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Abstract: Multi-player mean-payoff games are a natural formalism for modelling the behaviour of
concurrent and multi-agent systems with self-interested players. Players in such a game traverse a
graph, while attempting to maximise a (mean-)payoff function that depends on the play generated.
As with all games, the equilibria that could arise may have undesirable properties. However, as
system designers, we typically wish to ensure that equilibria in such systems correspond to desirable
system behaviours, for example, satisfying certain safety or liveness properties. One natural way
to do this would be to specify such desirable properties using temporal logic. Unfortunately, the
use of temporal logic specifications causes game theoretic verification problems to have very high
computational complexity. To address this issue, we consider ω-regular specifications. These offer a
concise and intuitive way of specifying system behaviours with a comparatively low computational
overhead. The main results of this work are characterisation and complexity bounds for the problem
of determining if there are equilibria that satisfy a given ω-regular specification in a multi-player
mean-payoff game in a number of computationally relevant game-theoretic settings.

Keywords: multi-player games; mean-payoff games; automated verification; temporal logic; game
theory; equilibria; multi-agent systems

1. Introduction

Modelling concurrent and multi-agent systems such as games in which players interact
by taking actions in pursuit of their preferences is an increasingly common approach in
both formal verification and artificial intelligence [1–3]. One widely adopted semantic
framework for modelling such systems is that of concurrent game structures [1]. Such
structures capture the dynamics of a system—the actions that agents/players can perform,
and the effects of these actions. On top of this framework, we can introduce additional
structure to represent each player’s preferences over the possible paths of the system.
Several approaches have been proposed for this purpose. One very natural method involves
assigning a weight to every state of the game, and then considering each player’s mean-
payoff over generated paths: a player prefers paths that maximise their mean-payoff [4–6].
These games are effective in modelling resource-bounded reactive systems, as well as
any scenario with multiple agents and quantitative features. Under the assumption that
each agent in the system is acting rationally, concepts from game theory offer a natural
framework for understanding its possible behaviours [7]. This approach is (relatively)
computationally tractable [5], expressive enough to capture applications of interest, and has
been receiving increasing attention recently [8]. As such, equilibria for multi-player games
with mean-payoff objectives have been studied, and the computation of Nash equilibria in
such games shown to be NP-complete [5].

However, it is well-known in the game theory literature that equilibria may have
undesirable properties. In the context of our setting, for example, an equilibrium may
visit dangerous system states, or lead to a deadlock. Thus, one may also want to check
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if there exist equilibria which satisfy some additional desirable computational properties
associated with the game. This decision problem—that is, determining whether a given
formal specification is satisfied on some (or every) equilibrium of a given multi-agent
system modelled as a multi-player game—is known as Rational Verification [9,10].

Previous approaches to rational verification have borrowed their methodology from
temporal logic model checking, appealing to logics such as Linear Temporal Logic (LTL) [11]
and Computation Tree Logic (CTL) [12]. However, since rational verification subsumes
automated synthesis, the use of temporal logic specifications introduces high computational
complexity [13]. To mitigate this problem, one might use fragments of temporal logic with
lower complexity (e.g., GR(1) (generalised Reactivity(1)) formulae [14,15]), but in this work
we adopt a different approach. Taking inspiration from automata theory, and in particular
from [16], we consider system specifications given by a formal language for expressing ω-
regular specifications, defined in terms of those states in the system that are visited infinitely
often. With this approach, the complexity of the main game-theoretic decision problems is
considerably lower than is the case with temporal logic specifications.

In this paper, we offer the following main contributions. We begin by introducing a
language for ω-regular specifications and demonstrate that they form a natural construct
for representing properties of concurrent games. In Section 3, we study multi-player
mean-payoff games with ω-regular specifications in the non-cooperative setting [7], and
consider the natural decision problems relating to these games and their Nash equilibria.
Following this, in Section 4 we consider a cooperative solution concept derived from
the core [7,17]. Finally, in Section 5 we look at reactive module games [18] as a way of
succinctly representing systems, and investigate how the use of this representation affects
our complexity results. We conclude with a discussion of related work in Section 6, before
offering a glossary of terms, acronyms and notation used within the paper.

2. Models, Games, and Specifications
2.1. Games

A concurrent game structure [1] is a tuple,

M = (Ag, St, s0, (Aci)i∈Ag, tr),

where,

• Ag and St are finite, non-empty sets of agents and system states, respectively, where
s0 ∈ St is an initial state;

• For each i ∈ Ag, Aci is a set of actions available to agent i;
• tr : St×Ac1 × · · · ×Ac|Ag| → St is a transition function.

We define the size of M to be |St| · |Ac||Ag|.
Concurrent games are played as follows. The game begins in state s0, and each player

i ∈ Ag simultaneously picks an action ac0
i ∈ Aci. The game then transitions to a new

state, s1 = tr(s0, ac0
1, . . . , ac0

|Ag|), and this process repeats. Thus, the nth state visited is

sn = tr(sn−1, acn−1
1 , . . . , acn−1

|Ag|). Since the transition function is deterministic, a play of
a game will be an infinite sequence of states, π : N → St. We call such a sequence of
states a path. Typically, we index paths with square brackets, i.e., the kth state visited in
the path π is denoted π[k], and we also use slice notation to denote prefix, suffixes and
fragments of paths. That is, we use π[m..n] to mean π[m]π[m + 1] . . . π[n− 1], π[..n] for
π[0]π[1] . . . π[n− 1] and π[m..] for π[m]π[m + 1] . . .. Now, consider a path π. We say that
π visits a state s if there is some k ∈ N such that π[k] = s. Since there are only finitely
many states, some must be visited infinitely often. Furthermore, unless all states are visited
infinitely often, there will also exist some set of states that are visited only finitely often.
Thus, given a path π, we can define the following two sets, which one can use to define
objectives over paths: Inf(π) = {s ∈ St | π visits s infinitely often} and its complement
Fin(π) = St \ Inf(π).
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2.2. Strategies

In order to describe how each player plays the game, we need to introduce the concept
of a strategy. Mathematically, a strategy for a given player i can be understood as a function,
σi : St+ → Aci, which maps sequences, or histories, of states into a chosen action for player
i. A strategy profile is a vector of strategies,~σ = (σ1, . . . , σ|Ag|), one for each player. The set
of strategies for a given player i is denoted by Σi and the set of strategy profiles is denoted
by Σ. If we have a strategy profile~σ = (σ1, . . . , σ|Ag|), we use the notation~σ−i to denote the
vector (σ1, . . . , σi−1, σi+1, . . . , σ|Ag|) and (~σ−i, σ′i ) to denote (σ1, . . . , σi−1, σ′i , σi+1, . . . , σ|Ag|).
Finally, we write Σ−i as shorthand for Σ1 × · · · × Σi−1 × Σi+1 × · · · × Σ|Ag|. All of these
notations can also be generalised in the obvious way to coalitions of agents, C ⊆ Ag. A
strategy profile ~σ ∈ Σ together with a state s will induce a unique path, which, with a
small abuse of notation, we will denote by π(~σ, s) : N→ St, as well as an infinite sequence
of actions ~ac : N → Ac, with Ac = Ac1 × · · · ×Ac|Ag|. These paths are obtained in the
following way. Starting from s, each player plays ac0

i = σi(s). This transforms the game
into a new state, given by s1 = tr(s, ac0

1, . . . , ac0
|Ag|). Each player then plays ac1

i = σi(ss1),
and this process repeats infinitely often. Typically, we are interested in paths that begin in
the game’s start state, s0, and we write π(~σ) as shorthand for the infinite path π(~σ, s0).

When considering computational questions surrounding concurrent games, it is useful
to work with a finite representation of strategies. We use two such representations: finite-
memory strategies and memoryless strategies. A finite-memory strategy is a finite state machine
with output: for player i, a finite-memory strategy σi is a four-tuple, (Qi, q0

i , δi, τi), where
Qi is a finite, non-empty set of internal states with q0

i ∈ Qi an initial state, δi : Qi ×Ac1 ×
· · · ×Ac|Ag| → Qi is an internal transition function and τi : Qi → Aci is an action function.
This strategy operates by starting in the initial state, and for each state it is in, producing
an action according to τi, looking at what actions have been taken by everyone, and then
moving to a new internal state as prescribed by δ. Now, it is not hard to see that, if we have
multiple finite-memory strategies playing against each other, then the play they generate
will be periodic: the play must eventually revisit some configuration, and at this point,
the game will start to repeat itself. More precisely, any play generated by a collection of
finite-memory strategies will consist of a finite non-repeating sequence of states, followed
by a finite sequence that repeats infinitely often. Because such a play will be periodic, we
can write the path induced on the concurrent game structure as π = π[..k]π[k..m]ω, for
some k, m ∈ N with 0 ≤ k < m.

Finally, a memoryless strategy is a strategy that depends only on the state the player
is currently in. Thus, memoryless strategies can be expressed as functions σi : St → Aci,
which simply map states to actions; such functions can be directly implemented as lookup
tables, in space O(|St|). Note that memoryless strategies can be encoded as finite-memory
strategies, and that finite-memory strategies are a special case of arbitrary strategies σi :
St+ → Aci. Whilst we will work with finite-memory and memoryless strategies, we will
use arbitrary strategies by default, unless otherwise stated.

2.3. Mean-Payoff Games

A two-player, mean-payoff game [4,6], is defined by a tuple:

G = (V1, V2, v0, E, w).

Here V1 and V2 are disjoint, with v0 ∈ V1. Additionally, we have: E ⊆ (V1 × V2) ∪
(V2 × V1) and w is a function with signature w : E → Z. There are two players, 1 and 2,
and the vertices in Vi should be thought of as those that player i controls—informally, the
players take turns choosing edges to traverse, each of which is weighted. Player 1 is trying
to maximise the average of the weights encountered, whilst player 2 is trying to minimise
it. Formally, the game begins in state v0 ∈ V1 and player 1 chooses an edge (v0, v1) ∈
E ∩ (V1 × V2). Then player 2 chooses an edge (v1, v2) ∈ E ∩ (V2 × V1) and this process
repeats indefinitely. This induces a sequence of weights, ~w = w((v0, v1)), w((v1, v2)), . . .,
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and player 1 (respectively, 2) chooses edges to try and maximise (respectively, minimise)
the mean-payoff of ~w, denoted mp(~w), where for β ∈ Zω, we have:

mp(β) = lim inf
n→∞

1
n

n−1

∑
i=0

βi.

There are two keys facts about two-player, mean-payoff games that we shall use
without comment throughout. The first is that memoryless strategies suffice for both
players to act optimally (i.e., achieve their maximum payoff) [4]. The second is that every
game has a value (i.e., a payoff that player 1 can achieve regardless of what player 2 plays)
and determining if a game’s value is equal to v lies in NP∩ co-NP [6]. In particular, given a
game, determining its value can be seen as a problem that lies within TFNP [19].

Extending two-player, mean-payoff games to multiple players, a multi-player mean-
payoff game [5] is given by a tuple,

G = (M, (wi)i∈Ag),

where M is a concurrent game structure and for each agent i ∈ Ag, wi : St→ Z is a weight
function. In a multi-player mean-payoff game, a path π = s0s1 . . . induces an infinite
sequence of weights for each player, wi(s0)wi(s1) . . . We denote this sequence by wi(π).
Under a given path, π, a player’s payoff is given by mp(wi(π)). For notational convenience,
we will write payi(π) for mp(wi(π)). We can then define a preference relation over paths
for each player as follows: π �i π′ if and only if payi(π) ≥ payi(π

′). We also write π �i π′

if π �i π′ and not π′ �i π. Note that, since strategy profiles~σ induce unique plays π(~σ),
we can lift preference relations from plays to strategy profiles, for example writing ~σ1 �i ~σ2
as a shorthand for π(~σ1) �i π(~σ2).

In what follows, we refer to multi-player, mean-payoff games simply as mean-payoff
games, and refer to two-player, mean-payoff games explicitly as such.

2.4. Solution Concepts

To analyse our games, we make use of solution concepts from both the non-cooperative
and cooperative game theory literatures. With respect to non-cooperative solution concepts,
a strategy profile~σ is said to be a Nash equilibrium [20,21] if for all players i and strategies σ′i ,
we have~σ �i (~σ−i, σ′i ). Informally, a Nash equilibrium is a strategy profile from which no
player has any incentive to unilaterally deviate. In addition to Nash equilibrium, we also
consider the cooperative solution concept known as the core [17,22]. While Nash equilibria
are profiles that are resistant to unilateral deviations, the core consists of profiles that are
resistant to those deviations by coalitions of agents, where every member of the coalition
is better off, regardless of what the rest of the agents do. Formally, we say that a strategy
profile, ~σ, is in the core if for all coalitions C ⊆ Ag, and strategy vectors ~σ′C, then there
is some complementary strategy vector~σ′Ag\C such that~σ �i (~σ

′
C,~σ′Ag\C), for some i ∈ C.

Given a game G, let NE(G) denote the set of Nash equilibrium strategy profiles of G, and
let CORE(G) denote the set of strategy profiles in the core of G.

It is worth noting that if a strategy profile is not a Nash equilibrium, then at least one
player can deviate and be better off, under the assumption that the remainder of the players
do not change their actions. However, if a strategy profile is not in the core, then some
coalition can deviate and become better off, regardless of what the other players do. Thus, the
core should not be confused with the solution concept of strong Nash equilibrium: a strategy
profile that is stable under multilateral deviations, assuming the remainder of the players
‘stay put’ [23,24]. We will not use strong Nash equilibria in this work, and only mention the
concept in order to emphasise how strong Nash equilibria are different from the core.

