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Abstract: The presence of risk premium is an issue that weakens the rational expectation hypothesis.
This paper investigates changing behavior of time varying risk premium for holding 10 year maturity
bond using a bivariate VARMA-DBEKK-AGARCH-M model. The model allows for asymmetric risk
premia, causality and co-volatility spillovers jointly in the global bond markets. Empirical results
show significant asymmetric partial co-volatility spillovers and risk premium exist in the bond
markets. The estimates of the bivariate risk premia show bi-directional causality exist between the
Australia and France Bond markets. Overall results suggest nonexistence of pure rational expectation
theory in the risk premium model. This information is useful for the agents’ strategic policy decision
making in global bond markets.

Keywords: asymmetric volatility; risk premium; partial co-volatility spillovers; bond market; G1;
C40; C13; C18

1. Introduction

Conditional volatility models are routinely estimated within the univariate and multi-
variate contexts for time varying return volatility, risk-premia, and volatility spillovers in
the high-to-low frequency financial data. Since volatility is unobservable, the researchers
have argued to model volatility utilizing (i) realized volatility, (ii) implied volatility, and
(iii) conditional volatility in the financial markets, see McAleer et al. (2009) and Tsay
(2010). Engle (1982) first explicitly developed a conditional volatility model known as
autoregressive conditional heteroscedasticity (or ARCH) model. Subsequently, Bollerslev
(1986) extended the ARCH of Engle (1982) to include dynamic volatility in the ARCH
specification, known as the generalized ARCH (or GARCH) model. Tsay (1987) showed
that the Engle’s (1982) ARCH can be derived from a first order random coefficient autore-
gressive process. The basic ARCH and GARCH models are popular in applied univariate
economics and finance, yet they are incapable to capture asymmetric “news” that often
arrives in the financial markets during the periods of asset trading and delayed transactions.
Since “news” are unobservable and random, various proxies have been used in the finance
literature to tackle the unobservable nature of the news variable, see Glosten et al. (1993),
Ding et al. (1993), Beg and Anwar (2014) among others. As the financial volatility of returns
are “news” dependent, it is of interest to create a variable that can be used as a proxy
for the “news” to understand the effect of the so-called “good” and “bad” news in the
financial markets in general. Within the univariate context, Glosten et al. (1993) develop a
threshold type GARCH (synonym with TGARCH or GJR-GARCH or asymmetric GARCH)
and Nelson (1991) developed asymmetric volatility model known as Exponential GARCH
(EGARCH) model. Both the GJR and EGARCH capture news effect of volatility but their
functional forms are different. Engle and Ng (1993) develop nonparametric diagnostic test
that emphasize the asymmetry of volatility response to news. The conditional volatility
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specification of Ding et al. (1993) is called asymmetric power ARCH (or APARCH) model.
The APARCH model nests both asymmetric model of Glosten et al. (1993) and EGARCH
model of Nelson (1991). Another development of the univariate ARCH/GARCH model
is the time varying ARCH-in-mean (or ARCH-M) model, first introduced by Engle et al.
(1987). This model captures risk premium for holding risky assets.

In this paper, we employ both univariate and bivariate asymmetric GARCH-in mean
(AGARCH-M) model where a conditional variance is a determinant of time-varying risk
premia. Which enters in the forecast equation of the expected bond returns. Any increase
in the expected return will be identified as risk premium. The presence of risk premium is
an issue that weakens the rational expectation hypothesis see, Shiller (1978, 1981), Shiller
et al. (1983); Campbell (1986); Engle et al. (1987) among others for the univariate case.
This paper, explores linkages between Australia and France bond markets connecting two
different continents using bivariate VARMA-DBEKK-AGARCH-M model. The model is
estimated by the quasi-maximum likelihood (in absence of multivariate Gausinity) for the
Australian and French data. The model investigates the direction of causality, co-volatility
spillovers, and presence of risk premia jointly across the two markets. The existence of
time varying risk premium, and asymmetric co-volatility spillovers are the most valuable
sources of information through which efficient portfolio allocation and diversification can
be understood across markets both locally and globally. This information is useful for
measuring and predicting volatility, pricing securities, and risk management in general.

