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Abstract: We introduce a non-cooperative game model in which players’ decision nodes are par-
tially ordered by a dependence relation, which directly captures informational dependencies in the
game. In saying that a decision node v is dependent on decision nodes v1, . . . , vk, we mean that the
information available to a strategy making a choice at v is precisely the choices that were made at
v1, . . . , vk. Although partial order games are no more expressive than extensive form games of imper-
fect information (we show that any partial order game can be reduced to a strategically equivalent
extensive form game of imperfect information, though possibly at the cost of an exponential blowup
in the size of the game), they provide a more natural and compact representation for many strategic
settings of interest. After introducing the game model, we investigate the relationship to extensive
form games of imperfect information, the problem of computing Nash equilibria, and conditions that
enable backwards induction in this new model.

Keywords: game theory; non-cooperative games; Nash equilibrium; backwards induction;
computational complexity

1. Introduction

The two most important game models in non-cooperative game theory are normal
form games and extensive form games. These games are distinguished by the information
that players have about the strategies of other players. In normal form games, players
must select and commit to strategies without any information relating to the strategies of
others. In contrast, in extensive form games, players make moves alternately over time
and, during play, their strategy may be informed by moves made previously. Variations of
extensive form games—e.g., of imperfect information or recall—make it possible to capture
the information available to a player when called upon to make a move.

In this article, we introduce partial order games. The key distinguishing feature of partial
order games is that they are equipped with a dependence relation, which explicitly captures
the informational dependencies between decision nodes. In saying that a decision node
v is dependent on decision nodes v1, . . . , vk, we mean that the information available to a
strategy making a choice at v is precisely the choices that were made at v1, . . . , vk. Observe
that the informational dependencies captured by a dependence relation give rise to a partial
temporal order over choices: in this case, the choices for v1, . . . , vk must strictly precede the
choice for v. However, the temporal ordering induced in this way is indeed partial: it may
be that two choices v′ and v′′ are independent, in which case one can say nothing about
their temporal order.

In a technical sense, partial order games are no more expressive than extensive form
games of imperfect information: one of our key results is to show that every partial order
game can be transformed into a strategically equivalent extensive form game of imperfect
information. However, for some settings, partial order games have significant advantages
over their extensive form representation:
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• First, informational dependencies in partial order games are explicitly captured, while
in extensive form games, they are left implicit in the information sets of the game. As a
consequence, some settings are much more transparently and naturally represented
using partial order games, compared to the extensive form.

• Second, partial order games can be exponentially more compact than their extensive
form. From a purely practical point of view, this means that some scenarios with a
compact partial order representation cannot be handled (by people or by a computer)
in their extensive form.

We analyse partial order games by means of Nash equilibrium—arguably game theory’s
most prominent non-cooperative solution concept—and the solutions given by a natural
backwards induction procedure for partial order games defined on the dependence relation.
Here, we give special attention to the computational complexity of calculating such solutions
in partial order games. The remainder of this article is structured as follows.

• We begin by briefly recalling some necessary concepts from graph theory and game
theory, and then introduce the formal framework of partial order games.

• As we are interested in the computational properties of partial order games, we
introduce a compact representation for strategies and utility functions in partial order
games, based on Boolean circuits, which enables us to investigate questions about
their computational complexity.

• In Section 4, we study the relationship of our game model to other game models:
partial order Boolean games [1], Multi-Agent Influence Diagrams (MAIDs) [2,3], and
extensive form games of imperfect information. Our main result in this section is to
present a technique for translating partial order games into strategically equivalent
extensive form games, although this translation comes at the cost of an exponential
blowup in the size of the game. This leads us into a discussion of the use of partial
order games as a compact representation of extensive form games.

• In Section 5, we investigate the problem of computing Nash equilibria in partial order
games. For example, we show that checking whether a game has any pure strategy
Nash equilibria is NEXPTIME-complete.

• In Section 6, we study backwards induction in partial order games. As partial order
games are inherently games of imperfect information, it follows that backwards
induction does not always work for partial order games. We thus investigate cases
where forms of backward induction work for partial order games, and present a
condition on games that we call fit for backwards induction, which is sufficient to allow
backwards induction.

• We conclude with a brief discussion and pointers for future work.

2. Preliminary Definitions

We begin by recalling some concepts from graph theory and game theory, which we
use in the remainder of the paper.

2.1. Directed Acyclic Graphs and Trees

The games in this paper are defined on directed acyclic graphs (DAGs). Formally, a
directed acyclic graph is a pair (V, E), where V = {v1, . . . , v|V|} is a finite set of vertices
or nodes and E ⊆ V ×V a set of directed edges (or arcs) on V. We assume E to be acyclic
(and thus also irreflexive). We say that vertex u is a parent of vertex v, and v a child of u,
if (u, v) ∈ E. We occasionally also use infix notation and write uEv for (u, v) ∈ E. The
depth of a vertex v, denoted by depth(v), is defined recursively such that if v has no parents,
depth(v) = 0, and otherwise, depth(v) equals the maximum depth of v’s parents plus 1.
Formally,

depth(v) =

{
0 if v has no parents,
max(u,v)∈E depth(u) + 1 otherwise.



Games 2022, 13, 2 3 of 49

We say that vertex v is reachable from vertex u if u = v, or if there is some vertex w
such that w is reachable from u and (w, v) ∈ E, that is if u E∗ v, where E∗ is the reflexive
and transitive closure of E.

A topological sorting is a permutation τ = (u1, . . . , u|V|) of the vertices v1, . . . , v|V|
in V such that ui E uj implies i < j. Every DAG (V, E) admits at least one topological
sorting of its vertices; this well-known fact will be important and useful in our study of
partial order games.

A tree is a directed acyclic graph in which there is a unique vertex with no parents (the
root of the tree, often denoted by v0), and where every non-root vertex has a single parent.
If a tree is finite, then, as it is acyclic, some vertices will have no children: we refer to these
as the leaves of the tree. Observe that the root of the tree is the unique vertex of depth 0.

2.2. Normal-Form Games

We use normal-form games as the basis of our game-theoretic analysis of partial order
games. Normal-form games are defined by a set of players, the strategies the players have
at their disposal, and the preferences the players have over the outcomes that players
choosing their strategies give rise to. Formally, a normal-form game is given by a tuple
(N, (Si)i∈N , (ui)i∈N), where N = {1, . . . , |N|} is the set of players, Si is the set of (pure)
strategies available to player i, and ui : S1 × · · · × S|N| → R is a utility function for each
player i [4]. We refer to tuples s = (s1, . . . , s|N|) in S1 × · · · × S|N| as strategy profiles.

Nash equilibrium is the most important solution concept in non-cooperative game
theory; it captures the idea of a joint course of action that is stable in the sense that no
player has an incentive to deviate unilaterally from it. Furthermore, in this paper, it is one
of the main analytic tools by means of which we evaluate partial order games. Formally, a
strategy profile s = (s1, . . . , s|N|) is a Nash equilibrium if, for all players i and strategies
s′i ∈ Si, we have

ui(s) ≥ ui(s−i, s′i),

where (s−i, s′i) = (s1, . . . , si−1, s′i, si+1, . . . , s|N|).
We say that two normal-form games (N, (Si)i∈N , (ui)i∈N) and (N′, (S′i)i∈N′ , (u′i)i∈N)

are strategically isomorphic if there are bijections φ : N → N′ and ψi : Si → S′f (i) such that,
for all players i in N and all strategy profiles s = (s1, . . . , sn) and s′ = (s′1, . . . , s′n) we have

ui(s) ≤ ui(s′) if and only if u′φ(i)(ψ(s)) ≤ u′φ(i)(ψ(s
′)),

where ψ(s) = (ψi(s1), . . . , ψn(sn)) and ψ(s′) = (ψi(s′1), . . . , ψn(s′n)).
Given a normal-form game, two strategies si, s′i in Si for a player i are said to be

equivalent, in symbols si ∼ s′i, if uj(s′′−i, si) = uj(s′′−i, s′i) for all profiles s′′−i ∈ S1 × · · · ×
Si−1 × Si+1 × · · · × S|N| and all players j. Let [si]∼ be the equivalence class of si under
the equivalence relation ∼, and denote [s]∼ = ([s1]∼, . . . , [s|N|]∼). Following the work
in [5], we define the reduced normal-form of a normal-form game (N, (Si)i∈N , (ui)i∈N)
as the game (N, (S′i)i∈N , (u′i)i∈N) where for each player i, S′i = {[si]∼ : si ∈ Si} and
u′i([s]∼) = ui(s) for all strategy profiles s = (s1, . . . , s|N|). Two games are then said to be
strategically equivalent if they induce strategically isomorphic reduced normal-forms.

2.3. Extensive-Form Games

An extensive-form game (of imperfect information) is based on a directed tree (V, E)
and is played by a set of players N choosing from a set of actions A, starting from the
root of the tree. Within the set V of vertices, we distinguish between action or decision
nodes, which have children, and leaf nodes, which have no children. The set of action
nodes we denote by D and the set of leaf nodes by L. With every action node v in D we
associate a unique player iv, who is then said to be active at v, and an action set Av ⊆ A
such that every outgoing edge (v, u) is associated with a unique action in Av. Let Vi denote
the set of action nodes associated with player i, that is, Vi = {v ∈ V : iv = i}, and let
Ai = {a ∈ Av : v ∈ Vi}.
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Every vertex v is identified with a unique sequence of actions, called a history, which
leads from the root v0 to v. Histories associated with leaf nodes are referred to as terminal
histories. We will denote the history associated with vertex v by hv. We can also think of
vertices v as histories: vertex v is the sequence hv = (a1, . . . , adepth(v)) of actions for which
there is a path v0 = w0 . . . , wdepth(v) = v such that (wi, wi+1) is associated with action ai+1
for every 0 ≤ i < depth(v). The root v0 is thus the empty sequence (). Thus, we also find
that vEw if and only if w = va for some a ∈ Av.

For every player i, we have a partitioning Ii = {I1, . . . , I|Ii |} of their decision
nodes Vi into (non-empty) information sets. We write [v] for the information set ver-
tex v belongs to. Here, it is understood that Au = Av, whenever u and v are in the same
information set I. We then also write AI for Au and Av. Information sets may be single-
tons. If all information sets for all players are singletons, we say the game is of perfect
information and do not distinguish between information set {v} and the node v itself, if
no confusion is likely.

Finally, each player i’s preferences are represented by a utility value uh
i ∈ R at each

terminal history/leaf h. See Figure 1 for an example.Version December 9, 2021 submitted to Games 4 of 51
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A strategy for player i in an extensive-form game is a function si : Ii → Ai such that
si(I) ∈ AI for all I ∈ Ii. The set of strategies available to player i we then denote by Si.
A strategy profile is then a sequence s = (s1, . . . , s|N|) of strategies, one for each player.
Let D = {v1, . . . , v|D|}. Then, every strategy profile s = (s1, . . . , s|N|) defines an action
profile as = (av1 , . . . , av|D|) such that av = si([v]) and where i is a player who is active at v.
Observe that a strategy profile s = (s1, . . . , s|N|) also defines a unique path w0, . . . , wk from
the root w0 to a leaf wk with history hs = (a1, . . . , ak) defined such that, for all 0 ≤ i < k,
edge (wi, wi+i) is associated with action ai = si([wi]), where i is the player who is active
at wi. Finally, we have for each player i a utility function ui : S1× · · · × S|N| → R associating

each strategy profile s = (s1, . . . , s|N|) with a real value such that ui(s) = uhs
i .

The players N of an extensive-form game, together with their strategies Si and their
utilities ui, induce a normal-form game (N, (Si)i∈N , (ui)i∈N). Note that there may be
multiple strategy profiles giving rise to the same terminal history, that is, it may well be
that hs = hs′ , even though s 6= s′. Therefore, the size of this normal-form game may
be exponential in the size of the underlying extensive-form game, if represented naively.
This is because there are ∏I∈I |AI | = O(|A||V|) strategy profiles, which are implicit in the
definition of an extensive-form game: see Figure 2 for an illustration.
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b00 b01 b10 b11

a0d0 1, 0, 0 0, 0, 1 0, 1, 0 1, 1, 0

a0d1 1, 0, 0 0, 0, 1 0, 1, 0 1, 1, 0

a1d0 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1

a1d1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1

c0

b00 b01 b10 b11

a0d0 1, 0, 0 1, 0, 1 0, 1, 0 0, 0, 1

a0d1 1, 0, 0 1, 0, 1 0, 1, 0 0, 0, 1

a1d0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

a1d1 1, 0, 1 1, 0, 1 1, 0, 1 1, 0, 1

c1

Figure 2. The strategic form game associated with the extensive-form game in Figure 1.

2.4. Boolean Circuits

In computer science, Boolean circuits are a well-established model for computing
Boolean functions (cf., e.g., [6,7]). In this paper, we will make extensive use of them
to concisely represent strategies and utility functions. We will here briefly review their
definition, largely following Jukna’s exposition [7].

A k-ary Boolean function is a function β : {0, 1}k → {0, 1}, where we allow k = 0.
The base of a Boolean circuit is given by a set B = {β1, . . . , βk} of Boolean functions. In
this paper, we will restrict attention to the set of classical Boolean functions B = {¬,∧,∨}
(“not”, “or”, and “and”, respectively), which is known to be functionally complete (i.e.,
sufficient to define any Boolean function).

Formally, a Boolean circuit (or straight line program) on n variables x1, . . . , xn over
base B is given by a sequence of t ≥ n gates γ1, . . . , γt. The first n gates are given by the vari-
ables, that is, γ1 = x1, . . . , γn = xn, and are also referred to as input gates. Another subset
of gates is singled out as the set of output gates. Boolean formula over variables x1, . . . , xn
are thus represented by a Boolean circuit with only one output gate. Each subsequent
gate γi is the application of a k-ary Boolean function βi in the base B to k previous gates,
that is, γi = βi(γj1 , . . . , γjk ), where j1, . . . , jk < i. The variables take values in {0, 1}. Given
values α1, . . . , αn in {0, 1} for the variables x1, . . . , xn, one can inductively associate each
gate with a value α(γi) such that α(xi) = αi, if 1 ≤ i ≤ n, and

α(βi(γj1 , . . . , γjk )) = βi(α(γj1), . . . , α(γjk )),

if n < i ≤ t. A Boolean circuit C given by γ1, . . . , γt on n variables x1, . . . , xn and with m
output gates γj1 , . . . , γjm then computes the function φC : {0, 1}n → {0, 1}m that, on values
α = (b1, . . . , bn) for the input gates, yields φC(α) = (α(γj1), . . . , α(γjm)).