2.5. ω-Regular Specifications

In [16], Boolean combinations of atoms of the form Inf(F) are used to describe ac-
ceptance conditions of arbitrary ω-automata. We use this approach to specify system
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properties for our games. Formally, the language of ω-regular specifications, α, is defined
by the following grammar:

α := Inf(F) | ¬α | α ∧ α,

where F ranges over subsets of St. For notational convenience, we write Fin(F) as shorthand
for ¬ Inf(F), Inf(F) for Inf(St \ F) and we define disjunction, · ∨ ·, implication · → · and
bi-implication · ↔ · in the usual way. The size of a specification is simply the sum of
the sizes of the sets within its atoms. We now talk about what it means for a path to
model a specification. Let π be a path, F be a subset of St and α, β be arbitrary ω-regular
specifications. Then,

• π |= Inf(F), if Inf(π) ∩ F 6= ∅;
• π |= ¬α, if it is not the case that π |= ϕ;
• π |= α ∧ β, if both π |= α and π |= β.

Note that we use Inf in two different, but interrelated senses. First, we use it as an
operator over paths, as in Inf(π), to denote the set of states visited infinitely often in a path
π, but we also use it as an operator over sets, as in Inf(F), as an atom in the specifications
just defined. The semantics of the latter are defined in terms of the former. We will use
these interchangeably: usage will be clear from the context. Using this notation, we can
readily define conventional ω-regular winning conditions, as follows:

Type Associated Sets ω-Regular Specification

Büchi F ⊆ St Inf(F)
Co-Büchi G ⊆ St Fin(G)
Gen. Büchi (Fk)k∈K ⊆ 2St ∧

k∈K Inf(Fk)
Rabin (Li, Ui)i∈I ⊆ 2St × 2St ∨

i∈I Fin(Li) ∧ Inf(Ui)
Streett (Lj, Uj)j∈J ⊆ 2St × 2St ∧

j∈J Fin(Lj) ∨ Inf(Uj)

Muller (Fk)k∈K ⊆ 2St ∨
k∈K Inf(Fk) ∧ Fin(Fk)

Our ω-regular specifications are equivalent to Emerson-Lei conditions [25], albeit with
a different syntax. We can in fact represent all possible ω-regular winning conditions—as
another example, consider parity conditions. Suppose each state is labelled by a function,
µ : St→ N, with µ(s) ≤ m for some m ∈ N, for all s ∈ St. Given a path, π, the traditional
parity condition is satisfied when min{µ(s) | s ∈ Inf(π)} is odd. The sets of interest are
defined by:

Fk = {s ∈ St | µ(s) = k}

Then, assuming m is odd (the formula for m even is similar), the parity condition can
be expressed by the following specification:

α = Fin(F0) ∧ (Inf(F1) ∨ (Fin(F2) ∧ (Inf(F3) ∨ · · · ∨ (Fin(Fm−1) ∧ Inf(Fm))))))

With ω-regular specifications defined, we can talk about them in the context of games.
Let~σ be some strategy profile. Then,~σ induces some path, π(~σ), and given that ω-regular
specifications are defined on paths, we can talk about paths induced by strategies modelling
specifications. However, we are not interested in whether the paths induced by arbitrary
strategies model a given specification—it is more natural in the context of multi-player
games to ask whether the paths induced by some or all of the equilibria of a game model a
specification, both in the non-cooperative and in the cooperative contexts. In particular,
we are interested in the Nash equilibria and the core, and whether the paths induced by
strategy profiles that form an instance of these solution concepts model a specification.

Example 1. Suppose we have four delivery robots in a warehouse (given by the coloured triangles
in Figure 1), who want to pick up parcels at the pickup points (labelled by the bold Ps) and drop
them off at the delivery points (labelled by the bold Ds). If a robot is not holding a parcel, and goes to
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a pickup point, it automatically gets given one. If it has a parcel, and goes to the delivery point, then
it loses the parcel, and gains a payoff of 1. Furthermore, if two robots collide, by entering the same
node at the same time, then they crash, and get a payoff of −999 at every future timestep.

P

P

D

D

Figure 1. Robots manoeuvering in a warehouse.

Now, there are a number of Nash equilibria here (infinitely many, in fact), but it is easy to see
that many of them exhibit undesirable properties. For instance, consider the strategy profile where
red and pink go back and forth between the pickup and delivery points, and threaten to crash into, or
deadlock, blue and yellow if they move from their starting positions. This is a Nash equilibrium, but
is clearly not Pareto optimal—a socially undesirable outcome.

It is easy to identify the most socially desirable outcome—all four robots visiting the pickup
and delivery points infinitely often, waiting for the others to pass when they reach bottleneck points.
If we call the set containing the two states where robot i visits a pickup point Pi and similarly
label the set of delivery points Di, we can express this condition concisely with the following
ω-regular specification: ∧

i∈[4]
Inf(Pi) ∧ Inf(Di). (1)

Thus, we can conclude that there exists some Nash equilibrium which models the above
(Generalised Büchi) specification. However, we just did this by inspection. In practice, we would like
to ask this question in a more principled way. As such, we will spend the rest of this paper exploring
the natural decision problems associated with mean-payoff games with ω-regular specifications.

2.6. Mean-Payoff Games with ω-Regular Specifications

Given that we have proposed ω-regular specifications as an alternative to LTL [11]
specifications, it is natural to ask how they compare. The connection between them is given
by the following statement:

Proposition 1. Let G be a game and let α be some ω-regular specification. Then there exists a set
of atomic propositions, Φ, a labelling function λ : St→ P(Φ), and an LTL formula ϕ such that,
for all paths π, we have π |= α if and only if λ(π) |= ϕ.

Proof. Without loss of generality, we may assume that α is written in conjunctive normal
form, that is:

α =
n∧

i=1

 m∨
j=1

Ci,j

,

where each Ci,j is an atom of the form Inf(F) or Fin(F) for some subset F ⊆ St. We start
by introducing a propositional variable pF for every subset F ⊂ St. Then, for a given state
s ∈ St, we define:

λ(s) = {pF ∈ AP | s ∈ F}.

Then, we simply define:

ϕ =
n∧

i=1

 m∨
j=1

Di,j

,

where Di,j = G F pF if Ci,j = Inf(F) and Di,j = F G¬pF if Ci,j = Fin(F). We claim that for
all paths π, we have π |= α if and only if λ(π) |= ϕ.
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First suppose that π |= α. Thus, by definition, we have for all 1 ≤ i ≤ n that π |=∨m
j=1 Ci,j. This in turn implies that there exists some j such that π |= Ci,j. If Ci,j = Inf(F),

then this implies that Inf(π) ∩ F 6= ∅. Take any s ∈ Inf(π) ∩ F. By definition, we have
pF ∈ λ(s) and so we also have λ(π) |= G F pF. However, by construction, this implies
λ(π) |= Di,j.

Similarly, if Ci,j = Fin(F), then we have Inf(π) ∩ F = ∅. Thus, for all s ∈ Inf(π),
we have pF 6∈ λ(s) and so we have λ(π) |= F G¬pF. By construction, this implies that
λ(π) |= Di,j. Thus, for all i, there exists some j such that λ(π) |= Di,j. This implies that
λ(π) |= ϕ.

Conversely, suppose that λ(π) |= ϕ. So for all i, there exists a j such that λ(π) |= Di,j.
If Di,j = G F pF, then π visits some state s ∈ F infinitely often. Thus, Inf(π) ∩ F 6= ∅, so
π |= Inf(F). Similarly, if Di,j = F G¬pF, then π |= Fin(F). Either way, we have π |= Ci,j.
So for all i, there exists some j such that π |= Ci,j, implying that π |= α.

Thus, ω-regular specifications can be seen as being ‘isomorphic’ to a strict subset of
LTL (it is straightforward to come up with LTL formulae that cannot be written as ω-regular
specifications—take for instance G ϕ, where ϕ is some non-trivial propositional formula).
As such, we hope the restriction of the setting may yield some lower complexities when
considering the analogous decision problems. That is, we will study a number of decision
problems within the rational verification framework [10,17], where ω-regular specifications
replace LTL specifications in a very natural way.

Firstly, given a game, a strategy profile, and an ω-regular specification, we can ask if the
strategy profile is an equilibrium whose induced path models the specification. Secondly,
given a game and an ω-regular specification, we can ask if the specification is modelled
by the path/paths induced by some/every strategy profile in the set of equilibria of the
game. Each of these problems can be phrased in the context of a non-cooperative game or a
cooperative game, depending on whether we let the set of equilibria be, respectively, the
Nash equilibria or the core of the game. Formally, in the non-cooperative case, we have the
following decision problems:

MEMBERSHIP:
Given: Game G, strategy profile~σ, and specification, α.
Question: Is it the case that~σ ∈ NE(G) and π(~σ) |= α?

E-NASH:
Given: Game G and specification α.
Question: Does there exist a~σ ∈ NE(G) such that π(~σ) |= α?

A natural dual to E-NASH is the A-NASH problem, which instead of asking if the
specification holds in the path induced by some Nash equilibrium, asks if the specification
holds in all equilibria:

A-NASH:
Given: Game G and specification α.
Question: Is it the case that π(~σ) |= α, for all~σ ∈ NE(G)?

These decision problems were first studied in the context of iterated Boolean games [26],
and are the ‘flagship‘ decision problems of rational verification [18].

In the cooperative setting, the analogous decision problems are defined by substituting
CORE(G) for NE(G). We refer to these problems as MEMBERSHIP, E-CORE, and A-
CORE, respectively, (with a small abuse of notation for the first problem: context will make
it clear whether we are referring to the non-cooperative or cooperative problem). These
variants were first studied in the setting of LTL games [17].

It is worth noting here one technical detail about representations. In the E-NASH
problem, the quantifier asks if there exists a Nash equilibrium which models the specifica-
tion. This quantification ranges over all possible Nash equilibria and the strategies may
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be arbitrary strategies. However, in the MEMBERSHIP problem, the strategy~σ is part
of the input, and thus, needs to be finitely representable. Therefore, when considering E-
NASH (or A-NASH, or the corresponding problems for the core), we place no restrictions
on the strategies, but when reasoning about MEMBERSHIP, we work exclusively with
memoryless or finite-memory strategies.

Before we proceed to studying all these problems in detail, we note that even though
some other types of games (for example, two-player, turn-based, zero-sum mean-payoff,
or parity games) can be solved only using memoryless strategies, this is not the case in
our setting:

Proposition 2. There exist games G and ω-regular specifications α such that π(~σ) |= α for
some Nash equilibrium~σ, but for which there exists no memoryless Nash equilibrium~σ such that
π(~σ) |= α. The statement also holds true for the core.

