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Abstract: Free riding incentives make it difficult to control climate change. To improve the chances of
the Paris Agreement’s ambitious goal, many nations are forming scientific networks in carbon capture
and storage (CCS). These networks take many forms (bilateral, hub-and-spoke, and multilateral).
Studies of social interactions among scientists demonstrate that research networks are limited because
of relational issues, such as lack of trust. This paper provides a rationale for the formation of various
types of international CCS networks and examines their impacts on climate change. Our concept of
stability focuses on Nash equilibria that are immune to coalitional deviations in overlapping networks.
Players may belong to various research networks. A particular research network is a climate club. We
show that in the absence of top-down coordination in clubs, the type of global network that forms
depends on relational attrition. The complex task is to mitigate free riding while enhancing trust.

Keywords: climate clubs; coalition-proof equilibrium; carbon capture and storage; global warming;
hub-and-spoke; international environmental agreements; overlapping coalitions

1. Introduction

On 2 November 2021, during the Conference of Parties (COP26) in Glasgow, the prime
minister of Canada, Justin Trudeau, pushed the world to commit to a global carbon tax by
2030 that will account for 60% of global greenhouse emissions (see https://www.ctvnews.
ca/politics/trudeau-takes-carbon-pricing-debate-to-the-global-stage-at-cop26-1.5648007;
accessed on 18 October 2021). This challenge signals a widespread concern about the catas-
trophic effects that unabated global warming will cause to all nations in the near future.
Voluntary national commitments made under the Paris Agreement (PA) may be insufficient
to deliver the desirable goal of preventing an increase of more than 2 degrees Celsius in
global temperature by the end of the century. A global carbon tax may be ideal, but it may
be politically and institutionally difficult to design and implement. One should consider
more realistic alternatives.

Among possible alternatives to a global carbon tax, one that is especially noteworthy
is the creation of climate clubs. Nordhaus [1] proposes the formation of climate clubs
to overcome free riding in climate policy. Clubs motivate participation by providing an
excludable public good (club good). Only club members enjoy the benefits associated
with the provision of the club good. In Nordhaus [1], the club good is a common carbon
tax that all members agree to impose on activities that cause carbon emissions. As the
common carbon tax promotes outside benefits to non-club members, the club mechanism
also punishes non-club members through trade sanctions.

In this paper, we build on the notion proposed by Nordhaus but focus on another
type of club good: R&D spillovers shared by club members produced by improvements in
carbon abatement. We also extend the concept by considering overlapping climate clubs. A
member of a club may simultaneously belong to another club. Unlike Nordhaus [1], we
examine settings where club formation accounts for unilateral and coalitional deviations,
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and there is no punishment imposed on players that stand alone (i.e., do not join any club),
(see Silva and Kahn [2] for an early analysis of exclusion incentives in voluntary club good
provision, in which coalition-proofness is utilized to select a stable Nash equilibrium).

The PA’s ambitious goal of limiting an increase in the global temperature to no more
than 2 degrees Celsius by the end of the century can only be achieved by further technolog-
ical development and a combination of several carbon emission reduction strategies, in-
cluding carbon capture and storage (CCS) (see e.g., “The Global Status of CCS: 2017”). CCS
has tremendous potential to reduce global carbon emissions (see, e.g., de Coninck et al. [3],
Herzog [4], Leach et al. [5] and The Royal Society [6]). Not surprising, Australia, Canada,
China, the EU, India, Japan, Korea, Norway, South Africa, the UK, and the USA have been
active in the formation of international joint CCS agreements. Notably, China and the EU
are “hubs” in the CCS network: they are central pieces of multiple bilateral and multilateral
international agreements (see, e.g., Hagemann et al. [7]).

The fact that China and the EU have entered into several bilateral and multilateral
CCS agreements illustrates a major advantage of such a strategy. A large research net-
work enables China or the EU to have access to new as well as complementary pieces of
knowledge and reduces the likelihoods of inertia and redundancy in its R&D process. The
amount of R&D spillovers enjoyed by a nation may significantly increase as it forms new
partnerships. Several studies find that the size of a research team (i.e., research network
size) is positively correlated to various types of indicators of the number and quality of
publications (see, e.g., Defazio et al. [8]).

However, there are also important factors that limit the efficient size of research net-
works. In the case of CCS, the inherent interdependency of the various research tasks
(i.e., carbon capture, logistics, and storage) implies that research teams need to be very
cohesive. The knowledge underlying CCS projects seem to fit well the description of
complex knowledge in Sorenson et al. [9]. Complexity is defined “ . . . in terms of the level
of interdependence inherent in the subcomponents of a piece of knowledge . . . Interdepen-
dence arises when a subcomponent significantly affects the contribution of one or more
other subcomponents to the functionality of a piece of knowledge. When subcomponents
are interdependent, a change in one may require the adjustment, inclusion or replacement
of others for a piece of knowledge to remain effective.” (Sorenson et al. [9] (p. 995)). Co-
hesive research teams are those in which research collaborators are prone to cooperate in
knowledge creation and diffusion because they have a great deal of trust in each other (see,
e.g., Forti et al. [10]. These authors find that research teams are more productive the more
cohesive they are. This finding gives support to the idea that strong ties among research
collaborators promote trust and cooperation, and these factors enable these researchers
to effectively enhance mutual exchange of highly sensitive and fine-grained information.
Their result adds to the controversy of which weak or strong ties among researchers are
more important for knowledge creation and diffusion. As hypothesized by Granovet-
ter [11], weak ties among individuals may facilitate bridge formation and information
diffusion). Trust among research collaborators builds slowly because collaborators prefer
past or existing relationships to new collaborations (see, e.g., Goyal [12], pp. 259–261). The
argument is that researchers who contemplate new collaborations face a substantial lack
of knowledge with respect to each other’s opportunistic behavior. This creates a moral
hazard problem, which may reduce communication and knowledge sharing within the
research team.

In this paper, we focus on R&D production that emerges from interactions among
research teams across nations. In Fershtman and Gandal [13], direct project spillovers “exist
whenever there are knowledge spillovers between projects that are directly connected, that
is, they have common contributors” and indirect project spillovers “exist whenever there
are knowledge spillovers between projects that are not directly connected, that is, projects
for which there are no common contributors.” In our multilateral R&D agreements, there
exist direct project spillovers only. In our hub-and-spoke R&D agreements, there are both
direct and indirect project spillovers. Fershtman and Gandal [13] find evidence of direct
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and indirect project spillovers in their analysis of open-source software. We follow the basic
premise of the “coauthor model” developed by Jackson and Wollinsky [14] that the benefits
of the interaction between a pair of research collaborators are both the benefit that each
collaborator puts into the project and the benefit associated with synergy.

As for the costs of joint R&D activities in clubs, we consider the cost of hiring inputs
(labor and capital) and the transaction costs that lack of trust produces. Transaction costs
generate efficiency losses, measured in terms of the potential R&D product foregone. We
account for two potential sources of efficiency losses. First, lack of trust weakens ties
between any pair of researcher collaborators due to moral hazard issues. International
research collaboration is also more likely to be less efficient than domestic research col-
laboration because of the extra burden faced by researchers in traveling long distances
and dealing with differences in time zones (which affect the proper times for one-on-one
communication over the internet) and in culture and social working habits. We call the loss
of efficiency due to the weakening of ties between collaborators “relational attrition cost”.
Second, the total relational attrition cost faced by any researcher should be proportional to
the number of collaborators that this individual possesses since the moral hazard problem
becomes more severe as the number of partners expands (for example, in his study of R&D
performance carried out in one of the U.S. armed services’ largest R&D stations in the early
1960s, Friedlander [15] found that trust among team members was negatively affected by
team size).