The structure of the paper is as follows. In Section 2, Review of related literature and
in Section 3, Data, models and methodology are discussed. Section 4 presents empirical
results. Finally, Section 5 concludes the paper.

2. Review of Related Literature

Markowitz (1959) developed a testable form of asset allocation utilizing mean-variance
approach. The principles of the mean-variance lies on the following optimization rules:

• Minimize the variance of portfolio return given expected return, and
• Maximize expected return, given variance.

Motivated by the work of Markowitz (1959); Sharpe (1964) and Lintner (1965) in-
dependently developed a model of “dependence” between expected returns and risk in
dealing with risk–return nexus. Sharpe (1964) and Lintner (1965), introduce their models
with additional two key assumptions: (a) All investors are assumed to follow the mean
variance rule, and (b) unlimited lending and borrowing at the risk–free rate, r f , which does
not depend on the amount borrowed or lent.

This model is known as capital asset pricing model (CAPM). The theory of CAPM
states that the risk premium on a security is proportional to the risk premium on market
portfolio. That is ri − r f ∝

(
rm − r f

)
, where ri and r f are the returns on security i and the

risk-free rate, respectively, rm is the return on the market portfolio, and the proportionality
constant of the model is denoted by βi is the i−th security’s “beta” value. A stock’s beta is
important to investors and policy makers since it reveals the stock’s volatility. This model
has been extensively used in empirical finance. Although theoretically, the CAPM is sound
but suffers from empirical evidence.

Poor empirical performance of the traditional static CAPM gives rise to modification
of the CAPM. Basu (1977, 1983) gave evidence that when common stocks are sorted on
earnings–price ratios (E/P), the future returns on high E/P stocks are higher than predicted
by the traditional CAPM. Banz (1981) documented a size effect when stocks are sorted by
market capitalization, in which average returns on small stocks are higher than predicted
by the CAPM. Stattman (1980) and Rosenberg et al. (1985) documented those stocks with
high book-to-market equity ratios have high average returns that are not captured by their
betas. Fama and French (1992) updated and synthesized the evidence on the empirical
failures of the CAPM. Using the cross-sectional regression approach, Fama and French
confirm that size, earnings–price, debt–equity, and book-to-market ratios added to the
explanation of expected stock returns provided by market betas. Fama and French (1996)
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reach the same conclusion using the time-series regression applied to portfolios of stocks
sorted by price ratios.

Jagannathan and Wang (1996) included other risk factors, different from Fama and
French (1992), into the model and found some support to the theory and practice of CAPM.
Specifically, they found some improvements of the model for monthly data rather than
annual data. The Fama and French (1992) model is known as three factor asset pricing
model in finance. They further extended the model by including a few other exogenous
variables into the model. The Fama and French (2015) five factor asset pricing model
directed at capturing the size, value, profitability, and investment patterns in average stock
returns and found that the five-factor model performs better than the three-factor model.
However, the five-factor model's main problem is its failure to capture the low average
returns on small stocks whose returns behave like those of firms that invest a lot despite low
profitability. Ratios involving stock prices have information about expected returns missed
by market betas. Such ratios are thus prime candidates to expose shortcomings of asset
pricing models in the case of the CAPM, shortcomings of the prediction that market betas
suffice to explain expected returns. These observations may be regarded as misspecification
of the traditional CAPM due to omitted variables. So, the consequence of the traditional
CAPM might suffer from bias and inconsistency.

Another important issue of the failure of empirical support to CAPM might be the
linearity assumption of expected returns. The linear model could perform badly in empiri-
cal applications if the linearity assumption is violated. It is well known that most of the
asset returns exhibit stylized facts, e.g., limit cycles, sudden jumps, amplitude-frequency
dependencies, and nonlinearity. The inherent nonlinearity of the traditional linear CAPM
could be a model specification problem. Therefore, the assumption of linearity of CAPM
needs to be tested before adopting such a model for policy decision analysis. One of the
sources of inherent nonlinearity may enter into the model through the conditional second
moment of the financial return series. If linearity does not hold then the use of correlation
as a measure of dependence between different financial assets is not appropriate for op-
timal portfolio selection by the CAPM. Therefore, the traditional static CAPM approach
founded on the assumption of multivariate normality could not be appropriate. This may
be regarded as functional misspecification of the traditional CAPM.