A Boolean circuit is commonly depicted as a directed acyclic graph (V, E), with the
gates as vertices, that is, V = {γ1, . . . , γn}, and (γi, γj) ∈ E whenever γi = βi(γj1 , . . . , γjk )
and γj = γj` for some 1 ≤ ` ≤ n. For examples of Boolean circuits, also see Figures 3 and 4,
below.

The size of a Boolean circuit given by gates γ1, . . . , γt on variables x1, . . . , xn is given
by the number t− n of its gates minus the input gates. It is a well-established fact that the
problem of computing φC(α) for given values α ∈ {0, 1}n for C’s variables, which is also
known as the Circuit Value Problem or Circuit Evaluation Problem, is complete for P under
uniform AC0-reductions, and therefore can be computed in polynomial time (see in [8],
p. 59).
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3. Partial Order Games177

We now introduce the framework of partial order games. The basic idea is that,178

as in extensive form games, the game contains a number of decision nodes, which are179

partioned among the players. However, play in the game is not defined by a game tree.180

Instead, partial order games have a binary dependence relation over decision nodes. This181

dependence defines the information available to a player when it makes a choice. If a182

decision node v for player i is dependent on decision nodes v1, . . . , vk, then this means183

that the information available to a strategy when making a choice at v is precisely the184

choices that were made at decision nodes v1, . . . , vk. To play a partial order game, a185

player must choose a selection of strategies (we call them vertex strategies), one for each186

of their decision nodes. A strategy for a decision node v must select a choice for that187

decision node taking as input the choices that were made for the decision nodes v1, . . . , vk upon188

which it is dependent. In this way, we have an explicit representation of the information189

available when making a choice, in contrast to the use of information sets in extensive190

form games. Utilities in partial order games are not associated with individual nodes (as191

in extensive form games), but derive from the total profile of actions that were made.192

Our usual way of thinking about extensive form games is as players alternating to193

make moves, working their way down the game tree to a leaf node; upon reaching a194

leaf node, the game is over. Thinking about games in this way naturally gives rise to a195

temporal order over choices in the game: a choice is made for the root node first, and196

then successive nodes in the game tree. Partial order games are more abstract than this.197

They induce only a partial temporal ordering over decision nodes: while the choices for198

v1, . . . , vk must strictly precede the choice for v if v is dependent on v1, . . . , vk, it may well199

be that decision nodes are independent: if nodes v and v′ are in disconnected components200

of the dependence graph, then we can say nothing about their temporal order.201

Let us consider an example.202

v1 1 : a, b

v2 2 : c, d

v3 3 : e, f v4 1 : g, h

u1 u2 u3

aceg 3 0 2
aceh 2 1 1
ac f g 3 3 3
ac f h 1 2 2
adeg 0 0 4
adeh 3 1 0
ad f g 0 3 2
ad f h 0 0 2

u1 u2 u3

bceg 2 3 0
bceh 1 2 1
bc f g 3 3 3
bc f h 2 1 2
bdeg 4 0 0
bdeh 0 3 1
bd f g 2 0 3
bd f h 2 0 0

Figure 3. A simple example of a partial order game. On the left, the DAG, where each vertex v
is labelled i : x, y, where i is the player active at the respective vertex and x and y are the actions
available to i at v. On the right, the representation of the utility function which associates a numeric
value with each action profile.
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Figure 3. A simple example of a partial order game. On the left, the DAG, where each vertex v
is labelled i : x, y, where i is the player active at the respective vertex and x and y are the actions
available to i at v. On the right, the representation of the utility function which associates a numeric
value with each action profile.

Figure 4. The Boolean circuit C f 14
v3

representing strategy f 14
v3

: Av1 × Av2 → Av3 of Example 1. The
value of x0 represents the choice for a or b at v1, the value of x1 the choice for c or d at v2, and the
value of y0 the choice for e or f at v3. The local indices of a, c, and e are given by 0, and those of b, d,
and f by 1. The instantiation on the right thus represents that f 14

v3
(ad) = f .

3. Partial Order Games

We now introduce the framework of partial order games. The basic idea is that, as in
extensive form games, the game contains a number of decision nodes, which are partioned
among the players. However, play in the game is not defined by a game tree. Instead,
partial order games have a binary dependence relation over decision nodes. This dependence
defines the information available to a player when it makes a choice. If a decision node v
for player i is dependent on decision nodes v1, . . . , vk, then this means that the information
available to a strategy when making a choice at v is precisely the choices that were made at
decision nodes v1, . . . , vk. To play a partial order game, a player must choose a selection of
strategies (we call them vertex strategies), one for each of their decision nodes. A strategy
for a decision node v must select a choice for that decision node taking as input the choices
that were made for the decision nodes v1, . . . , vk upon which it is dependent. In this way, we have
an explicit representation of the information available when making a choice, in contrast to
the use of information sets in extensive form games. Utilities in partial order games are not
associated with individual nodes (as in extensive form games), but derive from the total
profile of actions that were made.

Our usual way of thinking about extensive form games is as players alternating to
make moves, working their way down the game tree to a leaf node; upon reaching a leaf
node, the game is over. Thinking about games in this way naturally gives rise to a temporal
order over choices in the game: a choice is made for the root node first, and then successive
nodes in the game tree. Partial order games are more abstract than this. They induce only a
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partial temporal ordering over decision nodes: while the choices for v1, . . . , vk must strictly
precede the choice for v if v is dependent on v1, . . . , vk, it may well be that decision nodes
are independent: if nodes v and v′ are in disconnected components of the dependence graph,
then we can say nothing about their temporal order.

Let us consider an example.

Example 1. Consider the three-person partial order game depicted in Figure 3, with the directed
acyclic graph it is based on given on the left. To the right of each vertex v, we have indicated the
player iv and the actions they have at their disposal at v. For instance, at vertex v2, player 2 can
choose among the actions c and d. If all players make a choice at their respective vertices, an action
profile results, which then is associated with a utility value. For instance, if player 1 chooses a at v1
and h at v4, player 2 chooses c at v2, and player 3 chooses f at v3, the action profile (a, c, f , h) (also
denoted by ac f h) results, yielding utility values of 1 to player 1, and 2 to players 2 and 3. The table
on the right summarises the utilities the players get under the different action profiles that may be
played. Note that in this game there are 24 possible action profiles.

The crucial feature of partial order games, however, is that the players can make their choices at
a given vertex v depending on the choices the other players make at the parents of v. For instance,
player 2 could adopt the strategy to play c at v2, if player 1 chooses a at v1, and plays d otherwise.
Accordingly, player 2 has 22 = 4 strategies at their disposal at v2. As v1 does not have any parents,
player 1 has only two strategies at their disposal at v1, but they have 22 = 4 strategies at v4.
Meanwhile, player 3 has 24 = 16 strategies at v3. A strategy profile specifies a strategy for each
player at each of their vertices. Accordingly, in this game there are 2× 22 × 24 × 22 = 29 = 512
possible strategy profiles.

The number of strategy profiles clearly outnumber the number of action profiles. Still, every
strategy profile induces a unique action profile. This relationship, however, is not generally injective,
as multiple strategy profiles may induce the same action profile. Assume, for instance, that the
players adopt the following strategies:

• player 1 chooses a at v1;
• player 2 chooses c if player 1 plays a at v, and d, otherwise;
• player 3 chooses e if player 1 chooses a at v1 and player 2 d at v2, and f , otherwise; and
• player 4 chooses h independently of whether player 2 chooses c or d at v2.

If this strategy profile is played, it can readily be seen that action profile ac f h results, which we
have already seen gives utilities 1, 2, and 2 to the players 1, 2, and 3, respectively.

We now proceed to our formal definition of partial order games, which enables the
application of Nash equilibrium as well as the formulation of a natural backwards induction
procedure later on. As before, let N = {1, . . . , n} be a finite set of players. Then a partial
order game on a directed acyclic graph (V, E)—the game’s dependency graph—associates
each vertex v in V with a unique player in N, denoted by iv, and a non-empty set of actions,
denoted by Av.

One player may be associated with multiple vertices, that is, it may very well be that
iu = iv even if v 6= u. We let Vi denote the set of vertices associated with player i. We
also say that player i is active at any vertex v in Vi. If E is also connected—that is, if vEw
or wEv for all distinct v and w in V—we also refer to any partial order game based on it as a
total-order game. As E is assumed to be acyclic, it follows that E is transitive in total order
games. On the other end of the spectrum, we have partial order games on dependency
graphs (V, E) with E = ∅. This class of games we will also refer to as empty-order games.

Given a subset of W = {w1, . . . , wk} of vertices, an action profile for W is a tuple
aW = (aw1 , . . . , awk ) specifying one action awj for each vertex wj. In our examples, we
occasionally omit parentheses and commas, and write aw1 . . . awk for (aw1 , . . . , awk ). The set
of action profiles for W we denote by AW . For the set V = {v1, . . . , v|V|} of all vertices, we
write write a = (av1 , . . . , av|V|) for aV and refer to a simply as an action profile. We denote
the set of action profiles by A = Av1 × · · · × Av|V| . For a set Vi = {w1, . . . , wk} of vertices at
which a player i is active, we also write ai = (aw1 , . . . , awk ) for aVi and refer to ai as an action
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profile for player i. We let Ai denote the set of actions profiles for a player i. For action
profiles aW = (aw1 , . . . , awk ) and bU = (bu1 , . . . , bum) for disjoint sets W and U, we denote
by (aW , bU) the action profile (aw1 , . . . , awk , bu1 , . . . , bum) for W ∪U. If U = V \W we also
write (aW , a−W) for (aW , aU), and if U = V \Vi, we also write (ai, a−i). Given a topological
sorting τ = (v1, . . . , v|V|), we define a τ-history as a sequence of actions h = (av1 , . . . , avk )
in Av1 × · · · × Avk

for some 1 ≤ k ≤ |V|. We stipulate the empty sequence of actions,
denoted by (), to be a τ-history as well. For an action profile a = (av1 , . . . , av|V|), we say
that h = (bv1 , . . . , bvk ) is a history of a if (bv1 , . . . , bvk ) = (av1 , . . . , avk ).

At each vertex v, player iv can make their choice of action dependent on the actions
chosen at the parents of v. A (conditional) strategy at a vertex v, or vertex strategy, is
therefore a function

fv : Ay1 × · · · × Ayk → Av,

where y1, . . . , yk are the parents of v. We say that fv is unconditional if it is constant,
that is, if fv(a1, . . . , ak) = fv(b1, . . . , bk) for all action profiles a = (a1, . . . , ak) and b =
(b1, . . . , bk). In this case, for a ∈ Av, we denote by f a

v the unconditional strategy at vertex v
that maps every action profile of v’s parents to action a. We will sometimes identify
unconditional strategies fv with the action fv(a1, . . . , ak) it specifies for each action profile
a = (a1, . . . , ak) and write a = (av1 , . . . , av|V|) for the profile of unconditional strategies fa =

( f
av1
v1 , . . . , f

av|V|
v|V| ). Note that if vertex v has no parents, then Au1 × · · · × Auk = {()}, where

() is the empty tuple. Accordingly, fv determines a single choice among Av, namely, fv(())
in this case. By Fv we denote the set of conditional strategies available at a vertex v.

By a strategy profile we then understand a profile f = ( fv1 , . . . , fv|V|) consisting
of one conditional strategy for each vertex. For f = ( fv1 , . . . , fv|V|) a strategy profile
and W = {w1, . . . , wk} a subset of vertices in V, we let fW = ( fw1 , . . . , fwk ) denote the
partial profile that is like f but restricted to W ⊆ V. Let f1 = ( f 1

v1
, . . . , f 1

v|V|) through

fk = ( f k
v1

, . . . , f k
v|V|) be k strategy profiles and {X1, . . . , Xk} be a k-partition of the vertex

set V. Then, (f1
X1

, . . . , fk
Xk
) denotes the strategy profile g = (gv1 , . . . , gv|V|) such that, for

every vertex v in V, we have gv = f j
v, if v ∈ Xj.

A strategy for a player i is a profile fVi = ( fv1 , . . . , fvk ) of vertex-strategies, where Vi =
{v1, . . . , vk}, is the set of vertices at which player i is active. We generally denote fVi by fi,
and the set of strategies available to player i by Fi. For strategy profiles f = ( fv1 , . . . , fv|V|)

and g = (gv1 , . . . , gv|V|) and a player i, we also write (f−i, gi) for the strategy profile
(fV\Vi

, gVi ).
For every vertex v, a strategy profile f = ( fv1 , . . . , fv|V|) defines an action af

v, the
evaluation of f at v, recursively as follows:

af
v =

{
fv(()) if depth(v) = 0,
fv(af

u1
, . . . , af

uk
) if depth(v) > 0 and u1, . . . , uk are the parents of v.

Observe that af
v is well defined because in a directed acyclic graph vertices with depth 0

exist and the parents of each vertex are of lower depth than the vertex itself. A strategy pro-
file f = ( fv1 , . . . , fv|V|) can thus be seen to induce the action profile
af = (af

v1
, . . . , af

v|V|). We also say that strategy profile f = ( fv1 , . . . , fv|V|) sustains action

profile a = (av1 , . . . , av|V|) if a = af. We occasionally denote by (aW , fU) the action profile
ag where g is the strategy profile (fa

W , fU) which specifies unconditional strategies for W.
In other words, we have (av1 , . . . , avk , fvk+1 , . . . , fv|V|) denote the action profile that results
if on v1 through vvk actions av1 , . . . , avk are played, and at vertices avk+1 through av|V| the
strategies fvk+1 through fv|V| .

Note the difference between actions and action profiles on the one hand, and strategies
and strategy profiles on the other. Every strategy profile induces a unique action profile,



Games 2022, 13, 2 9 of 49

whereas the same action profile may be induced by different strategy profiles. In an
important sense, the action profiles are the outcomes of the game.