Following the bottom-up approach embedded in the Paris Agreement, we initially
considered a setting in which there are no income transfers within clubs and research
collaboration among club members is not coordinated (i.e., R&D spillovers are not inter-
nalized). We started the analysis with three nations. We have several results. We first
show that a nation that stands alone in the presence of a bilateral club necessarily enjoys
an equilibrium payoff that is lower than the common equilibrium payoff earned by the
bilateral club members. Even though the stand-alone nation free rides on the emission
reductions produced by the bilateral club members, it does not directly benefit from R&D
sharing (i.e., the club good). Second, we show that all possible club structures are Perfectly
Coalition-Proof-Nash Equilibria (PCPNE) for different ranges of transaction costs. Third,
if climate clubs allow and coordinate ex-post transfers, the transfer mechanisms align the
incentives of club members: each member finds it desirable to produce R&D at levels that
internalize both types of positive externalities within the club. Fourth, in contrast to the
situation without transfers, a nation that stands alone in the presence of a bilateral club now
enjoys an equilibrium payoff that is higher than the common equilibrium payoff earned
by the bilateral club members. The reason for this is that the benefits from free riding
outweigh the benefits produced by R&D sharing. Finally, we obtain significantly different
equilibrium payoff rankings and PCPNE for larger economies, depending on whether or
not clubs implement income transfers (for a comprehensive analysis of network formation
in the presence of transfers, see Bloch and Jackson [16]).

We organize the paper as follows. Section 2 provides a brief review of the literature.
Section 3 builds the basic model for an economy featuring three nations. Section 4 deter-
mines PCPNE for settings in which R&D agreements prohibit or allow transfers. Section 5
provides an analysis of global welfare. Section 6 examines PCPNE with and without
transfers for larger economies. Section 7 offers concluding remarks.

2. Literature Review

Our paper contributes to the vast literature on international environmental agreements
(see, e.g., Carraro and Siniscalco [17], Barrett [18], Eyckmans and Tulkens [19], Diamantoudi
and Sartzetakis [20,21], Diamantoudi, E., E.S. Sartzetakis, and S. Strantza [22,23], Chan-
der [24], Osmani and Tol [25], Silva and Zhu [26], Battaglini and Harstad [27], Silva [28],
Bayramoglu et al. [29], Breton and Sbragia [30] and Finus et al. [31]) and to the literature on
environmental R&D (see, e.g., Greaker and Hoel [32] and Golombek and Hoel [33]). With
the exception of Finus and Rundshagen [34] and Silva and Zhu [26], the coalition-proof
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approach we utilize here deviates from the ones utilized in the literature on international
environmental agreements. Coalition-proofness is a refinement of Nash equilibrium. As for
our key contributions to the literature on environmental R&D, to the best of our knowledge,
we are the first ones to model the production of collaborative R&D in overlapping interna-
tional research networks and, therefore, the first to consider the efficiency and stability of
overlapping climate clubs.

CCS agreements provide just one of the motivations behind the emergence of hub-
and-spoke networks among nations. Indeed, perhaps, the greatest motivation for the
development of such networks is trade expansion (see, e.g., Mukunoki and Tachi [35]
and Saggi and Yildiz [36]; for additional references, see these papers and Hur et al. [37]).
Mukunoki and Tachi [35] study sequential negotiations of bilateral free trade agreements
and show that hub-and-spoke networks are likely to be more effective in delivering multi-
lateral free trade than the alternative system of customs unions. They also show that there
is an incentive for a nation to be a hub since the hub nation enjoys greater welfare than the
spoke nations in equilibrium. Like Mukunoki and Tachi [35], we show that the hub nation
in a hub-and-spoke structure without income transfers fares better than the spoke nations.
The “hub-incentive effect” disappears if the climate clubs implement income transfers since
club members get the same level of welfare in equilibrium.

3. Basic Model

We follow Silva and Zhu [26], who extend the concept of Perfectly Coalition-Proof-
Nash Equilibrium (PCPNE), advanced by Bernheim et al. [38], to settings in which overlap-
ping coalitions may coexist. It employs the PCPNE concept to the sets of players produced
by the union of intersecting (i.e., overlapping) sets of players.

Suppose that N = {1, 2, 3} denotes the set of all players. In addition to N, the subsets
of the set of all players are the singletons {1}, {2}, {3} and the pairs {1, 2},{1, 3},{2, 3}.
The standard coalition-proof concept is applicable to all coalitional structures except to the
overlapping ones, in which one nation is a hub. The extended concept of Silva and Zhu [26]
is applicable to the overlapping coalitional structures: it is employed over the union of
the overlapping bilateral coalitions; namely, the set {1, 2, 3}. Consider, for example, the
coalitional structure in which nation 1 is a hub and nations 2 and 3 are spokes; that is, the
coalitions {1, 2} and {1, 3} coexist in equilibrium. The Nash equilibrium for this structure
is coalition-proof if and only if there is no individual nor collective incentive to deviate; that
is, player 1 has no incentive to exit either coalition, and players 2 and 3 have no incentives
to exit their respective coalitions in order to stand alone or to form the bilateral coalition
{2, 3}. The latter is one of the possible self-enforcing sub-coalitions that can be produced
from the set {1, 2, 3}.

The game considered here is a strategic network formation game. We formulate a
multistage game, in which the first stage is a participation stage. If the climate clubs
prohibit transfers, the game contains two stages: following the participation stage, there
is a contribution stage. If the climate clubs allow transfers, the game also includes a
third stage in which clubs implement transfers. Formally, the participation stage can
be described as follows: For a game where N = {1, 2, 3}, a pointing game Γ is a list(

N, (Si)i∈N , Ui
)
, where Si = {0, 1}N\{i} = {0, 1} × {0, 1} for each i ∈ N (a representative

element si =
{

sij, sik
}
∈ Si describes the countries that country i is pointing towards to initi-

ate a club, and sij = 1 means that country i selects country j, while sij = 0 means that coun-
try i does not select country j, and Ui(si, s−i) = ui

(
{i, j} ⊂ N : sij = sji = 1

)
for each i ∈ N.

We later extend the model to allow for a larger number of nations. For N = {1, 2, 3, . . . , Z},
where Z ≥ 4, and multiple clubs {T1, T2, . . . , TK}, let Si = {0, 1, 2, . . .} and
Tk(s) = {W ⊆ N : i ∈ T ⇔ si = k} for all k = {1, 2, . . .}. The equilibrium concept is
PCPNE. Finus and Rundshagen [39] argue that the Strong Nash equilibrium instead of the
CPNE is useful for many economic problems belonging to the class of positive externality
games such as IEAs. However, it is not the case for R&D collaboration in our setting
since each nation collaborates not to maximize aggregate payoffs to the coalition but to



Games 2022, 13, 4 5 of 24

maximize its own payoff by decreasing production costs. In this case, there is no Strong
Nash equilibrium because the grand coalition structure is not Pareto-optimal.

In the basic model, our economy consists of three identical nations, with each nation
being indexed by i, i = 1, 2, 3. There is one consumer in each nation. The utility consumer
i gets from consumption of xi units of a numeraire good and G = ∑3

j=1 gj units of a pure
public good (say, reduction in global carbon dioxide emissions through CCS technology)
is ui = xi + v(G)= xi + G(1− G/2), i = 1, 2, 3. The budget constraint for consumer i is
xi + C(qi) = I, where C(qi) is nation i’s cost of contributing qi units of R&D utilizing its
own resources (i.e., working alone) and I > 0 is nation i’s total income. We assume that
C(qi) = cq2

i /2, where c > 0 is a scale parameter. We also assume that I is sufficiently
large so that all Nash equilibria examined below are characterized by strictly positive
consumption of the numeraire good (these details of our basic model are widely used in the
environmental economics literature which examines transboundary pollution issues; see,
e.g., Diamantoudi and Sartzetakis [20], Nagase and Silva [40], Silva and Yamaguchi [41],
and Silva and Zhu [42].

