
Staudacher, Jochen; Wagner, Felix; Filipp, Jan

Article

Dynamic programming for computing power indices for
weighted voting games with precoalitions

Games

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Staudacher, Jochen; Wagner, Felix; Filipp, Jan (2022) : Dynamic programming for
computing power indices for weighted voting games with precoalitions, Games, ISSN 2073-4336,
MDPI, Basel, Vol. 13, Iss. 1, pp. 1-17,
https://doi.org/10.3390/g13010006

This Version is available at:
https://hdl.handle.net/10419/257583

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/g13010006%0A
https://hdl.handle.net/10419/257583
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

����������
�������

Citation: Staudacher, J.; Wagner, F.;

Filipp, J. Dynamic Programming for

Computing Power Indices for

Weighted Voting Games with

Precoalitions. Games 2022, 13, 6.

https://doi.org/10.3390/g13010006

Academic Editors: Maria Montero

and Ulrich Berger

Received: 23 November 2021

Accepted: 22 December 2021

Published: 26 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

games

Article

Dynamic Programming for Computing Power Indices for
Weighted Voting Games with Precoalitions

Jochen Staudacher * , Felix Wagner and Jan Filipp

Fakultät Informatik, Hochschule Kempten, 87435 Kempten, Germany; Felix.Wagner@stud.hs-kempten.de (F.W.);
Jan.Filipp@stud.hs-kempten.de (J.F.)
* Correspondence: jochen.staudacher@hs-kempten.de; Tel.: +49-831-2523-513

Abstract: We study the efficient computation of power indices for weighted voting games with
precoalitions amongst subsets of players (reflecting, e.g., ideological proximity) using the paradigm
of dynamic programming. Starting from the state-of-the-art algorithms for computing the Banzhaf
and Shapley–Shubik indices for weighted voting games, we present a framework for fast algorithms
for the three most common power indices with precoalitions, i.e., the Owen index, the Banzhaf–Owen
index and the symmetric coalitional Banzhaf index, and point out why our new algorithms are
applicable for large numbers of players. We discuss implementations of our algorithms for the three
power indices with precoalitions in C++ and review computing times, as well as storage requirements.

Keywords: cooperative game theory; power indices; weighted voting games; dynamic programming;
precoalitions; Shapley value; Owen value; Banzhaf index

JEL Classification: C71

1. Introduction

Weighted voting games (also known as weighted majority games) are a common
model for decision-making and voting in committees, panels or boards. There are n players
and each player i is assigned a positive weight wi, which, in some situations, may reflect
the number of votes of a voting bloc. The decision-making body accepts a measure or
motion if a certain quota q, normally more than 50 percent of the sum of all weights, is
reached or exceeded, i.e., if and only if there is a winning coalition S with ∑i∈S wi ≥ q.
In cooperative game theory, weighted voting games can be regarded as a special class of
simple games, i.e., games in which coalitions are either winning with value 1 or losing with
value 0. Power indices are applied to simple games and provide measures for the players’
abilities to influence results in voting situations. On the basis of different bargaining models
and different axiomatic assumptions, numerous power indices have been introduced; see
e.g., [1] for an overview, with the two most-widely used power indices being the Banzhaf
index [2,3] and the Shapley–Shubik index [4].

Weighted voting games and power indices are applicable well beyond classical voting
situations in politics, described e.g., in [5–8]. For example, power indices can also be used
to analyze genetic networks and rank genes that may be responsible for genetic diseases [9],
to solve reliability problems in the maintenance of computer networks [10], to understand
indirect control power in corporate shareholding structures [11–13] or to analyze social
networks [14,15]. In social, economic or corporate networks, and in voting settings alike, it
is common for agents to agree beforehand to form a union and act as a voting bloc.

This article deals with the special case of a partition of the player set into disjoint
precoalitions (also known as a priori unions), i.e., we assume that either all or none of
the members of a precoalition join a certain coalition. Precoalitions can model strict party
discipline in a legislative chamber, but they can also be interpreted as a way to reduce
negotiation costs, with each precoalition sending a delegate as its negotiator. The practical

Games 2022, 13, 6. https://doi.org/10.3390/g13010006 https://www.mdpi.com/journal/games

https://doi.org/10.3390/g13010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/games
https://www.mdpi.com
https://orcid.org/0000-0002-0619-4606
https://doi.org/10.3390/g13010006
https://www.mdpi.com/journal/games
https://www.mdpi.com/article/10.3390/g13010006?type=check_update&version=2

Games 2022, 13, 6 2 of 17

relevance of cooperative games with precoalitions is hard to overstate and there are practical
applications abound. Vázquez-Brage et al. (1996) [16] point out that one needs to consider
airlines rather than individual aircraft in order to determine aircraft landing fees; Alonso-
Meijide and Bowles (2005) [17] investigate voting at the International Monetary Fund (IMF),
where member states are obliged to form a limited number of groups before allowing a vote
at its main decision-making committee (called the Executive Board); Alonso-Meijide et al.
(2005) [18] discuss union formation in the Parliament of Catalonia during legislature from
1995 to 1999; Mayer (2018) [19] highlights the role of Luxembourg in the early days of the
European Economic Community (EEC) by showing that this small country was no longer
a powerless null player as soon as it formed a voting bloc together with the two other
Benelux countries. As pointed out in the book by Owen [20], pp. 303, the players in such a
union have agreed to keep together, but, even though they will do so in most situations,
they are not forced to comply, and hence there is a need to evaluate their influence in a
two-stage process. In an external stage, the power of the precoalition is evaluated, and
in an internal stage, the results for the members of the precoalition are determined. Using
the language of cooperative game theory, this two-stage process translates into an external
game (also known as the quotient game) between the precoalitions and an internal game
within each precoalition.

Owen generalized the Shapley value from the cooperative game theory to the frame-
work with a priori unions amongst subsets of players in his seminal 1977 paper [21].
However, the internal game within each precoalition is no longer a simple game if the
external game is simple. Malawski [22] pointed out how this problem can be overcome by
computing more than one simple game on the internal stage. For our study, this implies
that, in general, the solution of more than one weighted voting game will be necessary on
the internal level. Following an article by Alonso-Meijide et al. [23], this paper studies the
efficient computation of the three power indices for weighted voting games with precoali-
tions discussed therein: the Owen index [21] employing the Shapley–Shubik index on both
the external and the internal level, the symmetric coalitional Banzhaf index [24] employing
the Banzhaf index on the external level and the Shapley–Shubik index on the internal level
and the Banzhaf–Owen index [25] employing the Banzhaf index on both the external and
the internal level. Computing these three power indices for weighted voting games with
precoalitions is challenging, as we are dealing with NP-hard problems [26], and, as the
voting and network applications outlined in the first two paragraphs [5–15], may involve
large numbers of players.

Power indices for simple games can be computed using generating functions; see,
e.g., [5,27,28] and the work by Alonso-Meijide and Bowles [17] for the case of a priori
unions. If the subsets of players reach only very few different weight sums, this method is
favored [8] and fast-access data structures for polynomials with few coefficients in computer
algebra systems, such as Mathematica [29], can be used. In this paper, we use the strongly
related, though mathematically less sophisticated, paradigm of dynamic programming for
power index computation [30–32]. The recent article [32] presents a new algorithm for the
Johnston index [33], discusses algorithms for power indices based on minimal winning
coalitions [34–36], surveys the state-of-the-art and introduces publicly available software.
The work by Molinero and Blasco [37] studies algorithms for the Banzhaf–Owen and Owen
indices and, to our knowledge, is the only paper on dynamic programming algorithms
for weighted voting games with precoalitions. This paper presents new algorithms for
the Banzhaf–Owen, Owen and symmetric coalitional Banzhaf indices with more favorable
pseudopolynomial complexities. Our algorithms are based on a generalization of the
concepts for computing the Banzhaf and Shapley–Shubik indices from the papers by Uno
(2012) [31] and Kurz (2016) [8].

