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Abstract: The aim of this study is to forecast credit ratings of E.U. banking institutions, as dictated by
Credit Rating Agencies (CRAs). To do so, we developed alternative forecasting models that determine
the non-disclosed criteria used in rating. We compiled a sample of 112 E.U. banking institutions,
including their Fitch assigned ratings for 2017 and the publicly available information from their
corresponding financial statements spanning the period 2013 to 2016, that lead to the corresponding
ratings. Our assessment is based on identifying the financial variables that are relevant to forecasting
the ratings and the rating methodology used. In the empirical section, we employed a vigorous
variable selection scheme prior to training both Probit and Support Vector Machines (SVM) models,
given that the latter originates from the area of machine learning and is gaining popularity among
economists and CRAs. Our results show that the most accurate, in terms of in-sample forecasting, is
an SVM model coupled with the nonlinear RBF kernel that identifies correctly 91.07% of the banks’
ratings, using only 8 explanatory variables. Our findings suggest that a forecasting model based
solely on publicly available financial information can adhere closely to the official ratings produced
by Fitch. This provides evidence that the actual assessment procedures of the Credit Rating Agencies
can be fairly accurately proxied by forecasting models based on freely available data and information
on undisclosed information is of lower importance.

Keywords: credit ratings; machine learning; Support Vector Machines; banks

1. Introduction

Credit Rating Agencies (CRAs) have been around for more than 150 years. Their role progressed
from simple information collectors to quasi-official evaluators of credit risk throughout the modern
global financial system. CRAs were originally paid by potential investors to compile financial
information and data at a time when such a service was too difficult and costly. Nonetheless, after the
1929 big market crash CRAs started to play a more formal role in the financial system. The stricter
rules that were imposed by regulators with the Glass–Steagal Act in the mid-1930s limited banking,
insurance and other financial institutions to only invest in “investment grade” securities, assessed
by the CRAs. Since then, we have seen a growing reliance on CRAs ratings as they are increasingly
incorporated in private contracts, investment guidelines for pension funds, endowment funds and
other private entities that all came to rely on these CRAs ratings.

In the aftermath of the 2008 global financial crisis, the role of CRAs evolved to an increasingly
important albeit a questionable one; they provide important financial information to market participants,
mainly by issuing ratings on the probability of default for specific debt issuers. In recent years, there is
an increased interest in the credit ratings process and specifically on the actual criteria used by the
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CRAs to evaluate debt issuers. Focusing on banking institutions, rating agencies provide publicly
available ratings associated with the ability of a banking institution to meet debt obligations on time.
The supervisory framework of the Basel II and the Basel III accords expanded the role of credit rating
agencies. As a result, now banks are required to calculate their risk weighted assets (RWA). This is
done by either using the ratings provided by the CRAs or creating their own internal ratings approach.
In either case, ratings are now in the epicenter of risk assessment and the resulting capital requirements
for the banking institutions that are used by the supervising authorities.

Nevertheless, the experience from the 2008 financial crisis dictates that CRAs may underreact
to financial information or significantly delay in downgrading debt issuers. In many occasions, they
only downgrade a debt issuer long after the markets do. This happens especially in the case of
“too-big-to-fail” financial and banking institutions. Long before the 2008 crisis, their integrity was
under scrutiny in other major corporate collapses as well, such as the Enron failure in the U.S., the Asian
financial crisis and Parmalat scandal and the subsequent failure in Europe. All these corporations
were assessed and assigned high ratings just a few days before their collapse. The same was true
even in major sovereign debt crises like the debt crises of Greece, Spain, Portugal and Italy in the
early 2010’s. The Securities and Exchange Commission (SEC) in a 2011 annual report on credit raters
found “apparent failures” at each of the 10 credit rating agencies they examined. These included
Standard & Poor’s (S&P), Moody’s, and Fitch, the “big three” credit rating agencies that hold 95% of
the corresponding global ratings market. On top of these concerns, the fact that the criteria of the
assessments are not fully disclosed and transparent, augments the mistrust on the actual quality of
the ratings.