We assume that one unit of carbon-reducing R&D product reduces one unit of carbon
emission. If nation i is an independent R&D producer, its contribution to carbon-emission
reduction is equal to qi. If nation i collaborates with at least one nation in R&D production,
nation i’s contribution to carbon-emission reduction is equal to gi = z−i + qi (in the absence
of relational attrition), where z−i denotes the total spillover R&D flow that i enjoys from its
collaborators. We follow previous works on cooperative R&D with spillovers in oligopolies
and R&D teams. Nation i’s R&D output increases on its collaborators’ R&D efforts due to
knowledge sharing (see, e.g., Spence [43], Katz [44], d’Aspremont and Jacquemin [45], Yi
and Shin [46] and Huang [47]) and collaborative problem solving, learning, and feedbacks
(see, e.g., Friedlander [15], Dailey [48] and Bruns [49]). We assume that z−i = θ(ni)∑j 6=i qj,
where θ(ni) = 1/ni denotes the fraction of one unit of time that nation i dedicates to itself
(i.e., the fraction of time spent alone in research) and to each of its collaborators (i.e., the
fraction of time producing synergy in research) when this nation belongs to a research
network containing ni ≥ 2 nations (including itself), and ∑j 6=i qj is the total R&D effort that
i’s collaborators produce. That is, the amount of knowledge spillover that nation i receives
from each of its collaborators is equal to the product of the fraction of synergistic time it
spends with a collaborator and the amount of R&D output produced by a collaborator.

Having discussed the key components of R&D products, let us now turn to the im-
pact of relational attrition on R&D products. Relational attrition reduces the R&D output
produced by a nation that is engaged in R&D collaboration. Let Ai denote the relational
attrition faced by i in its R&D team (possibly composed of partners who belong to multiple
clubs). Let ei = e (Ai) be the relational efficiency level experienced by i in its R&D team.
For simplicity, we assume that e (Ai) = (1 + Ai)

−1. This implies that ei = 1 if Ai = 0 and
ei ∈ (0, 1) if Ai > 0. Let Ai = a(ni − 1), where a ≥ 0 is the rate of relational attrition and
ni denotes the size of i’s R&D team (including self). Formally, the size of i’s R&D team
can be defined as follows. Given a nondirected graph γ, let ηi(γ) = {j ∈ N : {i, j} ∈ γ} be
the set of i’s collaborators under γ. Let ni = {ni(γ) ∪ {i}} be the cardinality of i′s R&D
team (which includes i). Hence, ni − 1 is the size of i’s R&D team excluding self. This
symmetric formulation assumes that i faces the same loss in efficiency from relational
attrition through its research interactions with any of its R&D collaborators. We have con-
sidered different specifications for the efficiency function, for example, qi = gi − θ∑j 6=i gj,
but the qualitative results regarding payoff rankings remain the same. Hence, we chose
the specification described above because of its simplicity and its intuitive appeal since
e−1(a, 2)− e−1(a, 1) = a; that is, the marginal efficiency loss associated with increasing a
nation’s network size from two to three nations is equal to the attrition rate. As one nation
is added to the network with two nations, it makes sense to think that the implied efficiency
loss is equal to the additional loss that the extra nation imposes in terms of attrition, namely,
a quantity equal to the attrition rate. Then, nation i’s relational efficiency rate works as a
scaling function: it transforms nation i’s potential R&D output into nation i’s actual R&D
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output: gi = [1 + a(ni − 1)]−1

[
qi + ∑

j 6=i
qj/ni

]
. Bruns [49] notes that expert and collabora-

tive practices reinforce each other and are also glued and influenced by the coordination
practice that emerges within R&D teams. Hence, we postulate that relational attrition in
collaborative practice should affect the entire R&D production process, scaling down the
potential R&D output that each researcher can produce (see also Forti et al. [10]). Finally,
we assume that the attrition rate is not more than one so that the amount of R&D produced
through collaboration is equal to or greater than that by single nations who are standing
alone. That is, nation i ’s R&D collaboration is weakly efficient compared to the single-

ton equilibrium if gi − gS = n−1
i [1 + a(ni − 1)]−1

[
ni
(
qi − qS)+ ∑

j 6=i
qj − a(ni − 1)qS

]
≥ 0,

where gS = qS denotes the amount of R&D among singletons. Evaluating the above ex-
pression with qi = qj = qS yields gi − gS = n−1

i [1 + a(ni − 1)]−1(ni − 1)(1− a)qS, which
is nonnegative as long as a ≤ 1. Otherwise, no country will have an incentive to collaborate
with other countries.

4. Equilibrium Analysis

The participation stage may produce several club structures depending on the values
of the parameters of the model. We need to consider all possible club structures that may
result in the participation stage and then compare the equilibrium payoffs in order to
determine the PCPNE. We examine two different settings: (i) without transfers within clubs;
and (ii) with coordinated transfers within clubs.

4.1. Equilibrium without Transfers

In the participation stage, the possible club structures are:

(i) The singleton structure—all nations are independent (i.e., stand alone);
(ii) The isolated bilateral structure—two nations belong to a club and one nation

stands alone;
(iii) The hub-and-spoke structure—one nation forms bilateral clubs with the other two

nations (i.e., the hub) and the latter form bilateral clubs with the hub only (i.e., the
spokes); and

(iv) The multilateral structure—each nation forms bilateral clubs with the other two
nations. In our framework, this is equivalent to the Grand Coalition.

Consider the multilateral structure. In the Nash equilibrium for the contribution game,
contributions are determined according to the first-order conditions,
v′(GM) = (1 + 2a)C′

(
qM

i (·)
)

, where qM
i denotes nation i’s R&D effort, GM = ∑3

i=1 gM
i

denotes the total amount of the global public good, and gM
i represents nation i’s R&D

product. The symmetry in interactions implies that all nations earn the same payoff in the
Nash equilibrium for the contribution game, uM

i = I + v(GM)− C
(
qM

i
)
, i = 1, 2, 3.

In a hub-and-spoke structure, only the hub interacts directly with the other nations (the
spokes). Since there is asymmetry in interactions, the Nash equilibrium for the contribution
game, the hub earns a higher payoff than the spokes. This important result is gathered in
the following lemma:

Lemma 1. For all a > 0, a hub nation’s welfare is higher than a spoke nation’s welfare.

Proof. Consider the hub-and-spoke structure in which nation 1 is the hub. Let gH
i , i = 1, 2, 3,

denote the Nash equilibrium R&D output levels. Let qH
i , i = 1, 2, 3, denote the nations’

own R&D contributions in the Nash equilibrium. The conditions that characterize the Nash
equilibrium are

v′(G) = (1 + 2a)C′
(

qH
1 (·)

)
(1a)

v′(G) = (1 + a)C′
(

qH
m(·)

)
, m = 2, 3. (1b)
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See also Appendix C for the corresponding second-order conditions.
Equation (1b) imply that qH

2 = qH
3 . Equations (1a) and (1b), the crowding proper-

ties of the efficiency function and the strict convexity of the cost function, imply that
qH

1 < qH
2 = qH

3 . To see this, note that (1 + 2a)C′
(
qH

1
)
= (1 + a)C′

(
qH

m
)

is implied by Equa-
tions (1a) and (1b). Hence, C′

(
qH

1
)
/C′

(
qH

m
)
= (1 + a)/(1 + 2a) < 1 for all a > 0. Since this

implies that C′
(
qH

1
)
< C′

(
qH

m
)

for all a > 0 and C′′ (·) > 0, we obtain qH
1 < qH

2 = qH
3 for

all a > 0. The equilibrium payoff earned by the hub nation is uH
1 = I + v(GH)− C

(
qH

1
)
,

where GH = ∑3
i=1 gH

i . The equilibrium payoff for a spoke nation is uH
m = I + v(GH)− C

(
qH

m
)
,

m = 2, 3. It follows that uH
1 > uH

m for all a > 0 because qH
m > qH

1 for all a > 0 and C′(·) > 0. �

The hub premium follows from the fact that the hub nation spends fewer resources
to produce R&D than the spoke nations when the attrition rate is positive. This result
is consistent with the result obtained by Mukunoki and Tachi [35] in that a hub enjoys a
premium relative to a spoke, even though the essential details that generate our result are
quite different from the essential details that lead to their result. Mukunoki and Tachi [35]
examine the free-trade agreements (FTAs) in an oligopoly model. In their model, the
abolition of protective tariffs via bilateral FTAs increases the hub’s gains from increasing
consumer surplus and the benefits from free access to spoke markets more than the losses
from decreases in the profit of the domestic firm and its tariff revenue. Since trade barriers
between spoke countries give the hub an advantage in their markets, being a hub is better
than having multilateral free trade.