In Section 2, we introduce the basic concepts from cooperative game theory, includ-
ing simple games, power indices and games with precoalitions along the lines of [23,38].
Section 3 explains how dynamic programming is used to count coalitions efficiently for
weighted voting games and presents the state-of-the-art algorithms for computing the

Games 2022, 13, 6 3 of 17

Banzhaf and Shapley–Shubik indices following the paper by Kurz [8]. Section 4 forms
the heart of this paper and presents the new algorithms for the three power indices with
precoalitions. We point out how our algorithms reflect both the definition of the indices as
well as the internal games described by Malawski [22]. Section 5 discusses numerical ex-
periments, reports supportive computing times and storage requirements for our methods
and provides the reader with links to our C++ software and test problems. We end with
some concluding remarks and an outlook to open problems in Section 6.

2. Preliminaries from Cooperative Game Theory

Cooperative game theory [39] deals with the outcomes and benefits that players can
gain by forming coalitions. In the following, we briefly review some terminology for
cooperative games and precoalitions along the lines of the papers by Alonso-Meijide et al.
(2008) [23] and Mercik and Ramsey (2017) [38].

2.1. Cooperative Games and Simple Games

Let N = {1, ..., n} denote a finite set of n players. A group of players S ⊆ N is called
a coalition, whereas 2N stands for the set of all subsets of N. ∅ symbolizes the empty
coalition and N is called the grand coalition. By |S|, we express the cardinality of a coalition
S, i.e., the number of its members; hence, |N| = n. An n-person cooperative game can be
characterized as a pair (N, v), where v : 2N → R is referred to as the characteristic function
assigning a real value to all coalitions S ∈ 2N , with v(∅) = 0. A cooperative game is
monotone if, for all coalitions S, T ∈ 2N , the relation S ⊆ T implies v(S) ≤ v(T).

We call a cooperative game simple if it is monotone and there holds v(N) = 1 and
v(S) = 0 or v(S) = 1 for each coalition S ⊂ N. Coalitions for which v(S) = 1 are classified
as winning coalitions in simple games, whereas coalitions for which v(S) = 0 are called losing
coalitions. A player i is a critical player (also known as a decisive player or swing player) in a
winning coalition S if v(S\{i}) = 0, i.e., the winning coalition S turns into a losing one if
player i leaves S. We call a coalition S with at least one critical player vulnerable.

Weighted voting games (also known as weighted majority games) are possibly the
most important subclass of simple games. They are useful for a large number of practical
applications [5–15]. Weighted voting games are specified by n non-negative real weights
wi, i = 1, . . . , n, and a non-negative real quota q, where normally q > 1

2 ∑n
i=1 wi. Its

characteristic function v : 2N → {0, 1} takes the value v(S) = 1 in case of a winning
coalition S, i.e., w(S) = ∑i∈S wi ≥ q, and v(S) = 0 otherwise, meaning that coalition S
is losing.

We finally note that not every simple game allows for a representation as a weighted
voting game, and refer to the article by Molinero, Riquelme and Serna (2015) [40] for an
overview of different forms of representation for simple games.

2.2. Power Indices and Marginal Contributions

Let S ⊂ N denote a coalition and i /∈ S a player not contained in S. We call the
difference v(S ∪ {i})− v(S) the marginal contribution of player i to coalition S. For simple
games, the marginal contribution of player i to coalition S is 1 if and only if i is a critical
player in the winning coalition S ∪ {i}; in any other case, the marginal contribution is 0.

A power index is a function f that obtains an n-person simple game specified by its
player set N and its characteristic function v as its input, and provides a unique vector
f (N, v) = (f1(N, v), . . . , fn(N, v)) as its output. We only introduce the Banzhaf index [2,3]
and the Shapley–Shubik index [4] following the notation of the paper [23]. For a deeper
discussion of the subject, we refer to the overview article [1] by Bertini, Freixas, Gambarelli
and Stach.

Let v be a simple n-player game. The (absolute) Banzhaf index [3] of player i and the
Shapley–Shubik index [4] of player i can be written in the form

fi(N, v) = ∑
S⊆N\{i}

αi
S · (v(S ∪ {i})− v(S)) (1)

Games 2022, 13, 6 4 of 17

with the coefficients
αi

S =
1

2n−1

for the Banzhaf index and

αi
S =
|S|!(n− |S| − 1)!

n!

for the Shapley–Shubik index. We note that, for the coefficients αi
S, the cardinality of a

coalition S (which is turned from a losing coalition to a winning coalition by the entrance of
critical player i) plays a crucial role for the Shapley–Shubik index, whereas it can be ignored
for the Banzhaf index. The coefficients αi

S make it obvious that the Banzhaf index can seen
as the probability of a player being crucial to a coalition it does not belong to, whereas the
Shapley–Shubik index can be interpreted as the probability of a player being decisive over
all permutations of players, i.e., assuming all sequential coalitions are equiprobable. We
note that the Shapley–Shubik index is efficient, i.e., ∑n

i=1 fi(N, v) = v(N) = 1, whereas the
(absolute) Banzhaf index is not.

2.3. Simple Games with Precoalitions and Coalitional Power Indices

In this subsection, we introduce simple games with precoalitions and coalitional power
indices borrowing some notation from [23,38].

We are establishing an external division of our set of players N = {1, . . . , n} into
precoalitions (also known as a priori unions) whose members will either enter a coalition
together or not at all. Let P(N) stand for the set of all partitions of N, a partition being a
set of non-empty subsets of N satisfying the condition that N is a disjoint union of these
subsets. We refer to an element P ∈ P(N) as a coalition structure (also known as a system of
unions) of the set N. A simple game with a coalition structure can be identified as a triplet
(N, v, P). Following [23], we write our coalition structure in the form P = {P1, . . . , Pm},
i.e., we have m precoalitions P1, . . . , Pm and the set M = {1, . . . , m} serves as the index set
of the partition P. For a weighted voting game with a coalition structure P, the external
game (also known as the quotient game) is defined as the weighted voting game played
between the m precoalitions [22,23]. The external game is formally defined as the weighted
voting game [q; w(P1), . . . , w(Pm)], i.e., it is represented by the (unaltered) quota q and
the weights w(P1), . . . , w(Pm) of the m precoalitions, where w(Pk) = ∑i∈Pk

wi with k ∈ M,
M = {1, . . . , m}.

A coalitional power index g is a function that obtains an n-person simple game with a
coalition structure specified by its player set N, its characteristic function v and a partition
P as its input, and provides a unique vector g(N, v, P) = (g1(N, v, P), . . . , gn(N, v, P)) as
its output. As in [23], we define three coalitional power indices, i.e., the Banzhaf–Owen index
(hereafter BO index) [25], the symmetric coalitional Banzhaf index (SCB index) [24] and the
Owen index (OW index) [21], within a unified framework.

Let P = {P1, . . . , Pm} stand for a set of m precoalitions P1, . . . , Pm and the set M =
{1, . . . , m} serve as the index set of P. Further, let QR = ∪l∈RPl denote the subset of players
belonging to any precoalition referred to by the index subset R ⊆ M. For any player
i ∈ N contained in precoalition k, i.e., i ∈ Pk, we write a coalitional power index as follows
(cf. [38]):

gi(N, v, P) = ∑
R⊆M\{k}

αk
R ∑

T⊆Pk\{i}
αi

T · (v(QR ∪ T ∪ {i})− v(QR ∪ T)) (2)

As in [38], αk
R is an appropriately defined weight for the external game, whereas αi

T
corresponds to internal games within a precoalition. For the BO index, we employ the
weighting coefficients

αk
R =

1
2m−1 , αi

T =
1

2|Pk |−1
,

Games 2022, 13, 6 5 of 17

For the SCB index,

αk
R =

1
2m−1 , αi

T =
|T|!(|Pk| − |T| − 1)!

|Pk|!
,

and for the OW index,

αk
R =

|R|!(m− |R| − 1)!
m!

, αi
T =
|T|!(|Pk| − |T| − 1)!

|Pk|!
.

We note that the OW index is efficient, i.e., ∑n
i=1 gi(N, v, P) = v(N) = 1, whereas the

BO and SCB indices are not.
Let us emphasize a crucial difference between Formulas (1) and (2). While both

expressions rely on marginal contributions of player i, in (2), we assume that precoalitions
other than Pk (which contains player i) have either joined with all of their members or not
at all. As pointed out in [38], the power of player i ∈ Pk comes from scenarios in which
both Pk is critical in the external game and i is a critical player in its precoalition in an
appropriately defined internal voting game.