Based on the above criticism, the regulatory authorities in the U.S. decided to take some regulatory
action in 2008 and since require the public disclosure of the information a CRA uses to determine a
rating on a structured product. In response to the inability of CRAs to properly appreciate the risks in
complex financial instruments before 2008, the European Commission strengthened the regulatory and
supervisory framework for CRAs in the E.U. The new E.U. rules were introduced in three consecutive
rounds. The first round of rules, which came into force at the end of 2009, established a regulatory
framework for CRAs and introduced a regulatory oversight regime, whereby CRAs had to be registered
and supervised by national competent authorities. In addition, CRAs were required to avoid conflicts
of interest, and to have sound rating methodologies and transparent rating activities. In 2011, these
rules were amended to take into account the creation of the European Securities and Markets Authority
(ESMA), which supervised CRAs registered in the E.U. A further amendment was made in 2013 to
reinforce the rules and address weaknesses related to sovereign debt credit ratings. In the case of
European banks, total bank debt issuance amounted to approximately €881 billion in 2020. That
included €220 billion of corporate bonds, €129 billion of medium-term notes, €160 billion of short-term
debt and €510 billion of covered bonds (European Central Bank (European Central Bank ECB).

This study seeks to find the most important factors contributing to the ratings of European banking
institutions. This was done using only publicly available information from the published financial
statements of all banks. In doing so, we compiled a dataset of 112 E.U. banking institutions and
attempted to fit a Probit and a Support Vector Machines (SVM) model in order to pinpoint the variables
used in the true rating procedure. Thus, our focus was to use the publicly available data in order
to accurately forecast the assigned credit ratings from the CRAs. To the best of our knowledge, our
paper is the first that attempts to pinpoint the criteria used by rating agencies to assess the resilience of
E.U. banks.

The remainder of the paper is organized as follows. Section 2 reviews the literature. In Section 3
we describe the data and the methodology, while the empirical findings are presented in Section 4.
Section 5 concludes the paper.



Int. J. Financial Stud. 2020, 8, 49 3 of 15

2. Literature Review

While bank ratings are used extensively as explanatory variables in the economic literature,
the nature of ratings per se remains largely ill-examined. A paper closely related to this study is
Gogas et al. (2014) who examined the ratings of the Fitch Rating Agency for the case of 92 U.S.
banks. The authors used ordered logit models to forecast bank credit ratings based on publicly
available financial statements of the banks. Their empirical findings suggested that almost 84% of
the actual ratings can be matched based on publicly available information. Bissoondoyal-Bheenick
and Treepongkaruna (2011) analyzed the quantitative determinants of bank ratings, provided by
Standard & Poor’s, Moody’s, and Fitch for U.K. and Australian banks. They instead based their
analysis on an ordered probit model and found that accounting variables from the financial statements
of banking institutions had more explaining power in identifying banks’ ratings than macroeconomic
ones. Pagratis and Stringa (2007) conducted an ordered probit analysis in order to evaluate the potential
linkage between Moody’s bank ratings and bank characteristics such as provisions, profitability, cost
efficiency, liquidity, short-term interest rates and bank-size.

From a different perspective, Papadimitriou (2012) explored the clustering properties of 90
financial institutions using a correspondence analysis map. The goal was to correspond clustering
groups with ratings from Fitch. The empirical findings support a correspondence between clusters and
ratings, though the regions corresponding to the ratings are highly overlapped. Credit ratings have
also been explored with the use of machine learning methods. Ravi et al. (2008) argued that almost
83.5% of bank failures can be foreseen based on a Support Vector Machine (SVM) model that utilized
the information of 54 financial variables on a sample of 1000 banks, over the period 2005–2008.

Although the issue of identifying the exact structure of credit ratings for banks has not been
studied to a large effect by the relevant literature, significant relevant papers can be found in the area of
predicting bond ratings. Ederington (1985); Pinches and Mingo (1973); Belkaoui (1980) used statistical
methods such us logistic regression and multivariable discriminant analysis (MDA) to predict bond
ratings. Based on alternative sets of variables the prediction results vary in accuracy between 50%
and 70%. Many studies on bond credit rating prediction build forecasting neural networks models
(Dutta and Shekhar 1988; Surkan and Singleton 1990; Kim et al. 1993) that are more accurate than
typical statistical methods. Moody and Utans (1995) used neural networks to forecast corporate bond
ratings based on the ratings of S&P. Using 10 input variables they correctly forecasted 85.2% of the
actual ratings. Maher and Sen (1997) compared neural networks to logistic regression models in
forecasting bond ratings for the period 1990–1992. The most accurate model achieved 70% on a holdout
sample. Kwon et al. (1997) compared ordinal pairwise partitioning (OPP) with back propagation and
conventional neural networks for bond ratings of Korean firms. Using 126 financial variables for the
period 1991–1993 they achieved 71–73% via neural networks with OPP and 66–67% via conventional
neural networks. Huang et al. (2004) compared back propagation neural networks (BPNN) to SVMs in
forecasting corporate credit ratings for the U.S. and Taiwan. The most accurate model was a linear
SVM model achieving an 80% of correct bond classification.