In the isolated bilateral club structure, the stand-alone nation does not enjoy R&D
spillovers. The nations that form a bilateral club enjoy R&D spillovers from each other.
Thus, in the Nash equilibrium for the contribution game, the equilibrium payoffs for the
nations that form a bilateral club are always the same. The following lemma informs us
that in the Nash equilibrium for the contribution game, the stand-alone nation is never
better off than the nations that form a bilateral club:

Lemma 2. The equilibrium payoff for the stand-alone nation in the contribution game is never
greater than the equilibrium payoffs for the nations that belong to the bilateral club. The stand-alone
nation is worse off than the other nations whenever a > 0.

Proof. Consider the isolated bilateral structure in which nations 1 and 2 collaborate
and nation 3 stands alone. Let gP

i , i = 1, 2, 3, denote the Nash equilibrium green R&D
product levels. Let qP

i , i = 1, 2, 3, denote the nations’ own R&D contributions in the Nash
equilibrium. The first-order conditions that characterize the Nash equilibrium are

v′(G) = (1 + a)C′
(

qP
h (·)

)
, h = 1, 2 (2a)

v′(G) = C′
(

qP
3 (·)

)
. (2b)

See also Appendix C for the second-order conditions.
The equilibrium payoffs are uP

h = I + v(GP) − C
(
qP

h
)
, h = 1, 2, and uP

3 = I +
v(GP)−C

(
qP

3
)
. Hence, uP

h ≥ uP
3 if and only if qP

3 ≥ qP
h , h = 1, 2. But qP

3 ≥ qP
h because

C′ > 0. If a = 0, e −1(a, 1) = 1 and qP
3 = qP

h , h = 1, 2, and e −1(a, 1) > 1 and qP
3 > qP

h ,
h = 1, 2, otherwise. �

Let us now determine the PCPNE. Anticipating the Nash equilibria payoffs for the
contribution games, each nation decides which clubs it will join, if any, in the network
formation stage. To determine the PCPNE, we must compare the Nash equilibria payoffs
for the contribution games.

The direct R&D spillovers in the multilateral structure should provide each nation
with an equilibrium payoff that is greater than the lowest equilibrium payoff that any
hub-and-spoke structure produces—namely, the common payoff earned by the spokes—
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for a sufficiently small attrition rate. This is the relevant condition because two nations
can effectively deny another nation a high payoff in a particular equilibrium by selecting
another equilibrium in which both are better off. By a similar argument, the hub-and-spoke
structure becomes superior to the multilateral structure for the spokes if the attrition is
sufficiently high. The equilibrium for the hub-and-spoke structure then becomes coalition-
proof if the common equilibrium payoffs that the spokes earn are higher than the payoffs
that these nations obtain in the equilibrium for the setting with one isolated bilateral club.
This should be possible since the hub-and-spoke agreement provides direct (for the hub)
and indirect R&D spillover benefits relative to the restricted direct bilateral R&D spillover
benefits enjoyed by the members of the isolated bilateral club. This is indeed the case for
an interval of attrition rates, as the proposition below demonstrates. Finally, by continuity,
the isolated bilateral club is coalition-proof for another interval of attrition rates. The upper
attrition rate of this interval is the level at which the equilibrium payoff for the nations
in the bilateral club is just equal to the equilibrium common equilibrium payoff that each
nation can earn in the arrangement in which all nations stand alone. Figure 1 illustrates
the results.
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Proposition 1. For an interval of sufficiently small attrition rates, the multilateral structure is the
PCPNE. For an interval of higher attrition rates, the hub-and-spoke structure is the PCPNE. For
another interval of even higher attrition rates, the structure containing an isolated bilateral club
is the PCPNE. Finally, for an interval of sufficiently high attrition rates, the equilibrium for the
structure in which all nations stand alone is the PCPNE.

Proof. Let uM and uS denote the Nash equilibrium payoffs in the multilateral and stand-
alone structures, respectively. From Lemma 1, uH

1 = uH
2 = uH

3 for a = 0, and uH
1 > uH

2 = uH
3

for a > 0. From Lemma 2, uP
1 = uP

2 = uP
3 for a = 0, and uP

1 = uP
2 > uP

3 for a > 0. Combining
the various Nash equilibria payoffs, it follows that the PCPNE is: (i) the Nash equilibrium for
the multilateral structure for a ∈ [0, aM], since uM > max

[
uH

1 , uH
2 , uH

3 , uP
1 , uP

2 , uP
3 , uS] for

a ∈ [0, a0), uM = uH
1 for a = a0, uH

1 > uM for a > a0, uM > max
[
uH

2 , uH
3 , uP

1 , uP
2 , uP

3 , uS]
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for a ∈ [a0, aM), uM = uH
2 = uH

3 >max
[
uP

1 , uP
2 , uP

3 , uS] for a = aM; (ii) the Nash
equilibrium for the hub-and-spoke structure for a ∈ (aM, aH ], since uH

2 = uH
3 > max[

uM, uP
1 , uP

2 , uP
3 , uS] for a ∈ (aM, aH) and uH

2 = uH
3 = uP

1 = uP
2 for a = aH ; (iii) the Nash

equilibrium for the structure containing an isolated bilateral club for a ∈ (aH , aP], since
uP

1 = uP
2 > max

[
uH

2 , uH
3 , uM, uP

3 , uS] for a ∈ (aH , aP) and uP
1 = uP

2 = uS for a = aP

and (iv) the Nash equilibrium for the structure containing singletons for a > aP, since
uS > max

[
uH

1 , uH
2 , uH

3 , uM, uP
1 , uP

2 , uP
3
]

for a > aP (see Figure 1 and Appendix A). �

4.2. Equilibrium with Coordinated Transfers within Clubs

We now determine the PCPNE for climate clubs in which income transfers are feasible
and coordinated. Each club determines its transfers and implements them after the club
members make their decisions concerning R&D efforts. We assume that each club selects
the transfers to maximize the product of its members’ payoffs (i.e., the Nash-bargaining
functional). The optimal transfers within any club equate the payoffs of the club members.
When club members choose R&D efforts, in the second stage, they anticipate that transfers
equate payoffs. Formally, we consider three-stage games of complete but imperfect infor-
mation. The first and second stages are as before. In the third stage, the clubs implement
transfers (see Appendix B for details).

The multilateral and hub-and-spoke structures internalize both types of externalities.
The critical difference between these arrangements is the fact that the multilateral arrange-
ment connects all nations while the hub-and-spoke arrangement connects the hub to the
spokes, but the spokes do not connect. This implies that for sufficiently small attrition rates,
the equilibrium for the multilateral arrangement is Pareto superior to the equilibrium for
the hub-and-spoke arrangement.

The equilibrium for the multilateral arrangement is not self-enforcing. For an interval
of sufficiently low attrition rates, a single nation benefits from deviating from this arrange-
ment, and the remaining nations also benefit from sticking together because the common
equilibrium payoffs that two nations earn in the isolated bilateral club is at least as high
as the payoffs these nations obtain in the stand-alone arrangement. Interestingly, when
the common equilibrium payoff for the nations in the isolated bilateral club equals the
stand-alone equilibrium payoff, it becomes individually rational for the free riding nation
to “broker” an agreement with the other two nations in order to form the hub-and-spoke
arrangement. Since all nations in the hub-and-spoke arrangement internalize externalities,
the common equilibrium payoff for such an arrangement falls less quickly with the attrition
rate than the common equilibrium payoff earned by the nations that belong to the isolated
bilateral club. Hence, all three nations find it advantageous to select the equilibrium for the
hub-and-spoke arrangement for a subsequent interval of attrition rates. Once the attrition
rate erodes all benefits from R&D sharing, the PCPNE becomes the equilibrium for the
stand-alone structure, see Figure 2.

Proposition 2. For sufficiently small attrition rates, the equilibrium for the setting in which there
is an isolated bilateral club is the PCPNE. As attrition rates increase, the PCPNE structure is first
the hub-and-spoke and later the stand-alone.