For illustration, we look at the coalitional game (N, v, P) represented by the weighted
voting game [5; 3, 1, 1, 1, 3] and the coalition structure P = {{1}, {2, 3, 4}, {5}}. We obtain

gBO(N, v, P) = (
1
2

,
1
4

,
1
4

,
1
4

,
1
2
)

for the BO indices,

gSCB(N, v, P) = (
1
2

,
1
6

,
1
6

,
1
6

,
1
2
)

for the SCB indices and
gOW(N, v, P) = (

1
3

,
1
9

,
1
9

,
1
9

,
1
3
)

for the OW indices.
Looking at the extreme coalition structures Pn = {{1}, {2}, . . . , {n}} and PN = {N},

we recognize that the BO index reduces to the Banzhaf index in both cases, whereas the
OW index reduces to the Shapley–Shubik index in both cases. As for the SCB index, it
becomes the Banzhaf index for Pn = {{1}, {2}, . . . , {n}} and the Shapley–Shubik index in
case PN = {N}. The BO index [25] applies the Banzhaf index in both the external game and
in the internal process between unions. As pointed out by Laruelle and Valenciano [41], the
BO index assesses the a priori decisiveness of every voter within their bloc in the context of
the coalitional structure, i.e., assuming that all of the other precoalitions will act as voting
blocs. We refer the reader to that paper [41] for a detailed discussion of the probabilistic
interpretations of the BO index. The SCB index by Alonso-Meijide and Fiestras-Janeiro [24]
employs the Banzhaf index for the external game and the Shapley–Shubik index for the
internal processes, whereas the OW index [21] invokes the Shapley–Shubik index on both
levels of a two-level decision-making process. Taking a closer look at these two-level
decision-making processes will play a crucial role in Section 4, where we derive efficient
dynamic programming algorithms for the BO, SCB and OW indices for weighted voting
games with precoalitions.

3. Dynamic Programming for the Banzhaf and Shapley–Shubik Indices

In this section, we introduce the technique of dynamic programming for counting
coalitions in weighted voting games efficiently, discuss the state-of-the-art algorithms for
the Banzhaf and Shapley–Shubik indices [8,31,32] and present generalizations of existing
algorithms that will prove to be useful when we deal with precoalitions and internal games
within precoalitions in Section 4. In other words, we are not computing any power indices
with precoalitions in this section, but lay the groundwork for doing so in Section 4.

Games 2022, 13, 6 6 of 17

3.1. Counting Winning and Losing Coalitions via Dynamic Programming

It is well known that every weighted voting game allows for an integer representa-
tion [8]. Hence, we assume that the weights wi of the n players in our weighted voting
game, as well as the quota q, are positive integers for the rest of the article. We set
w̃ = w(N) = ∑n

i=1 wi and assume q > w̃
2 . Players with integer weight 0 are null players,

i.e., they are never critical players, and for all power indices discussed in this paper, they
can be handled in a preprocessing step and assigned the value 0 without any need to
include them in any further computation.

When we want to compute the Banzhaf index of player i, we need to be able to answer
one of the following two questions: How many losing coalitions are turned into winning
coalitions when player i is joining? Alternatively, in how many winning coalitions is player
i critical? For the Shapley–Shubik index of player i, the same two questions are relevant,
but we also need to take account of cardinalities of coalitions.

Dynamic programming is an algorithmic paradigm resting on two pillars: dividing
a given problem into subproblems and storing intermediate results efficiently. We will
use dynamic programming to count losing and winning coalitions and present algorithms
following the work by Kurz [8]. For a more general introduction to counting coalitions
via dynamic programming (including examples), we refer to the recent article [32] or the
textbook by Chakravarty, Mitra and Sarkar [39], chapter 12.

Algorithm 1 is a generalization of the first algorithm in the article by Kurz [8].
Equipped with the number n of players, the quota q, a vector w = (w1, . . . , wn) of positive
integer weights and an integer vector T with T(0) = 1 and T(x) = 0 for x = 1, . . . , q− 1,
as its four input arguments, it outputs a vector T, with T(x) listing the number of losing
coalitions attaining weight 0 ≤ x ≤ q− 1. We briefly note that, in our discussion of memory
space requirements, we follow the convention by Uno [31] throughout the paper and do
not include the need to store the n weights itself—and, later, we also omit the memory
space for the corresponding n values of the power indices—as this allows for a clearer and
more concise presentation. According to this convention, Algorithm 1 needs O(nq) time
and O(q) memory space.

Algorithm 1 Generalized counting of number of losing coalitions per weight

1: procedure LosingCoalitionsByWeight(n, q, w, T)
2: for i from 1 to n do
3: if (q > w(i)) then
4: for x from q− 1 to w(i) do
5: if (x-w(i) == 0) then
6: T(x)← T(x) + T(0) . initialize T(0)=1 for empty set
7: else
8: T(x)← T(x) + T(x− w(i))
9: end if

10: end for
11: end if
12: end for
13: return T . number of losing coalitions of weight x ∈ [0, q− 1]
14: end procedure

Note that Algorithm 1 echoes a boundary condition stating that we can obtain the
sum 0 in exactly one way, i.e., via the empty set, reflected in T(0) = 1. We admit that the
if-else statement in lines 5 to 8 in Algorithm 1 is superfluous, as T(x − w(i)) = T(0) in
case x = w(i), but we wanted to highlight the role of T(0). The actual recursion in line
8 in Algorithm 1 mirrors the fact that the first i weights can deliver a sum x > 0 either
with or without player i. We will find providing an initial vector T as an input useful
in the following section, where we wish to incorporate results from the external game in
computations of internal games.

Games 2022, 13, 6 7 of 17

Kurz [8] pointed out that, rather than counting losing coalitions from below, we can
also count winning coalitions from above, making use of the fact that we can write the sum
of all weights in exactly one way, i.e., w̃ = w(N) = ∑n

i=1 wi.
Algorithm 2 is a generalization of the second algorithm in the article by Kurz [8].

Provided with the number n of players, the quota q, the sum of all weights w̃ = w(N), a
vector w = (w1, . . . , wn) of positive integer weights and an integer vector T with T(w̃) = 1
and T(x) = 0 for x = q, . . . , w̃− 1, as its five input arguments, it outputs a vector T, with
T(x) listing the number of winning coalitions attaining weight q ≤ x ≤ w̃. Algorithm 2
needs O(n(w̃− q + 1)) time and O(w̃− q + 1) space.

Algorithm 2 Generalized counting of number of winning coalitions per weight

1: procedure WinningCoalitionsByWeight(n, q, w̃, w, T)
2: for i from 1 to n do
3: if (q + w(i) ≤ w̃) then
4: for x from q + w(i) to w̃ do
5: T(x− w(i))← T(x) + T(x− w(i))
6: end for
7: end if
8: end for
9: return T . number of winning coalitions of weight x ∈ [q, w̃]

10: end procedure

Algorithms 1 and 2 can be generalized for the distribution of cardinalities of coalitions
in a straightforward manner [8,32]. Given that we normally assume q > w̃

2 (and hence
w̃ − q + 1 ≤ q), we prefer to work with the winning coalitions from above. Therefore,
we provide only the corresponding algorithm for winning coalitions and cardinalities
from above in Algorithm 3. Provided with the number n of players, the quota q, the sum
of all weights w̃ = w(N), a vector w = (w1, . . . , wn) of positive integer weights and a
two-dimensional array C with C(w̃, n) = 1 and C(x, s) = 0 for all other combinations of
weights x = q, . . . , w̃, and cardinalities s = 1, . . . , n, as its five input arguments, it outputs a
two-dimensional array C, with C(x, s) listing the number of winning coalitions attaining
weight q ≤ x ≤ w̃ and cardinalities s = 1, . . . , n. Algorithm 3 needs O(n2(w̃− q + 1)) time
and O(n(w̃− q + 1)) space.