Proof. Consider the game, G = (M, (wi)i∈Ag), where M = (Ag, St, s0, (Aci)i∈Ag, tr) is
defined as follows: Ag = {1, 2}, St = {mid, right, left}, Ac1 = Ac2 = {R, L}, with the
transition relation defined to be,

````````````̀St
Ac (R, R) (R, L) (L, R) (L, L)

mid right mid mid left
right right mid mid mid
left mid mid mid left

and the weight functions for the players defined as,

wi(s) 1 2

mid 0 0
right 1 0
left 0 1

Thus, the game looks like the following concurrent game structure (Figure 2):

mid rightleft

Figure 2. A game where a finite-memory Nash equilibrium is required to model an ω-regular specification.

In this game, each player decides whether they want to go left or right. When they
both agree on what direction they want to go, they move in that direction. If they disagree,
then they end up in the middle state. We now produce a finite memory strategy profile,
~σ, and a specification α such that~σ is a Nash equilibrium and π(~σ) |= α. The basic idea is
that with finite memory strategies, the two players can alternate between the left and right
state, each achieving a strictly positive payoff, threatening to punish one another if either
deviates from this arrangement, whilst this is not possible in memoryless strategies, as in
this case the players would have to take the same action each time in the middle state.

Consider the following strategy, σ1, for player 1 (Figure 3):
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R

L

L

R

R

(R, R) (L, L)

(L, L)(R, R)

∗

∗

∗

∗

Figure 3. A finite memory strategy for player 1 which forms part of a Nash equilibrium which models
the given specification. The asterisks * are wildcards—they match any action which isn’t explicitly
detailed on the diagram.

Furthermore, the corresponding strategy, σ2 for player 2 (Figure 4):

R

L

L

R

L

(R, R) (L, L)

(L, L)(R, R)

∗

∗

∗

∗

Figure 4. A finite memory strategy for player 2 which forms part of a Nash equilibrium which models
the given specification. The asterisks * are wildcards—they match any action which isn’t explicitly
detailed on the diagram.

It is easy to verify that~σ = (σ1, σ2) is a Nash equilibrium. Each player gets a mean
payoff of 1/4 under~σ. Suppose player 1 deviates to another strategy, which does not match
the sequence of actions as dictated by σ2. Then player 2 will just start playing L forever,
meaning that the game will never enter the right state again, implying player 1 gets a payoff
of zero. By symmetry, we can conclude that this is a Nash equilibrium. Moreover, letting α
be the ω-regular specification α = Inf({right}) ∧ Inf({left}), we see that π(~σ) |= α.

However, note that there cannot exist a memoryless Nash equilibrium,~σ, such that
π(~σ) |= α. In a memoryless strategy, for a given state, both players must commit to an action
and only play that given action vector in that state. If both players play R in the middle
state, then they will never be able to reach the left state, and if they both play L in the middle
state, they will never reach the right state. Additionally, if they disagree, then they will
perpetually stay in the middle state. Thus, there cannot exist a memoryless strategy profile
~σ, such that π(~σ) |= α. This example demonstrates that, in general, memoryless strategies
are not powerful enough for our games: there may exist a Nash equilibrium which satisfies
the specification, with no memoryless Nash equilibrium which satisfies it. Finally, note that
~σ is also in the core—individual deviations have been already accounted for, and clearly no
group deviation containing both players strictly improves both pay-offs.
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3. Non-Cooperative Games

In the non-cooperative setting, MEMBERSHIP, E-NASH, and A-NASH are the
relevant decision problems. In this section, we will show that MEMBERSHIP lies in P for
memoryless strategies, while E-NASH is NP-complete and even remains NP-hard when re-
stricted to memoryless strategies—thus, no worse than solving a multi-player mean-payoff
game [5]. Because A-NASH is the dual problem of E-NASH, it follows that A-NASH
is co-NP-complete. In order to obtain some of these results, we also provide a semantic
characterisation of the paths associated with strategy profiles in the set of Nash equilibria
that satisfy a given ω-regular specification. We will first study the MEMBERSHIP problem,
and then investigate E-NASH, providing an upper bound for arbitrary strategies and a
lower bound for memoryless strategies—arguably, the simplest, yet still computationally
important, model of strategies one may want to consider for multi-agent systems.

Theorem 1. For memoryless strategies, MEMBERSHIP is in P.

Proof. We verify that a given strategy profile is a Nash equilibrium in the following way.
We begin by calculating the payoff of each player in the strategy profile by ‘running’ the
strategy and keeping note of the game states. When we encounter the same game state
twice, we can simply take the average of the weights encountered at the states between
the two occurrences, and that will be the payoff for a given player. By the pidgeonhole
principle, it will take no more than |St|+ 1 time steps to get to this point, and thus, this can
be done in linear time.

Once we have each player’s payoff, we can determine if they have any incentive to
deviate in the following way—for each player, look at the graph induced by the strategy
profile excluding them. Formally, the graph induced by a partial strategy profile ~σ−i,
denoted by G[~σ−i] = (V, E) is defined as follows: the set of nodes, V, simply consists of
the set of states of the game, that is, V = St and the set of edges are simply the moves
available to player i—that is, if e = (s1, s2) ∈ E, then there exists some ac′i ∈ Aci such that
tr(s1, (~σ−i(s1), ac′i)) = s2.

We can use Karp’s algorithm [27] to determine the maximum payoff that this player
can achieve given the other players’ strategies. If this payoff is higher than the payoff
originally achieved, then this means player i can successfully deviate from the given
strategy profile and be better off, and so it is not a Nash equilibrium. If we do this for each
player, and the maximum payoff each player can achieve to equal to their payoff in the
given strategy profile, then we can conclude it is a Nash equilibrium, and moreover, we
have determined this in polynomial time.

To determine if the strategy profile satisfies the specification, we run the strategy as
before, and determine the periodic path which the game will end up in. This tells us which
states will be finitely and infinitely visited, which in turn induces a valuation which will
either model or not model the specification. Checking this can be done in polynomial time
and thus, we can conclude that for memoryless strategies, MEMBERSHIP lies in P.

The simplicity of the above algorithm may raises hopes that it might extend to finite-
memory strategies. However, in this case, the configuration of the game is not just given
by the current state—it is given by the current state, as well as the state that each of the
player’s strategies are in. Thus, we might have to visit at least |St| · |Q||Ag| + 1 (where Q is
the smallest set of strategy states over the set of players) configurations until we discover a
loop. Now whilst there is an exponential dependency on the number of players in the input
to the problem, this bound on the number of configurations is not necessarily polynomial in
the size of the input. More precisely, the size of the underlying concurrent game structure
is |St| · |Ac||Ag| and so if |Q| is larger that |Ac|, the number of configurations will grow
exponentially faster than the size of the input. Thus, we cannot use the above algorithm in
the case of finite memory strategies to get a polynomial time upper bound.

We now consider the E-NASH problem. Instead of providing the full NP-completeness
result here, we start by showing that the problem is NP-hard, even for memoryless strate-
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gies, and delay the proof of the upper bound until we develop a useful characterisation of
Nash equilibrium in the context of ω-regular specifications. For now, we have the following
hardness result, obtained using a reduction from the Hamiltonian cycle problem [28,29]—a
similar, but simpler, argument can be found in [5].

Proposition 3. E-NASH is NP-hard, even for games with one player, constant weights, and
memoryless strategies.

Proof. Let G = (V, E) be a graph with |V| = n. We form a mean-payoff game G by letting
Ag = {1} and St = V. We pick the initial state arbitrary and label it s0, and the actions for
player 1 correspond to the edges of G. That is, we have Ac1 = E and we have tr(u, e) = v if
and only if e = (u, v) ∈ E. Finally, we fix an integer constant k ∈ Z and let w1(s) = k for all
s ∈ St.

Let Fs = {s} for each s ∈ St and let α be the following specification:

α =
∧

s∈St
Inf(Fs).

We claim that G has a Hamiltonian cycle if and only if G has a memoryless Nash
equilibrium~σ such that π(~σ) |= α.

First suppose that G has a Hamiltonian cycle, π = v0v1 . . . vn−1. We define a memory-
less strategy, σ1, for player 1 by setting σ1(vi) = vi+1, where the superscript is interpreted
modulo n. As π is a Hamiltonian cycle, it visits every node, so σ1 is a well-defined, total
function. By definition, we see that π(σ1) = π, so we have π(σ) |= α. Additionally, as each
state has the same payoff, this strategy is trivially a Nash equilibrium.

Now suppose that G has a memoryless Nash equilibrium σ1 such that π(σ1) |= α. Let
π(σ1) = π. Since σ1 is memoryless, π must be of the form π = π[..i]π[i..j]ω for integers
i and j. Without loss of generality, assume that i and j are the smallest integers such that
this holds. Moreover, since π |= α, the path π visits every state infinitely often so we must
have that π[i..j] contains every state, and by memorylessness, it must be a cycle. Thus, by
definition, π[i..j] is a Hamiltonian cycle.

Theorem 1 and Proposition 3 together establish NP-completeness for multi-player
mean-payoff games with ω-regular specifications and memoryless strategies: one can
non-deterministically guess a memoryless strategy for each player (which is simply a list
of actions for each player, one for each state), and use MEMBERSHIP to verify that it is
indeed a Nash equilibrium that models the specification. However, as we shall show later,
the problem is also NP-complete in the general case. To prove this, we need to develop an
alternative characterisation of Nash equilibria.

To do this, we need to introduce the notion of the punishment value in a multi-player
mean-payoff game; cf., [30,31]. The punishment value, puni(s), of a player i in a given state
s can be thought of as the worst value the other players can impose on a player at a given
state. Concretely, if we regard the game G as a two player, zero-sum game, where player i
plays against the coalition Ag \ {i}, then the punishment value for player i is the smallest
mean-payoff value that the rest of players in Ag can inflict on i from a given state. Formally,
given a player i and a state s ∈ St, we define the punishment value, puni(s) against player
i at state s, as follows:

puni(s) = min
~σ−i∈Σ−i

max
τi∈Σi

payi(π((~σ−i, τi), s))

How efficiently can we calculate this value? As established in [5], we proceed in
the following way: in a two player, turn-based, zero-sum, mean-payoff game, positional
strategies suffice to achieve the punishment value [4]. Thus, we can non-deterministically
guess a pair of positional strategies for each player (one for the coalition punishing the
player, and one for the player themselves), use Karp’s algorithm [27] to find the maximum
payoff for both the player and the coalition against their respective punishing strategies,



Games 2022, 13, 19 12 of 37

and then verify that the two values coincide. With this established, we have the following
lemma, which can be proved using techniques for mean-payoff games adapted from [5,15].

Lemma 1. Let π be a path in G and let {~ac[k]}k∈N be the path of associated action profiles. Then
there is a Nash equilibrium, ~σ ∈ NE(G), such that π = π(~σ) if and only if there exists some
~z ∈ QAg, with zi ∈ {puni(s) | s ∈ St}, such that:

• for each k, we have puni(tr(π[k], (~ac[k]−i, ac′i))) ≤ zi for all i ∈ Ag and ac′i ∈ Aci, and;
• for all players i ∈ Ag, we have zi ≤ payi(π).

Proof. First assume that we have some Nash equilibrium~σ ∈ NE(G) such that π = π(~σ).
Suppose there does not exist any z ∈ QAg with the desired properties. Furthermore, let us
first suppose that for all~z ∈ QAg, with zi ∈ {puni(s) | s ∈ St}, there exists some player
i ∈ Ag such that zi > mp(wi(π)). However, this is true for all zi ∈ {puni(s) | s ∈ St}. So
we have puni(s

0) > mp(wi(π)). This means that player i might as well play the positional
strategy which ensures they achieve at least the punishment value. This in turn means that
player i has some deviation, contradicting the fact that~σ is a Nash equilibrium.

So instead, it must be the case that for all~z ∈ QAg, with zi ∈ {puni(s) | s ∈ St}, there
is some time step k, a player i and an action ac′i such that puni(tr(π[k], (~ac[k]−i, ac′i))) > zi.
However, since this is true for all zi, it is true for zi = max{puni(s) | s ∈ St}. Furthermore,
since puni(tr(π[k], (~ac[k]−i, ac′i))) ∈ {puni(s) | s ∈ St}, this gives a contradiction—we
cannot have puni(tr(π[k], (~ac[k]−i, ac′i))) > zi. Thus, it follows that the first part of the
statement is true.

Now assume that there exists some~z ∈ QAg with the properties as prescribed in the
statement of the lemma. We define a strategy profile~σ in the following way. Each player
follows π. If any player chooses to deviate from π, say at state π[k], with an action ac′i then
the remaining players play the punishing strategy which causes player i to have a payoff
of at most puni(tr(π[k], ~ac[k]−i, ac′i)) ≤ zi ≤ payi(π). Thus, no player has any incentive to
deviate away from~σ and so we have a Nash equilibrium with π(~σ) = π.

With this lemma in mind, we define a graph, G[~z; F] = (V, E) as follows. We set V = St
and include e = (u, v) ∈ E if there exists some action profile ~ac such that v = tr(u, ~ac)
with puni(tr(u, (~ac−i, ac′i))) ≤ zi for all i ∈ Ag and ac′i ∈ Aci. Having done this, we then
prune any components which cannot be reached from the start state and then remove all
states and edges not contained in F, before reintroducing any states in F that may have