The nonlinearity that may enter into the returns series was first cleverly modelled by
the Nobel Laureate Robert Engle in 1982. This model is known as autoregressive conditional
heteroskedastic (ARCH) model, widely used in the finance and elsewhere. Engle showed
that it is possible to model the conditional mean and conditional variance of a series of
observations jointly. This theory is a stronger additional contribution to the traditional static
CAPM. The ARCH model captures various stylized facts that exhibited by the financial
asset returns, such as volatility clustering, asymmetry, and a high degree of persistence.
Bollerslev (1986) extended Engle’s (1982) ARCH by developing a technique that allows
the conditional variance to be an autoregressive moving average (ARMA) process. This
expanded conditional variance is widely known as Generalized Autoregressive Conditional
Heteroskedastic (GARCH) model, Bollerslev (1986). These two models are widely used in
empirical finance for volatility modelling.

Although the ARCH/GARCH models are popular and extensively used in finance
literature, however they are restricted only to symmetric information. Various extensions
of ARCH/GARCH has appeared in the literature to overcome some inherent nonlinearity
problems within GARCH class of models. Since volatility clustering is the likely charac-
teristic of financial returns which is nonlinear by nature, can be modelled by asymmetric
t-distribution, generalized error distribution, extreme-value theory among others. A popu-
lar nonlinear extension of ARCH/GARCH is the Nelson’s (1991) exponential generalized
autoregressive conditional hetroscedasticity (EGARCH) model. It attempted to include
asymmetric impact of shocks on volatility. In addition, this model does not require the
non-negativity restrictions on the parameters contradictory to ARCH/GARCH conditional
volatility models.
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Another popular extension of GARCH is the Glosten et al. (1993) is known as GJR-
return volatility model in financial econometrics. Other asymmetric models include “News
impact curves” of Engle and Ng (1993), nonlinear asymmetric GARCH (NAGARCH) and
vector AGARCH (VAGARCH) of Engle (1990) among others. These models have different
centers than the EGARCH and GJR. It is important to note that if a negative return shock
causes more volatility than a positive shock of the same size, the classical GARCH model
under predicts the amount of volatility following bad news and over predicts the amount
of volatility following good news.

The asset pricing theories agree that a high risk has to be compensated by higher
expected returns. It is therefore, reasonable to include variance into the expected return
model to take account of risk premium. The resulting model is known as ARCH-in-Mean
(ARCH-M) model and GARCH-in-Mean (GARCH-M) models within the ARCH/GARCH
context. ARCH-M model was first introduced by Engle et al. (1987) in the univariate
context. Significance of the ARCH-M could be treated as a failure of efficient market
hypothesis (EMH) represented by the traditional CAPM. Bollerslev et al. (1988) address the
issue of risk premia within the multivariate GARCH-M framework. Their result support
the time-varying conditional variance–covariance of the asset returns. They also found
significant risk premia influenced by the conditional moment results. On the issue of risk
premium, Christoffersen et al. (2012) derived the distribution of returns using a two-factor
volatility model, namely dynamic volatility and dynamic jump intensity. In their model
each factor ties own risk premium. Using U.S. returns, they find statistically significant
results which outperform the standard model without the jumps. They found significant
risk premium on the dynamic jump intensity which has a much larger impact on option
prices. Combining the jump diffusion and GARCH, Arshanapalli et al. (2011) tested the
risk–return relationship in the U.S. stock returns. They found significant relationship
between the risk and the return.

Campbell et al. (2020), generates time-varying risk premia on bonds and stocks
based on consumption-based habit model of homoskedastic macroeconomic dynamics.
They found co-movement of macroeconomic dynamics of stocks and bonds return. This
information could help modelling time-varying risk premia in a wide range of consumption-
based risk premium. Cochrane and Piazzesi (2005) studied time variation in expected
excess bond returns. They focus on real risk premia in the real term structure. Their
multiple regression of excess returns on all forward rates provide stronger evidence against
expectations hypothesis. Which indicates that a single linear combination of forward
rates forecasts returns of all maturities. They do not include the time-varying premium to
macroeconomic or monetary fundaments in the model.