Algorithm 3 Generalized counting of number of winning coalitions per weight and cardi-
nality

1: procedure WinningCoalitionsByWeightCardinality(n, q, w̃, w, C)
2: for i from 1 to n do
3: if q + w(i) ≤ w̃ then
4: for x from q + w(i) to w̃ do
5: for s from 2 to n do
6: C(x− w(i), s− 1)← C(x, s) + C(x− w(i), s− 1)
7: end for
8: end for
9: end if

10: end for
11: return C . number of winning coalitions of weight x ∈ [q, w̃] and cardinality

s ∈ [1, n]
12: end procedure

3.2. Computing the Banzhaf and Shapley–Shubik Indices

The paper by Uno (2012) [31] presented the first algorithm for computing the Banzhaf
and Shapley–Shubik indices of all players in a weighted voting game in O(qn) and O(qn2)
time, respectively. By working from above, as in Algorithms 2 and 3, Kurz (2016) [8]

Games 2022, 13, 6 8 of 17

improved this result to O(∆n) and O(∆n2) with ∆ = min(q, w̃− q + 1) for the Banzhaf
and Shapley–Shubik indices, respectively. It is worthwhile to summarize these results and
their proofs, together with some new generalizations of algorithms, which we will use later
in Section 4.

Theorem 1. For an n-player weighted voting game with positive integer weights, the Banzhaf
indices for all players can be computed in O(∆n) time and O(∆) memory space.

Proof. Let us focus on the case (w̃− q + 1) ≤ q and compute the Banzhaf indices from
above. We obtain the vector T(x) for q ≤ x ≤ w̃ via Algorithm 2 in O((w̃− q + 1)n) time
and O(w̃− q + 1) space by calling

T = WinningCoalitionsByWeight(n, q, w̃, w, T)

using an integer vector T with T(w̃) = 1 and T(x) = 0 for x = q, . . . , w̃− 1, as our input.
We set T+i(x) = T(x) for all x ∈ {w̃−wi + 1, . . . , w̃} and then loop for x from w̃−wi down
to q in order to find

T+i(x) = T(x)− T+i(x + wi).

T+i(x) states how frequently player i belongs to a winning coalition with weight x and

f BZ
i (N, v) =

1
2n−1

q+wi−1

∑
x=q

T+i(x)

gives us the Banzhaf index of player i.

Algorithm 4 is a generalization of this idea that we will use in the next section. It
counts the number of coalitions containing a player with a specified weight.

Algorithm 4 Count coalitions containing a player specified by its weight

1: procedure CoalitionsWithPlayer(q, w̃, weight, T)
2: for x from q to w̃ do
3: Tw(x)← T(x)
4: end for
5: if (w̃− weight ≥ q) then
6: for x from w̃− weight to q do
7: Tw(x)← T(x)− Tw(x + weight)
8: end for
9: end if

10: return Tw
11: end procedure

Theorem 1 and Algorithm 4 can be carried over to versions with cardinalities and thus
to the computation of Shapley–Shubik indices.

Theorem 2. For an n-player weighted voting game with positive integer weights, the Shapley–
Shubik indices for all players can be computed in O(∆n2) time and O(∆n) memory space.

Proof. Again, we concentrate on the case (w̃− q+ 1) ≤ q and compute the Shapley–Shubik
indices from above. We obtain C(x, s) for q ≤ x ≤ w̃ and all cardinalities 1 ≤ s ≤ n from
above via Algorithm 3 in O((w̃− q + 1)n2) time and O((w̃− q + 1)n) space by calling

C = WinningCoalitionsByWeightCardinality(n, q, w̃, w, C)

using a two-dimensional array C with C(w̃, n) = 1 and C(x, s) = 0 for all other com-
binations of weights x = q, . . . , w̃, and cardinalities s = 1, . . . , n, as our input. We

Games 2022, 13, 6 9 of 17

set C+i(x, c) = C(x, c) for all weights x ∈ {w̃ − wi + 1, . . . , w̃} and all cardinalities
s ∈ {1, . . . , n}. We loop for x from w̃ − wi down to q in an outer loop and for s from
0 to n− 1 in an inner loop in order to find

C+i(x, s) = C(x, s)− C+i(x + wi, s + 1).

Now, C+i(x, c) tells us how often player i belongs to a winning coalition with weight
x and cardinality s, and via

f SH
i (N, v) =

1
n!

n−1

∑
s=0

s!(n− s− 1)!
q+wi−1

∑
x=q

C+i(x, s + 1)

we obtain the Shapley–Shubik index of player i.

Algorithm 5 is a generalization of this idea that we will need in the next section.
It counts the number of coalitions and cardinalities containing a player with a speci-
fied weight.

Algorithm 5 Count coalitions and cardinalities containing a player specified by its weight

1: procedure CoalitionsCardinalityWithPlayer(n, q, w̃, weight, C)
2: for x from q to w̃ do
3: for s from 1 to n do
4: Cw(x, s)← C(x, s)
5: end for
6: end for
7: if w̃− weight ≥ q then
8: for x from w̃− weight to q do
9: for s from 1 to n− 1 do

10: Cw(x, s)← C(x, s)− Cw(x + weight, s + 1)
11: end for
12: end for
13: end if
14: return Cw
15: end procedure

Finally, we wish to highlight an observation from both Theorems 1 and 2 and their
proofs. In each case, the pseudopolynomial complexity estimates that computing the
respective power index of only one player and computing the respective power indices of
all players are identical in terms of both memory space and computing time. This is due to
the fact that the setup phases in the forms of Algorithms 2 and 3, respectively, each require
an additional loop over all players, whereas Algorithms 4 and 5 (which are employed to
find the respective power index of an individual player) do not. Hence, in terms of the
O-notation, it does not make a difference (in terms of space or speed) whether we wish to
find only some or all power indices. This observation will be reflected in the results of the
following section.

4. Computing Power Indices with Precoalitions via Dynamic Programming

This section forms the heart of the article. It presents new dynamic programming
algorithms for the BO, SCB and OW indices. As we outlined in Section 2.3, we assume
that there are m precoalitions P1, . . . , Pm. The external game (also known as the quotient
game) is defined as the weighted voting game played between the precoalitions [22,23],
i.e., a weighted voting game represented by the (unaltered) quota q and the m weights
w(P1), . . . , w(Pm), where w(Pk) = ∑i∈Pk

wi with k ∈ M, M = {1, . . . , m}. Furthermore, we
define p as the maximal size of a precoalition, i.e., p = maxk∈M |Pk|.

Games 2022, 13, 6 10 of 17

To our knowledge, the paper by Molinero and Blasco [37] is the only work on dynamic
programming algorithms for weighted voting games with a precoalition structure. Their
algorithms for the BO and OW indices combine backtracking with the algorithms from sec-
tion 5.2 of the survey paper by Matsui and Matsui (2000) [30] for power index computation.
For computing the BO or OW index of a single player i with i ∈ Pk, i.e., player i contained
in precoalition Pk, their algorithm needs O((n′|Pk|)2q) computing time and O(n′q) space
with n′ = m + |Pk| − 2.

In the following, we point out how the concepts and algorithms from the previous
section translate into external and internal weighted voting games and algorithms for the
BO, SCB and OW indices with favorable pseudopolynomial computing times and storage
requirements. Each subsection will be devoted to one of the three indices, with the proof
of each theorem serving as a description of an algorithm for computing the index. We
follow the convention that the superscript +k indicates that we count only those winning
coalitions containing precoalition k on the external level, whereas the subscript +i indicates
that we look at only those coalitions containing player i on the level of individual players
within precoalition Pk. Furthermore, the superscript ext symbolizes the external level,
i.e., the level of the precoalitions, whereas the superscript int stands for the internal level,
i.e., the level of individual players within a precoalition.

4.1. Efficient Computation of the Banzhaf–Owen (BO) Index

For the BO index, our idea is to reflect the external game and one internal game per
precoalition via dynamic programming.