been removed. Thus, given this definition and the preceding lemma, to determine if there
exists a Nash equilibrium which satisfies an ω-regular specification, α, we calculate the
punishment values, and guess a vector ~zs ∈ StAg, as well a set of states, F, which satisfy the
specification. Letting zi = puni(zs), we form the graph G[~z; F] and then check if there is
some path π in G[~z; F] with zi ≤ payi(π) for each player i which visits every state infinitely
often. Trivially, if this graph is not strongly connected, then no path can visit every state
infinitely often. Thus, to determine if the above condition holds, we need one more piece of
technical machinery, in the form of the following proposition:

Proposition 4. Let G = (V, E) be a strongly connected graph, let {wi}i∈Ag be a set of weight
functions, and let~z ∈ QAg. Then, we can determine if there is some path π with the properties,

• π visits every state infinitely often;
• zi ≤ payi(π) for each i ∈ Ag,

in polynomial time.

Conceptually, Proposition 4 is similar to Theorem 18 of [5], but with two key differ-
ences—firstly, we need to do additional work to determine if there is a path that visits every
state infinitely often. Moreover, the argument of [5] is adapted so we have the corollary
that if there is a Nash equilibrium that models the specification, then there is some finite
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state Nash equilibrium that also models the specification. This means that the construction
in our proof can be used not only for verification, but also for synthesis.

For clarity of presentation, we shall split the above proposition into two constituent
lemmas. To do this, we begin by defining a system of linear inequalities. We then go on
to show that there is a path π with the desired properties if and only if this system has a
solution—one lemma for each direction. As the system of inequalities can be determined in
polynomial time, this yields our result.

For a graph G, a set of weight functions {wi}i∈Ag be a set of weight functions, and a
vector~z ∈ QAg, we define a system of linear inequalities, `(G, {wi}i∈Ag,~z) as follows: for
each agent i ∈ Ag, and each edge e ∈ E, introduce a variable xi,e, along with the following
inequalities:

(i) xi,e ≥ 0 for each agent i ∈ Ag and for each edge e ∈ E.
(ii) ∑e∈E xi,e = 1 for each agent i ∈ Ag.
(iii) ∑e∈In(v) xi,e = ∑e∈Out(v) xi,e for all i ∈ Ag and for each v ∈ V.
(iv) zi ≤ ∑e∈E xi,e · wi(e) for all i ∈ Ag.
(v) ∑e∈E xi,e · wi(e) ≤ ∑e∈E xj,e · wi(e) for all i, j ∈ Ag.

It is worth briefly discussing what this system is actually encoding. Roughly speaking,
the set Ci = {xi,e}e∈E defines a cycle for each player that makes sure their payoff is greater
than zi. Each xi,e represents the proportion that a given edge is visited in the cycle. The
idea is that we define a path by visiting each Ci an appropriate number of times, before
travelling to the next cycle and visiting that repeatedly.

Conversely, if there exists some path with the stated properties, it will also define
a solution to the system of inequalities. This has the corollary that if there is a Nash
equilibrium in the game, then there is a finite state Nash equilibrium as well.

In what follows, for an edge e = (u, v) and a weight function w : V → Z, we define
w(e) := w(u). We also extend weight functions to finite paths in the natural way, by
summing along them.

Lemma 2. Let G = (V, E) be a strongly connected graph, let {wi}i∈Ag be a set of weight functions,
let~z ∈ QAg. Furthermore, suppose there exists some path π such that zi ≤ payi(π) for each i ∈ Ag,
which visits every state infinitely often. Then `(G, {wi}i∈Ag,~z) has a solution.

Proof. First suppose there exists some path π with the stated properties. For each n > 0
and e ∈ E, define λ(n, e) to be the following quantity:

λ(n, e) =
#{j < n | (π[j], π[j + 1]) ∈ E}

n
.

Informally, for a given edge e, λ(n, e) gives us the proportion that e appears in the
prefix π[..n]. Note that 0 ≤ λ(n, e) ≤ 1 for all e ∈ E and all n > 0. Additionally, for each n,
it easy to see we have:

∑
e∈E

λ(n, e) = 1. (2)

By definition, for each i ∈ Ag we have:

payi(π) = lim inf
n→∞

1
n

n−1

∑
k=0

wi(π[k]).

Thus, there must exist some subsequence of the natural numbers, {ni
t}t∈N, such that:

payi(π) = lim
t→∞

1
ni

t

ni
t−1

∑
k=0

wi(π[k]).
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With this defined, we introduce a sequence of numbers, {ϕi
t(e)}t∈N for each edge

e ∈ E, by defining ϕi
t(e) = λ(ni

t, e). Now, as {ϕi
t(e)}t∈N is a bounded sequence, by the

Bolzano-Weierstrass theorem, there must be a convergent subsequence for each edge e,
{ψi

t(e)}t∈N. We define x∗i,e = limt→∞ ψi
t(e) and claim that these form a solution to the

system of inequalities.
Since ϕi

t(e) = λ(ni
t, e), it is clear that we have 0 ≤ x∗i,e ≤ 1. Thus, Inequality (i) is

satisfied. Additionally, by Equation (2), we can deduce that for each t, and for every i ∈ Ag,
we have:

∑
e∈E

ψi
t(e) = 1.

Taking limits, we can conclude that Inequality (ii) is satisfied. To establish (iii), by
definition of λ, fix a v ∈ V. In a path, if we enter a node, we must exit it. Thus, we have:

−1 ≤ ∑
e∈In(v)

n · λ(n, e)− ∑
e∈Out(v)

n · λ(n, e) ≤ 1,

implying,

− 1
ni

t
≤ ∑

e∈In(v)
ϕi

t(e)− ∑
e∈Out(v)

ϕi
t(e) ≤

1
ni

t
.

Taking the relevant subsequence and letting t→ ∞, we can deduce that Inequality (iii)
is satisfied. To establish (iv), first note that for all i ∈ Ag, we have,

payi(π) = lim inf
n→∞

1
n

n−1

∑
k=0

wi(π[k])

= lim
t→∞

1
ni

t

ni
t−1

∑
k=0

wi(π[k])

= lim
t→∞ ∑

e∈E
λ(ni

t, e) · wi(e)

= lim
t→∞ ∑

e∈E
ϕi

t(e) · wi(e)

= lim
t→∞ ∑

e∈E
ψi

t(e) · wi(e)

= ∑
e∈E

xi,e · wi(e).

The equality between lines 4 and 5 is valid, as we have established that the limit
exists in line 2. Thus, since we have zi ≤ payi(π), by assumption, we can conclude that
Inequality (iv) is valid. In a similar fashion, note that for all i, j ∈ Ag, we have,

payi(π) = lim inf
n→∞

1
n

n−1

∑
k=0

wi(π[k])

≤ lim inf
t→∞

1

nj
t

nj
t−1

∑
k=0

wi(π[k])

= lim inf
t→∞ ∑

e∈E
λ(nj

t, e) · wi(e)

= lim inf
t→∞ ∑

e∈E
ϕ

j
t(e) · wi(e)

≤ lim
t→∞ ∑

e∈E
ψ

j
t(e) · wi(e)

= ∑
e∈E

xj,e · wi(e).
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This, together with Inequality (iv), implies that Inequality (v) is satisfied.
Thus, putting all this together, we can conclude that if there exists some path with

the stated properties, then there also exists a solution to `(G, {wi}i∈Ag,~z), the system of
linear inequalities.

We now show the other direction:

Lemma 3. Let G = (V, E) be a strongly connected graph, let {wi}i∈Ag be a set of weight functions,
let~z ∈ QAg. Suppose that `(G, {wi}i∈Ag,~z) has a solution. Then there exists some path π such
that zi ≤ payi(π) for each i ∈ Ag, which visits every state infinitely often.

Proof. Given that there is a solution to `(G, {wi}i∈Ag,~z), there must exist a solution that con-
sists of rational numbers. Thus, letting x∗i,e be a rational solution, we can write x∗i,e = pi,e/q,
for some pi,e ∈ N, and some appropriately chosen q ∈ N.

Now, for each i ∈ Ag, we form a multigraph, Gi = (Vi, Ei), which takes G and replaces
each edge e by pi,e copies. Note that whilst G is strongly connected, some of the pi,e may be
equal to 0, which would mean that Gi is disconnected.

Now, by Inequality (iii), for each v ∈ V, we have:

∑
e∈In(v)

pi,e = ∑
e∈Out(v)

pi,e.

Thus, the in-degree of each vertex in Vi is equal to its out-degree. Thus, each strongly
connected component of Gi contains an Eulerian cycle (An Eulerian cycle is a path that
starts and ends at the same node which visits every edge exactly once). Interpreting each of
these Eulerian cycles as paths in G, we get a set of (not necessarily simple) cycles for each
agent, C1

i , . . . Cmi
i , where mi ≤ |V|.

Now for each agent i ∈ Ag, and every n ∈ N, we define a cycle Cn
i which starts at the

first state of C1
i , traces C1

i n times, takes the shortest path from the start state of C1
i to C2

i ,
traces C2

i n times and repeats this process for all the cycles of agent i, until it has traced Cmi
i

n times. From here, it then takes the shortest path to the start state of C1
i .

Let Mi be the largest of the absolute values of the weights of agent i. That is,
Mi = maxv∈V |wi(v)|. Then we have for all i, j ∈ Ag,

n · ∑
e∈E

pj,e · wi(e)− |V|2 ·Mi ≤ wi(Cn
j ) ≤ n · ∑

e∈E
pj,e · wi(e) + |V|2 ·Mi,

and,
n · ∑

e∈E
pj,e ≤ |Cn

j | ≤ n · ∑
e∈E

pj,e + |V|2.

Putting these together, we get:

wi(Cn
j )

|Cn
j |
≥

n ·∑e∈E pj,e · wi(e)− |V|2 ·Mi

n ·∑e∈E pj,e + |V|2

≥ n ·∑e∈E pi,e · wi(e)− |V|2 ·Mi

n ·∑e∈E pj,e + |V|2

=
∑e∈E x∗i,e · wi(e)− |V|

2·Mi
n·q

∑e∈E x∗j,e +
|V|2
n·q

≥
zi − |V|

2·Mi
n·q

1 + |V|2
n·q

.
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Taking limits, we see that:

lim
n→∞

wi(Cn
j )

|Cn
j |
≥ zi.

Thus, for n∗i sufficiently large, we must also have, for all j ∈ Ag:

wi(C
n∗i
j )

|Cn∗i
j |

≥ zi.

Moreover, if n∗i is large enough, the above equation will be true for all n ≥ n∗i .
Assuming this is the case, we set n∗ = maxi∈Ag n∗i . Then, for all i, j ∈ Ag, we have,

wi(Cn∗
j )

|Cn∗
j |

≥ zi.

We are now ready to define a path πN , which will form the basis for our path of
interest, π. The path starts by visiting Cn∗

1 N times, before taking the shortest path to the
start of Cn∗

2 , and visiting that N times, and so on. Once Cn∗
|Ag| has been visited N times,

we then take the shortest path that visits any states that have not been yet visited, before
returning to the start vertex of Cn∗

1 .
Let us look at each player’s payoff on πN . We have:

wi(π
N)

|πN | ≥
N ·∑j∈Ag wi(Cn∗

j )− |V| · |Ag| ·Mi − |V|2 ·Mi

N ·∑j∈Ag|Cn∗
j |+ |V| · |Ag|+ |V|2

≥
N ·∑j∈Ag zi · |Cn∗

j | − |V| · |Ag| ·Mi − |V|2 ·Mi

N ·∑j∈Ag|Cn∗
j |+ |V| · |Ag|+ |V|2

=
zi ·∑j∈Ag|Cn∗

j | −
|V|·|Ag|·Mi+|V|2·Mi

N

∑j∈Ag|Cn∗
j |+

|V|·|Ag|+|V|2
N

.

Taking limits as before, we can conclude that for N∗ sufficiently large, we have:

wi(π
N∗)

|πN∗ | ≥ zi.

We then simply define π to be the path that repeatedly traverses πN∗ . It is easy to see
that payi(π) ≥ zi and that π visits every state infinitely often.

We can now combine these two results to obtain our proof:

Proof. (Proof of Proposition 4) Given the statement of the proposition, we construct an
algorithm which forms the linear program `(G, {wi}i∈Ag,~z) and see if it has a solution. As
the linear program is of polynomial size, and as linear programs can be solved in polynomial
time, we see that the overall algorithm can be done in polynomial time. By Lemma 3, we
see that the algorithm is sound and then by Lemma 2, we see it is complete.

From the propositions above, we can establish the complexity of E-NASH:

Theorem 2. E-NASH is NP-complete.

Proof. For NP-hardness we have Proposition 3. For the upper bound, suppose we have
an instance, (G, α), of the problem. Then we proceed as follows. We non-deterministically
guess pairs of punishing strategy profiles, (ζi,~ζ−i) for each player i ∈ Ag, a state zs for each
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player, and a set of states F. From these, we can easily check that the valuation induced by F
satisfies the specification and we can also use Karp’s algorithm to compute the punishment
values, puni(s), for each state s ∈ St and for each player i ∈ Ag. Setting zi = puni(zs),
we invoke Lemma 1 and form the graph G[~z; F]. If it is not strongly connected, then we
reject. Otherwise, we use Proposition 4 to determine if the associated linear program has a
solution. If it does, then we accept, otherwise we reject.

Another benefit of splitting Proposition 4 is that it readily yields the following corollary:

Corollary 1. Let G be a game and α an ω-regular specification. Suppose that G has some Nash
equilibrium~σ such that~σ |= α. Then, G also has some finite-memory Nash equilibrium~σ′ such
that~σ′ |= α.

Proof. Suppose G has some Nash equilibrium ~σ such that ~σ |= α. Furthermore, let
π = π(~σ). Then by Lemma 1, there exists some~z ∈ QAg, with zi ∈ {puni(s) | s ∈ St}, and
a subset F ⊆ St such that in G[~z, F], π visits every state infinite often and for each i ∈ Ag,
we have zi ≤ payi(π). By Lemma 2, we see that the system of inequalities `(G, {wi}i∈Ag,~z)
has a solution. However, then by Lemma 3, we see that there exists some periodic path
π′ such that in G[~z, F], again, we have that π′ visits every state infinite often and for each
i ∈ Ag, we have zi ≤ payi(π

′). Thus, applying Lemma 1 again, we see that G has some
Nash equilibrium~σ′ such that~σ′ |= α with π′ = π(~σ′). Moreover, by the construction in
Lemma 3, we see that we may assume that~σ′ is a finite-memory strategy.

4. Cooperative Games

We now move on to investigate cooperative solution concepts, and in particular, the
core. We start by studying the relationship between Nash equilibrium and the core in our
context. We first establish that they are indeed different:

Proposition 5. Let G be a game with |Ag| = 1. Then, NE(G) = CORE(G). However, if
|Ag| ≥ 2, then there exist games G such that NE(G) * CORE(G), and games G such that
CORE(G) * NE(G).

Thus, the two concepts do not coincide beyond the one-player case. In fact, there are
two-player games in which the set of Nash equilibria is empty, while the core is not, which
demonstrates that the core is not a refinement of Nash equilibrium. Nor does the other
direction hold: Nash equilibrium is not a refinement of the core. The following two games
(Figures 5 and 6) serve as witnesses to these claims.

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(1, 1)

(D, ∗)

(R, ∗)

(∗, D)

(∗, R)

∗ ∗

∗

Figure 5. NE(G1) * CORE(G1). The asterisks * are wildcards—they match any action which isn’t
explicitly detailed on the diagram.
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(0, 0)(1, 0) (0, 1)

(H, H)
(T, T)

(H, T)
(T, H)

∗ ∗

Figure 6. CORE(G2) * NE(G2). The asterisks * are wildcards—they match any action which isn’t
explicitly detailed on the diagram.

As we can see in the game in Figure 5, G1 has a Nash equilibrium that is not in the
core (and in which both players get a mean-payoff of 0—cf., Player 1 choosing D at the
initial state while Player 2 chooses D at the middle state), since the coalition containing
both players has a beneficial deviation in which both players get a mean-payoff of 1. On
the other hand, in the game in Figure 6, G2 has a non-empty core (consider every possible