Therefore, we take the set of action profiles of a partial order game as its set of
outcomes, over which the players’ preferences are defined. Each player’s preferences
over the action profiles are given by a real-valued utility function ui : A→ R, where we
assume that player i strictly prefers action profile a = (av1 , . . . , av|V|) to action profile b =

(bv1 , . . . , bv|V|) whenever ui(a) > ui(b). We extend utility functions ui to strategy profiles f,

and write ui(f) for ui(af). To fix concepts and notation, we consider Example 1 once more.

Example 1 (cont’d). Consider the game in Figure 3. At vertices v1, v2, and v4, we have the
following strategies:

Fv1 ()

f 1
v1

a

f 2
v1

b

Fv2 a b

f 1
v2

c c

f 2
v2

c d

f 3
v2

d c

f 4
v2

d d

Fv4 c d

f 1
v4

g g

f 2
v4

g h

f 3
v4

h g

f 4
v4

h h

At vertex v3, moreover, we have 24 strategies, illustrating the exponential blowup that results
from strategies being represented explicitly.

F3 ac ad bc bd

f 1
v3

e e e e

f 2
v3

e e e f

f 3
v3

e e f e

f 4
v3

e e f f

ac ad bc bd

f 5
v3

e f e e

f 6
v3

e f e f

f 7
v3

e f f e

f 8
v3

e f f f

ac ad bc bd

f 9
v3

f e e e

f 10
v3

f e e f

f 11
v3

f e f e

f 12
v3

f e f f

ac ad bc bd

f 13
v3

f f e e

f 14
v3

f f e f

f 15
v3

f f f e

f 16
v3

f f f f

The (conditional) strategy profile f = ( f 1
v1

, f 3
v2

, f 8
v3

, f 2
v4
), then, for instance, yields the evalua-

tion af = (af
v1

, af
v2

, af
v3

, af
v4
) = (a, d, f , h) as

af
v1

= f 1
v1
(()) = a a f

v2 = f 3
v2
(af

v1
) = f 3

v2
(a) = d

a f
v3 = f 8

v3
(af

v1
, af

v2
) = f 8

v3
(a, d) = f a f

v4 = f 2
v4
(af

v2
) = f 2

v4
(d) = h

Accordingly, the utilities on this profile f = ( f 1
v1

, f 3
v2

, f 8
v3

, f 2
v4
) for these three players are

therefore determined by the action profile ad f h. Hence, u1( f ) = 0, u2( f ) = 0, and u3( f ) = 2.

With the players N, their conditional strategies Fi, and their preferences ui : F → R
over strategy profiles, a partial order game on a directed acyclic graph (V, E) can thus be
seen to define immediately a game in normal-form (N, (Fi)i∈N , (ui)i∈N) (cf., Section 2.2,
above). Accordingly, partial order games are directly amenable to game-theoretical analysis
using the usual solution concepts, in particular, Nash equilibrium.

Conversely, every normal-form game (N, (Si)i∈N , (ui)i∈N) can be seen as a partial
order game on the same set N of players. Its dependency graph is then given by (N, ∅),
associating with vertex i ∈ N, player i ∈ N and strategy set Si. Identifying each uncondi-
tional strategy fi with fi(()) = si in Si, we adopt the utility functions ui unaltered for the
utility functions of the partial order game.
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3.1. Concise Representations for Strategies, Profiles, and Utilities

The transformation from partial order games to normal-form games comes at the cost
of an exponential blowup. Observe that in the definition of partial order games, the sets of
action profiles and strategy profiles are defined implicitly. Given a partial order game on
a directed acyclic graph (V, E) with a set of players N and actions A = Av1 ∪ · · · ∪ Av|V| ,

the number of action profiles a = (av1 , . . . , av|V|) is bounded by O(|A||V|), and so is the

number of unconditional strategy profiles fa = ( f
av1
v1 , . . . , f

av|V|
v|V| ). By contrast, the number of

both conditional strategies and the number of conditional strategy profiles are bounded by
O(|A|(|A||V|)). It is also worth observing that the size of both a conditional strategy f and a
profile f = ( fv1 , . . . , fv|V|) of conditional strategies is bounded by O(|A||V|).

Even though the dependency graph allows a concise representation of the strategies
and strategy profiles in a partial order game, they remain large objects. It is therefore
desirable to have concise representations of action profiles, utility functions, strategies,
and strategy profiles. To this end, we take recourse to Boolean circuits, a formalism well
established in theoretical computer science (see Section 2.4). We first show how action
profiles, utility functions, and strategy profiles can be represented concisely by Boolean
circuits. We then prove two lemmas that will be useful for our later complexity proofs in
Sections 5 and 7.

When representing partial order games concisely, we assume that for distinct vertices v
and w the action sets Av and Aw are disjoint. Having assumed Av to be non-empty for each
vertex v, it thus follows that |V| ≤ |A|. For ease of presentation, we also assume that |Av|
is an integer power of 2 for each vertex v. In this section, we assume that for each vertex v,
the elements of set Av are enumerated as a0, . . . , a|Av |−1, thus associating each action ak
with a unique local index k at v. Let bin(k) denote the binary representation of the local
index k, using exactly log2 |Av| digits. Thus, if |Av| = 16, we have bin(3) = 0011.

Let v be a vertex with parents u1, . . . , uk. We then represent a strategy fv : Au1 ×
· · · × Auk → Av by a Boolean circuit C fv with log2 |Au1 | + · · · + log2 |Auk | input gates
and log2 |Av| output gates. For an action profile a = (au1 , . . . , auk ) in Au1 × · · · × Auk

and av an action in Av, we then have that fv(au1 , . . . , auk ) = av if and only if on input
bin(j1) . . . bin(jk) the circuit C fv evaluates to outputs bin(i), where j1, . . . , jk and i, are
the local indices of av1 , . . . , avk , and av at their respective vertices. As C fv can be seen
as combining log2 |Av| Boolean functions in log2 |Au1 | + · · · + log2 |Auk | variables and
log2 |Au1 |+ · · ·+ log2 |Auk | ≤ |A|, we may assume that the circuit C fv is of size at most

exponential in |A|. More precisely, we may assume that the size of C fv is Θ( 2|A|
|A| ) [9,10].

Example 2. For an example, see Figure 4, which depicts the Boolean circuit C f 14
v3

for strat-

egy f 14
v3

: Av1 × Av2 → Av3 in Example 1, given by

f 14
v3
(a) =

{
e if a = bc,
f otherwise.

Recall that Av1 = {a, b}, Av2 = {c, d}, and Av3 = {e, f }. Let the local indices of a, c,
and e be given by 0, and those of b, d, and f by 1. As |Av1 | = |Av2 | = |Av3 | = 2, any action
profile a ∈ Av1 × Av2 can be represented by two Boolean variables x0 and x1, where the value
of x0 represents the choice for a or b at v1, the value of x1 the choice for c or d at v2. For instance,
the action profile ad ∈ Av1 × Av2 can thus be represented by setting x0 to 0 and x1 to 1. For
these values the circuit C f 14

v3
evaluates to 1, which corresponds to f 14

v3
(ad) = f and as depicted in

Figure 4.

Observe that an unconditional strategy f a
v at a vertex v with parents u1, . . . , uk, which

maps every profile (au1 , . . . , auk ) invariably to action a in Av, is represented by a Boolean
circuit C f a

v of size at most polynomial in |A|. The circuit C f a
v will still have ∑1≤m≤k log2 |Aum |
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inputs and log2 |Av| outputs, but will involve only one ⊥-gate and one >-gate. Let j be the
local index of a at v and bin(j) = b1, . . . , blog2 |Av |. Then, for 1 ≤ ` ≤ log2 |Av|, connect the
⊥-gate with output y`, if b` = 0, and the >-gate with output y`, if b` = 1.

Similarly, a rational-valued utility function ui : Av1 × · · · × Av|V| → Q can be repre-
sented by a Boolean circuit Cui . This circuit will have ∑v∈V log2 |Av| inputs and outputs
y1, . . . , yk, z1, . . . , zm. Moreover, for (av1 , . . . , av|V|) an action profile in Av1 × · · · × Av|V|
with local indices j1, . . . , j|V| at their respective vertices, we have ui(av1 , . . . , av|V|) =

n
d+1 if

and only if on input bin(j1), . . . , bin(j|V|) the circuit Cui yields bin(n) for outputs y1, . . . , yk
and bin(d) for outputs z1, . . . , zm (Observe that if ui(av1 , . . . , av|V|) is a positive integer, the
outputs z1, . . . , zm can be dispensed with, as ∑x∈∅ x = 0 and d = ∑1≤j≤m zj · 2j). Again, as
|Au1 |+ · · ·+ |Auk | ≤ |A|, we may assume that any such circuit Cui will be of size at most
exponential in |A|.

Example 3. Figure 5 illustrates how a utility function ui : Av1 × Av2 × Av3 × Av4 → R for
a player i in the game of Example 1 is represented by a Boolean circuit. The utility function ui
is depicted on the right. We assume that the local indices of a, c, e, and g be given by 0, and
those of b, d, f , and h by 1. As |Av1 | = |Av2 | = |Av3 | = |Av4 | = 2, an action profile a in
Av1 × Av2 × Av3 × Av4 is thus given by means of an assignment to four Boolean variables x0, x1, x2,
and x4, representing the choices at the vertices v1, v2, v3, and v4, respectively. For instance, action
profile ac f h is represented by setting variables x0 and x1 to 0, and variables x2 and x3 to 1, which
can thus also be denoted by the binary string 0011. Evaluating the circuit for these values, we find
that y1 is set to 0 and y0 to 1. This corresponds to ui(ac f h) = 1 and bin(1) = 01. Observe that the
Boolean circuit can be evaluated in time polynomial in its size and that it is exponentially smaller
than the explicit tabelling of the utility function on the right.

Figure 5. The Boolean circuit on the left represents the utility function ui on the right for a player i
over the action profiles of the game in Example 1. The binary representations of action profiles and
numerical values are depicted in parentheses.

We conclude this section by showing two useful lemmas. The first establishes that,
even if a conditional strategy profile f = ( fv1 , . . . , sv|V|) is represented as a Boolean circuit,
the action profile af = (av1 , . . . , av|V|) that f gives rise to, can be computed in polyno-
mial time.

Lemma 1. Let f = ( fv1 , . . . , fv|V|) be a conditional strategy profile represented by Boolean circuits
C fv1

, . . . ,C fv|V|
. Then, the action profile af = (af

v1
, . . . , af

v|V|) can be computed in polynomial time.

Proof Sketch. Proceeding inductively, find for every vertex v the action af
v as follows.

For vertices v of depth 0, the Boolean circuit C fv should give the local index in binary of



Games 2022, 13, 2 12 of 49

action af
v at v, and therewith, af

v immediately. For a vertex v of a strictly positive depth with
parents u1, . . . , uk, we may assume that the local indices in binary bin(ju1), . . . , bin(juk ) of
af

u1
, . . . , af

uk
can be computed in polynomial time. As the evaluation problem for Boolean

circuits is solvable in polynomial time, the circuit C fv for inputs bin(ju1), . . . , bin(juk ) can
also be evaluated in polynomial time, providing us with the local index of fv(af

u1
, . . . , af

uk
)

at v in binary, which gives us the result.

Lemma 2. Let f = ( fv1 , . . . , fv|V|) be a conditional strategy profile represented by Boolean circuits
C fv1

, . . . ,C fv|V|
, and ui : Av1 × · · · × Av|V| → Q be a utility function represented by a Boolean

circuit Cui . Then, ui(f) can be computed in polynomial time.

Proof Sketch. Thanks to Lemma 1, we can compute the action profile af = (af
v1

, . . . , af
v|V|)

in polynomial time. Let j1, . . . , j|V| be the local indices of af
v1

, . . . , af
v|V| at their respective

vertices. Using bin(j1), . . . , bin(j|V|) as inputs for the circuit Cui , we obtain the binary
encoding of ui(af

v1
, . . . , af

v|V|). As the evaluation problem for Boolean circuits is solvable in
polynomial time, this suffices for the result.

4. Related Game-Theoretic Models

In this section, we explore the interrelations between partial order games and four
related game-theoretic models: partial order Boolean games, Multi-Agent Influence Diagrams
(MAIDs), concurrent games as event structures, and extensive-form games.

4.1. Boolean Games and Partial Order Boolean Games

A special class of partial order games, referred to as partial order Boolean games, was
introduced in [1]. Partial order Boolean games extend Boolean games [11–15], where for a
set Φ of propositional variables, each player i exercises unique control over the truth-values
assigned to a subset Φi of variables and aims to satisfy a goal formula γi over Φ. Partial
order Boolean games are Boolean games enriched with a dependency graph on Φ. To avoid
confusion, we will write vp for the propositional variable p when it occurs in the role of a
vertex in the dependency graph. The player i associated with a vertex vp coincides with the
player controlling p in the Boolean game, and i can make their choice of truth-value for p
depend on the values assigned to the propositional variables q1, . . . , qk if vq1 , . . . , vqk are the
parents of vp in the dependency graph. In a Boolean game, such dependencies do not exist.
Thus, Boolean games can be seen as a special class of partial order Boolean games. The class
where the dependency graph does not have any edges but can be expressed by (Φ, ∅).

Clearly, every partial order Boolean game (N, Φ, Φ1, . . . , Φn, γ1, . . . , γn, D), where
D = (Φ, E) is a dependency graph on Φ, defines a partial order game with the same set
of players N and the same dependency graph, where player i is associated with vertex vp
if and only if p ∈ Φi. At vertex vp, the player i associated with vp has two actions at their
disposal: setting p to true (p) and setting p to false (p̄). We will assume that the local index
of action p at vertex vp is 1 and that that of action p̄ at vp is 0.