Theorem 3. For a weighted voting game with positive integer weights and a precoalition structure
P = {P1, . . . , Pm}, the Banzhaf–Owen (BO) indices for all players can be computed in O(∆(m +
p)) time and O(∆) memory space, with ∆ = min(q, w̃− q + 1). For computing the BO index of
an individual player i ∈ Pk, i.e., player i is contained in precoalition Pk, we need O(∆(m + |Pk|))
time and O(∆) space.

Proof. Let us focus on the case (w̃− q + 1) ≤ q and compute the BO indices from above.
Let wext = (w(P1), . . . , w(Pm)) be the vector of the weights of the m precoalitions. We
obtain the vector Text(x) for q ≤ x ≤ w̃ with the number of winning coalitions on the level
of the precoalitions for weights q ≤ x ≤ w̃ via Algorithm 2 in O((w̃− q + 1)m) time and
O(w̃− q + 1) space by computing

Text = WinningCoalitionsByWeight(m, q, w̃, wext, T)

using an integer vector T with T(w̃) = 1 and T(x) = 0 for x = q, . . . , w̃− 1, as our input.
Next, we deal with precoalition Pk. Algorithm 4 gives us the number of those winning
coalitions containing precoalition k with weight wext

k via

Text,+k = CoalitionsWithPlayer(q, w̃, wext
k , Text)

Now, we switch to the level of precoalition Pk. We incorporate the individual weights
wint = (w1, . . . , w|Pk |) of the players in precoalition Pk into our vector Text,+k using Algorithm 2
by computing

Tint,+k = WinningCoalitionsByWeight(|Pk|, q, w̃, wint, Text,+k)

The vector Tint,+k(x) states the number of winning coalitions for weights q ≤ x ≤ w̃
when players from precoalition Pk join on an individual level, whereas the other pre-
coalitions join as unions. From the vector Tint,+k(x), we can work out how frequently

Games 2022, 13, 6 11 of 17

an individual player i ∈ Pk with weight wint
i belongs to a winning coalition with weight

q ≤ x ≤ w̃ using Algorithm 4 via

Tint,+k
+i = CoalitionsWithPlayer(q, w̃, wint

i , Tint,+k)

From Tint,+k
+i , we can assess how frequently player i is a swing player within precoali-

tion Pk, i.e., assuming that all the other precoalitions are acting as unions. The expression

f BO
i (N, v, P) =

1
2m−1

1
2|Pk |−1

q+wi−1

∑
x=q

Tint,+k
+i (x)

yields the BO index of player i.

4.2. Efficient Computation of the Symmetric Coalitional Banzhaf (SCB) Index

As for the SCB index, our approach for the external game will be identical to the BO index.
However, in the internal game of each precoalition, we will need to include cardinalities.

Theorem 4. For a weighted voting game with positive integer weights and a precoalition structure
P = {P1, . . . , Pm}, the symmetric coalitional Banzhaf (SCB) indices for all players can be computed
in O(∆m + ∆p2) time and O(∆p) memory space with ∆ = min(q, w̃− q + 1). For computing
the SCB index of an individual player i ∈ Pk, i.e., player i is contained in precoalition Pk, we need
O(∆m + ∆|Pk|2) time and O(∆|Pk|) space.

Proof. Again, we discuss the case (w̃ − q + 1) ≤ q and compute the SCB indices from
above. On the external level, we perform the identical computations as for the BO indices.
Let wext = (w(P1), . . . , w(Pm)) denote the vector of the weights of the m precoalitions.
We obtain the vector Text(x), with the number of winning coalitions on the level of the
precoalitions for weights q ≤ x ≤ w̃ via Algorithm 2 by computing

Text = WinningCoalitionsByWeight(m, q, w̃, wext, T)

using an integer vector T with T(w̃) = 1 and T(x) = 0 for x = q, . . . , w̃− 1, as our input. As
before, Algorithm 4 gives us the number of those winning coalitions containing precoalition
k with weight wext

k via

Text,+k = CoalitionsWithPlayer(q, w̃, wext
k , Text)

Now, we switch to the level of precoalition Pk with the individual weights wint =
(w1, . . . , w|Pk |). We create a two-dimensional array Cint,+k with

Cint,+k(x, |Pk|) = Text,+k(x) (3)

for all weights q ≤ x ≤ w̃, and Cint,+k(x, s) = 0 for all other combinations of weights
x = q, . . . , w̃, and cardinalities s = 1, . . . , |Pk| − 1. We note that Equation (3) states how
many winning coalitions were joined by Pk as a union. We incorporate the individual
weights wint and their cardinalities using Algorithm 3 by computing

Cint,+k = WinningCoalitionsByWeightCardinality(|Pk|, q, w̃, wint, Cint,+k)

From our updated array Cint,+k(x, s), we learn the numbers of winning coalitions with
weights x ∈ [q, w̃] with s players from Pk, assuming that players from precoalition Pk join
on an individual level whereas the other precoalitions join as unions. We can work out how

Games 2022, 13, 6 12 of 17

frequently an individual player i ∈ Pk with weight wint
i belongs to a winning coalition with

s players from Pk via Algorithm 5 by computing

Cint,+k
+i = CoalitionsCardinalityWithPlayer(|Pk|, q, w̃, wint

i , Cint,+k)

Cint,+k
+i states how frequently player i is a part of a winning coalition containing s

players from Pk, i.e., assuming that all of the other precoalitions are acting as unions. From

f SCB
i (N, v, P) =

1
2m−1

1
|Pk|!

|Pk |−1

∑
s=0

s!(|Pk| − s− 1)!
q+wi−1

∑
x=q

Cint,+k
+i (x, s + 1)

we obtain the SCB index of player i.

4.3. Efficient Computation of the Owen (OW) Index

The computation of the OW index is slightly more sophisticated. As observed by
Malawski (2004) [22], more than one weighted voting game is needed on the internal level.
These internal games reflect how many precoalitions have joined a vulnerable coalition for
which a certain player is critical. We translate the observations from [22] into a dynamic
programming algorithm.

Theorem 5. For a weighted voting game with positive integer weights and a precoalition structure
P = {P1, . . . , Pm}, the Owen (OW) indices for all players can be computed in O(∆(mp)2) time
and O(∆(m + p)) memory space with ∆ = min(q, w̃− q + 1). For computing the OW index of
an individual player i ∈ Pk, i.e., player i is contained in precoalition Pk, we need O(∆(m|Pk|)2)
time and O(∆(m + |Pk|)) space.

Proof. We discuss the case (w̃ − q + 1) ≤ q and compute the OW indices from above.
On the external level, we need to reflect cardinalities of precoalitions. As before, the vector
wext = (w(P1), . . . , w(Pm)) stands for the weights of the m precoalitions. We obtain the
two-dimensional array Cext(x, s) with the number of winning coalitions on the level of
the precoalitions via Algorithm 3 for weights x ∈ [q, w̃] and cardinalities s = 1, . . . , m, in
O(m2(w̃− q + 1)) time and O(m(w̃− q + 1)) space by computing

Cext = WinningCoalitionsByWeightCardinality(m, q, w̃, wext, C)

using a two-dimensional array C with C(w̃, m) = 1 and C(x, s) = 0 for all other combi-
nations of weights x = q, . . . , w̃, and cardinalities s = 1, . . . , m, as our input. Algorithm 5
gives us the number of those winning coalitions containing precoalition k with weight wext

k ,
together with their cardinalities, via

Cext,+k = CoalitionsCardinalityWithPlayer(m, q, w̃, wext
k , Cext).

Now, we need to loop for r from 0 to m− 1 and work out the internal games on the
level of precoalition Pk with the individual weights wint = (w1, . . . , w|Pk |). We create a
two-dimensional array Cint,+k with

Cint,r+1,+k(x, |Pk|) = Cext,+k(x, r + 1) (4)

for all weights q ≤ x ≤ w̃ and Cint,r+1,+k(x, s) = 0 for all other combinations of weights
x = q, . . . , w̃, and cardinalities s = 1, . . . , |Pk| − 1. We note that Equation (4) states how
many winning coalitions of cardinality r + 1 joined by Pk as a union there are on the external
level. We incorporate the individual weights wint and their cardinalities using Algorithm 3
by computing

Cint,r+1,+k = WinningCoalitionsByWeightCardinality(|Pk|, q, w̃, wint, Cint,r+1,+k).