memoryless strategy) while it has an empty set of Nash equilibria. Moreover, in both
games, the detailed strategies can be implemented without memory.

Regarding memory requirements, as with Nash equilibrium, it may be that, in general,
memoryless strategies are not enough to implement all equilibria in the cooperative setting.
Indeed, there are games with a non-empty core in which no strategy profile in the core
can be implemented in memoryless strategies only. Take, for instance, the game shown in
Figure 2, with the weights changed to wi(mid) = 1, w1(right) = 6 = w2(left). Only if the
two players collaborate, and alternate between left and right, they will get their optimal
mean-payoffs (of 2). Clearly, such an optimal payoff for both players cannot be obtained
using only memoryless strategies.

Another important (game-theoretic) question about cooperative games is whether
they have a non-empty core, a property that holds for games with LTL goals and specifica-
tions [17]. However, that is not the case for mean-payoff games, at least for games with
|Ag| > 2.

Proposition 6. In mean-payoff games, if |Ag| ≤ 2, then the core is non-empty. For |Ag| > 2,
there exist games with an empty core.

Proof. If |Ag| = 1, because of Proposition 5, the core coincides with the set of Nash
equilibria in one-player games, which is always non-empty. For two-player games, let
~σ = (σ1, σ2) be any strategy profile. If~σ is not in the core, then either Player 1, or Player 2,
or the coalition consisting of both players has a beneficial deviation. If the latter is true,
then there is a strategy profile,~σ′ = (σ′1, σ′2) such that~σ′ �i ~σ for both i ∈ {1, 2}. We repeat
this process until the coalition of both players does not have a beneficial deviation. This
must eventually be the case as each player’s payoff is capped by their maximum weight, so
either they both reach their corresponding maximum weight, or there comes a point when
they cannot beneficially deviate together. At this point, we must either be in the core, or
either player 1 or player 2 has a beneficial deviation. If player j (j ∈ {1, 2}) has a beneficial
deviation, say σj, then any strategy profile (σj, σi), with i 6= j, that maximises Player i’s
mean-payoff is in the core. Thus, for every two-player game, there exists some strategy
profile that lies in the core.

However, for three-player mean-payoff games, in general, the core of a game may be
empty. Consider the following three-player game G, where each player has two actions,
H, T, and there are four states, P, R, B, Y. The states are weighted for each player as follows:

wi(s) 1 2 3

P −1 −1 −1
R 2 1 0
B 0 2 1
Y 1 0 2
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If the game is in any state other than P, then no matter what set of actions is taken, the
game will remain in that state. Thus, we only specify the transitions for the state P:

Ac St

(H, H, H) R
(H, H, T) R
(H, T, H) B
(H, T, T) P
(T, H, H) P
(T, H, T) Y
(T, T, H) B
(T, T, T) Y

Thus, the structure of this game looks like the following graph (Figure 7):

P B

R

Y

(H, H, ∗)

(∗, T, H)

(T, ∗, T)

(H, T, T)
(T, H, H)

∗

∗

∗

Figure 7. A game with an empty core. The asterisks * are wildcards—they match any action which
isn’t explicitly detailed on the diagram.

Note that strategies are characterised by the state that the game eventually ends up in.
If the players stay in P forever, then they can all collectively change strategy to move to one
of R, B, Y, and each get a better payoff. Now, if the game ends up in R, then players 2 and
3 can deviate by playing (T, H), and no matter what player 1 plays, they will be in state
B, and will be better off. However, similarly, if the game is in B, then players 1 and 3 can
deviate by playing (T, T) to enter state Y, in which they both will be better off, regardless
of what player 2 does. Furthermore, finally, if in Y, then players 1 and 2 can deviate by
playing (H, H) to enter R and will be better off regardless of what player 3 plays. Thus, no
strategy profile lies in the core.

Before proceeding, it is worth reflecting on the definition of the core. We can redefine
this solution concept in the language of ‘beneficial deviations’. That is, we say that given a
game G, a strategy profile~σ, a beneficial deviation by a coalition C, is a strategy vector~σ′C
such that for all complementary strategy profiles~σ′Ag\C, we have π(~σ′C,~σ′Ag\C) �i π(~σ) for
all i ∈ C. We can then say that~σ is a member of the core, if there exists no coalition C which
has a beneficial deviation from~σ. Note this formulation is entirely identical to our earlier
definition of the core.

From a computational perspective, there is an immediate concern here—given a
potential beneficial deviation, how can we verify that it is preferable to the status quo
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under all possible counter-responses? Given that strategies can be arbitrary mathematical
functions, how can we reason about that universal quantification effectively? Fortunately,
as we show in the following lemma, we can restrict our attention to memoryless strategies
when thinking about potential counter-responses to players’ deviations:

Lemma 4. Let G be a game, C ⊆ Ag be a coalition and~σ be a strategy profile. Further suppose
that~σ′C is a strategy vector such that for all memoryless strategy vectors~σ′Ag\C, we have:

π(~σ′C,~σ′Ag\C) �i π(~σ).

Then, for all strategy vectors,~σ′Ag\C, not necessarily memoryless, we have:

π(~σ′C,~σ′Ag\C) �i π(~σ).

Before we prove this, we need to introduce an auxiliary concept of two-player, turn-based,
zero-sum, multi-mean-payoff games [32] (we will just call these multi-mean-payoff games
moving forward). Informally, these are similar to two-player, turn-based, zero-sum mean-
payoff games, except player 1 has k weight functions associated with the edges, and they
are trying to ensure the resulting k-vector of mean-payoffs is component-wise greater than a
vector threshold. Formally, a multi-mean-payoff game is a 5-tuple, G = (V1, V2, v0, E, w, zk),
where V1, V2 are sets of states controlled by players 1 and 2, respectively, with V = V1 ∪V2
the state space, v0 ∈ V the start state, E ⊆ V ×V a set of edges and w : E → Zk a weight
function, assigning to each edge a vector of weights.

The game is played by starting in the start state, s0 ∈ Si, and player i choosing an edge
(s0, s1), and traversing it to the next state. From this new state, s1 ∈ Sj, player j chooses
an edge and so on, repeating this process forever. Paths are defined in the usual way and
the payoff of a path π, pay(π), is simply the vector (mp(w1(π)), . . . , mp(wk(π))). Finally,
zk ∈ Qk is a threshold vector and player 1 wins if the payi(π) ≥ zi for all i ∈ {1, . . . , k}, and
loses otherwise. An important question associated with these games is whether player 1
can force a win. As shown in [32], this problem is co-NP-complete. Whilst we do not need
to utilise this result right now, this sets us up to prove Lemma 4:

Proof. (Proof of Lemma 4) Let~σAg\C be an arbitrary strategy and let i ∈ C be an arbitrary
agent. Denote π(~σ) by π and π(~σ′C,~σ′Ag\C) by π′. We aim to show that π′ �i π. Suppose
instead it is the case that π �i π′. Thus, we have π(~σ) �i π(~σ′C,~σ′Ag\C). Considering this as
a two-player multi-mean-payoff game, where player 1’s strategy is fixed and encoded into
the game structure (i.e., player 1 follows~σ′C, but has no say in the matter), and the payoff
threshold is mp(π(~σ)), then~σ′Ag\C is a winning strategy for player 2 in this game. Now,
by [32,33], if player 2 has a winning strategy, then they have a memoryless winning strategy.
Thus, there is a memoryless strategy~σ′′Ag\C such that π(~σ) �i π(~σ′C,~σ′′Ag\C). However, this
contradicts the assumptions of the lemma, and thus we must have π′ �i π (In [32], their
winning condition relates to whether a player’s payoff is greater than or equal to a given
vector. One can adapt this argument to show it is also true for strict inequalities).

We now look at some complexity bounds for mean-payoff games in the cooper-
ative setting. Having introduced beneficial deviations, let us consider the following
decision problem:

BENEFICIAL-DEVIATION (BEN-DEV):
Given: Game G and strategy profile~σ.
Question: Is there C ⊆ Ag and~σ′C ∈ ΣC such that for all~σ′Ag\C ∈ ΣAg\C and for all
i ∈ C, we have:

π(~σ′C,~σ′Ag\C) �i π(~σ)?

Using this new problem, we can prove the following statement:
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Proposition 7. Let G be a game, ~σ a strategy profile, and α a specification. Then, (G,~σ, α) ∈
MEMBERSHIP if and only if (G,~σ) 6∈ BEN-DEV and π(~σ) |= α.

Proof. Proof follows directly from definitions.

The above proposition characterises the MEMBERSHIP problem for cooperative
games in terms of beneficial deviations, and, in turn, provides a direct way to study its
complexity. In the remainder of this section we concentrate on the memoryless case.

Theorem 3. For memoryless strategies, BEN-DEV is NP-complete.

Proof. First correctly guess a deviating coalition C and a strategy profile ~σ′C for such a
coalition of players. Then, use the following three-step algorithm. First, compute the mean-
payoffs that players in C get on π(~σ), that is, a set of values z∗j = payj(π(~σ)) for every
j ∈ C—this can be done in polynomial time simply by ‘running’ the strategy profile~σ. Then
compute the graph G[~σ′C], which contains all possible behaviours (i.e., strategy profiles)
for Ag \ C with respect to~σ—this construction is similar to the one used in the proof of
Theorem 1, that is, the game when we fix~σ′C, and can be done in polynomial time. Finally,
we ask whether every path π in G[~σ′C] satisfies payj(π) > z∗j , for every j ∈ C—for this step,
we can use Karp’s algorithm to answer the question in polynomial time for every j ∈ C. If
every path in G[~σ′C] has this property, then we accept; otherwise, we reject.

For hardness, we use a small variation of the construction presented in [34]. Let
P = {x1, . . . , xn} be a set of atomic propositions. From a Boolean formula ϕ =

∧
1≤c≤m Cc

(in conjunctive normal form) over P—where each Cc = lc1 ∨ lc2 ∨ lc3, and each literal lck = xj

or ¬xj, with 1 ≤ k ≤ 3, for some 1 ≤ j ≤ n—we construct M = (Ag, St, s0, (Aci)i∈Ag, tr),
an m-player concurrent game structure defined as follows:

• Ag = {1, . . . , m}
• St = {xv | 1 ≤ v ≤ n} ∪ {x′v | 1 ≤ v ≤ n} ∪ {y0, yn, y0, y∗}
• s0 = y0

• Aci = {t, f }, for every i ∈ Ag, and Ac = Ac1 × · · · ×Acm
• For tr, refer to the figure below, such that T = {(t1, . . . , tm)} and F = Ac \ T.

The concurrent game structure so generated is illustrated in Figure 8.

y0

y∗

y0

x1

x′1

x2

x′2

· · ·

xn−1

x′n−1

xn

x′n

yn

F

∗

T

T

F

T

F

T

F

T

F

T

F

∗

∗

∗

Figure 8. Concurrent game structure for the reduction from 3SAT. The asterisks * are wildcards—they
match any action which isn’t explicitly detailed on the diagram.

With M at hand, we build a mean-payoff game using the following weight function:

• wi(xv) = 1 if xv is a literal in Ci and wi(xv) = 0 otherwise, for all i ∈ Ag and 1 ≤ v ≤ n
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• wi(x′v) = 1 if ¬xv is a literal in Ci and wi(x′v) = 0 otherwise, for all i ∈ Ag and
1 ≤ v ≤ n

• wi(y0) = wi(yn) = wi(y0) = wi(y∗) = 0, for all i ∈ Ag

Then, we consider the game G over M and any strategy profile (in memoryless
strategies) such that~σ(s0) = y∗. For any of such strategy profiles the mean-payoff of every
player is 0. However, if ϕ is satisfiable, then there is a path in M, from y0 to yn, such that in
such a path, for every player, there is a state in which its payoff is not 0. Thus, the grand
coalition Ag has an incentive to deviate since traversing that path infinitely often will give
each player a mean-payoff strictly greater than 0. Observe two things. Firstly, that only
if the grand coalition Ag agrees, the game can visit y0 after y0. Otherwise, the game will
necessarily end up in y∗ forever after. Secondly, because we are considering memoryless
strategies, the path from y0 to yn followed at the beginning is the same path that will
be followed thereafter, infinitely often. Then, we can conclude that there is a beneficial
deviation (necessarily for Ag) if and only if ϕ is satisfiable, as otherwise at least one of the
players in the game will not have an incentive to deviate (because its mean-payoff would
continue to be 0). Then, formally, we can conclude that (G, σ) ∈ BEN-DEV if and only if ϕ
is satisfiable.

From Theorem 3 follows that checking if no coalition of players has a beneficial
deviation with respect to a given strategy profile is a co-NP problem. More importantly, it
also follows that MEMBERSHIP is also co-NP-complete.

Theorem 4. For memoryless strategies, MEMBERSHIP is co-NP-complete.

Proof. Recall that given a game G, a strategy profile ~σ, and an ω-regular specification
α, we have (G,~σ, α) ∈ MEMBERSHIP if and only if (G,~σ) 6∈ BEN-DEV and π(~σ) |= α.
Thus, we can solve MEMBERSHIP simply by first checking π(~σ) |= α, which can be
done in polynomial time and we reject if that check fails. If π(~σ) |= α, then we ask
(G,~σ) ∈ BEN-DEV and accept if that check fails, and reject otherwise. Finally, since BEN-
DEV is NP-hard, it follows from the above procedure that MEMBERSHIP is co-NP-hard,
which concludes the proof of the statement.

BEN-DEV can also be used to solve E-CORE in this case.

Theorem 5. For memoryless strategies, E-CORE is in ΣP
2 .

Proof. Given any instance (G, α), we guess a strategy profile~σ and check that π(~σ) |= α and
that (G,~σ, α) is not an instance of BEN-DEV. While the former can be done in polynomial
time, the latter can be solved in co-NP using an oracle for BEN-DEV. Thus, we have a
procedure that runs in NPco-NP = NPNP = ΣP

2 .

From Theorem 5 follows that A-CORE is in ΠP
2 and, more importantly, that even

checking that the core has any memoryless solutions (but not necessarily that it is empty)
is also in ΣP

2 . This result sharply contrasts with that for Nash equilibrium where the
same problem lies in NP. More importantly, the result also shows that the (complexity)
dependence on the type of coalitional deviation is only weak, in the sense that different
types of beneficial deviations may be considered within the same complexity class, as
long as such deviations can be checked with an NP or co-NP oracle. For instance, in [17]
other types of cooperative solution concepts are defined, which differ from the one in this