3. The Data, Models and Methodology
3.1. The Data

The 10 year maturity bond price series for the Australia and France markets are
extracted from The Bloomberg database. The series starts at 4 January 1990 and the sample
period ends on 30 December 2016. The daily bond return having maturity of ten year is
constructed using

rt = 100 * ln (pt/pt−1) (1)

where pt is the bond price at time t and pt−1 is the one period lag series. The rt in (1) is
called the continuously compounded return or log return in percentage.

Empirical analysis begins with numerical descriptive statistics and graphical means
of observing the properties of for the Australian and French bond returns data. We then
perform the unit root tests followed by diagnostic tests for the return series to examine
the statistical properties in Section 4. We report the quasi-maximum likelihood estimates
(QMLEs) in absence of Gaussinity of the standardized return shock of the univariate au-
toregressive moving average asymmetric GARCH in mean (ARMA-AGARCH-M) models
followed by the multivariate estimation of the two country’s vector autoregressive moving
average diagonal BEKK—asymmetric GARCH-M (VARMA-DBEKK-AGARCH-M) model.
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The Granger causality of the bond returns, and the partial co-volatility spillovers for the
bivariate bond returns investigated.

3.2. Specification of the Model

To understand the dynamic interdependence of bond returns, time-varying risk-
premium, causality, and co-volatility spillovers, we utilize VARMA-DBEKK-AGARCH-M
model. This model nests a wide range of multivariate volatility models and considers
various issues of modelling real financial series. This model is capable to extract asymmetry,
Granger-type causality and Chang et al. (2018) type co-volatility spillovers between assets
across countries.

3.2.1. Univariate Models for Conditional Mean and Conditional Volatility

For the conditional mean of security return, rt, we use Box–Jenkin’s autoregressive
moving average (ARMA) model as follows.

rt|Ft−1 = φ0 + ∑k
j=1 φjrt−j + ∑m

l=1 ψlεt−l + εt (2)

where φo, φj, ψl are scalar parameters of the ARMA(k, m) process, εt is the innovation
or return shock, Ft−1 is the set of information available at time t. The AIC and BIC are
routinely used in empirical applications for ARMA order selection. A benchmark model
for volatility proposed by Bollerslev (1986) called generalized autoregressive conditional
heteroskedasticity (GARCH) model, which takes the following form.

GARCH(p, q):

E(ε2
t |Ft−1) = ht = w + ∑q

j=1 αjε
2
t−j + ∑p

l=1 βlht−l (3)

The order of GARCH q = 1 and p = 1 has been found appropriate in real applications,
Bollerslev (1986, 1987).

The GARCH is a generalization of Engle (1982) autoregressive conditional heteroskedas-
tic (ARCH) model. The basic ARCH/GARCH model cannot distinguish between the
asymmetric shocks on volatility, which is a common phenomenon of financial return series.
Glosten et al. (1993) (or GJR) develop a model which accounts for asymmetric volatility
called AGARCH, takes the following form.

ht|Ft−1 = w + ∑
p
l=1 βlht−l + ∑

q
j=1 αjlε

2
t−l + ∑

p
l=j γjdt−jε

2
t−j, where

dt−j =

{
1 i f εt−j < 0
0 otherwise

(4)

Engle et al. (1987), allows the conditional mean returns to depend on its own con-
ditional variance. This model is suitable for analysis of the asset markets’ time varying
risk premiums with intent to consider situations where the risk-averse agents require
compensation for holding risky assets. This model is generally known as risk premium
model expressed as follows.

rt = µt + δg(ht) + εt (5)

where µt is the conditional mean generated by model (2), ht is as defined in (3). In finance,
δg(ht) represent the risk premium, see Bera and Higgins (1993). In most applications
g(ht) =

√
ht has been used, for example, Domowitz and Hakkio (1985) and Bollerslev

et al. (1988). The GJR specification for conditional volatility when added in the asset return
equation, the resulting model (5) becomes GJR-GARCH-M.
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3.2.2. Multivariate Models for Conditional Mean and Conditional Volatility