Games 2022, 13, 6 13 of 17

From our updated array Cint,r+1,+k(x, s), we learn the numbers of winning coalitions
with weights x ∈ [q, w̃] with s players from Pk, assuming that players from precoalition Pk
join on an individual level whereas the other r precoalitions join as unions. We can work
out how frequently an individual player i ∈ Pk with weight wint

i belongs to a winning
coalition with s players from Pk via Algorithm 5 by computing

Cint,r+1,+k
+i = CoalitionsCardinalityWithPlayer(q, w̃, wint

i , Cint,r+1,+k).

Cint,r+1,+k
+i states how frequently player i is a part of a winning coalition containing s

players from Pk, i.e., assuming that all of the other r precoalitions are acting as unions. From

f OW
i (N, v, P) =

1
m!

1
|Pk|!

m−1

∑
r=0

r!(m− r− 1)!
|Pk |−1

∑
s=0

s!(|Pk| − s− 1)!
q+wi−1

∑
x=q

Cint,r+1,+k
+i (x, s + 1)

we obtain the OW index of player i in O(∆(m + |Pk|)2) time and O(∆(m + |Pk|)) space.

Finally, we quickly take up an observation from the final paragraph of the previous
section. The proofs of Theorems 3–5 make it obvious that the pseudopolynomial complexity
estimates for computing the respective power index of only one player i in a precoalition
Pk and for computing the respective power indices of all players in a precoalition Pk are
identical in terms of both computing time and memory space.

5. Numerical Results and Software

In the recent article [32], a powerful software package named EPIC (Efficient Power
Index Computation) that provides efficient C++ implementations of various power indices
(without precoalitions) for weighted voting games was introduced. We implemented our
new algorithms for the BO, SCB and OW indices presented in the previous section in
EPIC and tested our software thoroughly under MS Windows and Ubuntu Linux. Our
implementations are freely available at https://github.com/jhstaudacher/EPIC/ (accessed
on 25 December 2021) as parts of the software package EPIC introduced in [32].

Users can specify weighted voting games as CSV (comma separated values) files,
i.e., EPIC supports a simple and widely used data format that allows for users to edit input
files using notepad, MS Excel and many other text editors. An input file contains one
precoalition per line, and weights of the players in the same precoalition are specified in
the same line separated by commas; see https://github.com/jhstaudacher/EPIC//blob/
master/readme.md (accessed on 25 December 2021) for more details.

When computing power indices for large weighted voting games, counting coalitions
may force us to handle very large integers. For arbitrary-precision arithmetic, EPIC uses
GMP [42], i.e., the GNU Multiple Precision Arithmetic Library. GMP [42] is a very widely
used, established and well-tested C++ library for working with very large integers. We are
using GMP in the same vein as described in [32].

In order to test our new algorithms, we created a number of test problems and
made them available at https://github.com/jhstaudacher/EPIC/tree/master/test_cases/
precoalitions (accessed on 25 December 2021).

In the following, we discuss computing times and memory requirements for three
of these example problems. The numerical results in Tables 1–3 were obtained under
Ubuntu 20.04 focal (64-bit) on an AMD FX(tm)-4170 Quad-Core CPU with a clock speed
of 4.20 GHz and 8 GB RAM, i.e., on a standard laptop PC. In all three Tables 1–3, we
report computing times and storage requirements for a quota of 50% plus 1 vote and
compare them to a quota of 75% of the votes. By default, we compute power indices
from above, since, normally, q > 1

2 w̃. As expected from our theoretical considerations,
computing times and storage are approximately cut in half for the larger quota of 75%. All
three Tables 1–3 investigate the BO, SCB and OW indices using the new algorithms for
handling precoalition structures introduced in Section 4 and compare the Banzhaf (BZ)
index (without the precoalition structure).

https://github.com/jhstaudacher/EPIC/
https://github.com/jhstaudacher/EPIC//blob/master/readme.md
https://github.com/jhstaudacher/EPIC//blob/master/readme.md
https://github.com/jhstaudacher/EPIC/tree/master/test_cases/precoalitions
https://github.com/jhstaudacher/EPIC/tree/master/test_cases/precoalitions

Games 2022, 13, 6 14 of 17

Table 1 is the only instance where we additionally compare the Shapley–Shubik (SH)
index (without the precoalition structure). The results in Table 1 illustrate the pseudopoly-
nomial time and space complexities reported in Theorems 2 and 5. The presence of a
coalition structure makes computing the OW index slower rather than faster compared to
the SH index. However, the OW index can be computed with significantly smaller storage
requirements than the SH index. For the problems in Tables 2 and 3, each containing more
than 3000 players, we chose to omit the SH indices for storage reasons.

Table 1. Computing times and memory requirements for an example with 741 players, w̃ = 37, 064,
40 precoalitions, a maximum coalition size of 40 and an average coalition size of 18.

q = 18, 533 (50% Plus 1 Vote) q = 27, 799 (75% of Votes)

Index Time (s) Memory (MB) Time (s) Memory (MB)

BZ 0.619 11.172 0.253 8.78
SH 594.522 2008.62 248.898 933.676
SCB 22.77 88.396 11.11 47.628
BO 0.539 10.956 0.26 8.86
OW 777.103 165.812 370.018 86.34

In Tables 1–3, the computations of both the BO indices and the BZ index (without
a coalition structure) never need more than one minute, indicating that our algorithms
could handle much larger problems. As predicted from the pseudopolynomial complexities
in Theorems 1 and 3, computing times and storage needs are lower for the BO indices
than for the BZ indices for large problem instances, as exemplified in the test problems in
Tables 2 and 3. In the smaller test problem in Table 1 with 741 players, this effect is not yet
visible, as the implementation of the BO index is more sophisticated and more small arrays
need to be allocated (in order to deal with the precoalition structure) than for the BZ index.
As predicted in Section 4, the SCB indices need more storage and computing time than the
BO indices due to the Shapley–Shubik computations for the internal games.

For the BZ indices (without precoalitions), we observe large time differences between
Tables 2 and 3 due to the fact that the game in Table 2 has a weight sum that is more than
twice as large as the game in Table 3, even though the latter game has 13.2% more players.
Comparing the results from Tables 2 and 3 for the SCB indices, we confirm the theoretical
findings from Theorem 4. For computing SCB indices, it is more favorable to have more
precoalitions rather than large average coalition sizes (both in terms of speed and storage).
For the computation of the OW indices, no such statement can be made, as the OW index
uses the Shapley–Shubik index for both the external and internal decision processes. This
is reflected in the pseudopolynomial time and storage complexities from Theorem 5 and is
confirmed in the numerical results in Tables 2 and 3.

Table 2. Computing times and memory requirements for an example with 3034 players, w̃ = 152, 098,
60 precoalitions, a maximum coalition size of 78 and an average coalition size of 50.

q = 76, 050 (50% Plus 1 Vote) q = 114, 074 (75% of Votes)

Index Time (s) Memory (MB) Time (s) Memory (MB)

BZ 52.001 59.216 20.318 28.388
SCB 806.655 665.86 401.751 336.364
BO 9.193 23.612 4.469 15.28
OW 38,181.746 1146.04 18,638.011 574.436

Games 2022, 13, 6 15 of 17

Table 3. Computing times and memory requirements for an example with 3434 players, w̃ = 72, 068,
200 precoalitions, a maximum coalition size of 54 and an average coalition size of 17.

q = 36, 035 (50% Plus 1 Vote) q = 54, 051 (75% of Votes)

Index Time (s) Memory (MB) Time (s) Memory (MB)

BZ 27.694 35.768 8.959 19.324
SCB 578.455 316.324 259.954 144.224
BO 6.067 17.028 2.879 11.896
OW 86,139.148 1154.708 39,411.552 559.856

6. Outlook and Conclusions

In this paper, we present new dynamic programming algorithms for the three most
common power indices with precoalitions, i.e., the Owen (OW), Banzhaf–Owen (BO) and
symmetric coalitional Banzhaf (SCB) indices. Our algorithms reflect the external and
internal decision processes between and within precoalitions used to specify these indices.
We provide efficient C++ implementations of our new algorithms and point out that our
methods can be applied for large numbers of players.