paper (known in the cooperative game theory literature as α-core [7]) simply in the type
of beneficial deviation under consideration. Another concept introduced in [17] is that of
‘fulfilled coalition’, which informally characterises coalitions that have the strategic power
(a joint strategy) to ensure a minimum given payoff no matter what the other players in the
game do. Generalising to our setting, from qualitative to quantitative payoffs, we introduce
the notion of a lower bound: let C ⊆ Ag be a coalition in a game G and let~zC ∈ QC. We say
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that~zC = (z1, . . . , zi, . . . , z|C|) is a lower bound for C if there is a joint strategy~σC for C such
that for all strategies~σ−C for Ag \ C, we have payi(π(~σC,~σ−C)) ≥ zi, for every i ∈ C.

Based on the definition above, we can prove the following lemma, which characterises
the core in terms of paths where (mean-)payoffs can be ensured collectively, no matter any
adversarial behaviour.

Lemma 5. Let π be a path in G. There is ~σ ∈ CORE(G) such that π = π(~σ) if and only if
for every coalition C ⊆ Ag and lower bound ~zC ∈ QC for C, there is some i ∈ C such that
zi ≤ payi(π).

Proof. To show the left-to-right direction, suppose that there exists a member of the core
~σ ∈ CORE(G) with π = π(~σ) and suppose further that there is some coalition C ⊆ Ag and
lower bound~zC ∈ QC for C, such that for every i ∈ C we have zi > payi(π). Because~zC is
a lower bound for C, and zi > payi(π), for every i ∈ C, then there is a joint strategy~σC for
C such that for all strategies~σ−C for Ag \ C, we have payi(π(~σC,~σ−C)) ≥ zi > payi(π), for
every i ∈ C. Then, it follows that (G,~σ) ∈ BEN-DEV, which further implies that~σ cannot
be in the core of G—a contradiction to our initial hypothesis.

For the right-to-left direction, suppose that there is π in G such that for every coalition
C ⊆ Ag and lower bound~zC ∈ QC for C, there is i ∈ C such that zi ≤ payi(π). We then sim-
ply let~σ be any strategy profile such that π = π(~σ). Now, let C = {j, . . . , k} ⊆ Ag be any
coalition and~σ′C be any possible deviation of C from~σ. Either ~z′C = (payj(π(~σ−C,~σ′C)), . . . ,
payk(π(~σ−C,~σ′C))) is a lower bound for C or it is not.

If we have the former, by hypothesis, we know that there is i ∈ C such that
payi(π(~σ−C,~σ′C)) ≤ payi(π). Therefore, i will not have an incentive to deviate along
with C \ {i} from~σ, and as a consequence coalition C will not be able to beneficially deviate
from~σ.

If, on the other hand, ~z′C is not a lower bound for C, then, by the definition of lower
bounds, we know that it is not the case that ~σ′C is a joint strategy for C such that for all
strategies~σ′−C for Ag \ C, we have payi(π(~σ′C,~σ′−C)) ≥ payi(π(~σ−C,~σ′C)), for every i ∈ C.
That is, there exists i ∈ C and~σ′−C for Ag \C such that payi(π(~σ′C,~σ′−C)) < payi(π(~σ−C,~σ′C)).
We will now choose~σ′−C so that, in addition, payi(π) ≥ payi(π(~σ′C,~σ′−C)) for some i.

Let ~z′′C = (payj(π(~σ
j
−C,~σ′C)), . . . , payk(π(~σk

−C,~σ′C))) where payi(π(~σi
−C,~σ′C)) is de-

fined to be min~σ′−C∈Σ−C
payi(π((~σ′−C,~σ′C))). That is, ~σi

−C is a strategy for Ag \ C which
ensures the lowest mean-payoff for i assuming that C is playing the joint strategy~σ′C. By
construction ~z′′C is a lower bound for C— since each z′′i = payi(π(~σi

−C,~σ′C)) is the great-
est mean-payoff value that i can ensure for itself when C is playing~σ′C, no matter what
coalition Ag \ C does—and therefore, by hypothesis we know that for some i ∈ C we have
payi(π(~σi

−C,~σ′C)) ≤ payi(π). As a consequence, as before, i will not have an incentive to
deviate along with C \ {i} from~σ, and therefore coalition C will not be able to beneficially
deviate from~σ. Because C and~σ′C where arbitrarily chosen, we conclude that~σ ∈ CORE(G),
proving the right-to-left direction and finishing the proof.

With this lemma in mind, we want to determine if a given vector,~zC, is in fact a lower
bound and importantly, how efficiently we can do this. That is, to understand the following
decision problem:

LOWER-BOUND:
Given: Game G, coalition C ⊆ Ag, and vector~zC ∈ QAg.
Question: Is~zC is a lower bound for C in G?

Using the MULTI-MEAN-PAYOFF-THRESHOLD decision problem introduced
earlier, we can prove the following proposition:

Theorem 6. LOWER-BOUND is co-NP-complete.
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Proof. First, we show that LOWER-BOUND lies in co-NP by reducing it to MULTI-
MEAN-PAYOFF-THRESHOLD. Suppose we have an instance, (G, C,~zC), and we want to
determine if it is in LOWER-BOUND. We can do this by forming the following two-player,
multi-mean-payoff game, G′ = (V1, V2, v0, E, w′, zk), where:

• V1 = St;
• V2 = St×AcC;
• v0 = s0;
• E = {(s, (s, acC)) | s ∈ St, acC ∈ AcC}

∪ {((s, acC), tr(s, (acC, acAg\C))) | acAg\C ∈ AcAg\C};
• w′ : E→ Z|C|, with w′i(s, (s, acC)) = wi(s) and,

w′i((s, acC), tr(s, (acC, acAg\C))) = wi(s);
• z|C| = ~zc.

Informally, the two players of the game are C and Ag \ C, the vector weight function
is given by aggregating the weight functions of C and the threshold is~zC. Now, if in this
game, player 1 has a winning strategy, then there exists some strategy ~σC such that for
all strategies of player 2, ~σAg\C, we have that π(~σC,~σAg\C) is a winning path for player
1. However, this means that payi(π(~σC,~σAg\C)) ≥ zi for all i ∈ C. However, it is easy
to verify that this implies that ~zC is a lower bound for C in G. Conversely, if player 1
has no winning strategy, then for all strategies,~σC, there exists some strategy~σAg\C such
that π(~σC,~σAg\C) is not a winning path. This is turn implies that for some j ∈ C, we
have that payj(π(~σC,~σAg\C)) < zj, which means that~zC is not a lower bound for C in G.
Additionally, note that this construction can be performed in polynomial time, giving us
the co-NP upper bound. For the lower bound, we go the other way and reduce from
MULTI-MEAN-PAYOFF-THRESHOLD.

For the lower bound, we reduce from MULTI-MEAN-PAYOFF-THRESHOLD.
Suppose we would like to determine if an instance G is in MULTI-MEAN-PAYOFF-
THRESHOLD. Then we form a concurrent mean-payoff game, G′, with k + 1 players,
where the states of G′ coincide exactly with the states of G. In this game, only the 1st and
(k + 1)th player have any influence on the strategic nature of the game. If the game is in a
state in V1, player one can decide which state to move into next. Otherwise, if the game is
in a state within V2, then the (k + 1)th player makes a move. Note we only allow moves
that agree with moves allowed within G.

Now, in G′, the first k players have weight functions corresponding to the k weight
functions of player 1 in G. The last player can have any arbitrary weight function. With
this machinery in place, we ask if zk is a lower bound for {1, . . . , k}. In a similar manner
of reasoning to the above, it is easy to verify that G is an instance of MULTI-MEAN-
PAYOFF-THRESHOLD if and only if zk is a lower bound for {1, . . . , k} in the constructed
concurrent mean-payoff game. Moreover, this reduction can be done in polynomial time
and we can conclude that LOWER-BOUND is co-NP-complete.

We have not presented any bounds for the complexity of E-CORE in the general case.
One possible reason for the upper bounds remaining elusive to us is due to the fact that
whilst in a multi-mean-payoff game, player 2 can act optimally with memoryless strategies,
player 1 may require infinite memory [32,33]. Given the close connection between the
core in our concurrent, multi-agent setting and winning strategies in multi-mean-payoff
games, this raises computational concerns for the E-CORE problem. Additionally, in [35],
the authors study the Pareto frontier of multi-mean-payoff games, and provide a way of
constructing a representation of it, but this procedure has an exponential time dependency.
The same paper also establishes ΣP

2 -completeness for the polyhedron value problem. Both of
these problems appear to be intimately related to the core, and we hope we might be able
to use these results to gain more insight into the E-CORE in the future.

With this having been said, we conclude this section by establishing a link between
traditional non-transferable utility (NTU) games and our mean-payoff games—as NTU
games are very well studied, and there is a wealth of results relating to core non-emptiness
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in this setting [36–38], we hope that some of these results could be utilised in order to
understand the core of mean-payoff games.

Formally, an n-person game with NTU is a function, V : P(Ag)→ R|Ag|, such that,

1. For all C ⊆ Ag, V(C) is a non-empty, proper, closed subset of R|Ag|;
2. For all C ⊆ Ag, if we have x ∈ V(C) and y ∈ R|Ag| such that yi ≤ xi for all i ∈ C, then

we have y ∈ V(C);
3. We have that V(Ag) \⋃i∈Ag int V({i}) is non-empty and bounded.

We begin by giving a translation from mean-payoff games to NTU games. Let G be a
mean-payoff game; then we define an NTU game, GNTU = V : P(Ag)→ R|Ag| as follows.
If C ⊆ Ag, then,

V(C) =
{
~z ∈ R|Ag| | ∃~σC∀~σAg\C∀i ∈ C, payi

(
π
(
~σC,~σAg\C

))
≥ zi

}
.

In words, V(C) consists of the set of lower bounds that C can force. Note that for an
outcome x ∈ V(C), the components xi for i ∈ Ag \ C do not matter—they can be arbitrary
real numbers.

Lemma 6. Let G be a game, and let GNTU be the NTU game associated with G. Then GNTU is
well-defined.

Proof. We need to show that the three conditions in the definition of an NTU game hold
for GNTU.

For condition (1), we see that V(C) is always non-empty by noting a coalition can
always force an outcome where they achieve at least their worst possible payoff each (the
vector made up of each player’s lowest weight in the game). The fact that V(C) is closed
follows from Theorem 4 of [35]. We also see that V(C) is a proper subset of R|Ag|, as the
members of C can do no better than achieve their maximum weights.

For condition (2), suppose we have x ∈ V(C), and y ∈ R|Ag| with yi ≤ xi for all i ∈ C.
If x ∈ V(C), then there exists some~σC, such that for all~σAg\C, we have payi(π(~σC,~σAg\C)) ≥
xi for all i ∈ C. However, this in turn implies that payi(π(~σC,~σAg\C)) ≥ yi for all i ∈ C.
Thus, by definition, we have y ∈ V(C).

For condition (3), let pj be the punishment value of the player j in the game G. Informally,
the punishment value of a player j can be thought of as the worst payoff that the other
players can inflict on that player. Alternatively, we can view the punishment value for
player j as the best payoff they can guarantee themselves, no matter what the remaining
players do—in this way, we can see that the punishment value is a maximal lower bound
for a player.

Consider the vector p ∈ R|Ag|, where the jth component of this vector is the pun-
ishment value for player j. Naturally, this vector lies in V(Ag). Additionally, we claim
that is does not lie in int V({i}) for any i ∈ Ag. For a contradiction, suppose there
existed some j ∈ Ag with p ∈ int V({j}). So there exists some ε > 0, such that for
all 0 ≤ r < ε, there exists some strategy, σr

j , such that for all counterstrategies, ~σ−j,
we have payj(π(σr

j ,~σ−j)) ≥ pj + r. However, this implies player j can achieve a bet-
ter payoff than their punishment value—a contradiction. Thus, we see that the set
V(Ag) \⋃i∈Ag int V({i}) is non-empty.

Finally, to see that V(Ag) \⋃i∈Ag int V({i}) is bounded, we claim that it is contained
in a closed ball of radius M, where M is defined to be:

M = max
i∈Ag
s∈St

|wi(s)|.

We show that if x ∈ V(Ag), then we either have x ∈ ⋃i∈Ag int V({i}) or x ∈ B(0, M),
i.e., the closed ball of radius M, centred at the origin.



Games 2022, 13, 19 26 of 37

If x ∈ V(Ag), then by definition, we must have xi ≤ M for all i ∈ Ag. Now, there
are two possibilities: if we have xi ≥ −M for all i ∈ Ag, then we have x ∈ B(0, M). So
instead suppose there exists some i ∈ Ag such that xi < −M. In this case, letting ε be
any positive number such that xi + ε ≤ −M, any strategy σi has the property that for all
counter-strategies~σ−i, we have payi(π(~σ−i, σi)) ≥ xi + ε. Thus, we have x ∈ int V({i}).
This implies that,

V(Ag) ⊆
⋃

i∈Ag

int V({i}) ∪ B(0, M),

which in turn implies,
V(Ag) \

⋃
i∈Ag

int V({i}) ⊆ B(0, M),

yielding the result.

Given that we can translate mean-payoff games into well-defined NTU games, it
is natural to ask whether we can use traditional cooperative game theory in order to
understand the core in our setting. Thus, we introduce the (classic) definition of the core for
NTU games. In an NTU game, we say that an element x ∈ R|Ag| is in the core if x ∈ V(Ag),
and there exists no C ⊆ Ag and no y ∈ V(C) such that xi < yi for all i ∈ C. In the following
result, we show that the core of a mean-payoff game, and the core of its corresponding
NTU game are intimately related:

Lemma 7. Let G be a mean-payoff game. Let GNTU be the NTU game associated with G. Then the
core of G is non-empty if and only if the core of GNTU is non-empty.

Proof. First suppose that G has a non-empty core. Thus, there exists some strategy profile~σ
such that for all coalitions C and for all strategy vectors~σ′C, there exists some~σ′Ag\C such that

payi(π(~σ′C,~σ′Ag\C)) ≤ payi(π(~σ)) for some i ∈ C. Let x ∈ RAg be such that xi = payi(~σ) for
all i ∈ Ag. Then by definition, we have x ∈ V(Ag). We claim that x is in the core of GNTU.
Suppose there is some C ⊆ Ag and a y ∈ V(C) such that xi < yi for all i ∈ C. Thus, there
exists some~σ′C such that for all~σ′Ag\C, such that payi(π(~σ′C,~σ′Ag\C)) ≥ yi > xi = payi(~σ) for
all i ∈ C. However, this implies that~σ is not in the core of G, which is a contradiction. Thus,
x is in the core of GNTU.

Conversely, suppose that GNTU has an empty core. Thus, there exists some x ∈ R|Ag|

such that x ∈ V(Ag), such that there exists no C ⊂ Ag and no y ∈ V(C) with xi < yi
for all i ∈ C. Since x ∈ V(Ag), there exists some strategy ~σ such that payi(π(~σ)) ≥ xi
for all i ∈ Ag. We claim that ~σ is in the core of G. If it were not, then there would
exist some coalition C, and some strategy vector ~σ′C such that for all strategy vectors
~σ′Ag\C, we have π(~σ′C,~σ′Ag\C) �i π(~σ) for all i ∈ C. We then define y ∈ RAg by setting
yi = min~σ′Ag\C

payi(π(~σ′C,~σ′Ag\C)) for i ∈ C and setting yi = 0 for i ∈ Ag \ C. Then we

have that y ∈ V(C) by definition. Since for all~σ′Ag\C, we have that π(~σ′C,~σ′Ag\C) is strictly
preferred to π(~σ) by all players in C, we must have that yi > xi for all i ∈ C. However, this