Let rt = (r1t, r2t, . . . . . . ., rNt)
′ be an (N × 1) vector of N-dimensional asset returns or

log returns at the time index t = 1, 2, . . . . . . , T with the following structure.

rt|Ft−1 = µt + εt, εt = H0.5et (6)

where µt = E(rt|Ft−1) is the conditional expectation of the vector rt given the past informa-
tion Ft−1 and εt = (ε1t, ε2t, . . . . . . ., εNt)

′ is an (N × 1) vector of shocks, or innovation at time
t. Each component of rt vector is a univariate return of an asset. The et=e1t, e2t, . . . . . . , eNt
is an (N × 1) vector of i.i.d. random vector with probability distribution, say, G(0, IN),
where G is assumed to be a continuous, IN is the identity covariance matrix, and 0 is
an N × 1 mean vector. The multivariate conditional return can be expressed as a vector
autoregressive moving average (VARMA) model as follows.

rt = Φ0 + ∑k
i=1 Φirt−i + ∑m

l=1 Ψlεt−l + εt (7)

where Φ0 is a (N × 1) vector of intercept, Φi and Ψl are both (N×N) matrices for each i and
l of various lags. The vector of returns can be tested for stationarity. The (N × N) covariance
matrix Ht with component hijt, (i, j = 1, 2, . . . . . . N), need to be specified. Various forms of
Ht have been proposed, for example, Silvennoinen and Teräsvirta (2009), Bauwens et al.
(2006), Tsay (2006). The two most popular multivariate conditional volatility specifications
are the Bollerslev et al. (1988) VEC and Engle and Kroner (1995) BEKK specifications. In
the present paper we focus on a diagonal variant of BEKK.

3.2.3. VARMA-DBEKK-AGARCH-in Mean Model

We consider the following form of the multivariate risk premia model.
Return:

rt|Ft−1 = Φ0 + ∑k
i=1 Φirt−i + ∑m

l=1 Ψlεt−l + δH1/2
t + εt (8)

DBEKK-AGARCH:

Ht|Ft−1 = C′C + ∑
q
j=1 Aj

(
εt−jε

′
t−j

)
A′ + ∑

p
l=1 Bl Ht−l B′l + ∑

q
j=1 Γj

(
Djt ×

(
εt−jε

′
t−j

)
Γ′j

)
(9)

In model (8) the conditional expected return is augmented by the function of condi-
tional volatility model (9). In the above model (9), the matrices A, B, and Γ are assumed
to be diagonal. The matrix C is a lower triangular matrix. A simpler version of (9) with
p = 1 and q = 1, takes the following form.

Ht|Ft−1 = C′C + A
(
εt−1ε′t−1

)
A′ + Bl Ht−1B′ + Γ(Dt−1 ×

(
εt−1ε′t−1

)
Γ′ (10)

where

Dt−1 =

{
1 i f εt−1 < 0
0 i f εt−1 ≤ 0

the other variables are as defined above. Let us assume that εt = Htηt, where ηt is a vector
of identically and independently distributed vector of random variables with mean zero
vector and unit variance covariance matrix.

3.3. Estimation

The estimators of the parameters of the models (8) and (9) are obtained by maximizing
the log likelihood function

L(θ) =
(

1
T

)
∑T

t=1 lt(θ) (11)

where lt(θ) = −0.5 ∑t

(
ln|Ht|+ εtH−1

t ε′t

)
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where θ is the set of parameters of the models (8) and (9), lt(θ) is the log of the argument, |.|
is the determinant of the argument. Equation (11) takes the form of the Gaussian likelihood.
Because we do not assume multivariate normality of the standardized return shock ηt,
estimators of the parameters from (11) are the quasi-maximum likelihood estimators
(QMLEs). The QMLEs are consistent and asymptotically normal, see Ling and McAleer
(2003), Chang et al. (2018). Therefore, the classical asymptotic tests are valid for statistical
inference.

3.4. Co-Volatility Spillovers Effect

Volatility spillover effects can be estimated utilizing the definitions given in the paper
by Chang et al. (2017, 2018). In this paper, we apply the partial co-volatility spillovers as
follows:

∂Hijt

∂εk,t−1
, i 6= j, k = either i or j (12)

4. Empirical Results
4.1. Preliminary Data Analysis

In this section we provide both numerical and graphical descriptive analysis of the 10
year bond rates of Australia and France, and time series properties of the series for 6144
daily observations.