He et al. (2012) examined the relationship between ratings and the business cycle on
mortgage-backed securities (MBS) spanning the period from 2000 to 2006 and their respective ratings
from Moody’s, S&P and Fitch. The idea was that large financial institutions will persuade CRAs to
issue a higher rating than the one dictated by the rating methodology. This discrepancy should be
visible when the price of securities sold by big issuers drops more than the price of securities sold by
small issuers (keeping everything else fixed). The empirical findings provided evidence in favor of a
favorable rating for larger issuers in comparison to small ones, especially during the market boom
period of 2004–2006. Hau et al. (2013) extended the previous setting to the banking sector, using a
cross-sectional sample of 39,000 banking institution ratings for the period 1990–2011 from Moody’s,
S&P, and Fitch. The authors concluded that large banks systematically received higher ratings than
they should have actually received. An important factor in this favorable rating scheme is the provision
of large securitization to CRAs that affects the final outcome of the rating. This phenomenon is more
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prevalent during economic booms, when the risk of reputational loss is lower. The erosion of the
rating system due to the aforementioned practice leads to the adverse phenomenon where the upper
investment grade range does not reflect expected default probabilities, i.e., a higher rating does not
necessarily correspond to a lower risk of default.

From a different perspective, Kraft (2015) compared ratings to issuers with rating-based
performance-priced loan contracts to issuers with contracts based on accounting ratios and other loan
agreements. The study examined adjustments to ratings, i.e., the difference between actual rating
and the hypothetical rating implied by reported financials. The study found that, after an adverse
economic shock, the adjustments made for firms with rating-based contracts are more favorable than
for firms with other types of contracts. This finding is consistent with the hypothesis of rating catering
and suggests that reputational concerns are not sufficient to fully eliminate this phenomenon.

3. Data and Methodology

3.1. The Data

For our analysis we used a cross-section of 112 European banking institutions over the period
2013–2017. In order to train our forecasting models, we compiled observations for 34 variables from
the Bank-Focus/Orbis14 database that originate from the banks’ financial statements up to 4 years prior
to the 2017 actual rating grade. Thus, counting the lags of the 34 independent variables, we compiled a
total of 136 explanatory variables considered as possible forecasters of bank ratings, where each lag
was treated as an independent variable. The motivation for selecting up to 4 years of data prior to the
2017 Fitch rating stemmed from the fact that, as discussed in the introduction section, CRAs often react
to the information reflected in financial statements with a delay. We obtained and used the ratings from
Fitch for the year 2017 and the financial statements for the period 2013–2017, due to data availability
issues. The independent variables can be classified into four general categories: Assets, Liabilities,
Income statement and Financial Ratios. In Table 1 we report the compiled financial variables used as
independent variables (or features in the machine learning terminology) to our models.

Table 1. Financial Variables.

No Abbreviation Description

Panel A: Assets

1 TASSET Total Assets

2 LO Loans

3 GRLO Gross loans

4 CBCB Cash& Balances at Central Bank

5 LASSET Liquid assets

Panel B: Liabilities

6 DSF Deposits and Short-term funding

7 EQ Equity

8 TCDE Total customer deposits

9 OIBL Other interest-bearing liabilities

10 BDE Bank deposits
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Table 1. Cont.

No Abbreviation Description

Panel C: Income and Expenses

11 NI Net Income

12 NIM Net interest margin

13 NIR Net interest revenue

14 PBT Profit before tax

15 OPIN Operating income

16 ITEX Income tax expense

17 OPPR Operating profit

18 TOE Total operating expenses

19 NOR Net operating revenues

20 TIP Total interest paid

21 TIR Total interest received

Panel D: Financial Ratios

22 NLTA Net loans/Total assets

23 NLDSF Net loans/Deposits and Short-Term funding

24 NLTDB Liquid assets/Total deposits and borrowed

25 LADSF Liquid assets/Deposits and Short-Term funding

26 LATDB Liquid assets/Total deposits and borrowed

27 NIRAA Net interest revenues/Average assets

28 OOPIAA Other operating income/Average assets

29 NOEAA Non-interest expenses/Average assets

30 ROAE Return On Average Equity (ROAE)

31 ROAA Return On Average Assets (ROAA)

32 ETA Equity/Total assets

33 ENL Equity/Net loans

34 EL Equity/Liabilities

The dependent variable is ordinal and it is grouped in our case in four classes. These are assigned
integer values from 0 to 3, such that lower values indicate a lower rating. The groupings of the four
classes are depicted in Table 2.