In a partial order Boolean game, an individual strategy at vertex vp, controlled by i, is
represented by a so-called choice equation of the form p : ϕ(q1, . . . , qk), where vq1 , . . . , vqk

are the parents of vp and ϕ(q1, . . . , qk) is a propositional logic formula over q1, . . . , qk,
with the interpretation that i sets p to true if ϕ(q1, . . . , qk) evaluates to true given the
decisions made for q1, . . . , qk at, vq1 , . . . , vqk , and to false otherwise. Thus a choice equation
p : ϕ(q1, . . . , qk) defines an individual strategy fvp : {q1, q̄1} × · · · × {qk, q̄k} → {p, p̄} at
vertex vp. This strategy, moreover, can be represented by a Boolean circuit C fvp

for the

Boolean function βϕ : {0, 1}k → {0, 1} expressed by the formula ϕ. We may assume that the
circuit C fvp

is of size at most polynomial in the size of the choice equation p : ϕ(q1, . . . , qk)

and that it has exactly k inputs and one output. We may furthermore assume that the
circuit C fvp

can be obtained in time polynomial in the size of ϕ from p : ϕ(q1, . . . , qk).
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Similar considerations apply to the representation of the players’ utility functions. In
partial order Boolean games, the preferences of each player i are represented by a goal
formula γi in the propositional language over Φ. Every action profile a = (avp1

, . . . , avp|Φ|
)

of a Boolean partial order game defines a valuation αa : Φ→ {0, 1} and yields player i util-
ity 1 if αa satisfies γi, and utility 0 otherwise. The Boolean function βγi : {0, 1}|Φ| → {0, 1}
expressed by γi can be represented by a Boolean circuit Cγi with at most |Φ| inputs and ex-
actly one output. As at every vertex vp, the assigned player has exactly two actions at their
disposal and utility values are integers, we find that Cγi is exactly of the form suggested
for the representation of players’ utilities in partial order games in the previous section.
Moreover, Cγi will be of size at most exponential in |Φ| and of size polynomial in γi. We
may furthermore assume that the circuit C fγi

can be obtained from γi in polynomial time.

4.2. Multi-Agent Influence Diagrams (MAIDs)

Multi-agent Influence Diagrams (MAIDS) were proposed in [2,3] and later extended
from a game-theoretic perspective in [16]. MAIDs trace their origins to Bayesian Networks
(cf., [17]) and influence diagrams, a decision theoretic extension of Bayesian networks pro-
posed by Howard and Matheson [18].

Like partial order games, MAIDs involve a finite setA = {a1, . . . , an} of agents and are
defined in directed acyclic graphs, where three different types of vertices are distinguished:
a set of chance nodes X , a set of decision nodes Da for each agent a in A, and a set of
utility nodes Ua also for each agent a. In line with the Bayesian network literature, every
vertex is taken to be a random variable X with possible values in a finite domain dom(X).
It is generally assumed that utility nodes cannot be parents of other nodes, and that their
domain is a finite set of real numbers. (Hammond et al. [16] relax this condition, and also
allow utility nodes to have outgoing edges.)

The values any variable in a MAID can take may depend on the values assumed
by that variable’s parents in the DAG. This is very much in line with how a choice of
action at a node may depend on the decisions taken at parent nodes in partial order
games. In the MAIDs framework, the parents of a decision node X are denoted by Pa(X)
and an instantiation, commonly denoted by pa, for Pa(X) = {Y1, . . . Yk} defines a value
from the domain of each of these variables, that is, pa ∈ dom(Y1) × · · · × dom(Yk). A
conditional probabilistic distributions (CPD) for a decision or utility node X now assigns
a probability P(X | pa) for each instantiation pa of Pa(X), and a decision rule defines a
conditional probabilistic distribution for one particular decision variable. Sometimes it is
required that CPDs for utility nodes be deterministic, arguing that all of the stochasticity
should be subsumed into chance variables. This convention, however, is not universally
adopted in the literature on MAIDS. We refer to the work in [19] for a good in-depth study.
On this basis, a strategy δa for an agent a defines a conditional probability distribution for
each decision variable D in Da. A strategy profile is then a tuple (δa1 , . . . , δan) of strategies,
one for each agent. Given a strategy profile (δa1 , . . . , δan), the MAID reduces to a Bayesian
network, and as such defines a joint probability distribution Pδa1 ,...,δan

over all of its variables.
Accordingly, every agent a can be assigned a expected utility defined as follows:

Ea(δa1 , . . . , δan) = ∑
U∈Ua

∑
x∈dom(U)

Pδa1 ,...,δan
(U = x) · x.

With players, their strategies, and their utilities being defined, a MAID defines
a strategic-form game, and is amenable to analysis by the usual game-theoretic solu-
tion concepts.

It is not hard to see how every partial order game can be seen as a MAID without
chance variables, with ‘hidden’ utility nodes, and only allowing for deterministic decision
rules. Formally, let N = {1, . . . , n} be the set of players; V1, . . . , Vn be the sets of nodes
assigned to the players 1 through n, respectively; (V, E) be a directed acyclic graph with
V = V1 ∪ · · · ∪Vn; and u1, . . . , un be utility functions for the players 1 through n. Then, the
partial order game defined from this can be seen as a MAID with set of agents A = N and



Games 2022, 13, 2 14 of 49

decision variables V1, . . . , Vn such that dom(Vv) = Av for all vertices v in V. There are no
chance variables, and one utility variable Ui for each player i that is a child of all decision
nodes. The MAID’s partial order is then given by (V′, E′) where V′ = V ∪{U1, . . . , Un} and
E′ = E ∪V × {U1, . . . , Un}. Thus, the instantiations of the parents of each utility variable,
the set of instantiations of all decision variables, corresponds to the set of all action profiles
of the partial order game. Each of these instantiations (av1 , ...av|V|), in turn, corresponds
to a deterministic strategy profile (δ1, ..., δn) in the MAID, which allows us to complete the
model by setting Ei((δ1, ..., δn)) = ui((av1 , ...av|V|)).

4.3. True Concurrency and Games as Event Structures

Event structures [20] are the so-called “true concurrency” analogue of trees: just as
transition systems unfold to trees, so some models of true concurrency, such as Petri nets
and asynchronous transition systems, unfold to event structures [21]. Similarly, in the
same way that sequential games can be represented by trees, certain concurrent games can be
represented by event structures—where plays in this much more general setting determine
partial instead of total orders of moves; cf., see in [22,23].

An event structure is a triple (E,≤, Con), consisting of a set E of events that are partially
ordered by ≤, the causal dependency relation, and a nonempty consistency relation Con over
finite subsets of E, which satisfy four conditions:

1. {e′ : e′ ≤ e is finite for all e ∈ E},
2. {e} ∈ Con for all e ∈ E,
3. Y ⊆ X ∈ Con implies Y ∈ Con, and
4. X ∈ Con and e ≤ e′ ∈ X implies X ∪ {e} ∈ Con.

The states of an event structures E are called configurations, denoted by C(E), and
consist of those subsets x ⊆ E which are both

• consistent: ∀X ⊆ x. X is finite implies X ∈ Con; and
• down-closed: ∀e, e′. e′ ≤ e ∈ x implies e′ ∈ x.

Configurations can be finite or infinite. Concurrency, then, is naturally modelled as
follows: two events, say e and e′, which are both consistent and incomparable with respect
to causal dependency are seen as concurrent, and assumed to be independent in that they
can happen in parallel. In a game-theoretic context, it also means that such two events can
be played or executed in parallel.

In the context of concurrent games as event structures, we consider only two players,
named Player (the system) and Opponent (the environment), who own disjoint sets of
events which they can play (execute). They do so asynchronously in an attempt to reach a
state in their “winning set” of configurations. In these games, players are allowed to execute
an event, say e, only if all events on which e causally depends have been executed. In this
setting, events do not have a Boolean or otherwise interpretation; they are simply available
actions that a player can execute—and informally are intended to represent observable
events in a computer system. The Nash equilibrium of concurrent games as event structures
have been studied in the past, and fully characterised in [23] for two-player general-sum
games with players’ goals given by Borel sets of winning configurations. However, their
main application is in the field of formal semantics for programming languages and logical
systems; cf, see in [22,24,25].

4.4. Extensive-Form Games

Games in extensive-form are the canonical game-theoretic model to account for the
strategic interactions that result if decisions are made in a prescribed order. Their use in the
game-theoretic literature is ubiquitous. In this section, we show that partial order games
constitute a concisely represented class of extensive-form games.
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4.4.1. Partial Order Games as Extensive Games of Imperfect Information

Given a topological sorting of the decision nodes, there is a natural transformation of
partial order games to extensive form games of imperfect information. Let the DAG of the
partial order game be given by (V, E), where V = {v1, . . . , v|V|}, and the utility function for
each player i by ui : Av1 × · · · × Av|V| → R. First, assume a topological order τ to linearise
the DAG, which, for ease of presentation, we assume to be τ = (v1, . . . , v|V|). Figure 6
illustrates this construction for the partial order game in Figure 3 under topological order τ.

The extensive-form game of imperfect information representing the partial order game
is then defined for the same set N of players. We define the game tree (V′, E′) such that V′

is the set of all prefixes of terminal histories in Av1 × · · · × Av|V| , with () being the root
node. The player active at each history/vertex hvk = (av1 , . . . , avk ) in V′, we identify with
the player that is active at vk+1 in the partial order game. At each of these vertices/histories
this player has Avk+1 as the set of actions to chose from. In particular, iv1 is the player active
at () and has Av1 as action set. Accordingly, all prefixes/histories of the same length are
assigned to the same player and each of them have the same action set. For v, w ∈ V′, we
then have vE′w if and only if w = va for some a ∈ Av, as expected.
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Figure 6. Extensive-form game of imperfect information representing the partial order game in
Figure 3 assuming topological order (v1, v2, v3, v4). Here, for instance, v1

1 = (), v2
3 = ad, and v4

4 = ad f .
The dashed lines connecting vertices indicate the information sets.

Every leaf/terminal history h = (av1 , . . . , av|V|) and player i we associate with the
utility value uh

i = ui(av1 , . . . , av|V|), where ui denotes player i’s utility function in the partial
order game. Note that in our construction, every terminal history corresponds with a full
action profile.

The definition of the information sets is crucial. For every internal vertex/history
h = (av1 , . . . , avk ), we formally define these such that

[(av1 , . . . , avk )] = {(a′v1
, . . . , a′vk

) : a′y = ay for all parents y of vk+1}.

Intuitively, a player can only distinguish a vertex/history h = (av1 , . . . , avk ) where it
is active from those vertices/histories of the same length that differ on the choice of action
in at least one if its parents in the partial order game. All other vertices/histories of the
same length belong to the same information set. For an example, consider Figure 6, where
vertices v2

4 = ac f and v5
4 = bce are in the same information set for player 1. This is because,

in the underlying partial order game (depicted in Figure 3), vertex v2 is the only parent
of v4 and the histories ac f and bce both specify action c for v2. Finally, we define the set of
player i’s information sets as
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Ii = {[v′] : v′ ∈ V′ and i is active at v′}.

To see that the extensive-form game defined through this transformation is strategically
equivalent to the original partial order game, first consider an arbitrary vertex vj along
with its parents Y in the partial order game. Together with vj itself, each profile aY in AY
defines a unique information set for i defined as

I(vj, aY) = {a′ ∈ Av1 × · · · × Avj−1 : aY = a′Y}.

Let θ be the function that maps each pair (vj, aY) to information set I(vj, aY).
Observe that defined thus, θ is both injective and surjective. We now find that we

can extend θ to a function θ̂ that maps each conditional strategy fi = ( fvi1
, . . . , fvik

) in the

partial order game to a strategy f̂i : Ii → Ai for player i in the extensive-form game. To do
so, define f̂i such that for each each information set I ∈ Ii with θ−1(I) = (vj, aY)

f̂i(I) = fvj(aY).

Observe that the extended function θ̂ is also bijective. Moreover, some reflection
reveals that the full action profile af = (af

v1
, . . . , af

v|V|) determined by conditional strategy
profile f = (f1, . . . , f|N|) in the partial order game will be identical to the one determined
by the strategy profile f̂ = (f̂1), . . . , f̂|N|) in the extensive-form game. Having defined the
players’ utilities in the extensive-form game as we did, we may conclude that the partial
order game is strategically equivalent to the extensive game of imperfect information.
Formally:

Proposition 1. A partial order game and the extensive-form game obtained from it on basis of a
given topological sorting, as described in this section, are strategically equivalent.

This result means that, with respect to game theoretic analysis, partial order games are
in a precise technical sense (i.e., with respect to strategic equivalence), no more expressive
than extensive form games: any scenario we can model with a partial order game can also
be modelled with an extensive form game. However, this does not mean that partial order
games are redundant. The translation from partial order game to extensive form game
comes at the expense of a blow-up in the size of the game: if |Av| ≥ 2 for every vertex v,
then V′ = Ω(2|V|). The practical upshot of this is that there are situations that we can
capture using the partial order model that would be infeasible to capture with the extensive
form. In addition, we argue that the partial order representation can in some cases be much
more comprehensible than the extensive form: compare the partial order game in Figure 3
with its extensive form representation in Figure 6. Understanding what is going on (and
in particular, the informational dependencies present) in the latter representation requires
much more work than in the former.

Note that, for total-order games, the construction yields (finite) extensive-form games
of perfect information (see Figures 7 and 8 below). This can easily be appreciated by recalling
that a total order game allows for only one topological order, say (v1, . . . , vV|V|). Thus, for
every 1 ≤ j ≤ |V| we have that the parents of vj are all vertices in Y = {v1, . . . , vj−1}.
However, then, obviously, I(vj, aY) = {a′ ∈ Av1 × · · · × Avj−1 : aY = a′Y} will be a
singleton for every action profile aY, and the resulting game one of perfect information. As
finite extensive-form games of perfect information can be solved by backwards induction (cf.
e.g., in [4], Chapter 7), it follows as a corollary that total-order games always admit Nash
equilibria in general.

Proposition 2. Total-order games always have at least one Nash equilibrium.

We conclude this section with a remark about topological sortings. The DAG of a
partial order game may not have a unique topological sorting over its nodes and, under
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the transformation described above, different topological sortings may lead to different
extensive-form games. This is illustrated by Figures 6 and 9, which both depict extensive-
form games obtained from the partial order game in our first example in Figure 3. These
extensive-form games we obtain using our transformation for the topological sortings
(v1, v2, v3, v4) and (v1, v2, v4, v3), respectively, and are clearly distinct. Yet, they are strate-
gically equivalent. A formal proof that any two extensive-form games that are obtained
using our transformations for different topological orders will be strategically equivalent is
beyond the scope of this paper. It suffices to say that it is due to the so-called Interchange of
Moves principle, which is one of the four Thompson transformations [26] and informally
captures the idea that in extensive-form games of imperfect information “the order of play
is immaterial if one player does not have any information about the other player’s action
when making his choice” (see in [5], page 224).