Still, there are many open questions in connection with the computation of power
indices with precoalitions. Certain power indices with a priori unions, such as e.g., [43,44],
do not fit the framework used in this paper, and it will be interesting to see how dynamic
programming can be applied efficiently in these cases. In this context, we would like to
stress that the very general framework for computing power indices via quasi-ordered
binary decision diagrams [45–48], i.e., a recent approach based on relational algebra, has
not yet been extended to power indices with a coalition structure. Furthermore, the math-
ematical relations between dynamic programming and generating functions [5,17,27,28]
for power index computation justify further research, both in the cases with and without
precoalitions. We expect these two paradigms to be very fruitful for each other, and such
investigations have the potential to lead to even faster algorithms.

Another challenge is the parallel computation of power indices. To our knowledge,
there are no publications on parallel computations of any of the power indices (with-
out precoalitions) discussed in [32] or the dynamic programming algorithms presented
therein. The new algorithms for power indices with precoalitions presented in the proofs
of Theorems 3–5 appear to be particularly well suited for parallel processing, given that
the internal games can be computed independently.

In terms of practical calculations for cooperative games with a coalition structure,
we regret a lack of software offering more than the computation of the Owen value [21],
i.e., the most widely used solution concept. In our view, even a prototypical implemen-
tation of various solution concepts for games with a partition structure, e.g., similar to
the freely available R package CoopGame [49] for cooperative games, might be helpful in
popularizing these ideas for analyzing real-world problems. A very concrete real-world
application we wish to study using our new algorithms is the problem of indirect control
in complex shareholding structures [11–13]. These networks are usually large and, to our
knowledge, precoalitions of companies and investors within corporate networks have yet
to be investigated.

Author Contributions: J.S. conceived the presented algorithms and performed the formal and
theoretical analysis. F.W. and J.F. validated the algorithms and performed the numerical simulations.
All authors discussed the results and contributed to the final manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was partially funded by the Bavarian Ministry of Science and Arts.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Games 2022, 13, 6 16 of 17

Acknowledgments: The authors would like to thank Sascha Kurz (University of Bayreuth) for having
made the code he used for [8] publicly available via ResearchGate and having allowed them to use it
as a sample for their software. Furthermore, the authors wish to thank two anonymous reviewers for
their careful reading of the paper and their helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bertini, C.; Freixas, J.; Gambarelli, G.; Stach, I. Comparing power indices. Int. Game Theory Rev. 2013, 15, 1340004. [CrossRef]
2. Penrose, L.S. The elementary statistics of majority voting. J. R. Stat. Soc. 1946, 109, 53–57. [CrossRef]
3. Banzhaf, J.F., III. Weighted voting doesn’t work: A mathematical analysis. Rutgers L. Rev. 1964, 19, 317.
4. Shapley, L.S.; Shubik, M. A method for evaluating the distribution of power in a committee system. Amer. Pol. Sci. Rev. 1954, 48,

787–792. [CrossRef]
5. Algaba, E.; Bilbao, J.M.; Fernández-García, J.R. The distribution of power in the European Constitution. Eur. J. Oper. Res. 2007,

176, 1752–1766. [CrossRef]
6. Kóczy, L.A. Beyond Lisbon. Demographic trends and voting power in the European Union Council of Ministers. Math. Soc. Sci.

2012, 63, 152–158. [CrossRef]
7. Kóczy, L.A. Brexit and Power in the Council of the European Union. Games 2021, 12, 51. [CrossRef]
8. Kurz, S. Computing the power distribution in the IMF. arXiv 2016, arXiv:1603.01443.
9. Lucchetti R.; Radrizzani P. Microarray Data Analysis via Weighted Indices and Weighted Majority Games. In Computational

Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2009. Lecture Notes in Computer Science; Masulli, F., Peterson, L.E.,
Tagliaferri, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 6160, pp. 179–190. [CrossRef]

10. Bachrach, Y.; Rosenschein, J.S.; Porat, E. Power and stability in connectivity games. In Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multiagent Systems, Estoril, Portugal, 12–16 May 2008; Volume 2, pp. 999–1006.

11. Stach, I.; Mercik, J.; Bertini, C. Some propositions of approaches for measuring indirect control power of firms and mutual
connections in corporate shareholding structures. In Transactions on Computational Collective Intelligence XXXV. Lecture Notes in
Computer Science; Nguyen, N.T., Kowalczyk, R., Mercik, J., Motylska-Kuźma, A., Eds.; Springer: Berlin/Heidelberg, Germany,
2020; Volume 12330, pp. 116–132. [CrossRef]

12. Stach, I.; Mercik, J. Measurement of control power in corporate networks. Oper. Res. Dec. 2021, 31, 97–121. [CrossRef]
13. Staudacher, J.; Olsson, L.; Stach, I. Implicit power indices for measuring indirect control in corporate structures. In Transac-

tions on Computational Collective Intelligence XXXVI. Lecture Notes in Computer Science; Nguyen, N., Kowalczyk, R., Mercik, J.,
Motylska-Kuźma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 13010, pp. 73–93. [CrossRef]

14. Holler, M.J.; Rupp, F. Power in Networks: A PGI Analysis of Krackhardt’s Kite Network. In In Transactions on Computational
Collective Intelligence XXXIV. Lecture Notes in Computer Science; Nguyen, N., Kowalczyk, R., Mercik, J., Motylska-Kuźma, A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2019; Volume 11890, pp. 21–34. [CrossRef]

15. Holler, M.J.; Rupp, F. Power in Networks: The Medici. Homo Oecon. 2021, 38, 1–17. [CrossRef]
16. Vázquez-Brage, M.; van den Nouweland, A.; Garcıa-Jurado, I. Owen’s coalitional value and aircraft landing fees. Math. Soc. Sci.

1997, 34, 273–286. [CrossRef]
17. Alonso-Meijide, J.M.; Bowles, C. Generating Functions for Coalitional Power Indices: An Application to the IMF. Ann. Oper. Res.

2005, 137, 21–44. [CrossRef]
18. Alonso-Meijide, J.M.; Carreras, F.; Fiestras-Janeiro, M.G. The multilinear extension and the symmetric coalition Banzhaf value.

Theory Decis. 2005, 59, 111–126. [CrossRef]
19. Mayer, A. Luxembourg in the Early Days of the EEC: Null Player or Not? Games 2018, 9, 29. [CrossRef]
20. Owen, G. Game Theory, 3rd ed.; Academic Press: London, UK, 1995.
21. Owen, G. Values of Games with a Priori Unions. In Mathematical Economics and Game Theory. Lecture Notes in Economics and

Mathematical Systems; Henn R., Moeschlin, O., Eds.; Springer: Berlin/Heidelberg, Germany, 1977; Volume 141, pp. 76–88.
[CrossRef]

22. Malawski, M. “Counting” Power Indices for Games with a Priori Unions. In Essays in Cooperative Games. Theory and Decision
Library; Gambarelli, G., Eds.; Springer: Boston, MA, USA, 2004; Volume 36, pp. 125–140. [CrossRef]

23. Alonso-Meijide, J.M.; Bowles, C.; Holler, M.J.; Napel, S. Monotonicity of power in games with a priori unions. Theory Decis. 2009,
66, 17–37. [CrossRef]

24. Alonso-Meijide, J.M.; Fiestras-Janeiro, M.G. Modification of the Banzhaf value for games with a coalition structure. Ann. Oper.
Res. 2002, 109, 213–227. [CrossRef]

25. Owen, G. Modification of the Banzhaf-Coleman Index for Games with a Priori Unions. In Power, Voting, and Voting Power;
Holler, M.J., Eds.; Physica: Heidelberg, Germany, 1981; pp. 232–238. [CrossRef]

26. Matsui, Y.; Matsui, T. NP-completeness for calculating power indices of weighted majority games. Theor. Comp. Sci. 2001, 263,
305–310. [CrossRef]