Table 2. Grouping of Bank ratings in classes.

Class Identification Rating Category Number of Banks

3 AAA AA– AA A+ 24

2 A– A BBB+ 34

1 BBB– BBB 32

0 BB+ BB– BB B+ B– 22

Total 112

The grouping is performed is such a way so that the four identified classes contain a quasi- balanced
number of banking institutions, forming a balanced dataset that avoids micronumerosity issues.
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3.2. Support Vector Machines

Support Vector Machines is a supervised machine learning method used in data classification.
The basic concept of an SVM is to select a small set of data points from the initial dataset, called Support
Vectors (SV), that defines a linear boundary separating the data points in two classes. In what follows
we describe briefly the mathematical derivations of the SVM theory.

We consider a dataset of vectors xi ∈ R2 (i = 1, 2, . . . , n) belonging to 2 classes (targets1) yi ∈

{−1,+1}. If the two classes are linearly separable, we define a boundary as:

f(xi) = wTxi − b = 0, yif(xi) > 0∀i (1)

where w is the weight vector and b is the bias.
This optimal hyperplane is defined as the decision boundary that classifies each data vector to the

correct class and has the maximum distance from each class. This distance is often called a “margin”.
In Figure 1, the SVs are represented with a contour circle, the margin lines (defining the distance of
the hyperplane from each class) are represented by solid lines and the hyperplane is represented in
the center.
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In order to allow for a predefined level of error tolerance in the training procedure, Cortes and
Vapnik (1995) introduced non-negative slack variables, ξi ≥ 0, ∀i, and a parameter, C, describing
the desired tolerance to classification errors. The solution to the problem of identifying the optimal
hyperplane can be dealt through the Lagrange relaxation procedure of the following equation:

min
w,b,ξ

max
aµ

1
2
‖w‖2 + C

N∑
i=1

ξi −

N∑
j=1

a j
[
y j

(
wTx j − b

)
− 1 + ξ j

]
−

N∑
k=1

µkξk

 (2)

where ξi measures the distance of vector xi from the hyperplane when classified erroneously, and a1,
. . . , an are the non-negative Lagrange multipliers.

1 In the SVM jargon.
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The hyperplane is then defined as:

ŵ =
N∑

i=1

aiyixi (3)

b̂ = ŵTxi − yi, i ∈ V (4)

where V =
{
i : 0 < yi < C

}
is the set of support vector indices.

When the two-class dataset cannot be separated by a linear separator, the SVM is paired with
kernel methods. The concept is quite simple: the dataset is projected through a kernel function into a
richer space of higher dimensionality (called a feature space), where the dataset is linearly separable.
The solution to the dual problem with the projection of Equation (2) now transforms to:

max
a

=
N∑

i=1

ai −
1
2

N∑
j=1

N∑
k=1

a jaky jykK
(
x j, xk

)
(5)

under the constraints
∑N

i=1 aiyi = 0 and 0 ≤ ai ≤ C, ∀ i, where K
(
x j, xk

)
is the kernel function. The SVM

model can be extended to a multiclass classification method, using the one-against-the-rest approach;
one class is kept aside and all others are grouped to form a new “grouped” class. After measuring the
accuracy in forecasting the independent class kept aside, the second one is considered as independent
and the others are grouped and so on until all classes are rotated. The overall accuracy is measured as
the mean accuracy over all independent classes.

In our models we examined two kernels: the linear kernel and the radial basis function (RBf)2.
The linear kernel detects the separating hyperplane in the original dimensional space of the dataset,
while the RBF projects the initial dataset onto a higher dimensional space. The mathematical
representation of each kernel is:

Linear K1(x1, x2) = xT
1 x2 (6)

RBF K2(x1, x2) = e−γ‖x1−x2‖
2

(7)

4. Empirical Findings

4.1. Feature Selection

We identified the variables that contribute the most to the assigned bank ratings following a
thorough regression-based variable selection procedure. The selected variables were then fed to both
a Probit and an SVM model. As a first step, we measured the correlation coefficient, ri,R, between
each independent variable i and the assigned rating R. Based on the correlation values, we created six
groups of regressors as follows: In group 1, we included all variables with

∣∣∣ri,R
∣∣∣ ≥ 0.4. This resulted in

18 variables in group 1; TASSET, NIM, TIR, NOEAA for the period 2013–2016 and NIRAA for years
2014 and 2016. In a similar manner, in group 2 we did the same for

∣∣∣ri,R
∣∣∣ ≥ 0.4 along with all the lags of

variable NIRA. This group included 20 variables. In groups 3 and 4, we included the 30 variables with
the highest positive correlation and the 30 variables with the highest negative correlation, respectively.
In group 5, the variables included were the five with the highest correlation with the dependent variable
and the five with the lowest one, a total of 10 variables. The last group, group 6, contained the entire
sample of explanatory variables, a total of 136 features. Table 3 summarizes the variables’ groups.