Table 1 below provides the basic descriptive statistics of the Australia and France
bond return series each comprising 6144 observations.

Table 1. Descriptive statistics for the Daily 10-year bond returns.

Statistics Australia France

Mean −0.015006 (0.4072) −0.0031 (0.8938)
Standard deviation (st.dev) 1.4191 1.8012

Minimum −10.7556 −15.7247
Maximum 12.9630 20.8273
Skewness 0.295699 (0.0000) 0.3952 (0.0000)

Excess Kurtosis 5.2828 (0.0000) 7.5076 (0.0000)
Jarque and Bera (JB) 7232.9308 (0.0000) 14,586.7843 (0.0000)

Sample size 6144 6144
Note: 1. The returns are in percentages and the sample period starts 4 January 1990 and ends 30 December 2016.
The data source is given in the text. 2. The p-value of the test is in parentheses.

The basic statistics of the two series show excess kurtosis, implying that the series
have fat tails. Both the series are non-normal by the Jarque and Bera (1987) test. Time plot
of the price and return volatility of each series shown in Figure 1a,b below.

From the Figure 1a,b above, we observe that the pattern of movement of the bond
prices sloping downward for both Australia and France. However, the volatility of returns
changes with varying degree of clustering across the two bond markets. The Australian
bond market experience tranquil period from 2005 to 2007. However, bond return volatility
started fluctuating from late 2007 until the beginning of 2010. Bond market of France on the
other hand exhibit tranquility before 2007. The bond market of France increased slightly
during 2008 and continue to fluctuate at a faster rate and peaked quite high during 2015 to
2016 compared with 2010. This could be due to the global and European financial crises
and Russian financial crisis. The Australian bond return volatility was comparatively high
during 1996 to 2004 than the previous years. This could be due to the Asian crises. While
during 2008 to 2016 the volatility clustering was relatively high compared with the periods
2007. Both the markets peaked up high volatility during the global financial crisis.
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Figure 1. (a) Plot of Bond price, return volatility and squared return series of Australia; (b) Plot of Bond price, return
volatility and squared return series of France.
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Next, we utilize augmented Dickey–Fuller (ADF), Phillips–Perron (PP) and KPSS tests
for stationarity property of both the Australia and France series.

The Unit root tests result of Table 2 suggests that both the bond returns series are
stationary by the augmented Dickey–Fuller (ADF), Phillips–Perron (PP), and Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) tests. Finally, the independent, identical distribution (iid)
issue of the data property is tested by the Ljung and Box (1978) [LB] test and the nonlinearity
test of the series is conducted by the McLeod and Li (1983) Chi-square test and by the Tsay
(1986)’s original-F-test (Ori-F). The test results are provided in Table 3 below.

Table 2. Unit root tests for the Bond returns.

Bond Returns Type Null
Hypothesis

Alternative
Hypothesis Test Statistic

Critical Value

(1% Level) (5% Level)

Australia
ADF Nonstationary Stationary −36.5301 *** −3.435 −2.863
PP Nonstationary Stationary −84.5055 *** −3.435 −2.863

KPSS Stationary Nonstationary 0.0460 0.739 0.347

France
ADF Nonstationary Stationary −37.7938 *** −3.435 −2.863
PP Nonstationary Stationary −81.2682 *** −3.435 −2.863

KPSS Stationary Nonstationary 0.0466 0.739 0.347

Note: ‘***’ 1% significance level.

Table 3. Preliminary diagnostics tests on the return and squared return series.

Type Australia France

Ljung–Box(LB)−Q(10) 43.661 (0.000) 25.704 (0.004)
Ljung–Box(LB)−Q(20) 58.920 (0.000) 37.804 (0.009)
Ljung–Box(LB)−Q2(10) 669.249 (0.000) 1133.363 (0.000)
Ljung–Box(LB)−Q2(20) 1049.775 (0.000) 2011.404 (0.000)

McLeod–Li(10) 668.992 (0.000) 1132.953 (0.000)
McLeod–Li(20) 1048.742 (0.000) 2010.004 (0.000)

Tsay Ori_F(10, 6134) lags(4) 4.362 (0.000) 3.099 (0.001)
ARCH-LM lags(4) 68.156 (0.000) 77.092 (0.000)

Note: The p-value is in parentheses.