27. Algaba, E.; Bilbao, J.M.; Fernández-García, J.F.; López, J.J. Computing power indices in weighted multiple majority games.
Math. Soc. Sci. 2003, 46, 63–80. [CrossRef]

http://doi.org/10.1142/S0219198913400045
http://dx.doi.org/10.2307/2981392
http://dx.doi.org/10.2307/1951053
http://dx.doi.org/10.1016/j.ejor.2005.12.002
http://dx.doi.org/10.1016/j.mathsocsci.2011.08.005
http://dx.doi.org/10.3390/g12020051
http://dx.doi.org/10.1007/978-3-642-14571-1_13
http://dx.doi.org/10.1007/978-3-662-62245-2_8
http://dx.doi.org/10.37190/ord210106
http://dx.doi.org/10.1007/978-3-662-64563-5_4
http://dx.doi.org/10.1007/978-3-662-60555-4_2
http://dx.doi.org/10.1007/s41412-021-00108-1
http://dx.doi.org/10.1016/S0165-4896(97)00018-8
http://dx.doi.org/10.1007/s10479-005-2242-y
http://dx.doi.org/10.1007/s11238-005-0944-x
http://dx.doi.org/10.3390/g9020029
http://dx.doi.org/10.1007/978-3-642-45494-3_7
http://dx.doi.org/10.1007/978-1-4020-2936-3_10
http://dx.doi.org/10.1007/s11238-008-9114-2
http://dx.doi.org/10.1023/A:1016356303622
http://dx.doi.org/10.1007/978-3-662-00411-1_17
http://dx.doi.org/10.1016/S0304-3975(00)00251-6
http://dx.doi.org/10.1016/S0165-4896(02)00086-0

Games 2022, 13, 6 17 of 17

28. Bilbao, J.M.; Fernández-García, J.F.; Jiménez Losada, A.; López, J.J. Generating functions for computing power indices efficiently.
TOP 2000, 8, 191–213. [CrossRef]

29. Tanenbaum, P. Power in weighted voting games. Math. J. 1997, 7, 58–63.
30. Matsui, T.; Matsui, Y. A survey of algorithms for calculating power indices of weighted majority games. J. Oper. Res. Soc. Jpn.

2000, 43, 71–86. [CrossRef]
31. Uno, T. Efficient Computation of Power Indices for Weighted Majority Games. In International Symposium on Algorithms and

Computation. ISAAC 2012. Lecture Notes in Computer Science; Chao, K.M., Hsu, T., Lee, D.T., Eds.; Springer: Berlin/Heidelberg,
Germany, 2020; Volume 7676, pp. 679–689. [CrossRef]

32. Staudacher, J.; Kóczy, L.Á.; Stach, I.;Filipp, J.; Kramer, M.; Noffke, T.; Olsson, L.; Pichler, J.; Singer, T. Computing power indices for
weighted voting games via dynamic programming. Oper. Res. Dec. 2021, 31, 123–145. [CrossRef]

33. Johnston, R.J. On the measurement of power. Some reactions to Laver. Environ. Plan. A 1978, 10, 907–914. [CrossRef]
34. Deegan, J.; Packel, E.W. A new index of power for simple n-person games. Int. J. Game Theory 1978, 7, 113–123. [CrossRef]
35. Holler, M.J. Forming coalitions and measuring voting power. Pol. Stud. 1982, 30, 262–271. [CrossRef]
36. Felsenthal, D.S. A well-behaved index of a priori p-power for simple n-person games. Homo Oecon. 2016, 33, 367–381. [CrossRef]
37. Molinero, X.; Blasco, J. Coalitional power indices applied to voting systems. In Proceedings of the 9th International Conference

on Operations Research and Enterprise Systems, Valletta, Malta, 22–24 February 2020; pp. 372–376. [CrossRef]
38. Mercik, J.; Ramsey, D.M. The effect of Brexit on the balance of power in the European Union Council: An approach based

on pre-coalitions. In Transactions on Computational Collective Intelligence XXVII. Lecture Notes in Computer Science; Nguyen, N.,
Kowalczyk, R., Mercik, J., Eds.; Springer: Cham, Switzerland, 2017; Volume 10480, pp. 87–107. [CrossRef]

39. Chakravarty, S.R.; Mitra, M.; Sarkar, P. A Course on Cooperative Game Theory; Cambridge University Press: Cambridge, UK, 2015.
40. Molinero, X.; Riquelme, F.; Serna, M. Forms of representation for simple games: Sizes, conversions and equivalences. Math. Soc.

Sci. 2015, 76, 87–102. [CrossRef]
41. Laruelle, A.; Valenciano, F. On the meaning of Owen–Banzhaf coalitional value in voting situations. Theory Decis. 2004, 56,

113–123. [CrossRef]
42. The GNU Multiple Precision Arithmetic Library. Available online: https://gmplib.org/ (accessed on 17 November 2021).
43. Alonso-Meijide, J.M.; Casas-Méndez, B.; Fiestras-Janeiro, M.G.; Holler, M.J. Two variations of the Public Good Index for games

with a priori unions. Control. Cybern. 2010, 39, 839–855.
44. Alonso-Meijide, J.M.; Casas-Méndez, B.; Fiestras-Janeiro, M.G.; Holler, M. J. The Deegan-Packel index for simple games with a

priori unions. Qual. Quant. 2011, 45, 425–439. [CrossRef]
45. Berghammer, R.; Bolus, S.; Rusinowska, A.; De Swart, H. A relation-algebraic approach to simple games. Eur. J. Oper. Res. 2011,

210, 68–80. [CrossRef]
46. Berghammer, R.; Bolus, S. On the use of binary decision diagrams for solving problems on simple games. Eur. J. Oper. Res. 2012,

222, 529–541. [CrossRef]
47. Bolus, S. Power indices of simple games and vector-weighted majority games by means of binary decision diagrams. Eur. J. Oper.

Res. 2011, 210, 258–272. [CrossRef]
48. Bolus, S. A QOBDD-Based Approach to Simple Games. Ph.D. Thesis, Christian-Albrechts Universität Kiel, Kiel, Germany, 2012.
49. Staudacher, J.; Anwander J. Using the R Package CoopGame for the Analysis, Solution and Visualization of Cooperative Games

with Transferable Utility. R Vignette for Package Version 0.2.2. 2021. Available online: https://cran.r-project.org/package=
CoopGame (accessed on 17 November 2021).

http://dx.doi.org/10.1007/BF02628555
http://dx.doi.org/10.15807/jorsj.43.71
http://dx.doi.org/10.1007/978-3-642-35261-4_70
http://dx.doi.org/10.37190/ord210206
http://dx.doi.org/10.1068/a100907
http://dx.doi.org/10.1007/BF01753239
http://dx.doi.org/10.1111/j.1467-9248.1982.tb00537.x
http://dx.doi.org/10.1007/s41412-016-0031-2
http://dx.doi.org/10.5220/0009166803720376
http://dx.doi.org/10.1007/978-3-319-70647-4_7
http://dx.doi.org/10.1016/j.mathsocsci.2015.04.008
http://dx.doi.org/10.1007/s11238-004-5639-1
https://gmplib.org/
http://dx.doi.org/10.1007/s11135-009-9306-z
http://dx.doi.org/10.1016/j.ejor.2010.09.006
http://dx.doi.org/10.1016/j.ejor.2012.04.015
http://dx.doi.org/10.1016/j.ejor.2010.09.020
https://cran.r-project.org/package=CoopGame
https://cran.r-project.org/package=CoopGame

	Introduction
	Preliminaries from Cooperative Game Theory
	Cooperative Games and Simple Games
	Power Indices and Marginal Contributions
	Simple Games with Precoalitions and Coalitional Power Indices

	Dynamic Programming for the Banzhaf and Shapley–Shubik Indices
	Counting Winning and Losing Coalitions via Dynamic Programming
	Computing the Banzhaf and Shapley–Shubik Indices

	Computing Power Indices with Precoalitions via Dynamic Programming
	Efficient Computation of the Banzhaf–Owen (BO) Index
	Efficient Computation of the Symmetric Coalitional Banzhaf (SCB) Index
	Efficient Computation of the Owen (OW) Index

	Numerical Results and Software
	Outlook and Conclusions
	References