2 Our implementation of SVR models is based on LIBSVM (Chang and Lin 2011). The software is available at http:
//www.csie.ntu.edu.tw/~{}cjlin/libsvm/.

http://www.csie.ntu.edu.tw/~{}cjlin/libsvm/
http://www.csie.ntu.edu.tw/~{}cjlin/libsvm/
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Table 3. Number of variables in each regressor group.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

18
variables

20
variables

30
variables

30
variables

10
variables

136
variables

The next step was to use the selected groups in order to identify the most significant variables
in terms of identifying bank ratings. This was done in each group either by: (a) a combinatorial
exhaustive search methodology of all possible sets of four variables in each one of the above six groups,
hand-picking the ones with the highest R-square and (b) the same process but with all possible sets
of eight variables from within each one of the six groups, and (c) a stepwise forward least squares
technique where we kept the set of variables with a p-value greater than 0.1.

This variable selection procedure produced a total of 18 groups of regressors. Table 4 summarizes
the variables selected from each method.

Table 4. Selected variables in each one of the 18 group.

Combinatorial 4

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

TASSET14 TASSET14 TASSET14 TIR16 TASSET14 TIR16
TIR16 TIR16 TASSET13 DSF14 TIR16 DSF14

NOEAA13 NIRAA13 OPPR13 NIRAA13 OIBL13 TASSET15
NIM13 NOEAA13 OIBL16 NOEAA13 TASSET13 NOR14

Combinatorial 8

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

TASSET14 TASSET14 TASSET14 DSF14 TASSET14 TIR16
TIR16 TIR16 TASSET13 NIRAA13 TIR16 TASSET13

TASSET13 NIRAA13 OIBL16 EQ16 OIBL13 ETA16
TIR14 NOEAA13 LADSF16 TIR15 TASSET13 LO15

NOEAA13 TASSET13 LADSF14 GRLO14 TIR14 GRLO15
NIM13 TIR14 LADSF13 LO14 NOEAA14 NOEAA16

NOEAA15 NOEAA15 OPPR14 OOPIAA13 TIR15 OOPIAA13
NOEAA16 NOEAA16 NI13 OOPIAA16 TASSET16 NLTA14

Stepwise-forward

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

TASSET14 TASSET14 TASSET14 TIR15 TASSET14 TASSET14
TIR16 TIR16 TASSET13 DSF14 TIR16 TIR16

NIRAA14 NIRAA14 OPPR13 NIRAA13 OIBL13 DSF14
NOEAA14 NOEAA14 OIBL16 NOEAA13 TASSET13 PBT13

(4) (4) (4) EQ16 (4) NIR13
(5) CBCB16

CBCB13
OOPIAA14

TIR14
NIR14

(10)

4.2. Ordered Probit Model Results

The above selection procedure resulted in 18 different sets of regressors. These sets were fed to
an ordered probit model that forecasts the credit bank rating assigned by Fitch for each institution
for the year 2017. The evaluation of the forecasting accuracy of each forecasting model is depicted in
Table 5. Each column corresponds to each one of the six groups of the prefiltered regressors while
each row presents the forecasting results for the corresponding selection criterion. According to these
results, the best accuracy using the probit model for all regressor selection criteria was achieved from
the combinatorial search of eight variables from group 6.
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Table 5. Bank Rating forecasting accuracy by the probit model (%).

Regressor Selection Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Combinatorial 4 57.14 54.46 50.89 49.11 51.79 54.46

Combinatorial 8 57.14 56.25 58.04 53.57 55.36 66.07

Stepwise-forward 57.14 57.14 50.89 46.43 51.79 57.14

Note: The highest accuracy is reported in bold. All values are percentages.

The best accuracy was 66.07% and the variables used were: (a) Total Interest Received 2016—a
measure of bank profitability, (b) Total Assets 2013—a measure of capital invested in the bank, (c)
Equity/Total Assets 2016—a measure of capital adequacy, (d) Loans 2015 and (e) Gross Loans 2015 both
measures of market exposure, (f) Non-interest expenses/Average assets 2016—a feature representing
operating efficiency, (g) Other operating income/Average assets 2013—a measure of bank profitability
and finally, (h) Net Loans/Total Assets 2014—a measure of market exposure. Most variables refer to
market exposure or the profitability of the bank.