4.4.2. Partial Order Games as a Concise Representation of Extensive-Form Games

As we noted above, the transformation of partial order games to extensive-form games
presented in the previous section may give rise to an exponential blow-up. Reasoning
conversely, this raises the claim that partial order games could be seen as providing a
concise representation of extensive form games. In this section, we argue that if the utilities in
partial order games are represented by Boolean circuits, then this claim is supported.

In Section 2.3, we recalled the well-known fact that transforming an extensive-form
game to a normal-form game leads to an exponential blow-up. One reason for this is that,
in extensive-form games, a player’s utilities are represented by an association of utility
values to leaf nodes/terminal histories. One leaf node, however, may be reached by playing
different strategy profiles, or even different action profiles, whereas in normal-form games
utilities are specified for each strategy/action profile separately.

In partial order games, the players’ utilities are also modelled as an association of
action profiles (not strategy profiles) and utility values. We find, however, that an expo-
nential blow-up can be avoided when the players’ utility functions are represented by
Boolean circuits.

The main idea behind this can be explained by means of an example. Consider again
the extensive form in Figure 1, where each action has already been labelled with its local
index in binary. For each internal vertex/non-terminal history v with action set Av, we
introduce dlog2 |Av|e Boolean variables xv

1 , . . . , xv
dlog2 |Av |e. In the example, we introduced

variables x for v0, y and y′ for v1, z for v2, and x′ for v3. A truth-value assignment α to these
variables for all vertices then defines an action profile aα = (aα

v1
, . . . , aα

v|V|) such that aα
j is

the action in Av with numerical index num(α(x1), . . . , α(xdlog2 |Av |e)), for each vertex v. In
our example, for instance, the assignment α∗ that sets x and y′ to false and y, z, and x′ to
true, corresponds to the action profile (a0, b10, c1, d1). With all utilities in our example being
either 0 or 1, we can now associate a Boolean formula ϕui that characterises each player’s
utility function, in the sense that assignment α satisfies ϕui if and only if ui(aα) = 1. In our
example, such a formula ϕu1 representing player 1’s binary utility function could then for
instance be obtained by first defining recursively a formula ϕv for each vertex v as follows.
First, for each leaf node/terminal history h, we set ϕh = >, if uh

i = 1, and ϕh = ⊥, if
uh

i = 0. In our example, we thus have, for instance, ϕa0b01 = ⊥ and ϕa1c1d1 = >. For every
internal vertex/non-terminal history v, furthermore, we then set

ϕv =
∨

a∈Av

(χa ∧ ϕva),

where χa = x̃v
1 ∧ · · · ∧ x̃c

dlog2 |Av |e characterises the local index k of a, that is x̃v
j = xv

j , if
bj = 1, and x̃v

j = ¬x̃c
j if bj = 0, where bin(k) = b1 · · · bdlog2 |Av |e. Then, set ϕi = ϕ(). Thus,

in our example we get, subsequently,
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ϕv3 = (x̄′ ∧⊥) ∨ (x′ ∧>)
ϕv2 = (z̄ ∧⊥) ∨ (z ∧ ϕv3)

ϕv1 = (ȳȳ′ ∧>) ∨ (ȳy′ ∧⊥) ∨ (yȳ′ ∧>) ∨ (yy′ ∧⊥)
ϕv0 = (x̄ ∧ ϕv1) ∨ (x ∧ ϕv2)

Finally, we obtain ϕu1 = ϕv0 . in our example, we now find, for instance, that assign-
ment α∗ does not satisfy ϕui and that ui(aα∗) = 0.

This procedure is general and can be applied to every extensive-form game. The
crucial thing to observe is that each variable x occurs at most 2dlog2 |Av |e = O(|Av|) times
in ϕui . Therefore, the size of ϕui is still polynomial in the size of game and, thus, there is a
polynomial-sized Boolean circuit Cui representing the Boolean function βϕui

. Finally, any
rational-valued utility function ui : Av1 × · · · × Av|V| → Q can be represented by a linear
combination of such circuits, and we may conclude that ui can be represented by a Boolean
circuit whose size is polynomial in the size of the extensive-form game, giving us the
following lemma.

Lemma 3. Let ui : S1 × · · · × S|N| → Q be the utility function of a player i in an extensive-form
game. Then, ui can be represented by a Boolean circuit that is of a size polynomial in the size of the
extensive-form game.

Recall that an extensive-form game and a partial order game are said to be strategically
equivalent if they give rise to strategically equivalent normal-form games. We now find
that, provided that utilities may be represented by Boolean circuits, every extensive-form game
can be represented by a strategically equivalent partial order game without giving rise to
more than an at most a polynomial blowup.

Proposition 3. For every extensive-form game, there is a strategically equivalent partial order
game whose size is at most polynomially larger than that of the extensive-form game.

Sketch of Proof. Let an extensive form for players in a set N be based on a tree (V, E).
Let I be the information sets of this game. We construct a partial order game on the trivial
DAG (I , ∅), which is obviously polynomial in the size of the extensive-form game. We
associate with each information set I in I the same player and the same action set AI
as in the extensive-form game. For every player i with Ii = {I1, . . . , Ik}, we can define
a bijection that maps every strategy si : Ii → Ai for i in the extensive-form game to a
strategy f̂i = ( f̂ I1 , . . . , f̂ Ik ) for player i in the partial order game such that f̂ Ij is the strategy
that maps the empty sequence () to action si(Ij). By virtue of Lemma 3 we may assume
the utility function of each player in the extensive-form game can be represented by a
polynomially sized Boolean circuit. Accordingly, the the size of the whole partial order
game constructed thus is polynomial in the size of the extensive-form game. Conclude by
observing that the extensive-form game and the partial order game induce strategically
equivalent normal-form games, as desired.
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integer in binary. For instance, num(01101) = 13. Then, for each player, every terminal653

history or leaf yields a unique utility value. See Figure 8 for an illustration of this game654

for n = 5. To represent this game, an extensive-form game needs to have at least 2n leaf655

nodes to account for all the different payoffs a player may get, and thus is of size at least656

exponential in the number of players.657

1 : 0, 1

2 : 0, 1

3 : 0, 1

4 : 0, 1

5 : 0, 1

Figure 9. The DAG for the par-
tial order game with five players
illustrating Proposition 4.

By contrast, one can represent this game as658

a partial order game on a transitive graph (V, E),659

where V = {v1, . . . , vn} and viEvj if and only if660

i < j. Let player i be assigned to vertex vi and661

Avi = {0, 1} for all 1 ≤ i ≤ n. For each player i, the662

utility function ui(b1, . . . , bn) = num(b1, . . . , bn) can663

clearly be represented by a Boolean circuit with V664

input variables, and as many output variables, with665

the mth input gate immediately leading to the mth666

output gate with no intermediate logic gates. See667

Figure 9 for an illustration of the partial order game668

representing the extensive-form game in Figure 8.669

Hence, we have the following result establishing670

that partial order games can be seen as presenting671

a concise representation of extensive-form games.672

Moreover, this observation still holds if attention is673

restricted to games of perfect information.674

Proposition 4. There exist partial order games for which every strategically equivalent rep-675

resentation as an extensive-form game of imperfect information is at least exponentially as676

large.677

5. Nash Equilibria678

We saw in Section 2.2 how every partial order game defines a normal-form game.679

Accordingly, partial order games are amenable to game-theoretic analysis using the680

standard non-cooperative solution concepts that are available for normal-form games.681

In this section, we consider several complexity problems surrounding Nash equilibrium682

in partial order games.683

We have the following lemma that will be useful for proving the complexity results684

in this section. It states that, if a player has a profitable deviation to a conditional strategy,685

then they also have a profitable deviation to an unconditional strategy. In other words, if686

a player has a best response, then they also have an unconditional best response2.687

Lemma 4. Let f = (f1, . . . , fn) be a profile of conditional strategies. Then, if there is some688

strategy gi for player i with ui(f−i, gi) > ui(f), there also is an unconditional strategy g′i689

such that ui(f−i, g′i) > ui( f ). Hence, f = ( fv1 , . . . , fv|V|) is a Nash equilibrium if and only if690

ui(f) ≥ ui(f−i, g′i) for all players i and unconditional strategies g′ for i.691

Proof. Assume that there is some strategy gi for player i with ui(f−i, gi) > ui(f). Let
vi1 , . . . , vik be the vertices assigned to player i. Moreover, let a(f−i ,gi) = (a∗v1

, . . . , a∗v|V|).
Now define g′i = (g′vi1

, . . . , g′vik
) such that for every 1 ≤ j ≤ k, and every profile

(au1 , . . . , au`
), where u1, . . . , u` are the parents of vij ,

g′vij
(au1 , . . . , au`

) = gvij
(a∗u1

, . . . , a∗u`
).

2 This is reminiscent of mixed strategies for (finite) normal-form games, where, due to the linearity of expected utility, a player having a best response
implies their having a pure best response.
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Figure 9. Extensive-form game of imperfect information representing the partial order game in
Figure 3 assuming topological ordering (v1, v2, v4, v3). The dashed lines connecting vertices indicate
the information sets.

Proposition 3 shows that every extensive-form game of perfect-information can be
represented by a partial order game at the cost of an at most polynomial blow-up. In some
cases, moreover, we find that partial order games may be exponentially smaller than any
extensive-form game of perfect information that is strategically equivalent. Consider the
following extensive-form game with n players, ordered from 1 to n. Every player has two
actions, 0 and 1, at their disposal, but can make their choice dependent on the players that
occur before them in the ordering. Each strategy profile s gives rise to a unique terminal



Games 2022, 13, 2 20 of 49

history hs = (b1, . . . , bn) of actions in {0, 1}, where each player i plays bi. Accordingly,
there are exactly |{0, 1}|n = 2n terminal histories or leaves in this extensive-form game.
Let the preferences for each player i at each of these terminal histories h = (b1, . . . , bn) be
given by the utility function such that uh

i = num(b1, . . . , bn), where num(b1, . . . , bn) is the
numerical value of the sequence b1, . . . , bn conceived as an integer in binary. For instance,
num(01101) = 13. Then, for each player, every terminal history or leaf yields a unique
utility value. See Figure 7 for an illustration of this game for n = 5. To represent this game,
an extensive-form game needs to have at least 2n leaf nodes to account for all the different
payoffs a player may get, and thus is of size at least exponential in the number of players.

By contrast, one can represent this game as a partial order game on a transitive graph
(V, E), where V = {v1, . . . , vn} and viEvj if and only if i < j. Let player i be assigned
to vertex vi and Avi = {0, 1} for all 1 ≤ i ≤ n. For each player i, the utility function
ui(b1, . . . , bn) = num(b1, . . . , bn) can clearly be represented by a Boolean circuit with V
input variables, and as many output variables, with the mth input gate immediately leading
to the mth output gate with no intermediate logic gates. See Figure 8 for an illustration of
the partial order game representing the extensive-form game in Figure 7. Therefore, we
have the following result establishing that partial order games can be seen as presenting a
concise representation of extensive-form games. Moreover, this observation still holds if
attention is restricted to games of perfect information.

Proposition 4. There exist partial order games for which every strategically equivalent representa-
tion as an extensive-form game of imperfect information is at least exponentially as large.

5. Nash Equilibria

We saw in Section 2.2 how every partial order game defines a normal-form game.
Accordingly, partial order games are amenable to game-theoretic analysis using the stan-
dard non-cooperative solution concepts that are available for normal-form games. In this
section, we consider several complexity problems surrounding Nash equilibrium in partial
order games.

We have the following lemma that will be useful for proving the complexity results in
this section. It states that, if a player has a profitable deviation to a conditional strategy, then
they also have a profitable deviation to an unconditional strategy. In other words, if a player
has a best response, then they also have an unconditional best response (This is reminiscent
of mixed strategies for (finite) normal-form games, where, due to the linearity of expected
utility, a player having a best response implies their having a pure best response).

Lemma 4. Let f = (f1, . . . , fn) be a profile of conditional strategies. Then, if there is some
strategy gi for player i with ui(f−i, gi) > ui(f), there also is an unconditional strategy g′i such
that ui(f−i, g′i) > ui( f ). Therefore, f = ( fv1 , . . . , fv|V|) is a Nash equilibrium if and only if
ui(f) ≥ ui(f−i, g′i) for all players i and unconditional strategies g′ for i.

Proof. Assume that there is some strategy gi for player i with ui(f−i, gi) > ui(f). Let
vi1 , . . . , vik be the vertices assigned to player i. Moreover, let a(f−i ,gi) = (a∗v1

, . . . , a∗v|V|). Now
define g′i = (g′vi1

, . . . , g′vik
) such that for every 1 ≤ j ≤ k, and every profile (au1 , . . . , au`

),
where u1, . . . , u` are the parents of vij ,

g′vij
(au1 , . . . , au`

) = gvij
(a∗u1

, . . . , a∗u`
).

Thus, g′i is clearly an unconditional strategy for player i. Let a(f−i ,g′i) = (a∗∗v1
, . . . , a∗∗v|V|).

By a straightforward induction on depth(w) it can then easily be shown that a∗∗w = a∗w for
every vertex w. And thus, ui(f−i, g′i) > ui(f), giving us the result.

The key point about this lemma is that unconditional strategies are small, in the
sense that unconditional strategies can be represented by Boolean circuits whose size is
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polynomial in the set of actions (see Section 3.1, above). Thus, when we are considering
whether a player has a beneficial deviation, we can without loss of generality restrict
our attention to small strategies. This has implications for the complexity of the decision
problems we consider.

The dependency graph provides a concise representation of the sets of conditional
strategies available to the players. A single strategy fv for the player i playing at ver-
tex v, however, has to take into account all profiles (ay1 , . . . , ayk ) in Ay1 × · · · × Ayk , where
y1, . . . , yk are the parents of v. The number of these profiles tends to be exponential in k, the
number of parents, as in all non-trivial cases generally |Av| ≥ 2. Similarly, a naive represen-
tation of the player’s utilities for the different action profiles tends to be exponential in the
number of actions available to the players in the game. However, as the utilities of players
are represented by Boolean circuits, there is a straightforward polynomial transformation
of Boolean games and Boolean partial order games to general partial order games. This
enables us to leverage hardness results for Boolean and partial order Boolean games to
obtain hardness results for general partial order games.