Serial independence of the series is rejected by the LB-tests. The series are found to
be asymmetric with heavy tails by the skewness and kurtosis tests respectively. Both the
series are found to be nonlinear by the McLeod and Tsay tests.

4.2. Empirical Estimation of the Univariate ARMA-AGARCH-M Models

In this section, we report the quasi-maximum likelihood estimates (QMLEs) of the
univariate ARMA-AGARCH-M models for the bond return of Australia and France

(a) Empirical estimation of risk premium of the Australia bond return having maturity
of 10 year:

Austt = −0.0451∗∗∗ + 0.3182∗∗∗Austt−1 − 0.3845∗∗∗ε1,t−1 + 0.01959∗∗h
1
2
1t + ε1,t

(s.e) (0.0131) (0.0132) (0.1253) (0.0188)
h1t|Ft−1 = 0.0058∗∗∗ + 0.025∗∗∗ε2

t−1 + 0.9615∗∗∗h1,t−1 + 0.0221∗∗∗d1t−1ε2
1t−1

(s.e) (0.0015) (0.0038) (0.00034) (0.0221)

where d1t−1 is an indicator variable as defined in the text. Note: “***” significant at the 1%
level; “**” significant at the 5% level.

The estimated coefficients of the Australia risk-premium model are all significant
at one percent level. The risk premium parameter and the asymmetric news effect are
significant. The leverage effects are found to be significant. The Ljung and Box (1978) test
results on the standardized residuals and those of squared standardized residuals indicate
no model inadequacy. The bond return model captures both news effect and risk premium.
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This information is useful for prediction of volatility and risk premium in the Australian
market independently of the French market.

(b) Empirical estimation of risk premium of the France bond return having maturity of
10 year:

Francet = −0.0726∗∗∗ + 0.3315Francet−1 − 0.3504ε2t−1 + 0.0145∗∗h
1
2
t + ε2t

(s.e) (0.0217) (0.2911) (0.2883) (0.0058)
h2t|Ft−1 = 0.0047∗∗∗ + 0.0340∗∗∗ε2

2t−1 + 0.9452∗∗∗h2t−1 + 0.04361∗∗∗d2t−1ε2
2t−1

(s.e) (0.0015) (0.0048) (0.0039) (0.0063)

where d2t−1 is an indicator variable as defined in the text. Note: “***” significant at the 1%
level; “**” significant ant the 5% level.

The Ljung and Box (1978) test result on the standardized residuals and those of squared
standardized residuals indicate no model inadequacy for French data. The estimated
France Bond returns indicate that the autoregressive and the moving average terms are
insignificant in the model. The Univariate volatility model for France shows significant
asymmetric news effect on volatility and existence of risk premium term at 5% level.

Ljung and Box (1978) test on the standardized residuals & squared standardized
residuals of Australian and France risk Premium model are reported in Table 4.

Table 4. Preliminary diagnostics tests on the residuals and squared residuals of the risk premium
model for Australia and France.

Type Australia France

LB−Q(10) 3.759 (0.9576) 12.550(0.2499)
LB−Q2(10) 8.740 (0.5569) 11.493(0.3204)
LB−Q(20) 13.591 (0.8506) 31.695(0.047)
LB−Q2(20) 16.554 (0.6817) 20.442(0.4306)

Log-likelihood −10,099.3285 −9976.8864
Note: The p-value is in parentheses; Ljung–Box (LB).

4.3. Empirical Estimation, Causality, and Partial Co-Volatility of the VARMA-DBEKK-
AGARCH-M Model

In this section we provide bi-variate estimation of the VARMA-DBEKK-AGARCH-M
model

(a) Estimation of the bivariate VARMA-DBEKK-AGARCH model.