In Table 6 we report the contingency table regarding the model’s forecasts. The model achieved
the best accuracy in class 2 that includes the A-, A, BBB+ ratings, with 70.59%. One might have
expected this to be true for class 3, which includes the most creditworthy banking institutions. Thus,
the model adheres closer to “mainstream” cases and identifies less accurately the classes 0 and 3. While
accurately identifying class 3 can be of less importance, the accurate identification of soon-to-fail banks
is of the utmost importance when it comes to financial risk management.

Table 6. Comparison of predicted to real rating categories.

Correct Incorect % Correct % Incorect

predicted 0 15 7 68.18% 31.82%

predicted 1 20 12 62.50% 37.50%

predicted 2 24 10 70.59% 29.41%

predicted 3 15 9 62.50% 37.50%

Total 74 38 66.07% 33.93%

Note: The highest accuracy is reported in bold.

4.3. Support Vector Machines Model Results

We used the same 18 groups of variables to train our SVM models. In this methodological setting,
we employed both the linear and the nonlinear RBF (Radial Basis Function) kernel. We followed two
popular training schemes. In the first approach, we used a 3-fold cross validation scheme, while in the
second one we followed a bootstrapping scheme of 8000 replications.

Cross validation is a common training scheme in machine learning applications. The basic idea is
to split the dataset used in training the model into k folds of similar length and train iteratively, keeping
at each step one fold aside for validation. For instance, in the 3-fold cross validation scheme we started
by keeping the first fold aside and tuned the model’s parameters based on the second and the third
folds. The first fold was used to measure the forecasting accuracy of the trained model. We repeated
the procedure by keeping the second and the third fold aside, respectively. The training accuracy of
the model is the average over all three folds that were kept sequentially aside. The main advantage
of cross validation training is that it avoids overfitting the data; thus, the model adheres more to the
data generating mechanism that produces the phenomenon under investigation and less to the specific
sample at hand.

In bootstrap training we created a large number of surrogate random samples of the same length
as the original samples which they replaced. In this paper we created and trained 8000 samples and
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corresponding models. Then, from the distribution of the created forecasts we accessed the median
and the 32nd and 68th percentiles in order to estimate the confidence intervals of the forecasts.

The forecasting accuracy of each model is depicted in Table 7 and for the cross validation and
the bootstrapping training, respectively. In Panels A and B we present the results the linear and
RBF kernels.

Table 7. Bank Rating forecasting accuracy by the Support Vector Machines (SVM) model (%).

Regressor Selection Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Panel A: Linear kernel (k-fold cross validation)

Combinatorial 4 62.50 63.39 60.71 63.39 61.61 60.71

Combinatorial 8 58.04 64.29 58.04 50.00 63.39 53.57

Stepwise-forward 59.82 62.50 59.82 63.39 67.86 66.96

Panel B: nonlinear RBF kernel (k-fold cross validation)

Combinatorial 4 64.29 63.39 61.61 62.50 63.39 61.61

Combinatorial 8 72.32 76.79 72.32 91.07 50.89 66.96

Stepwise-forward 68.75 60.71 68.75 61.61 62.50 79.46

Note: The highest accuracy is reported in bold. All values are percentages.

The most accurate model based on a cross-validation training was an SVM model coupled with
the RBF kernel that achieved an accuracy of 91.07% based on Group 4 with a combinatorial search of
eight variables. The independent variables of this model were: (a) Deposits and Short term funding
2014—a measure of liquidity, (b) Net interest revenues/Average assets 2013—a measure of operating
efficiency, (c) Equity 2016—measuring the capital invested in the bank, (d) Total interest received
2015—a measure of income and profitability, (e) Gross Loans 2014 and (f) Loans 2014—both measures
of market exposure and size of operations, and (g) Other operating income/Average assets 2013 and
2014—a ratio indicating the percentage of fees and other income other than interest from loans. Overall,
most variables either measure market exposure or the bank’s profitability.

The best forecasting model used eight variables. It is interesting that only one of them dated to
the most recent ratings year. This was Equity 2016, a measure of the capital invested in the bank or
bank size in terms of stockholders’ stake. The next most recent forecaster was Total interest received
two years prior to the rating. This is a measure of income quality and profitability. It is very interesting
that from the other six identified best forecasting variables, four dated three years prior to the ratings
and two four years back. The four that dated three years back are Loans 2014, Gross Loans 2014,
both measures of core business exposure and size of operations, Deposits and short-term funding
2014, a measure of liquidity and Other operating income/Average assets 2014, relating to income other
than the core business of the bank. Finally, two variables dated a full four years prior to the target
rating: Net interest revenues/Average assets 2013—a measure of operating efficiency and again Other
operating income/Average assets 2013, the non-core income of the bank.