We first consider the decision problem of determining whether a given strategy profile
is a Nash equilibrium for a given partial order game. Here, we assume that the utility
function ui of each player is represented by a Boolean circuit Cui and the strategy profile
f = ( fv1 , . . . , fv|V|) is represented by a sequence of |V| Boolean circuits C fv1

, . . . ,C fv|V|
.

IS-NASH

Given: Partial order game G and strategy profile f = ( fv1 , . . . , fv|V|)

Problem: Is f a Nash equilibrium of G?

We find that IS-NASH is intractable for partial order games.

Theorem 1. IS-NASH is coNP-complete. The problem remains coNP-hard for empty-order games
and total-order games.

Proof. For membership in coNP, let partial order game G and conditional strategy profile
f = ( fv1 , . . . , fv|V|) be given. We can guess a player i and a strategy gi = (gv1 , . . . , gvm),
where v1, . . . , vm are the vertices assigned to i. By virtue of Lemma 4, we may assume that
strategies gv1 , . . . , gvm are all unconditional strategies. As we saw in Section 3.1, the Boolean
circuits Cgv1

, . . . ,Cgvm can therefore each be assumed to be of size polynomial in |A|. Now,
Lemma 2 allows us to find in polynomial time the utilities ui(f−i, gi) and ui(f−i, fi). Then,
f = ( fv1 , . . . , fv|V|) is not a Nash equilibrium if and only if ui(f−i, gi) > ui(f−i, fi), and so
we may conclude that IS-NASH is in coNP.

For coNP-hardness, we reduce from IS-NASH for Boolean partial order games, which
is known to be coNP-hard (see in [1], Proposition 1). Thus, let an instance of IS-NASH for
Boolean partial order games be given by a Boolean game (N, Φ, Φ1, . . . , Φ|N|, γ1, . . . , γ|N|),
a dependency graph (Φ, E), and a strategy profile f = (f1, . . . , f|N|), where for each player i
strategy fi is given by a sequence of choice equations p1 : ϕ1 through pm : ϕm, where
Φi = {p1, . . . , pm}. In Section 4.1, we argued how this Boolean partial order game coincides
with a partial order game with a slightly different representation of strategies and utilities.
A similar remark concerns the strategy profile f = (f1, . . . , f|N|). As we found that the
transformation of the representation of the game as a Boolean partial order game to the
representation of the same game as a partial order game can be effected in polynomial time,
we obtain our result. Moreover, because Boolean games are a special type of empty-order
games, the problem remains hard for empty-order games as well.

To see that IS NASH also remains coNP-hard for total-order games, we adapt the proof
for the IS NASH problem for Boolean games as presented in (Wooldridge et al. [15], Proposi-
tion 1). We reduce from the complement of SATISFIABILITY, the problem of determining if
a given Boolean formula ϕ is satisfiable. To this end, let ϕ a Boolean formula over propo-
sitional variables p1, . . . , pm. We construct a total-order Boolean game with one player i
controlling p1, . . . , pm along with an additional variable p0. The dependency graph (V, E)
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is then given by V = {vp0 , . . . , vpm} with relation E such that pjEpk if and only if j < k.
Player i has as goal γi = ϕ∧ p0. Now, consider the strategy profile f0 = ( f 0

vp0
, f 0

vp1
, . . . , f 0

vpm
)

that sets all variables to false, that is, f0 is given by choice equations pj : ⊥ for all 0 ≤ j ≤ m.
Now observe that, as we are dealing with a one-player game, there is a natural surjection
that maps each of player i’s strategies f to valuation αaf : {p0, . . . , pm} → {0, 1}. It can then
easily be appreciated that f0 is a Nash equilibrium in the game constructed if and only if ϕ
is satisfiable, as desired.

Another canonical problem is more general, in that it asks whether a partial order
game has any Nash equilibria at all, as opposed to whether or not a specific strategy profile
is a Nash equilibrium.

NON-EMPTINESS

Given: Partial order game G
Problem: Does G have a Nash equilibrium?

In view of Proposition 2, NON-EMPTINESS is vacuous for total-order games, as in this
class of games Nash equilibria are guaranteed to exist. The problem is considerably more
difficult, namely NEXPTIME-complete, for general partial order games. It also seems a
fair conclusion to draw from this contrast that increase in computational complexity arises
from the structure of the dependency graph.

Theorem 2. NON-EMPTINESS is NEXPTIME-complete.

Proof. A NEXPTIME algorithm to decide NON-EMPTINESS can be designed along the
following lines. First, guess a strategy profile f = ( fv1 , . . . , fv|V|). Given that strategies fv
are given by a Boolean circuit C fv , this can be achieved in time not more than exponential
in |A|, the size of the set of actions. Second, to decide whether f = ( fv1 , . . . , fv|V|) is a Nash
equilibrium, by virtue of Lemma 4, it suffices to check, for all players i and all unconditional
strategies gi = (gv1 , . . . , gv|Vi |

) for i, that ui(f−i, fi) ≥ ui(f−i, gi). For player i, there are

|Av1 × · · · × Av|Vi |
| unconditional strategies which is upper bounded by |A||V|. Moreover,

as we have seen in Section 3.1, each of these unconditional strategies can be represented by
a sequence of Boolean circuits of size polynomial in |A|. Furthermore, the action profiles
a(f−i ,fi) and a(f−i ,gi) can be computed in time exponential in |A|, by virtue of Lemma 1 and
each circuit involved being at most exponential in the size of |A|. Finally, on the basis
of Lemma 2, we can check in time polynomial in |A| the utilities for player i on action
profiles a(f−i ,fi) and a(f−i ,gi), and therefore also whether ui(f−i, fi) ≥ ui(f−i, gi). Altogether,
the algorithm runs in non-deterministic exponential time.

A proof of NEXPTIME-hardness of NON-EMPTINESS can be achieved by a reduction
from the NON-EMPTINESS problem for Boolean partial order games. We rely here on the
same direct reduction as in the proof of Theorem 1, above. NEXPTIME-hardness for
Boolean partial order games was established by [1], giving us the result.

If we restrict attention to empty-order games, however, NON-EMPTINESS has consider-
ably lower computational costs, even though the problem still remains Σp

2 -hard. Key to this
result is the observation that for empty-order games all strategies are unconditional, and,
thus, they can be represented by Boolean circuits of polynomial size (see Section 3.1).

Theorem 3. For empty-order games, NON-EMPTINESS is Σp
2 -complete.

Proof. To see that NON-EMPTINESS is in Σp
2 , recall that Σp

2 = NPcoNP, that is, the set of
problems that can be solved in polynomial time on a non-deterministic Turing machine
with a coNP-oracle. Furthermore, recall that strategy profiles in empty-order games are
unconditional and are of the form fv : {()} → Av. Moreover, they can be represented
by Boolean circuits of polynomial size (see Section 3.1, above). Accordingly, given an
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empty-order game, we can guess an unconditional strategy profile f = ( fv1 , . . . , fv|V|), and
consult the coNP-oracle to check whether f is a Nash equilibrium. Theorem 1 guarantees
that the latter is feasible.

For Σp
2 -hardness, recall that Boolean games constitute a subclass of empty-order partial

order games. Σp
2 -hardness then follows immediately from NON-EMPTINESS being Σp

2 -hard
for Boolean games (see in [13], Proposition 5).

Recall that in partial order games, strategy profiles and action profiles are essentially
different objects. As a natural counterpart to the IS NASH problem, we therefore now
consider the decision problem whether a given action profile is sustained by a Nash
equilibrium in a partial order game.

IS NASH ACTIONS

Given: Partial order game G and action profile a = (av1 , . . . , av|V|)

Problem: Is a sustained by a Nash equilibrium?

In sharp contrast to coNP-completeness of IS NASH, we find that IS NASH ACTIONS

is NEXPTIME-complete. From the perspective of computational complexity, IS NASH

ACTIONS appears to be more kindred to the NON-EMPTINESS problem for partial order
games. In this connection, it is worth observing that the proof of Bradfield et al. regarding
the NEXPTIME-completeness of NON-EMPTINESS for Boolean partial order games in [1]
relied on a reduction from DEPENDENCY QUANTIFIER BOOLEAN FORMULA GAME, which is
defined as follows.

An instance of DQBFG is a tuple 〈ϕ, X1, X2, Y1, Y2〉, where ϕ is a Boolean formula ϕ
and {X1, X2, Y1, Y2} a partition of the propositional variables over which ϕ is defined.
DQBFG then concerns the following game with three players—B (‘Black’), W1 (‘White 1’),
and W2 (‘White 2’)—where B forms one team and W1 and W2 another team W. Player B
chooses an assignment for the variables in X1 ∪ X2 = {x1

1, . . . , x1
|X1|} ∪ {x

2
1, . . . , x2

|X2|},
player W1 for those in Y1 = {y1

1, . . . , y1
|Y1|}, and player W2 for those in Y2 = {y2

1, . . . , y2
|Y2|}.

Player B chooses first, then W1 and W2 choose, on the understanding that W1 can only see
the assignment B chooses for W1 and W2 only the assignment B chooses for Y2. Team B
aims to make ϕ true, whereas team W’s goal is to make ϕ false. If the overall assignment
for X1 ∪ X2 ∪Y1 ∪Y2 satisfies ϕ, then B wins, otherwise W. A positive instance of DQBFG

is when team W has a winning strategy. DEPENDENCY QUANTIFIER BOOLEAN FORMULA

GAME was shown to be NEXPTIME-complete by Hearn and Demaine in [27].

Theorem 4. IS NASH ACTIONS is NEXPTIME-complete.

Proof. For membership in NEXPTIME, let a = (av1 , . . . , av|V|) be the action profile that is
given as input. Recall from the proof of Theorem 2 that we can guess a strategy profile f and
check whether it is a Nash equilibrium in exponential time, provided that f is represented
by a Boolean circuit. By Lemma 1 we know we can additionally compute af in polynomial
time and check whether af = a. As the latter can also be achieved in polynomial time, we
obtain our result.

For NEXPTIME-hardness, we reduce from DEPENDENCY QUANTIFIER BOOLEAN FOR-
MULA GAME (DQBFG). Given an instance 〈ϕ, X1, X2, Y1, Y2〉 of DQBFG we construct a par-
tial order Boolean game with the same three players, with B controlling the variables
in X1 ∪ X2 ∪ {x0}, player W1 those in Y1, and player W2 those in Y2, where x0 is a “fresh”
variable not in X1 ∪ X2 ∪Y1 ∪Y2. Let the players’ goals be given by

γB = x0 ∧ ϕ γW1 = γW2 = ⊥

The dependency graph (X1 ∪ X2 ∪Y1 ∪Y2 ∪ {x0}, E) is defined such that

(i) x1 E y1, for all x1 ∈ X1 and y1 ∈ Y1,
(ii) x2 E y2, for all x2 ∈ X2 and y2 ∈ Y2,
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(iii) x0 E z, for all z ∈ X1 ∪ X2 ∪Y1 ∪Y2.

Now, consider the action profile

ā = (x̄0, x̄1
1, . . . x̄1

|X1|, x̄2
1 . . . , x̄2

|X2|, ȳ2
1, . . . ȳ1

|Y1|, ȳ2
1 . . . , ȳ2

|Y2|),

which sets all variables, including x0, to false. Note that none of the three players win if ā
is played. We are now in a position to prove that〈ϕ, X1, X2, Y1, Y2〉 is a positive instance
of DQBFG if and only if ā is sustained by a Nash equilibrium in the partial order Boolean
game constructed.

First assume that 〈ϕ, X1, X2, Y1, Y2〉 is positive instance of DQBFG. Then, the white team
has a joint winning strategy in the original DQBFG-game given by Boolean functions β1
and β2 on the variables X1 and X2, respectively. Then, define strategies f∗W1

and f∗W2
for W1

and W2, respectively, in the Boolean partial order game, that are given by the following
choice equations for i = 1, 2 and j = 1, . . . , |Yi|:

yi
j : (x0 → ϕβi (xi

1, . . . , xi
|Xi |)) ∧ (x̄0 → ⊥)

As the dependency graph (V, E) respects the information dependencies of the DQBFG-
instance, observe that fW1 and fW2 together embody a winning strategy to render ϕ false,
if x0 is played. Let B’s unconditional strategy f∗B be defined by the choice equations of the
form xi

j : ⊥, setting xi
j to false for all for i = 1, 2 and j = 1, . . . , |Xi|.

Observe that, defined thus, af∗ = ā. Also note that f∗ = (f∗B, f∗W1
, f∗W2

) is a Nash
equilibrium. As x0 will be set to false, all players lose when f∗ is played, but none has an
incentive to deviate either. Player B could only hope to win by setting at least x0 to true. If
so, however, W1 and W2 are playing a winning strategy against B, dashing all the latter’s
hopes to win after all. Players W1 and W2 will lose, no matter which strategy they adopt.
As a consequence, they do not want to deviate either, and we may conclude that f∗ is a
Nash equilibrium sustaining action profile ā.

Finally, assume that 〈ϕ, X1, X2, Y1, Y2〉 is a negative instance of DQBFG. Then, team W
does not have a winning strategy, meaning that for every strategy fW = (fW1 , fW2), player B
has a best response f′B such that B wins under f = (fW1 , fW2 , f′B). Now, consider the partial
order Boolean game and an arbitrary strategy profile f̄ with af̄ = ā. Some reflection reveals
that under these circumstances, player B has a strategy f′B at their disposal setting x0 to
true and incorporating a winning response to f̄W = (f̄W1 , f̄W2). Therefore, player B has an
incentive to unilaterally deviate from f̄ and play f′B instead. We may conclude that f̄ is not
a Nash equilibrium, as desired.

For the two extremal classes of empty-order games and total order games, IS NASH

ACTIONS are less computationally demanding. More precisely, the problem is coNP-
complete for empty-order games and PSPACE-complete for total-order games. The proof
of the former statement is relatively straightforward, when one realises that in empty-order
games all strategies are unconditional and that, consequently, there is a natural bijection
between action profiles and strategy profiles.