Proof. Let ûM, ûH , and ûP denote the Nash equilibrium payoffs for the multilateral, hub-
and-spoke, and isolated bilateral structures, respectively. Consider the isolated bilateral
structure in which nations 1 and 2 collaborate and nation 3 stands alone in what follows.
Combining the PCPNE payoffs for the relevant structures, we find that the PCPNE is: (i) the
Nash equilibrium for the setting in which there is an isolated bilateral club for a ∈ [0, âP],
since ûP

3 > max
[
ûM, ûH , ûP

1 , ûP
2 , uS] for a ∈ [0, âP), ûP

1 = ûP
2 > uS for a ∈ [0, âP) and

ûP
1 = ûP

2 = uS at a = âP; (ii) the Nash equilibrium for the hub-and-spoke structure for
a ∈ (âP, âH ], since ûH > max

[
ûM, ûP

1 , ûP
2 , uS] for a ∈ (âP, âH) and ûH = uS > ûM at

a = âH ; (iii) the Nash equilibrium for the structure with singletons for a > âH , since
uS > max

[
ûH , ûM, ûP

1 , ûP
2
]

(see also Figure 2 and Appendix B). �
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5. Global Welfare Analysis

We now consider global welfare levels in the absence and in the presence of transfers
within clubs. We let superscript Γ = H, M, P, S index the global welfare level for each
relevant club structure. The global welfare level are denoted by WΓ ≡ ∑3

i=1 uΓ
i when

agreements do not allow transfers and ŴΓ ≡ ∑3
i=1 ûΓ

i when agreements allow transfers.
We compute the global welfare levels as functions of the attrition rate and the scale

parameter. Figure 3 provides the global welfare curves and enables us to derive the
following ranking of global welfare levels:

(i) WM > max
[
WS, WP, WH] for a ∈ [0, a1);

(ii) WH > max
[
WS, WP, WM] for a ∈ (a1, a3);

(iii) WP > max
[
WS, WH , WM] for a ∈ (a3, a4);

(iv) WS > max
[
WH , WM, WP] for a > a4.

When clubs allow transfers, the ranking of global welfare levels is as follows:

(i) ŴM > max
[
WS, ŴP, ŴH] for a ∈ [0, a2);

(ii) ŴH > max
[
WS, ŴP, ŴM] for a ∈ (a2, a5);

(iii) ŴP > max
[
WS, ŴH , ŴM] for a ∈ (a5, âP);

(iv) ŴH > max
[
WS, ŴM] for a ∈ (âP, a6);

(v) WS > max
[
ŴH , ŴM] for a > a6,

where the cut-off values are summarized in Table 1.
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Table 1. Cut-off attrition values.

c â a1 a2 a3 a4 a5
^
aP a6

0.5 0.0841 0.1027 0.1454 0.2225 0.3598 0.3754 0.4034 0.4832
1.0 0.0413 0.0909 0.1404 0.1989 0.3285 0.4426 0.4705 0.5329
1.5 0.0181 0.0854 0.1365 0.1879 0.3128 0.4935 0.5084 0.5649
2.0 0.0030 0.0822 0.1333 0.1814 0.3034 0.5320 0.5323 0.5871

The ranking of global welfare levels when clubs do not allow transfers capture the ad-
vantage of teamwork for sufficiently small attrition rates. As expected, the greatest benefit
from teamwork is in the multilateral setting. The second-best and third-best situations are
the hub-and-spoke network and the isolated bilateral club network, respectively. When
clubs allow transfers, on the other hand, we observe a surprising sort of events. Unlike the
well-behaved ranking order for the settings without transfers, we now see that the global
welfare level in the setting with an isolated bilateral club exceeds the global welfare level
in the hub-and-spoke network for an interval of attrition rates, even though for smaller
attrition rates, the reverse is true. The nation outside the club in the setting with an isolated
bilateral club enjoys an equilibrium payoff that is larger than the common payoff earned by
all nations in the hub-and-spoke network. In addition, for an interval of attrition rates, the
difference between the equilibrium payoff for the stand-alone nation and the equilibrium
payoff earned by the average nation in the hub-and-spoke network exceeds the difference
between the sum of equilibrium payoffs for the remaining hub-and-spoke nations and
the sum of equilibrium payoffs for the bilateral club members in the isolated bilateral
club structure.
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One can understand the welfare analysis above in terms of what a global planner can
achieve if he/she has the power to command the nations to collaborate or not in green
R&D production. When collaboration improves welfare, the planner can choose which
collaboration network (i.e., multilateral, hub-and-spoke, or isolated bilateral depicted)
should be formed in order to take advantage of knowledge spillovers. In a more realistic
scenario, however, the nations are free to make their own coordination decisions. The
club structures that materialize are those that Propositions 1 and 2 predict. Hence, a non-
interventionist global planner would have to be content with the global welfare levels that
result from the PCPNE set.

Close inspection of Figure 3 reveals an interesting, welfare-improving avenue for
policy intervention by a global planner that does not violate the nations’ ability to make
their own coordination choices. Proposition 2 informs us that the Nash equilibrium for
the setting with multilateral agreements is not coalition proof. Proposition 1, on the other
hand, tells us that for sufficiently small attrition rates, the Nash equilibrium for the setting
with multilateral agreements is coalition-proof. Hence, if a global planner is capable of
deciding whether agreements should allow transfers, there is a window of opportunity to
exercise his/her power for sufficiently small attrition rates. By prohibiting transfers for an
interval of sufficiently small attrition rates, the planner induces the nations to select the
Nash equilibrium for the setting with multilateral agreements without transfers. The global
welfare improvement resulting from this smart prohibition choice is clear in Figure 3. It is
equal to the horizontal distance between WM and ŴP for sufficiently small attrition levels
(i.e., those at which the height of WM is at least as large as the height of ŴP). This occurs
for a ∈ [0, â), where â is larger for a smaller c. Figure 3 also makes it clear that the global
planner should allow transfers within clubs for large values of the attrition rate.

Corollary 1. For sufficiently small attrition rates, constrained global welfare levels improve when
clubs prohibit transfers because multilateral structure without transfers is self-enforcing. For larger
attrition rates, constrained global welfare levels are maximal when clubs allow transfers.

6. Larger Economies

In this section, we extend our analysis to settings in which N = {1, 2, 3, . . . , Z},
where there are Z ≥ 4 nations. We consider both clubs in which transfers are prohibited
and in which transfers are allowed.

6.1. Larger Economies without Transfers

If clubs do not allow income transfers, the number and types of PCPNE increase
because there are several Nash equilibria with asymmetric outcomes. The analysis is more
complex, but we are able to provide some coherent results for the PCNPE and for the
“second-best” structures for sufficiently low attrition rates. The purpose of this exercise is
to illustrate that the stable club structures can indeed be very large, possibly encompassing
all nations on the globe. There are multiple types of stable club structures depending on
the value of the attrition parameter; these are summarized in Table 2.
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Table 2. Attrition ranges for the top 3 PCPNEs.

Z c 1st Formation 2nd Formation 3rd Formation

4

Grand Circle of 4 2 Bilateral

0.5 0~0.0406 ~0.0899 ~0.3587
1.0 0~0.0364 ~0.0804 ~0.3220
1.5 0~0.0343 ~0.0758 ~0.3045
2.0 0~0.0330 ~0.0731 ~0.2941

5

Grand Hub & Circle of 4 Circle of 5

0.5 0~0.0271 ~0.0340 ~0.2278
1.0 0~0.0231 ~0.0311 ~0.1517
1.5 0~0.0213 ~0.0297 ~0.1243
2.0 0~0.0202 ~0.0288 ~0.1104

6

Grand Circle of 6 + 6 Bilateral Circle of 6 + 3 Bilateral

0.5 0~0.0147 ~0.0717 ~0.0792
1.0 0~0.0131 ~0.0653 ~0.0726
1.5 0~0.0124 ~0.0619 ~0.0689
2.0 0~0.0119 ~0.0597 ~0.0665

Figures 4–6 illustrate the Nash equilibrium payoffs as functions of the attrition rate.
Figure 4 clearly shows that the second-best stable formation is the “circle of four”, in which
all nations have two links, one link to each of its two neighbors. If Z = 5, Figure 5 shows
that the second-best stable formation is characterized by one nation being a hub (linked
to the other four nations) and the other four nations having two links. If Z = 6, Figure 6
shows that in the second-best-stable formation, each nation is linked to four other nations.
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First, it is important to note that the multilateral club containing all nations is a PCPNE
for sufficiently low attrition rates for economies with four, five, and six nations. If the total
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number of nations is odd, the second-best stable formation features a hub with a larger
number of links than the spokes. If the total number of nations is even, the second-best
stable formation features a symmetric composition where all nations have the same number
of links.