contradicts the fact that x is in the core of GNTU. Thus, we must have that~σ is in the core
of G.

As stated previously, we have been unable to determine the complexity of E-CORE
in the setting of mean-payoff games. However, given the above result, we suggest a
route which may bear fruits in the future. In [36–40], the authors reason about the core of
cooperative games (in both the transferable utility and non-transferable utility settings) by
appealing to the notion of a balanced set. In [37], the authors generalise this by introducing
the notion of π-balancedness. Let π = {πC ∈ R|Ag| | C ⊆ Ag} be a collection of vectors
such that:

1. For all C ⊆ Ag, we have πC 6= 0;
2. For all C ⊆ Ag, and for all i 6∈ C, we have πC,i = 0;
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3. For all C ⊆ Ag, and for all i ∈ C, we have πC,i ≥ 0,

and let C ⊆ P(Ag) be a collection of coalitions. We say that C is π-balanced if there exist
balancing weights, λC > 0, for each C ⊆ Ag such that:

∑
C∈C

λCπC = πAg.

We then say that an NTU game, V, is π-balanced if whenever C is a π-balanced
collection, we have: ⋂

C∈C
V(C) ⊆ V(Ag).

In [37], the authors show that if there exists some π such that V is π-balanced, then
V has a non-empty core. The condition of π-balancedness translates readily over to the
setting of mean-payoff games, and so we see that if such a game is π-balanced, then it has a
non-empty core. This suggest a (sound, but not complete) algorithm for detecting if a mean-
payoff game has a non-empty core; somehow guess a polynomial-sized π, use a linear
program to calculate the corresponding balancing weights, and then use an co-NP oracle to
verify there exists no π-balanced collection such that

⋂
C∈C V(C) ⊆ V(Ag). Obviously, this

is not a rigorous argument, but is suggestive of what a possible solution may look like.
Additionally, whilst π-balancedness is a sufficient condition for core non-emptiness, it

is not necessary. However, in [37], the authors strengthen the condition of π-balancedness in
the setting of convex-valued NTU games, to obtain a necessary and sufficient result. Given
in that mean-payoff games, the outcomes that a coalition can achieve can be expressed as a
union of convex sets, this approach seems promising. However, we have been unable to
yield any results via this route.

5. Weighted Reactive Module Games

One problem with concurrent game structures as we have worked with them so far is
that they are extremely verbose. The transition function, tr : St×Ac1 × · · · ×Ac|Ag| → St
is a total function, so it has size |Ac||Ag|. Thus, the size of the game scales exponentially
with the number of the agents. In Example 1, the underlying concurrent game structure
has a size of 429,981,696. If we are ever to have computational tools to support the decision
problems described in this paper, then such “extensive” representations are not viable: we
will require compact frameworks to represent games.

One natural framework we can use to induce succinctness is that of Reactive Mod-
ules [41]. Specifically, we modify the Reactive Module Games of [18] with weights on the
guarded commands. We begin by walking through some preliminaries.

Reactive modules games do not use the full power of reactive modules, but instead
use a subset of the reactive modules syntax, namely the simple reactive modules language
(SRML) [42]. In SRML terms, agents are described by modules, which in turn consist of a
set of variables controlled by the module, along with a set of guarded commands. Formally,
given a set of propositional variables Φ, a guarded command g is an expression of the form:

ϕ x′1 := ψ1; . . . ; x′k := ψk,

where ϕ and each ψi are propositional formulae over Φ and each xj also lies in Φ. We
call ϕ the guard of g and denote it by guard(g), and we call the variables (the xjs) on the
right-hand-side of g the controlled variables of g, denoted by ctr(g). The idea is that under a
given valuation of a set of variables, v ⊆ Φ, each module has a set of commands for which
guard(g) is true (we say that they are enabled for execution). Each module can then choose
one enabled command, g, and reassign the variables in ctr(g) according to the assignments
given on the right hand side of g. For instance, if ϕ were true, then the above guarded
command could be executed, setting each xj to the truth value of ψj under v. Only if no
g is enabled, a special guarded command gskip—which does not change the value of any
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controlled variable—is enabled for execution so that modules always have an action they
can take.

To define the size of a guarded command, we first define the size of a propositional
formula, ϕ, denoted |ϕ|, to be the number of logical connectives it contains. Then the size
of a guarded command g, written |g|, is given by |guard(g)|+ |ctr(g)|.

Given a set of propositional variables, Φ, a simple reactive module, m, is a tuple
(Ψ, I, U), where:

• Ψ ⊆ Φ is a set of propositional variables;
• I is a set of initialisation guarded commands, where for all g ∈ I, we have guard(g) =

> and ctr(g) ⊆ Ψ.
• U is a set of update guarded commands, where for all g ∈ U, guard(g) is a propositional

formula over Φ and ctr(g) ⊆ Ψ.

After defining a simple reactive module m, we introduce an additional command,
gskip, of the form, ∧

g∈U
¬guard(g) ∅

with ctr(g) = Ψ. The empty set on the right hand side of the guarded command means that
no variables are changed. We introduce this extra guarded command so that at each stage,
every module has some action they can take. However, this is not obligatory, and if we
define a reactive module where we can prove at each step, there will be an available action,
then introducing gskip is not necessary. With this added, the size of a reactive module, |m|,
is given by the sum of the sizes of its constituent guarded commands.

Given this, an SRML arena, A, is a tuple A = (Ag, Φ, {mi}i∈Ag), where Ag is a finite,
non-empty set of agents, Φ is a set of propositional variables and each mi is a simple
reactive module mi = (Φi, Ii, Ui) such that {Φi}i∈Ag is a partition for Φ. We define the size
of an arena to be sum of the sizes of the modules within it.

With this syntactic machinery in place, we are finally ready to describe the seman-
tics of SRML arenas. We give a brief, high-level description here—for details, please
refer to [18,42].

With this syntactic machinery in place, we are finally ready to describe the semantics
of SRML arenas. Let v ⊆ Φ be a valuation and let i ∈ Ag be an agent. We let enabledi(v)
denote the guarded commands available to agent i under the valuation v. Formally,
we have:

enabledi(v) = {g ∈ Ui | vs. |= guard(g)}.

We then define enabled(v) = enabled1(v) × · · · × enabled|Ag|(v). Given that each

Ui contains a command of the form gskip
i as described previously, we can see that each

enabledi(v) is always non-empty.
We also define execi(g, v), which given a valuation v, is the valuation of Φi given by

executing g = ϕ x′1 := ψ1; . . . ; x′k := ψk. Specifically, we have:

execi(g, v) = (vi \ ctr(g)) ∪ {xj | vs. |= ψj}.

Thus, upon executing g, agent i’s variables are reassigned according to the valuations
of the propositional formulae on its right hand side. However, with multiple agents, there
is some strategic interaction, and we wish to understand how the actions of all the agents
affect the state of the system. As such, we define joint guarded commands, which are simply a
selection of guarded commands, one for each agent. That is, we write J = g1 × · · · × g|Ag|.
Similarly to before, we set exec(J, v) = exec1(g1, v) ∪ . . . ∪ exec|Ag|(g|Ag|, v).

We are now ready to describe how arenas ‘play out’. Initially, each agent i picks a
guarded command g0

i ∈ Ii and this sets each of their variables accordingly, inducing a valu-
ation v0 = exec(J0, Φ). The agents then each pick a guarded command g1

i ∈ enabledi(v0)
and execute them, inducing another valuation, v1 = exec(J1, v0). They repeat this ad
infinitum. As such, this induces a path of the game. However, unlike before, where we
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defined paths over states of the game, here, we define paths over joint guarded com-
mands, π : N→ (I1 ∪U1)× · · · × (I|Ag| ∪U|Ag|). Whilst, superficially, this may look like
a departure from our previous convention, it is not. Given that these games are entirely
deterministic, if we know the sequence of joint guarded commands that have been taken,
we know infer sequence of states. Additionally, knowing the sequence of joint guarded
commands provides us with more information that knowing the sequence of states—a
state may have multiple joint guarded commands the lead to it. All of the techniques we
developed before transfer readily to this new setting, so take it for granted that there is a
straightforward link between the two approaches and will not comment on it further.

We can now define weighted reactive module games. A weighted reactive module game
(WRMG), G = (A, {wi}i∈Ag), is an SRML arena, A = (Ag, Φ, {mi}i∈Ag), along with a set
of weight functions, with wi : Ii ∪Ui → Z. That is, each module has an assigned weight
function that maps commands to integers. As before, a player’s payoff is given by the
mean-payoff of the weights attached to a path.

Note that we are effectively assigning weights to transitions, rather than to states as we
did before. This is not a huge conceptual shift, and moving between the two representations
(weights on states and weights on transitions) is a relatively straightforward transformation.

Finally, we need to define ω-regular specifications in the context of WRMGs. Sets
of states are already conveniently parameterised by the propositional variables of Φ, so
we introduce specifications which are Boolean combinations of atoms of the form Inf(p)
with p ∈ Φ. Moreover, since if p is a proposition, then ¬p is also a proposition, we use the
shorthand Inf(¬p), with the obvious interpretation, in place of the previous Inf(F̄) notation.
The semantics of these specifications are defined in a nearly identical way to before.

Before considering the decision problems relating to WRMGs, let us now walk through
an example to demonstrate their conciseness and utility of WRMGs. We do this by revisiting
Example 1.

Example 2. In Example 1, the state of the game is entirely described by the position of each of
the four robots, whether they are holding a parcel or not, and whether they have crashed. Thus,
we define four reactive modules m1, . . . , m4 with mi = (Φi, Ii, Ui) as follows—we set Φi =
{xi,1, . . . , xi,12, pi, di, ci}, where the xi model which node the robot is in, numbered top-to-bottom,
left-to-right with respect to the diagram, pi denotes if the robot is carrying a parcel or not, and ci
denotes if the robot has crashed or not. With this defined, we can define one initialisation command
for each robot:

> x′i,1 := ⊥; . . . x′i,n := >; . . . ; x′i,12 := ⊥; p′i := ⊥; c′i := ⊥ [0],

where n is appropriately set, given the starting position of the robot. Additionally, the [0] at the end
of the guarded command denotes the weight rewarded for performing that command. Then for each
agent i and edge (xn, xm) of the graph, we define a guarded command,

¬ci ∧ xi,n  x′i,n := ⊥; x′i,m := > [0].

We also model picking up and delivering a parcel, as well as crashing into another robot. We
do this with the following commands:

¬ci ∧ ¬pi ∧ (xi,1 ∨ xi,2) pi′ := > [0],

¬ci ∧ pi ∧ (xi,11 ∨ xi,12) pi′ := ⊥ [1],

¬ci ∧ xi,n ∧ (xj,n ∨ xk,n ∨ xln) c′i := > [−999]

ci  c′i := > [−999]

where i ranges over players; j, k and l range over the other players; and j ranges from 1 to 12. We
also have the gskip command from before, so the robot can stay still on a node for a time step.
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We can also rewrite the specification of Equation (1) in our new setting as follows:∧
i∈[4]

Inf(pi) ∧ Inf(¬pi).

It is easy to see that this setup models the example from before, is exponentially more concise,
requiring 52 guarded commands in total, and is natural to work with. Note that we could save
even more space by encoding the robots positions in binary, at the expense of making our guarded
commands slightly more complicated. Whilst this technique may be useful for larger systems, we
give a unary encoding here for clarity. Moreover, our specification has not increased in size.

With WRMGs now adequately motivated, the main decision problem to consider then
is the following:

WRMG-E-NASH:
Given: WRMG G, and ω-regular specification α.
Question: Does there exist a~σ ∈ NE(G) such that π(~σ) |= α?

Theorem 7. The WRMG-E-NASH problem lies in NEXPTIME and is EXPTIME-hard.

Proof. The idea is to ‘blow up’ the simple reactive module arena into a concurrent game
structure, then apply the same techniques as before. Explicitly, given a WRMG, G = (Ag, Φ,
{mi}i∈Ag, {wi}i∈Ag), we form a graph G = (V, E) as follows. We set V = P(Φ ∪ {pinit})
and then introduce an edge, e = (v, w) if there exists some joint guarded update command
J such that exec(J, v) = w. We also introduce edges ({pinit}, v), if there exists some joint
guarded initialisation command J such that exec(J, ∅) = v. We then form a concurrent
game structure, G′ = (Ag′, St, s0, (Aci)i∈Ag, tr) in the natural way. We set Ag′ = Ag and
St = V. We also set s0 = {pinit}. The actions for each player, Aci, consist of their respective
guarded commands and the transition function corresponds to the edges of the graph. The
weights of the guarded commands are attached to the weights of the transitions in the
concurrent game structure (Whilst our analysis of E-NASH is couched in terms of weights
on the states, in the proof of it, we modify the concurrent game structure so the weights
exist on the transitions instead. Thus, this reduction does not need to introduce extra states
to convert the weights on the transitions into weights on the states—we simply ‘cut the
corner’ instead).

We also need to transform the ω-regular specification on the weighted reactive module
games, α, to a specification on the concurrent game structure, α′. To do this, for each
propositional variable p, define a subset Fp ⊆ St where v ∈ Fp if p ∈ v. Then we simply
replace every occurrence of Inf(p) in α with Inf(Fp).

It should be apparent that (G′, α′) exhibits the same behaviours and qualities as
(G, α) and is exponential in size relative to (G, α). With this expansion complete, we
