltis, Alex. 2019b. Exact Replication of the Best Rebalancing Rule in Hindsight. The Journal of Derivatives 26: 35–53.
Kelly, John L. 1956. A New Interpretation of Information Rate. The Bell System Technical Journal 35(4): 917-926.
Lang, Serge. 1987. Linear Algebra. New York: Springer-Verlag.
Latané, Henry Allen. 1959. Criteria for Choice Among Risky Ventures. Journal of Political Economy 67: 144–55.
MacLean, Leonard C., Edward O. Thorp, and William T. Ziemba. 2011. The Kelly Capital Growth Investment Criterion: Theory and Practice.

Hackensack: World Scientific Publishing Company.
Ordentlich, Erik, and Thomas M. Cover. 1998. The Cost of Achieving the Best Portfolio in Hindsight. Mathematics of Operations Research

23: 960–82. Fortune’s Formula: The Untold Story of the Scientific Betting System that Beat the Casinos and Wall Street. New York: Hill
and Wang.

Samuelson, Paul A. 1963. Risk and Uncertainty: A Fallacy of Large Numbers. Scientia 6: 153–58.
Samuelson, Paul A. 1969. Lifetime Portfolio Selection by Dynamic Stochastic Programming. Review of Economics and Statistics 51:

239–46.
Samuelson, Paul A. 1979. Why We Should not Make Mean Log of Wealth Big Though Years to Act are Long. Journal of Banking and

Finance 2: 305–7.
Tal, O. and Tran, T.D., 2020. Adaptive Bet-Hedging Revisited: Considerations of Risk and Time Horizon. Bulletin of Mathematical Biology

82(4): 1-32.
Thorp, Edward O. 1969. Optimal Gambling Systems for Favorable Games. Revue de l’Institut International de Statistique 37: 273–93.
Widder, David Vernon. 1989. Advanced Calculus. New York: Dover Publications.


	Introduction; Literature Review
	Bilinear Trading Strategies
	Universal Bilinear Portfolios
	Resolution of the Motivating Example

	Summary and Conclusions
	References