Table 3 expands the number of nations up to 197. The cut-off attrition rates in Table 3
are those that “separate” the stable Grand Coalition and the second-best coalitional struc-
ture. By considering larger economies, with up to 197 nations, we see that the two main
findings described above are consistent throughout. If the attrition is sufficiently small, the
PCPNE will always involve all nations in the globe:

Table 3. Cut-off attrition values.

Z c 2nd Formation (Number of Links) Z 2nd Formation (Number of Links)

7

H&C of 6 + 6B; 6 + 6 × 5 Z
(odd) ((Z − 1) + (Z − 1)(Z − 2))/2

0.5 0.011345

1.0 0.00980976 Z
(even) Z × (Z − 2)/21.5 0.00908919

2.0 0.00866948 · · · · · ·

8

C of 8 + 16 B; 8 × 6

196

C of 196 + 18816 B; 196 × 194/2

0.5 0.0075412 0.00000988112
1.0 0.006719 0.00000877632
1.5 0.00631451 0.00000822501
2.0 0.00607333 0.00000789454

9

H&C of 8 + 16 B; 8 + 8 × 7

197

H&C of 196 + 18816 B; (196 × 196)/2

0.5 0.00621892 0.00000978045
1.0 0.00541699 0.00000868694
1.5 0.00503465 0.00000814127
2.0 0.00481035 0.00000781417

Proposition 3. For a finite number Z, the PCPNE will be the Grand Coalition structure as long as
a is sufficiently small, regardless of c.

Proof. Let uM
Z−1, uO

Z−2, and uE
Z−2 denote the Nash equilibrium payoffs for the multilateral

structure, the second-highest payoff formation for an odd number Z and an even number
Z, respectively, where the subscripts index the number of links the nation has. A straight-
forward calculation by using Equations (A1) and (A2) in Appendix A shows that when a
approaches to zero, uM

Z−1 is always greater than uO
Z−2 or uE

Z−2, as follows:

lim
a→0

(
uM

Z−1 − uO
Z−2

)
=

c(1 + c)[2Z(2Z + c− 1)− 1]

2(c + 2Z− 1)2[Z(2Z + c− 1)− 1]2
> 0,

lim
a→0

(
uM

Z−1 − uE
Z−2

)
=

c(1 + c)[2c(Z− 1) + 2Z(2Z− 3) + 1]

2(c + 2Z− 1)2[c(Z− 1) + Z(2Z− 3)]2
> 0.

�

This is good news for international environmental agreements in which the bene-
fits from R&D spillovers are perfectly excludable. In addition, the second-best PCPNE
alternates depending on whether or not the total number of nations is odd.

6.2. Large Economies with Transfers

Let Z− D be the number of nations that belong to clubs, with D, 1 ≤ D < Z denoting
the number of stand-alone nations. We allow the formation of multiple clubs. To fixate
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ideas and derive some intuition, we first consider the particular case in which the attrition
rate is zero. We later consider the general model in which the attrition rate is nonzero.

We summarize our findings with respect to the effect of an expansion in the num-
ber of nations on the size of a stable multilateral club in the absence of attrition in the
following proposition:

Proposition 4. In the absence of attrition (i.e., a = 0), the larger the global economyZ is, the larger
will be the size of the stable club Z− D, regardless of c.

Proof. Let uM
Z−D−1 denotes the equilibrium payoff when the nation belongs to the bilateral

or multilateral club with D stand-alone nations. When a = 0, the club is the PCPNE if

lim
a→0

(
uM

Z−D−1 − uS
)
=

c
2

[
1 + c

(c + Z)2 −
c + (Z− D)2

[c + D + (Z− D)[2(Z− D)− 1]]2

]
≥ 0

Let D be a number such that the above condition holds as an equation and
Θ ≡ Z− D ≥ 2 denote the maximum number of members. Then, applying the implicit
function theorem at D = D yields

∂Θ
∂Z

=
2(1 + c)Θ(Θ− 1)[c + Z + 2Θ(Θ− 1)]2

(c + Z)3
[
2c(Θ− 1) + Θ[2Θ2 + c− Z]

] > 0.

�

Table 4 shows the results of our analysis under the assumption that there is no attrition
and the scale parameter of the cost function is one. For economies of sizes 3 to 5, the
PCPNE feature bilateral clubs and 1 to 3 stand-alone nations. For economies of sizes 6 to 8,
the PCPNE are trilateral clubs with 3 to 5 stand-alone nations. Finally, for economies of
sizes 196 to 198, the PCPNE feature multilateral clubs containing 70 nations and 126 to 128
stand-alone nations.

Table 4. Stable size for a = 0 and c = 1.

Z 3~5 6~8 9~11 12~14 . . . 190~192 193~195 196~198 199~200

Z − D 2 3 4 5 . . . 68 69 70 71

One important result of the analysis is that the nations form, at most, one club. We
also find that the size of the stable multilateral club increases at a decreasing rate as the size
of the global economy increases. These implications follow from the fact that technological
spillovers associated with collaborative R&D efforts flow to nations that join clubs only.
In other words, the club good benefits club members only. Outsiders, on the other hand,
enjoy the by-product, which results from knowledge creation in clubs. This by-product is
the collective carbon emission reductions promoted by the club members. Therefore, there
is a tension between the incentive of being a member of a club and the incentive to free ride
on the emission reductions promoted by the collective efforts of club members.

The analysis demonstrates that the tension between the incentive to join the club and
the incentive to free ride produces the unconventional finding that the size of a stable
multilateral club increases with the size of the economy. Diamantoudi and Sartzetakis [20],
whose model builds on the model advanced by Barrett [18], demonstrated that the stable
coalition involves no more than four countries. More recently, Diamantoudi and Sartze-
takis [21] demonstrated that if the nations have perfect foresight about group deviations,
the stable coalitions can be larger and efficient. Our results are similar in this regard. We
must also emphasize that our stable coalitions emerge from a refinement of Nash equilib-
rium. This method is quite distinct from the most common notions of coalition stability
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used in the literature, such as the notion of “internal and external stability” originated by
d’Aspremont et al. [50]. Different methods typically generate different outcomes.

We now provide results for the general model in which a ≥ 0 and c = 1. Table 5 shows
that the types of stable club structures depend crucially on the number of nations Z and
the attrition rate a. As demonstrated above, if a = 0, the resulting stable club structures
will consist of a mix of multilateral and stand-alone nations, except for isolated bilateral
clubs; that is, for Z < 6, (Z, D) = (3, 1),(4, 2), and (5, 3). The equilibrium payoff for a
stand-alone nation in the singleton coalition structure increases with Z: it becomes larger
than the common equilibrium payoff earned by bilateral nations in isolated bilateral clubs
for all Z ≥ 6.

Table 5. Stable coalition structures and ranges for the attrition rate.

Z Bilateral or Multilateral Hub & Spokes

4
D = 2 D = 1

0~0.3340 ~0.4157

5
D = 3 D = 2 D = 2 D = 1

0~0.1612 ~0.1930 ~0.2961 ~0.3899

6
D = 3 D = 2 D = 1

0~0.1938 ~0.2855 ~0.3775

7
D = 4 D = 3 D = 3 D = 2 D = 1

0~0.1153 ~0.1563 ~0.1943 ~0.2837 ~0.3714

8
D = 5 D = 4 D = 3 D = 2 D =1

0~0.0443 ~0.1342 ~0.2045 ~0.2855 ~0.3687

9
D = 5 D = 4 D = 4 D = 3 D = 2 D = 1

0~0.0898 ~0.1256 ~0.1385 ~0.2135 ~0.2887 ~0.3676

10
D = 6 D = 5 D = 4 D = 3 D = 2 D = 1

0~0.0505 ~0.1021 ~0.1540 ~0.2218 ~0.2925 ~0.3676

For a > 0 and c = 1, we see that as the attrition rate increases, the stable club structures
contain, initially, a mix of bilateral or multilateral and stand-alone nations. Then, for higher
attrition rates, it becomes a mix of hub-and-spoke clubs and stand-alone nations. For still
higher attrition rates, it features a mix of isolated bilateral clubs and stand-alone nations.
Finally, for sufficiently high attrition rates, it consists of stand-alone nations only.