Theorem 5. For empty-order games, IS NASH ACTIONS is coNP-complete.

Proof. First recall that, in empty-order games, there is a natural bijection between action
profiles and strategy profiles, mapping each action profile a = (av1 , . . . , av|V|) to strategy

profile fa = ( f
av1
v1 , . . . , f

av|V|
v|V| ), where f av

v (()) = av. Thus, all strategy profiles of an empty-
order game are of this form. Moreover, for arbitrary action profiles a = (av1 , . . . , av|V|) and
strategy profiles f = ( fv1 , . . . , fv|V|), we have that

a = af if and only if f av
v = av, for all v ∈ V

if and only if f = fa
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Moreover, recall that unconditional strategies are represented by polynomial-sized
Boolean circuits. Theorem 1 established that IS NASH is coNP-complete for empty-order
games. Altogether, it suffices to show that, for all action profiles a = (av1 , . . . , av|V|) of a
empty-order game,

a is sustained by a Nash equilibrium if and only if fa is a Nash equilibrium.

The “if”-direction is immediate. If fa is a Nash equilibrium, then, by observing that
afa

= a, action profile a is sustained by some Nash equilibrium, namely fa. For the “only if”-
direction, assume there is some strategy profile f∗ with a = af∗ . By our earlier observation
we find that f∗ = fa. Hence, fa is a Nash equilibrium, as desired.

The proof of PSPACE-completeness of IS NASH ACTIONS for total-order games is
considerably more involved, and we defer it to the very end of Section 7.2, where the
necessary proof elements are in place. Still, we conclude this section with its statement.

Theorem 6. For total-order games, IS NASH ACTIONS is PSPACE-complete.

6. Backwards Induction

Backwards induction is the most fundamental technique for the analysis of extensive
form games. The basic backward induction algorithm for extensive form games of perfect
information runs in time polynomial in the size of the game tree, and computes Nash
equilibrium strategy profiles (which are guaranteed to exist in games of perfect information).
It is therefore very natural to ask whether approaches based on backward induction might
work for partial order games. However, backward induction is not applicable in extensive
form games of imperfect information, and as partial order games correspond to imperfect
information games, it follows that the technique is not always applicable. This section
introduces a backward induction procedure to find pure Nash equilibria in partial order
games. Games in which the procedure is well defined—in the sense that the procedure
produces at least one strategy profile—we denote as being fit for backwards induction. We
relate this latter concept to an informational notion we refer to as scrutability. For games
that are fit for backwards induction, we prove that our backwards induction procedure is
guaranteed to produce a Nash equilibrium outcome.

6.1. Backwards Induction

Due to their acyclic nature, it would seem that a natural concept of backward induction
procedure can straightforwardly be defined for partial order games. Our aim is thus to
define a strategy profile f∗ = ( f ∗v1

, . . . , f ∗v|V|) that is obtained in the following fashion.
One starts with a vertex v of maximal depth with set of parents Y = {y1, . . . , yk}, and
one inspects the possible actions—rather than their strategies—the players active at the
parents of v can play. Let aY = (ay1 , . . . , ayk ) be any such an action profile, suppose i is the
player active at v. Then, the action a∗v = f ∗v (ay1 , . . . , ayk ) selected by strategy f ∗v from Av
should maximise i’s utility against aY and all possible choices of action bX at the vertices
in X = V \ (Y ∪ {v}), provided any such action a∗v exists. Subsequently, with the strategies
for the vertices of greatest depth thus fixed, the strategies in f∗ should recursively find
optimal strategies at vertices of lesser depth in a similar fashion.

In the case of partial order games, it is not strictly necessary to proceed recursively on
the depth of the vertices. We can, instead, use any topological sorting τ = (vτ1 , . . . , vτ|V|)
of the vertices that respects the graph and, starting with the vertex vτj with maximal
index τj = |V|, we iterate through τ until we reach the vertex with minimal topological
index. In this section, we will develop this more general concept of backward induction for
partial order games that employs a topological order.

Our backwards induction procedure defines recursively a strategy profile f∗ =
( f ∗v1

, . . . , f ∗v|V|) for each vertex v relative to a topological sorting τ = (vτ1 , . . . , vτ|V|), and is
formally defined as follows. Let v be a vertex with topological index τj and let i be the
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player to move at v. Let Y = {y1, . . . , yk} be the set of parents of v, Z = {z1, . . . , zm} be
the set of vertices with a topological index strictly greater than τj, and X = {x1, . . . , x`} be
given by V \ (Y ∪ Z ∪ {v}). For every profile aY = (ay1 , . . . , ayk ), we define f ∗v (ay1 , . . . , ayk )
as an action a∗v in Av such that, for all profiles bX = (bx1 , . . . , bx`),

a∗v ∈ arg max
av∈Av

ui(bX , aY, av, f∗Z), (1)

where the basis of this recursion is provided by the case where Z = ∅ (Here we exploit the
notation bX, aY, av, f∗Z to refer to the action profile that results if after τ-history (bX, aY, av
the strategy profile f∗ is played over the vertices in Z. Formally, bX , aY, av, f∗Z is the action
profile ag for strategy profile g = (fbX

X , faY
Y , f av

v , f∗Z), where (fbX
X , faY

Y , f av
v ) is a profile of

unconditional strategies (also see page 9, above)). To illustrate this definition, we have the
following example.

Example 4. Consider the utility function for the game depicted in Figure 10, and fix a topological
sorting (v1, v2, v3, v4). From inspection, it can easily be appreciated that the utility to player 1
is only dependent on their own choices at vertices v1 and v4, and player 2’s at vertex v2. At
this moment, we can apply the backwards induction procedure as follows. Inspecting their utility
function, we find that player 3 chooses as follows at vertex v3:

fv3(ac) = f fv3(ad) = e fv3(bc) = f fv3(bd) = f

At vertex v4, player 1, can set their strategy such that fv4(c) = g and fv4(d) = h, because
they are indifferent to any choice of actions by the other players. Player 2 can have their strategy
at v2 depend on player 1’s choice at v1. If player 1 chooses a at v1, then by playing c at v2, action
profile ac f g will result and player 2 will obtain utility 3. Whereas, by playing d, action profile adeh
will ensue, with a utility of 1 for player 2. Therefore, fv2(a) = c. A similar reasoning yields that, if
player 1 chooses b at v1, by playing c at v2, action profile (b, c, f , g) results with utility 0 for player 2,
whereas, by playing d, action profile (b, d, f , h) ensues with utility 2 for player 2. Accordingly,
fv2(b) = d. Finally, by playing a at v1, player 1 obtains utility 3, as action profile (a, c, f , g)
would be played. Observe that by playing b at v1, player 1 obtains utility 2, as in that case action
profile (b, d, f , h) would result. Accordingly, fv1(()) = a. We thus obtain the strategy profile
f = ( f 1

v1
, f 2

v2
, f 12

v3
, f 2

v4
) yielding action profile (a, c, f , g) as the backwards induction solution of

this game.
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v1 1 : a, b

v2 2 : c, d

v3 3 : e, f v4 1 : g, h

u1 u2 u3

aceg 3 0 2
aceh 1 1 2
ac f g 3 3 3
ac f h 1 2 3
adeg 0 0 4
adeh 2 1 4
ad f g 0 3 2
ad f h 2 0 2

u1 u2 u3

bceg 3 3 0
bceh 1 2 0
bc f g 3 0 3
bc f h 1 1 3
bdeg 0 0 1
bdeh 2 3 1
bd f g 0 0 3
bd f h 2 2 3

Figure 10. The partial order game from Example 1 with a slightly different utility function.
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To formalise this issue, we say that a partial order game is fit for backwards
induction under a topological sorting τ = (vτ1 , . . . , vτ|V|) if, for every vertex v, and every
action profile a = (av1 , . . . , av|V|),
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Figure 10. The partial order game from Example 1 with a slightly different utility function.

Some reflection reveals that on total-order games the procedure defined thus mimics
standard backwards induction on the corresponding extensive-form games of perfect
information as described in Section 4.4. It is important to note, however, that, on general
partial order games, our backwards induction procedure does not always yield a strategy
profile f∗. This is because the outcome of a partial order game—and therefore also the
players’ utilities as well as the possibility of finding a utility maximising action—need not
be fully determined by the actions chosen at a given vertex v, at v’s parent vertices, and at
the vertices with a larger topological index than v.

The outcome may also depend on the actions chosen at vertices of an equal or lesser
depth that are not parents of the respective vertex. If so, it may happen that, at some
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stage of the procedure and at some vertex, no action can be singled out as an unequivocal
optimal choice based on the choices at the parent nodes and those at the vertices with a
greater topological index alone. This would cause the procedure to stall. More formally, this
happens if for some vertex v, there are two different profiles bX = (bw1 , . . . , bw`

) and b′X =
(b′w1

, . . . , b′w`
) such that arg maxav∈Av

ui(bX, aY, av, f∗Z) and arg maxav∈Av
ui(b′X, aY, av, f∗Z)

are disjoint. The following example illustrates this point.

Example 5. Consider again the game of Example 1, depicted in Figure 3. Let us first consider
the strategies that player 3 can choose at vertex v3. This player has to specify an action from
among e and f , for each of the possible action profiles player 1 and 2 can choose at vertices v1 and v2,
respectively, that is, for the action profiles ac, ad, bc, and bd. Inspecting player 3’s utilities, player 3
should arguably choose fv3(ac) = f , as no matter what action player 1 chooses at v4, player 3 is
better off playing f than playing e. However, how to choose a value for fv3(ad) is not so obvious,
as the optimal choice depends on whether player 1 chooses g or h at vertex v4; this is something
player 3 may not let their strategy depend upon as not v3Ev4.

To formalise this issue, we say that a partial order game is fit for backwards induction
under a topological sorting τ = (vτ1 , . . . , vτ|V|) if, for every vertex v, and every action profile
a = (av1 , . . . , av|V|), ⋂

bX∈AX

arg max
av∈Av

ui(bX , aY, av, aZ) 6= ∅,

where Y is the set of parents of v, Z the set of vertices with a topological index that is not
smaller than that of v, and X = V \ (Y ∪ Z ∪ {v}). This ensures that, in Equation (1), the
optimal action a∗v is defined for every vertex v. At this point, it is worth observing that for
total-order games, the set X will be empty and that they allow for only one topological
sorting. It follows that total-order games vacuously satisfy the fit-for-backwards-induction
condition under every topological sorting.

We are now in a position to show that our backwards induction procedure always
yields a Nash equilibrium in games that are fit for backwards induction.

Theorem 7. Let G be a partial order game that is fit for backwards induction under a topological
order τ. Then, every strategy profile f∗ = ( f ∗v1

, . . . , f ∗v|V|) generated by the backwards induction
procedure under τ is a Nash equilibrium.

Proof. Let f∗ = ( f ∗v1
, . . . , f ∗v|V|) be a strategy profile that our backwards induction procedure

yields for topological order τ = (vτ1 , . . . , vτ|V|). Without loss of generality, we may assume
that τj = j for all 1 ≤ j ≤ |V|, that is, v1, . . . , v|V| are already topologically ordered. Assume
for contradiction that f∗ is not a Nash equilibrium, that is, there is some strategy gi for
some player i such that ui(f∗−i, gi) > ui(f∗−i, f∗i ). Let g = (f∗−i, gi).

Now, there is at least one vertex vj with 1 ≤ j ≤ |V| that is controlled by player i
with parents Y = {y1, . . . , yk} for which there is an action profile x = (xv1 , . . . , xvj−1) in
Av1 × · · · × Avj−1 such that:

ui(xv1 , . . . , xvj−1 , avj , f ∗vj+1
, . . . , f ∗v|V|) < ui(xv1 , . . . , xvj−1 , bvj , gvj+1 , . . . , gv|V|), (2)

where avj = f ∗vj
(xy1 , . . . , xyk ) and bvj = gvj(xy1 , . . . , xyk ) (To see this, let af∗ = (av1 , . . . , av|V|)

and ag = (bv1 , . . . , bv|V|). Then observe that there must be a smallest index 1 ≤ j ≤ |V| such
that vj ∈ Vi with avj 6= bvj and avm = bvm for all 1 ≤ m < j, which provides us with the
desired vj). Now we may assume that j is the largest index with vj ∈ Vi for which such an
action profile, or τ-history, x = (xv1 , . . . , xvj−1) can be found. Therefore,

ui(xv1 , . . . , xvj−1 , bvj , gvj+1 , . . . , gv|V|) ≤ ui(xv1 , . . . , xvj−1 , bvj , f ∗vj+1
, . . . , f ∗v|V|). (3)
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Combining inequalities (2) and (3), we obtain that

ui(xv1 , . . . , xvj−1 , avj , f ∗vj+1
, . . . , f ∗v|V|) < ui(xv1 , . . . , xvj−1 , bvj , f ∗vj+1

, . . . , f ∗v|V|).

Having assumed (v1, . . . , v|V|) to be ordered topologically, the set Y = {y1, . . . , yk}
of parents of vj is a subset of {v1, . . . , vj−1}. Let further X = {v1, . . . , vj−1} \ Y and
Z = {vj+1, . . . , v|V|}. Recall that avj = f ∗vj

(xy1 , . . . , xyk ). We then find that, for profile xY,
there is some profile, namely xX , such that

f ∗vj
(xy1 , . . . , xyk ) /∈ arg max

a′vj∈Avj

ui(xX , xY, a′vj
, f∗Z).

It follows that our backwards induction procedure does not provide us with f ∗vj
, which

contradicts our initial assumption regarding the profile f∗ = ( f ∗v1
, . . . , f ∗v|V|).

We also have the following lemma, which is a version of the one-stage-deviation property
for partial order games, and which is an almost immediate consequence of the definition
of our backwards induction procedure (also see in [28] (pages 108–110) and Osborne
and Rubinstein [5] (page 98)). This property will prove to be of great help proving the
computational complexity results in Section 7. Intuitively it says that to establish that a
strategy profile f = ( fv1 , . . . , fv|V|) is a backwards induction solution, it suffices to look at
deviations by a player from f at a single vertex vk given a single history h = (av1 , . . . , avk ).
The property is perhaps best understood by considering its contrapositive: strategy profile f
is not a backwards induction solution if there is a single player who has an incentive to
deviate from f at a single vertex vk given a single history h = (av1 , . . . , avk ). Note that we
here assume that the game in question is fit for backwards induction.