According to these results, it seems that operating efficiency, as it is measured in the financial
statements as net interest and other operating income over assets, has a long and lasting effect on the
financial health of a banking institution, as this is reflected in its corresponding credit rating. Short
term funding (deposits etc.) and the size of the bank’s core business (loans, total interest received)
affect the ratings over a period of two to three years and the only close rating determinant is total
equity. Given that the actual data were classes ranging from zero to three [0, 3], the best forecasting
SVM model classified only two banks on the brink of default (class 0) while they actually belong to
the highest class 3 and in five cases misclassified five banks of class 0 as class 3 banks. The latter can
be considered as a more severe misclassification issue and we will focus in a future version of this
manuscript, on utilizing a different kernel that is not based on normal distribution like the RBF kernel.

In Table 8, we report the contingency table of the most accurate SVM model’s forecasts.
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Table 8. Comparison of predicted to real rating categories.

Correct Incorrect %Correct %Incorrect

predicted 0 22 0 100% 0%

predicted 1 26 6 81.25% 18.75%

predicted 2 31 3 91.18% 8.82%

predicted 3 23 1 95.83% 4.17%

Total 102 10 91.07% 8.93%

Note: The highest accuracy is reported in bold.

The highest forecasting accuracy was achieved in class 0 that included banks on the brink of
default, with a 100% percentage in correct classification.

In Table 9 we depict the confusion matrix (actual and forecasted classes) of the most accurate SVM
model. As we observed from Table 9, 26 of the 32 instances of class 1 were forecasted correctly, while
four are classified as belonging to class 2, one to class 1 and one to class 3. For class 2, 31 are classified
correctly while three are classified into class 3. At class 3 in only one instance was a bank classified as
belonging to class 2 instead of the actual class 3. Thus, in most cases the model classified instances
into neighboring classes and the tendency was to misclassify by assigning a higher (economically
healthier) class.

Table 9. Confusion Matrix of the Best Model.

Actual 0 Actual 1 Actual 2 Actual 3

predicted 0 22 1 0 0

predicted 1 0 26 0 0

predicted 2 0 4 31 1

predicted 3 0 1 3 23

Alternatively, instead of using solely the accuracy ratio, we can estimate the Area Under the
Receiver Operating Curve (AUC-ROC). The higher the AUC, the more accurate the classification
of the model. In Figure 2 we depict the AUC for the most accurate SVM and Probit model per
class, respectively.

The SVM model achieved higher AUC for all four classes in comparison to the Probit model,
reaching 0.95 for class 0, 0.79 for class 1, 0.77 for class 2 and 0.85 for class 3. The respective values of
the Probit model are 0.86 for class 0, 0.64 for class 1, 0.66 for class 2 and 0.77 for class 3. Thus, either the
accuracy of the AUC reached similar conclusions. Table 10 depicts the results of our bootstrapping
training scheme.
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Table 10. Bank Rating forecasting accuracy by the SVM model (%).

Regressor Selection Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Panel A: Linear kernel (bootstrap)

Combinatorial 4 64.29
[61.61, 66.96]

70.54
[67.86, 73.21]

63.39
[60.71, 66.52]

64.29
[61.61, 66.96]

70.54
[66.96, 73.21]

63.40
[61.61, 66.96]

Combinatorial 8 61.61
[58.04, 65.18]

71.43
[68.75, 73.21]

59.82
[57.15, 63.39]

58.04
[55.36, 60.71]

70.54
[67.86, 70.66]

62.95
[60.27, 66.07]

Stepwise-forward 62.50
[59.82, 65.18]

66.96
[64.29, 69.64]

62.50
[59.82, 64.89]

65.18
[62.95, 68.75]

74.11
[71.43, 76.79]

80.36
[77.68, 85.04]

Panel B: nonlinear RBF kernel (bootstrap)

Combinatorial 4 81.25
[79.46, 83.93]

85.71
[84.82, 87.50]

78.13
[75.90, 80.36]

78.57
[75.89, 81.25]

86.60
[83.93, 87.50]

78.57
[75.89, 81.25]

Combinatorial 8 82.15
[80.36, 83.93]

91.96
[89.29, 93.75]

82.14
[80.36, 83.93]

91.52
89.29, 93.75]

97.32
[96.43, 98.21]

95.54
[94.64, 97.32]

Stepwise-forward 81.25
[79.46, 83.04]

88.39
[84.82, 90.18]

81.25
[79.46, 83.04]

97.32
[95.54, 97.32]

98.21
[97.32, 100]

95.42
[92.11, 98.57]

Note: The highest accuracy is reported in bold. All values are percentages. One standard deviation confidence
intervals in brackets.