7. Conclusions

Several nations are currently engaged in the production of CCS research in collabora-
tive R&D networks. These networks are bilateral, multilateral, and hub-and-spoke. Such
networks are promising additions to the Paris Agreement. Hub-and-spoke networks, in par-
ticular, may allow the hub nation to partake in knowledge spillovers from several partners.
The hub nation is likely to benefit from novel and non-redundant pieces of knowledge.

Our theoretical model also builds on recent empirical findings of studies of collabo-
rative R&D that demonstrate that the productivity of R&D collaborations may crucially
depend on some aspects related to social interactions among researchers. There is evidence
that productivity in research teams correlates positively to team cohesiveness. A team is
more cohesive the stronger the ties are among its team members. There is also evidence
that cohesive R&D collaborations develop in order to alleviate or resolve moral hazard
problems within research teams. Thus, there appears to be a chain linking team efforts to
alleviate inherent moral hazard problems to the level of trust shared by team members and
the latter to the team’s research productivity. We incorporate these notions in our model in
a synthetic form. We assume that research collaborations are typically subject to relational
attrition, which erodes their efficiency rate. We also allow team size to erode the team’s
efficiency rate.
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We demonstrate that, conditional on the magnitude of the attrition rate, multilateral,
hub-and-spoke, and isolated bilateral agreements can be stable if clubs do not allow income
transfers. For sufficiently small attrition rates, multilateral clubs are Pareto-superior to
other forms of agreements because the benefits generated by R&D sharing increase with
the number of nations that collaborate (directly or indirectly). Hub-and-spoke clubs are
second best.

If clubs allow transfers, multilateral clubs are never coalition-proof. Hub-and-spoke
and isolated bilateral clubs are stable for different attrition rates. Comparing the stability
results for clubs that prohibit transfers with clubs that allow transfers, we demonstrate that
global welfare improves if clubs prohibit transfers for sufficiently low attrition rates.

We also considered the effects associated with enlarging the global economy. The
findings depend on whether or not clubs allow transfers. If clubs allow transfers, the Grand
Coalition is never stable. The size of a stable multilateral club increases as the size of the
global economy expands in the absence of attrition. We also demonstrate that for positive
attrition rates, all types of club structures can be stable as the size of the global economy
expands. On the other hand, if clubs do not allow transfers, the Grand Coalition is stable
for sufficiently small attrition rates even if the number of nations is very large. We also
show that several other structures, with the participation of almost all nations on the globe,
are stable depending on the value of the attrition rate. The type of “second-best” stable
structure differs if the number of nations in the globe is even or odd. Our findings enable
us to conjecture that the current international CCS networks may be self-enforcing and may
still increase in size, even in the presence of significant attrition.

There are, at least, two important avenues for future work. First, we do not consider
income or development asymmetries across nations. Given the high concentration of
world income and the different development stages that we observe around the globe, one
should take income or development asymmetries into account in a subsequent analysis
that examines the formation and stability of climate clubs. Such an analysis will inevitably
confront equity and efficiency tradeoffs, which immediately leads one to give serious
consideration to valid arguments that rely on the Environmental Kuznets Curve, for
example, and shall thus be prepared to incorporate political economy issues into the
theoretical framework. Second, among promising future technologies to be deployed
to mitigate the ill effects of global warming are geoengineering methods, such as solar
radiation management, which can be utilized in conjunction or in lieu of current abatement
technologies if the latter are not successful in meeting the ambitious PA goals. Incorporating
geoengineering methods in the arsenal of weapons that climate clubs may utilize to mitigate
global warming shall lead to interesting tradeoffs, including intertemporal choices between
net-zero emission and fossil fuel utilization strategies. Future climate clubs may be fairer
and broader in terms of technological options.
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Appendix A. Proof of Proposition 1

Solving the system of first-order conditions for the singleton (i.e., structure with stand-
alone nation i = 1, · · · . . . , Z) yields the Nash equilibrium payoffs: uS = I−C(qS)+v (ZqS).
In multilateral networks containing Z nations, each nation forms Z− 1 bilateral coalitions.
The first-order conditions are as follows:

v′(G) = C′
(

qM
i (·)

)
e −1(a, Z− 1), i = 1, . . . , Z, (A1)
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which yields qM
i = qM since gM

i = gM for i = 1, . . . , Z. Since the maximum number of links
for Z members is Z(Z− 1)/2, subtracting 1 link between nations 1 and 2 from the multilat-
eral coalitions structure (i.e., Z(Z− 1)/2− 1 bilateral agreements) can be characterized by
Equation (A1) for i = 3, . . . , Z and the following first-order conditions:

v′(G) = C′
(
qj(·)

)
e −1(a, Z− 2), j = 1, 2. (A2)

Setting e (a, ni − 1) = [1 + a(ni − 1)]−1, v(G) = G(1 − G/2), and
qi = [1 + a(ni − 1)]gi−∑j 6=i qj/ni in Equations (A1) and (A2) and comparing the resulting
utilities yield the corresponding cut-off attrition value for the PCPNE coalition structures.

For Z = 3, we know that for a > 0 uP
1 = uP

2 > uP
3 and uH

1 > uH
2 = uH

3 from
Lemma 1 and 2, respectively. From the conditions that determine the Nash equilibria for
the abovementioned contribution games, we obtain

gS =
1

3 + c
, gP

1 = gP
2 =

3
2∆0

, gP
3 =

(1 + a)2

∆0
, gH

1 =
(1 + a)(5 + 7a)

∆1
,

gH
2 = gH

3 =
3(1 + 2a)(3 + 5a)

2∆1
, gM =

5

3 [5 + c(1 + 2a)2]
,

where ∆0 ≡ 4 + c + a(1 + c)(2 + a), ∆1 ≡ 14 + 45a + 37a2 + 3c(1 + a)2(1 + 2a)2, and the
superscripts {S, P, H, M} denote equilibrium values for respective coalitional structure,
that is, Singleton, Partial (isolated bilateral), Hub & Spokes, and Multilateral. Then, we
obtain the respective utilities:

uS = I +
9 + 5c

2(3 + c)2 , uP
1 = uP

2 = I +
[4 + a(2 + a)]2 + c(1 + a)2[7 + 2a(2 + a)]

2∆2
0

,

uP
3 = I +

16 + a(2 + a)[8 + a(2 + a)] + c[7 + a(2 + a)[8 + a(2 + a)]]
2∆2

0
,

uH
1 = I +

[14 + a(45 + 37a)]2 + 3c(1 + a)2(1 + 2a)2[25 + a(84 + 71a)]
2∆2

1
,

uH
2 = uH

3 = uH
1 −

9ac(1 + a)2(1 + 2a)2(2 + 3a)
2∆2

1
, uM = I +

25 + 9c(1 + 2a)2

2 [5 + c(1 + 2a)2]
2 .

Comparing these equilibrium utility levels yields that: uP
1 = uP

2 ≥ (<)uS if a ≤ (>)aP,
uH

2 = uH
3 ≥ (<)uP

1 = uP
2 if a ≤ (>)aH , uM ≥ (<)uH

1 if a ≤ (>)a0, and uM ≥ (<)uH
2 = uH

3
if a ≤ (>)aM, where cut-off values depend on a scale parameter c as in Table A1.

Table A1. Cut-off attrition values.

c a0 aM aH aP

0.5 0.0612 0.1441 0.1350 0.5667
1.0 0.0612 0.1160 0.1350 0.4426
1.5 0.0612 0.1042 0.1350 0.3969
2.0 0.0612 0.0978 0.1350 0.3726

Although an increase in c changes the respective attrition range, starting from a = 0,
the PCPNE structure is always the equilibrium for the multilateral, the hub-and-spoke, the
stand-alone, and the singleton as attrition rates increase, which are summarized in Figure 1.
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By subtracting another link from the multilateral structure, comparing all the corre-
sponding utilities, and repeating a similar way, we obtain the PCPNE for Z = 4, 5, 6 nations.
The results are summarized in Table 3 and Figures 4–6.