(
Austt

Francet

)
=


−0.0579 ∗ ∗∗
(0.0177)
−0.0237 ∗ ∗
(0.0103)

+


0.02100.2136 ∗ ∗∗
(0.0417)(0.0101)

0.0424 ∗ ∗∗0.6064 ∗ ∗∗
(0.0104)(0.1177)

( Austt−1
Francet−1

)
+


−0.1662 ∗ ∗ ∗ 0

(0.0447)
00.6381
(0.1143)

( ε1t−1
ε2t−1

)
+


0.0433 ∗ ∗ ∗ −0.0419
(0.0162)(0.0281)

0.01490.0036∗
(0.213)(0.0019)

( √h11√
h22

)

The estimates of the bivariate risk premia show significant causality running from
France to Australia bond market and vice versa. This implies bi-directional causality exits
between Australia and France Bond markets. Highly significant risk premium exists in the
Australian Bond. While, weaker risk premium exists in the French Bond market compared
to Australia Bond market. This could be due to the French bond market structure and
financial crisis.

(b) Empirical estimation and partial co-volatility of the DBEKK-AGARCH model
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C =


0.0824 ∗ ∗ ∗ 0
(0.0093)

0.0361 ∗ ∗ ∗ −0.0652 ∗ ∗∗
(0.0092)(0.0084)

, A =


0.1934 ∗ ∗∗
(0.0089)

0.1352 ∗ ∗∗
(0.0121

, B =


0.9793 ∗ ∗∗
(0.0019)

0.9766 ∗ ∗∗
(0.0018)



Γ =


0.0417 ∗ ∗
(0.0185)

0.2352 ∗ ∗∗
(0.0118)


CNote 1. “***” indicate 1% level of significance, “**” indicate 5% level of significance,

“*” indicate 10% level of significance. Note2. Standard error is in parentheses.
The partial co-volatility effects computed are as follows.

∂Hijt
∂εk,t−1

, i 6= j(France, Aust), k = either Franceor or Australia

∂HAust,France,t
∂εFrance,t

=
_
a 11

_
a 22

_
ε Aust,t−1 +

_
γ11

_
γ22dt

_
ε Aust,t−1 = −0.00169

∂HAust,France,t
∂εAust,t

=
_
a 11

_
a 22

_
ε France,t−1 +

_
γ11

_
γ22dt

_
ε France,t−1 = −0.00271

where dt is the indicator variable as defined in the text and the co-volatility spillovers from
i to j computed at the average return shock.

From the above empirical results, we observe that the return volatility shocks are
significant for both the bond markets. Significant asymmetry exists in both the French
and Australian bond markets. The partial co-volatility shows French bond return shock
negatively spillover to average co-volatility of Australian bond and French bond. It is to be
noted that the Australian bond return shock negatively spillover to average co-volatility of
Australian bond and French bond. The negative sign effect of return shock is an important
issue in the financial asset market trading.

5. Conclusions

This paper examined volatility dynamics of the bond markets within multivariate
context. This study examined the 10-year maturity of the government bond markets of
Australia and France. These markets are taken in consideration for analysis because of the
reason France GDP is double in size to Australia while growth rate of GDP of Australia is
double and both share prime locations and are center of attractions for investors as both
of those markets are well developed and matured. The VARMA-DBEKK-AGARCH-M
model nests a few variants of multivariate return volatility models. The parameters of
the multivariate model are estimated by the quasi-maximum likelihood method. The
estimates of the bivariate VARMA-DBEKK-AGARCH-M model show significant causality
running from France to Australia bond market and vice versa. This implies bi-directional
causality exits between Australia and France Bond markets. The results, however, suggest
nonexistence of pure rational expectation theory in the two bond markets. This information
is useful particularly, for the agents’ strategic policy decision purposes in the global bond
markets. For the Australian case, the estimated coefficients of the univariate ARMA-
AGARCH-M are all significant at the conventional level. Significant risk-premium and
leverage effect exist in the Australian long term bond. However, for France series both
the AR and MA coefficients are insignificant implying that the mean model for France
is constant apart from the risk premium term. This finding is useful from the investors’
point of view. One important finding is that there exist co-volatility spillovers between the
two bond markets and, the Australian bond return shock negatively spillovers to average
co-volatility of Australian bond and French bond and vice versa. The methodology of
this paper can be applied to other global financial markets jointly, which is in our future
research agenda.
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