can straightforwardly apply the NP algorithm of Theorem 2, immediately giving us the
NEXPTIME upper bound.

To show hardness, we need to introduce another decision problem, PEEK-G4 [43]. A
PEEK-G4 instance is a tuple (X1, X2, X3, ϕ). Here, X1 and X2 are finite, disjoint, non-empty
sets of propositional variables, X3 ⊆ X1 ∪ X2 gives the variables that are true in the initial
state, and ϕ is a propositional formula over X1 ∪ X2. The game is played by starting in the
configuration given by X3. The players then alternate, either choosing to toggle a variable
they control, or skipping a go. If on their turn, a player can make ϕ true, then they win and
the game is over. The decision problem associated with this game is to determine if agent 2
has a winning strategy for a give tuple (X1, X2, X3, ϕ).

We reduce an instance of PEEK-G4, (X1, X2, X3, ϕ), to an instance of WRMG-E-
NASH, (Ag, Φ, {mi}i∈Ag, {wi}i∈Ag). We set

Ag = {0, 1, 2} and Φ = (X1 ∪ X2) ∪ {turnp, turnu, win1, win2}
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and introduce three reactive modules over Φ, m0, m1 and m2. The modules m1 and m2
represent the two players, 1 and 2, whilst m0 represents an umpire/officiator, who keeps
track of whose turn it is and whether anyone has won the game yet.

The two players alternate, with the umpire enforcing this. That is, for m0, we have
Φ0 = {turnp, turnu, win1, win2}, with the following single initialisation command:

> turn′p := >; turn′u := ⊥; win′1 := ⊥; win′2 := ⊥.

The turnp variable keeps track of which player’s turn it is, and the turnu variable
determined if it is the umpire’s turn. Finally, the two win variables keep track of whether
anyone has won yet. The update commands for m0 are defined as follows:

¬(win1 ∨ win2) ∧ ¬turnu  turn′u := >,

turnu ∧ ¬ϕ turn′u := ⊥; turn′p := ¬turnp,

turnu ∧ ϕ ∧ turnp  win′1 := >,

turnu ∧ ϕ ∧ ¬turnp  win′2 := >,

win1 ∨ win2  ∅.

There is a lot going on in the above set of commands, so let us break it down: the first
two commands say that play alternates between the players and the umpire—one of the
players makes a move, then play goes to the umpire, who checks for wins, then play passes
to the other player, and so on. The third and fourth commands say that if a player managed
to satisfy ϕ on their last turn, then they have won, and the umpire can declare them the
winner. The final command says that the umpire will just stay put and keep their variables
constant once one player has won.

The two player modules are symmetric, so we define m1, with m2 being formed in a
similar way. For m1, we have Φ1 = X1 ∪ {win2}, with a single initialisation command:

> x′i1 := >; . . . ; x′in := >,

where {xik}1≤k≤n = X1 ∩ X3. This simply says that player 1 must set their variables as
dictated by X3 Then for every variable xi ∈ X1, we introduce an update guarded command
of the following form,

¬(win1 ∨ win2) ∧ turnp ∧ ¬turnu  x′i := ¬xi.

This says that if neither player has won yet, and it is player 1’s turn to play, then
they can toggle one of the variables they control. Additionally, we need to allow a
player to be able not to change any of their variables, and we do this with the follow-
ing guarded command,

¬(win1 ∨ win2) ∅.

Note that player 1 can always play this command, even when it is not their turn.
Finally, we need to introduce two more guarded commands that the players take when the
game is over:

win1  ∅

win2  ∅.

If someone has won the game, then both players ignore the turn system and have the
lone option of following exactly one of the above two commands forever.
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With this defined, we need to introduce weight functions for each of the three players.
For the umpire, we give a constant weight function (so they are ambivalent between all
outcomes) and for player 1 we give them a weight function w1 such that,

w1(win1  ∅) = 1,

w1(win2  ∅) = −1,

w1(g) = 0, for all other g.

with player 2’s weight function being defined in the dual way. Finally, the ω-regular
specification is simply α = Inf(win2). We claim that player 2 has a winning strategy in
PEEK-G4 if and only if there exists a Nash equilibrium in the weighted reactive module
game that models the given specification. Moreover, it is patently clear that this construction
can be performed in polynomial time.

First suppose that player 2 has a winning strategy in PEEK-G4. Then m2 can play this
strategy and m1 can play any arbitrary strategy and eventually the game will end up in state
win2. From here, each player only has one guarded command they can play, meaning player
2 will get a payoff of 1 and player 1 will get a payoff of −1. This is a Nash equilibrium. No
matter what m1 plays, they are unable to force a win against player 2’s winning strategy and
so have no incentive to deviate. Additionally, player 2 is achieving their maximum payoff,
and thus have no motivation to deviate. This strategy profile also models α.

Conversely, suppose there exists some Nash equilibrium which models α. This implies
that the game eventually ends up in win2, and so player 2 has a payoff of 1 and player 1 a
payoff of −1 in this equilibrium. The fact that this is an equilibrium implies that no matter
what player 1 plays, they cannot increase their payoff, i.e. they always lose against the
strategy player 2 is playing. This implies that player 2 has a winning strategy in PEEK-G4
and this concludes the proof.

6. Related Work
6.1. Contributions of This Paper

This paper introduces ω-regular specifications as a natural, expressive, computationally
tractable way of reasoning qualitatively about concurrent games. In particular, we establish
several results within the rational verification framework, the most important of which are
the complexity bounds for the E-NASH, E-CORE and WRMG-E-NASH problems.

6.2. Mean-Payoff Games

Mean-payoff games are a useful tool in the analysis of computer systems. Most work
has been devoted to the study of two-player zero-sum games, which can be solved in NP ∩
co-NP [6].

Beyond such games, two kinds of mean-payoff games have been studied: multi-
player mean-payoff games, whose solution was studied with respect to Nash equilibria [5],
and two-player multi-mean-payoff games [32], where the focus is on the computation of
winning strategies for either player, a problem that can be solved in co-NP in the general
case, and in NP for memoryless strategies.

6.3. Combined Qualitative and Quantitative Reasoning

Combining qualitative and quantitative reasoning has mainly been done by modifying
players’ mean-payoff with some qualitative measure. In [44], the authors consider two-
player, zero-sum games, where on each path of the game, every player is assigned a two-size
tuple (parity goal, mean-payoff), where each player’s payoff is −∞ if the parity goal is
not met, and the mean-payoff otherwise. In a similar setting, [30,31] look at multi-player
concurrent games with lexicographic preferences over (parity/LTL goal, mean-payoff)
tuples and look at the decision problem of determining if there exists some finite state
strict ε Nash equilibrium. Additionally, [15] considered multi-player concurrent games
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where the players have mean-payoff goals, and the question is whether there is some Nash
equilibrium which models some temporal specification.

6.4. ω-Regular Specifications

Games with ω-regular objectives have been studied mostly in the context of two-player
games [8], where the goal of one of the players is to show that the ω-regular objective holds
in the system, while the goal of the other player is to show otherwise. Such games are
usually used in the context of synthesis and model-checking of temporal logic specifications.
These two-player zero-sum games are rather different from ours since in our games, the
ω-regular specification is not part of the goal of the players, but rather a property that an
external system designer wishes to see satisfied. This changes completely the overall problem
setup and explains why the drastic differences in complexity between traditional rgames with
ω-regular objectives—whose complexity can range from P (for instance, for Büchi games)
to PSPACE (for instance, for Muller games)—and multi-player mean-payoff games with
ω-regular specifications, even for two-player zero-sum instances with constant weights.

6.5. On Rational Verification

The problem studied in this paper is called Rational Verification, which has been
studied for different types of games and specification languages [10]. While rational
verification with LTL goals is 2EXPTIME-complete, the problem can become considerably
easier when considering simpler specification languages [15]. However, in the context of
multi-player mean-payoff games, only a solution for generalised Büchi specification was
known, using an encoding via GR(1) specifications, and only for Nash equilibrium. In
this paper, we have extended such results to account for all ω-regular specifications, and
have provided results for cooperative games and succinct representations. With respect
to the former, the only relevant related work is [17], where the core for concurrent game
structures was introduced. Furthermore, regarding the latter, a comprehensive study using
reactive modules games can be found in [18].

6.6. Future Work

There are multiple interesting avenues for future research. The two most obvious
open problems are that of determining the complexity bounds for the E-CORE problem in
the general case, as well as closing the complexity gap for the WRMG-E-NASH problem.
Following this, there are other directions that appear to be fruitful, as well as interesting and
worthwhile—for example, introducing both imperfect information and nondeterminism
offers a closer approximation to real-world systems, as well as raising interesting mathe-
matical questions. We are also interested in using ω-regular specifications to understand
ω-regular games in a unified, principled way.
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Abbreviations
The following abbreviations are used in this manuscript:

Glossary

P
The class of decision problems which can be solved in polynomial time
by a deterministic Turing machine

NP
The class of decision problems which can be solved in polynomial time
by a non-deterministic Turing machine

co-NP The complement of the complexity class NP

PSPACE
The class of decision problems which can be solved using polynomial
space by a deterministic Turing machine

NEXPTIME
The class of decision problems which can be solved in exponential time
by a non-deterministic Turing machine

2EXPTIME
The class of decision problems which can be solved in doubly
exponential time by a deterministic Turing machine

TFNP
The class of total function problems which can be solved in polynomial
time by a non-deterministic Turing machine

Nash equilibrium Informally, a strategy profile which is resistant to unilateral deviations

The core
Informally, the set of strategy profiles which are resistant to multilateral
deviations, assuming the remaining players can respond to such
a deviation

ΣP
2

The class of decision problems which can be solved in polynomial
time by a non-deterministic Turing machine with an NP oracle

ω-regular specifications

A formalism which captures infinitely repeating behaviours—they look
like Boolean combinations of atoms of the form Inf(F), where F is some
subset of the states of the game; their syntax and semantics are defined
in Section 2

Acronyms
LTL Linear temporal logic
CTL Computation tree logic
GR(1) Generalised reactivity(1)
NTU Non-transferable utility
SRML Simple reactive modules lanuage
WRMG Weighted reactive module game
Notation
|S| The size of the set S
σi A strategy for a player i
~σC A strategy vector for a coalition C
~σ A strategy profile—i.e., a strategy for each player

π
A path—a finite or infinite sequence of states; also used in the context of
NTU games in the traditional definition of ‘balancedness’

π(~σ) The path induced by the players following the strategy profile~σ
α An acceptance condition
G A game—the type of which depends on the context
∅ The empty set
> The logical formula, true
⊥ The logical formula, false
ϕ A logical formula—the type of which depends on the context
int(S) The interior of the set S

puni
The largest payoff player i can achieve, no matter what the remaining
players do

Φ
The set of all propositional variables under consideration in a
given context

Inf(F)
An atom in an ω-regular expression; informally, interpreted to mean
‘the set F is visited infinitely often’
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Fin(F)
An atom in an ω-regular expression; informally, interpreted to mean
‘the set F is only visited finitely often’

Z The integers: . . . ,−1, 0, 1, . . .
N The natural numbers: 0, 1, . . .

mp(β)

The mean-payoff of an infinite sequence of real numbers, β; formally
defined in Section 2, but can be thought of informally as a sort of
infinite average

NE(G) The set of Nash equilibria of a game G

|= The modelling relation—informally, π |= α means that the path π

adheres to the behaviour described in α; defined formally in Section 2
wi The weight function of player i, which defines that player’s preferences
M A concurrent game structure
Ag The set of agents in a given concurrent game structure
St The set of game states in a given concurrent game structure
s0 The start state of a concurrent game structure
Aci The actions available to player i in a given concurrent game structure

tr
The transition function of a given concurrent game structure—takes the
current state of the game, along with an action for each agent/player,
and outputs a new state for the game

A An SRML arena
mi A reactive module corresponding to player i

Ui
A set of ‘initialisation commands’ in the reactive module corresponding
to player i

Ui
A set of ‘update commands’ in the reactive module corresponding to
player i

guard(g)
The ‘guard’ of the guarded command g—that is, the precondition for
taking the action defined by g

ctr(g)
The ‘controlled’ of the guarded command g—that is, the propositional
variables that will be affected upon executing g

enabledi(v) The guarded commands available to player i under the valuation v

execi(g, v)
The valuation of player i’s variables obtained by executing the guarded
command g under the valuation v
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