Furthermore, if Z ≥ 4 is an even number, the second-best stable formation is charac-
terized by the Equation (A2) for i = 1, . . . , Z, which implies that each nation forms Z− 2
bilateral coalitions, and hence, the total number of links is Z(Z− 2)/2 in the second-best
coalitional structure. For an odd number: Z ≥ 5, it is impossible that each nation links up
with an identical number of nations. In this case, the second-best stable formation becomes
the hub-and-spoke structure, i.e., one country is a hub, linking with Z − 1 nations, and
each spoke nation forms Z− 2 bilateral agreements. The corresponding equilibria can be
characterized by the Equation (A1) for the hub nation and Equation (A2) for the other Z− 1
members. In this case, the total number of links is (Z− 1)2/2. These second-best stable
formations and those cut-off attrition values are summarized in Table 3.

Appendix B. Proof of Proposition 2

An international arbitrator promotes the intra-coalition income transfers according
to the Nash bargaining formula after observing coalition members’ non-cooperative and
simultaneous contributions to the public good. In the hub-and-spoke partial coalitional
structure, hub nation 1 forms Z−D− 1 bilateral coalitions, while D ∈ [1, Z) nation(s) form
singleton coalition(s). In the third stage, the arbitrator implements intra-coalitional transfers
for all {1, i}, i = 2, . . . , Z − D coalitions. The first-order conditions to the optimization
problems imply that all transfers satisfy u1 = ui and t1i + ti1 = 0 for i = 2, . . . , Z − D,
which yields

tH
1i (g1, · · · , gZ−D) =

1
Z− D

[
Z−D

∑
j=1,j 6=i

C
(

qH
j

)
− (Z− D− 1)C

(
qH

i

)]
, i = 2, . . . , Z− D.

The first-order conditions for hub 1 and spoke i = 2, . . . , Z−D in the second stage are

v′(G) =
C′
(
qH

1 (·)
)

e −1(a, Z− D− 1)
Z− D

, (A3)

v′(G) =
C′
(
qH

i (·)
)

e −1(a, 1)
Z− D

. (A4)

For the second-order conditions, see Appendix C.
Summing Equations (A3) and (A4) in the symmetric equilibrium with qH

1 = q̂H
1 , and

qH
i = q̂H

s for i = 2, . . . , Z− D, yields the Samuelson condition for Z− D nations’ hub-and-
spoke structure; i.e., the sum of nations’ MRS of the public good in the LHS should equal
to its MRT in the RHS:

(Z− D)v′(G) =
C′
(
q̂H

1
)
e−1(a, Z− D− 1) + (Z− D− 1)C′

(
q̂H

s
)
e−1(a, 1)

Z− D
.

In the multilateral partial coalitions, the solution to the arbitrator’s problem in the third
stage satisfies that u1 = u2 = · · · = uZ−D and ∑ Z−D

i=1 ti = 0, which yields the intra-coalition
income transfers for i = 1, . . . , Z− D as follows:

tM
i (g1, . . . , gZ−D) =

1
Z− D

[
(Z− D− 1)C

(
qM

i

)
−∑

j 6=i
C
(

qM
j

)]
.

The first-order condition for i = 1, . . . , Z− D in the second stage is

v′(G) =
C′
(
qM

i (·)
)
e−1(a, Z− D− 1)
Z− D

, (A5)
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which yields qM
i = q̂M since gM

i = ĝM for i = 1, . . . , Z−D, where the equilibrium variables
in the existence of intra-coalitional income transfers are denoted with a hat (see also
Appendix C). Summing Equation (A5) yields the Samuelson condition for Z− D members’
multilateral coalitions structure as follows:

(Z− D)v′(G) = C′
(

q̂M
)

e−1(a, Z− D− 1).

Setting e (a, ni − 1) = [1 + a(ni − 1)]−1, v(G) = G(1− G/2), and qi = [1 + a(ni − 1)]
gi−∑j 6=i qj/ni in Equations (A3)–(A5) yields the resulting utilities. By subtracting another
link from the abovementioned structure, comparing all the corresponding utilities and
repeating a similar way, we obtain the corresponding cut-off attrition values for the PCPNE
structures.

In the case of Z = 3 and D = 0, we obtain the following results:

ĝP
1 = gP

2 =
3

∆2
, ĝP

3 =
(1 + a)2

∆2
, ĝH

1 =
(1 + a)(5 + 7a)

∆3
,

ĝH
2 = ĝH

3 =
3(1 + 2a)(3 + 5a)

2∆3
, ĝM =

5

15 + c (1 + 2a)2 ,

where ∆2 ≡ 7 + c + a(1 + c)(2 + a) and ∆3 ≡ 14 + 45a + 37a2 + c(1 + a)2(1 + 2a)2. Then,
we have the corresponding utilities as follows:

ûP
1 = ûP

2 = I +
[7 + a(2 + a)]2 + 2c(1 + a)2[5 + 2a(2 + a)]

2∆2
2

,

ûP
3 = I +

49 + 13c + a(2 + a)(1 + c)[14 + a(2 + a)]
2∆2

2
,

ûM = I +
3 [75 + 7c(1 + 2a)2]

2 [15 + c (1 + 2a)2]
2 ,

ûH = I +
[14 + a (45 + 37a)]2 + c (1 + a)2(1 + 2a)2[19 + a (60 + 47a)]

2∆2
3

.

By comparing these payoffs, we obtain that: ûP
1 = ûP

2 ≥ (<)uS if a ≤ (>)âP,
ûP

3 >max
[
ûM, ûH , ûP

1 , ûP
2 , uS] for a ≤ âP, ûH ≥ (<)uS if a ≤ (>)âH , ûH > ûP

1 = ûP
2

for a ≤ âH , ûM ≥ (<)ûH if a ≤ (>)a1, where cut-off values are summarized as in Table A2.

Table A2. Cut-off attrition values.

c a2
^
aP

^
aH

0.5 0.1454 0.4034 0.4832
1.0 0.1404 0.4705 0.5329
1.5 0.1365 0.5084 0.5649
2.0 0.1333 0.5323 0.5871

These results are in the proof and summarized in Figure 2.

Appendix C. Second-Order Conditions for the Maximization Problems

If there is no income transfer, then all the second-order conditions are characterized by

∂2ui

∂g2
i
= −C′′ (qi(·)) e −1(a, ni − 1) + v′′ (G) < 0.
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If there exist income transfers, the first- and second-order conditions in the hub-and-
spoke club for the arbitrator’s problems, respectively, are

∂(u1 − u)(ui − u)
∂t1i

= ui − u1 = 0,
∂2(u1 − u)(ui − u)

∂t2
1i

= −2 < 0, i = 2, . . . , Z− D,

where u1 = I + v(G)− C(q1) + ∑Z−D
i=2 t1i, ui = I + v(G)− C(qi) + ti1, and t1i + ti1 = 0.

From (A3) and (A4), the second-order conditions for hub 1 and spoke i = 2, . . . , Z − D,
respectively, are as follows:

∂2u1

∂g2
1

= −C′′ (q1) e −1(a, ni − 1)
ni

+ v′′ (G) < 0,

∂2ui

∂g2
i
= −C′′ (qi) e −1(a, 1)

ni
+ v′′ (G) < 0.

For the multilateral coalition structures, the first- and second-order conditions for the
arbitrator’s problems in the third stage, respectively, are

∂∏Z−D
i=1 (ui − u)

∂ti
= (uZ−D − ui)(u1 − u)× · · · × (uZ−D−1 − u) = 0, i = 1, . . . , Z− D,

∂2∏Z−D
i=1 (ui − u)

∂t2
i

= −2(u1 − u)× · · · × (uZ−D−1 − u) < 0, i = 1, . . . , Z− D,

where ui = I + v(G)− C(qi) + ti and ∑Z−D
i=1 ti = 0. From (A5), the second-order conditions

in the second stage are as follows:

∂2ui

∂g2
i
= −C′′ (qi) e −1(a, ni − 1)

ni
+ v′′ (G) < 0, i = 1, . . . , Z− D.
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