As we observe from Table 10, the most accurate model based on the bootstrapping training
method was an SVM model coupled with the nonlinear RBF kernel, that included the four variables
selected from group 5, based on a stepwise-forward selection scheme. The forecasting accuracy was
98.21% with a 95% confidence interval of [97.32, 100], and the independent variables are (a) Total
Assets 2013 and 2014—a measure of capital invested in the bank, (b) Total Interest received 2016—a
measure of bank profitability, and (c) Other interest bearing liabilities 2013—a measure of market
exposure. As with the most accurate cross validation training scheme, the most accurate bootstrapping
model was based on financial variables that measure the market exposure or the bank’s profitability.
Interestingly, Fitch reacts to the information included in financial statements with a delay, as variables
of 2013 and 2014 adhered closer to the unobserved, underlying rating mechanism than information
included in 2016. Thus, while we would expect that a rating agency would update its rating model
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yearly, we observe that this is not the case, and variables with a lag of 3 or 4 years are used. Given that
the ratings can be proxied very closely by the publicly available data, an improvement in the disclosure
of the data by the banking institutions could reduce the dependence on rating agencies.

Naturally, forecasting credit ratings (as accurate as it can be) does not bypass the problem that
credit ratings themselves can be inaccurate in representing the true creditworthiness of borrowers
(Parnes and Akron 2016; Parnes 2018). Nevertheless, the “true” creditworthiness of an E.U. banking
institution will always be unknown, since it is dependent on private information that cannot be
unveiled through public information. A natural extension of our work would be to compare the rating
of Fitch to an alternative CRA in the framework of Parnes and Akron (2016), but we leave this avenue
for future research.

5. Conclusions

In this study, we attempted to forecast the credit ratings of European financial institutions. To the
best of our knowledge, this is the first time this has been done for European banks. In doing so we
used a sample of 112 EU banks and tried to identify the most important factors contributing to their
ratings. The target rating was the one provided by Fitch for the year 2017. In our approach, unlike
what was done by CRAs, we only used publicly available data from the published financial statements
of the banks. For each banking institution, we gathered data for 34 variables for 4 years prior to the
2017 rating, i.e., from 2013 to 2016. This resulted in 136 variables that were used as potential forecasters
of Fitch ratings.

We followed a detailed variable selection procedure and created 18 alternative groups of regressors.
First, we extracted six groups of variables based on different correlation criteria. Next, from each
one of these six groups, we identified the most informative regressors using a combinatorial eight,
combinatorial four and a stepwise forward procedure. This two-level variable selection scheme
produced 18 alternative sets of explanatory variables. These regressors were then used in both a Probit
model from classical econometrics and a Support Vector Machines (SVM) algorithm from the area of
Machine Learning. In the case of the SVM model we used both the linear and the non-linear RBF
kernel. Moreover, in this case and for the purpose of robustness of the results, we employed two
training techniques: the standard cross-validation procedure with three folds to avoid overfitting and
also bootstrapping with 8000 replications. The bootstrapping procedure enabled us to also produce
confidence intervals for the forecasts.

Our empirical findings revealed that the SVM models vastly outperformed the Probit ones.
The best Probit model reached an accuracy of 70.59%, while the best SVM with cross-validation reached
91.07%, and the best SVM with bootstrapping 98.21% with a 95% confidence interval of [97.32, 100].
The model based on the bootstrapping technique used only four independent variables as forecasters:
(a) Total Assets of 2013 and 2014, implying that the size of a bank matters for the rating, (b) Total
Interest received in 2016, which is a measure of bank income and (c) Other interest bearing liabilities
from 2013, which is a measure of market exposure and capital expenses. Thus, the main drivers of
bank ratings are the size, measured in total capital and profitability, measured by interest income and
interest expense. It is interesting to see that the credit rating of 2017 was mostly determined by the size
of the bank three and four years before, its capital expenses four years before and the interest income
in the previous year.

Thus, capital and interest expense have a longer-term effect on the rating, explaining the
apparent—and criticized—sluggishness of the CRAs in changing an assigned rating especially
downwards. On the other hand, interest income has a more direct effect on the published rating.
Moreover, we may infer from the apparent high accuracy of the best model that internal undisclosed
information or other qualitative information used in the rating process by the CRAs, plays a very small
role in the rating model.
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