Lemma 5 (One-stage-deviation property). Let the vertices of a partial order game be sorted
according to a topological sorting τ = (v1, . . . , v|V|). Then, for games that are fit for backwards
induction, profile f = ( fv1 , . . . , fv|V|) is a backwards induction solution for τ if and only if for every
τ-history (av1 , . . . , avk−1) with 1 ≤ k ≤ |V| we have for all bvk ∈ Avk :

ui(av1 , . . . , avk−1 , fvk , fvk+1 , . . . , fv|V|) ≥ ui(av1 , . . . , avk−1 , bvk , fvk+1 , . . . , fv|V|),

where i is the player assigned to vk.

Proof. First assume that f = ( fv1 , . . . , fv|V|) is a backwards induction solution, and consider
an arbitrary τ-history (av1 , . . . , avk−1) and equally arbitrary bvk in Avk . Let Y be the parents
of vk and X = {v1, . . . , vk−1} \Y. Then,

ui(bX , aY, fvk (aY), fvk+1 , . . . , fv|V|) ≥ ui(bX , aY, bvk , fvk+1 , . . . , fv|V|), (4)

for all profiles bX . Now observe that inequality (4) holds for in particular for bX = aX .
For the “if”-direction assume for contraposition that f = ( fv1 , . . . , fv|V|) is not a back-

wards induction solution for τ. Then, there is a vertex vk with minimal topological index,
parents Y, and X = {v1, . . . , ak−1} \Y such that for some profile aY, we have for every avk

in Avk that there is some profile bX such that

ui(bX , aY, avk , fvk+1 , . . . , fv|V|) < ui(bX , aY, bvk , fvk+1 , . . . , fv|V|). (5)

At this point, consider any avk in Avk and let bX be the accompanying profile for which
Equation (5) holds. We can conclude the proof by considering the τ-history (bX , aY).

6.2. Games of Adequate Information

In this section, we propose the class of adequate information games, which are guaranteed
to be fit for backwards induction, and, thus, always have a Nash equilibrium. As an
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auxiliary concept we first introduce the notion of scrutability, an informational criterion
specifying on which choices of which players a player can have its decision depend when
choosing an action at a specific vertex.

6.2.1. Scrutability

We introduce scrutability as a technical term to reason about the strategic information
that is available to the players at each stage of the backwards induction process. Intuitively,
let v and w be a vertices at which, respectively, players i and j are active. Then, assuming
that the game is fit for backwards induction, a vertex w is scrutable to v if j’s choices of
action at w can make a difference as to the optimality of i’s choice of action at v when
deciding on a backwards induction strategy at v. Thus, all vertices reachable from v are
scrutable, as their backwards induction choices will already have been made. Moreover,
the player active at v can have their choice of action depend on the choices of action at the
parent nodes of v.

Formally, we say that a vertex w is scrutable to vertex v if either

(i) w is reachable from v, or
(ii) wEv, that is w is one of v’s parents.

We refer to a vertex that is not scrutable to v as being inscrutable to v. Recall the
reachability relation is reflexive, and, thus, vertex v is always scrutable to v itself. Observe
that the relations of scrutability and inscrutability are not necessarily symmetric. For
instance, if a vertex v is reachable from w, but w is not a parent of v, then v is scrutable
to w, but not vice versa. If v is inscrutable to w, and w is also inscrutable to v, we say that v
and w are independent.

We differentiate between a vertex being scrutable to a vertex and a vertex being
scrutable to a player. For Vi = {v1, . . . , vm} player i’s vertices, we denote by Iv the set
of vertices that are inscrutable to v, and by Sv the set of vertices that are scrutable to v.
Furthermore, let Ii = Iv1 ∪ · · · ∪ Ivm and Si = V \ Ii denote the sets of vertices that are
inscrutable and scrutable to player i, respectively. That is, if a vertex v is inscrutable to a
player i, if v is inscrutable to at least one vertex at which i is active. Vertex v is scrutable to
player i, if it is not inscrutable to i, that is, if v is scrutable to all vertices at which i is active.
It may be worth observing that in total-order games all vertices will be scrutable from any
other vertex.

Furthermore, we introduce a notion of scrutability that is relative to a topological
sorting of the vertices. Therefore, let τ = (vτ1 , . . . , vτ|V|) be a topological sorting. Then,
a vertex w with topological index τw is scrutable under τ to vertex v with topological
index τv, if either

(i) τw ≥ τv, or
(ii) wEv, that is w is one of v’s parents.

Any vertex that is not scrutable under τ is referred to as being inscrutable under τ.
For Vi = {v1, . . . , vm} and topological sorting τ = (vτ1 . . . , vτ|V|), we furthermore denote
by Iτ

v the set of vertices that are inscrutable to v under τ, and by Sτ
v the set of vertices that

are scrutable to v under τ.
Moreover, we define Iτ

i = Iτ
v1
∪ · · · ∪ Iτ

vm and Sτ
i = V \ Iτ

i . Note that the set of vertices
scrutable to a player i need not include the set Vi of vertices where i is active.

Given a topological sorting τ and a vertex v, by Y, we will generally adhere to the
following notational conventions. The parents of v we generally denote by Y, the set of
vertices inscrutable to v by X, and the set of all vertices that are not parents of v but still
scrutable to v by Z. The following example illustrates these concepts.
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Example 6. Consider the game depicted in Figure 10. Then, we have the following sets of scrutable
and inscrutable vertices.

Sv1 = {v1, v2, v3, v4} Iv1 = ∅ S1 = {v2, v4} I1 = {v1, v3}
Sv2 = {v1, v2, v3, v4} Iv2 = ∅ S2 = {v1, v2, v3, v4} I2 = ∅

Sv3 = {v1, v2, v3} Iv3 = {v4} S3 = {v1, v2, v3} I3 = {v4}
Sv4 = {v2, v4} Iv4 = {v1, v3}

For the topological sorting τ = (v1, v2, v3, v4), we get

Sτ
v1

= {v1, v2, v3, v4} Iτ
v1

= ∅ Sτ
1 = {v2, v4} Iτ

1 = {v1, v3}
Sτ

v2
= {v1, v2, v3, v4} Iτ

v2
= ∅ Sτ

2 = {v1, v2, v3, v4} Iτ
2 = ∅

Sτ
v3

= {v1, v2, v3, v4} Iτ
v3

= ∅ Sτ
3 = {v1, v2, v3, v4} Iτ

3 = ∅

Sτ
v4

= {v2, v4} Iτ
v4

= {v1, v3}

By contrast, under topological sorting τ′ = (v1, v2, v4, v3), we obtain

Sτ′
v1

= {v1, v2, v3, v4} Iτ′
v1

= ∅ Sτ′
1 = {v2, v3, v4} Iτ′

1 = {v1}
Sτ′

v2
= {v1, v2, v3, v4} Iτ′

v2
= ∅ Sτ′

2 = {v1, v2, v3, v4} Iτ′
2 = ∅

Sτ′
v3

= {v1, v2, v3} Iτ′
v3

= {v4} Sτ′
3 = {v1, v2, v3} Iτ′

3 = {v4}
Sτ′

v4
= {v2, v3, v4} Iτ′

v4
= {v1}

For another example, consider Figure 11 along with topological order τ = (v1, v2, v3, v4). We
then obtain for the vertices the following sets of scrutable and inscrutable vertices for vertices as well
as for players:

Sτ
v1

= {v1, v2, v3, v4} Iτ
v1

= ∅ Sτ
1 = {v1, v2, v3, v4} Iτ

1 = ∅

Sτ
v2

= {v2, v3, v4} Iτ
v2

= {v1} Sτ
2 = {v2, v4} Iτ

2 = {v1, v3}
Sτ

v3
= {v1, v2, v3, v4} Iτ

v3
= ∅

Sτ
v4

= {v1, v2, v4} Iτ
v4

= {v3}

v1 1 : a, b v2 2 : c, d

v4 2 : g, hv3 2 : e, f

u1 u2

aceg 3 2
aceh 1 5
ac f g 3 3 1

2
ac f h 1 5
adeg 0 9
adeh 2 3
ad f g 0 7
ad f h 2 4

u1 u2

bceg 3 0
bceh 1 3
bc f g 3 1
bc f h 1 3
bdeg 0 7
bdeh 2 1
bd f g 0 4
bd f h 2 2

Figure 11. Another example of a partial order game.

Observe that w being reachable from v implies τw ≥ τv, in other words, Sv ⊆ Sτ
v for

every topological order τ. Accordingly, plain scrutability is stronger than scrutability under
a topological sorting. The following lemma lays down the precise formal interrelationship
between scrutability and scrutability under a topological order.

Lemma 6. Let i be a player of a partial order game and v a vertex controlled by i. Then, for all
vertices w,

(i) w is scrutable to v if and only if w is scrutable to v under all topological orders τ,
(ii) w is inscrutable to v if and only if w is inscrutable to v under some topological order τ,
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(iii) w is scrutable to i if and only if w is scrutable to i under all topological orders τ,
(iv) w is inscrutable to i if and only if w is inscrutable to i under some topological order τ.

Proof. We prove part (i) first. Then, parts (ii) through (iv) follow by straightforward
set-theoretic reasoning.

(i) For the “only if”-direction, first assume that w is scrutable to v and consider an arbi-
trary topological sorting τ with topological indices τi and τj for v and w, respectively.
Then, either wEv or w is reachable from v, that is, vE∗w. In the former case, we have
immediately that w is scrutable to v under τ. In the latter case, observe that then
τi < τj by definition of a topological sorting. It then also follows that w is scrutable
to v under τ.
For the “if”-direction, assume for contraposition that w is not scrutable to v. Then,
neither wEv nor w being reachable from v hold. In case v is reachable from w, let τ be
any topological order with τi and τj the topological indices for v and w. Then, τj < τi,
and it follows that w is not scrutable under τ. In case v is not reachable from w, let
(V, E) be the DAG underlying the partial order game. Then, consider the edge set
E′ = E ∪ {(w, v)}. The graph (V, E′) must be acyclic because if (V, E′) contained a
directed cycle, there would be a simple path from v to w not involving the edge (w, v).
Therefore, w would also be reachable from v in (V, E), a contradiction. Therefore,
(V, E′) is acyclic and has a topological sorting τ. Observe that τ is also a topological
order for (V, E). Let τi and τj be the topologic al indices for v and w, respectively. As
wE′v, we have τj < τi and again we may conclude that w is not scrutable to v under τ.

(ii) This part follows immediately from part (i), by observing the following equivalences:

w is inscrutable to v

if and only if w is not scrutable to v

if and only if w is not scrutable to v under some topological order τ

if and only if w is inscrutable to v under some topological order τ

(iii) Let v1, . . . , vm be the vertices assigned to player i, and let τ1, . . . , τk be the topological
sortings for the game. From (ii) we obtain that Ivj = Iτ1

vj ∪ · · · ∪ Iτk
vj for every 1 ≤ j ≤ m.

(iv) Therefore,

Ii =
⋃

1≤j≤m
Ivj =

⋃

1≤j≤m
Iτ1
vj ∪ · · · ∪ Iτk

vj =
⋃

1≤`≤k

Iτ`
v1 ∪ · · · ∪ Iτ`

vm =
⋃

1≤`≤k

Iτ`
i ,

and it follows that w is inscrutable to i if and only if w is inscrutable to i under some
topological sorting. Part (iii) then is an immediate consequence of de Morgan’s law:

Si = V \ Ii = V \ (Iτ1
i ∪ · · · ∪ Iτk

i ) = V \ Iτ1
i ∩ · · · ∩V \ Iτk

i = Sτ1
v1 ∩ · · · ∩ Sτk

i =
⋂

1≤`≤k

Sτ`
i .

Therefore, w is scrutable to i if and only if i is scrutable to i under all topological
sortings.

This concludes the proof.

6.2.2. Games of Adequate Information

In this section, we define a class of partial order games, which we refer to as games
of adequate information. We prove that games of adequate information are fit for backward
induction, and thus, on account of Theorem 7, allow for Nash equilibria. For this, we
require that each player at each vertex assigned to them is in a position to determine their
optimal choices if they are given only the choices at their parents and those at the nodes with a
greater topological index.
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Formally, we introduce the concept of a utility function being of adequate information
and a variant of the notion parametrised by a topological order τ. These concepts only
differ in the vertices that are considered to be scrutable and inscrutable. Let i be a player
with utility function ui : Av1 × · · · × Av|V| → R. Without loss of generality, we assume
that Vi = {v1, . . . , vm}. Let S be the set of vertices scrutable to i (under τ) and I the set
of vertices inscrutable to i (under τ). Then, player i’s utility function ui : AV → R is said
to be of adequate information (under τ) or adequately informed (under τ), if there is a
function u0

i : AS → R such that for all profiles aS, a′S ∈ AS and bI ∈ AI

ui(aS, bI) ≥ ui(a′S, bI) if and only if u0
i (aS) ≥ u0

i (a
′
S).

If this is the case, we say that player i’s utility function ui : A→ R (ordinally) reduces
to u0

i : ASi → R.
A game of adequate information under τ is, then, a partial order game in which each

player’s utility function is of adequate information under τ. We also define a concept of
adequate information that is irrespective of the topological sorting τ in the straightforward
manner. Thus, a game of adequate information simpliciter is a partial order game in which
each player’s utility function is of adequate information. Observe that total-order games
constitute a subclass of adequate-information games, since such games do not allow for
inscrutable vertices. To illustrate, we have the following example:

Example 7 (Game of adequate information). Consider the game depicted in Figure 10 again.
Under topological sorting τ = (v1, v2, v3, v4), player 1 has scrutables Sτ

1 = {v2, v4} and inscruta-
bles Iτ

1 = {v1, v3}. For player 1, observe that for all a ∈ Av2 × Av4 and all b, b′ ∈ Av1 × Av3

we have that u1(a, b) = u1(a, b′). For instance, u1(cg, ae) = u1(cg, a f ) = 3 and u1(dg, a f ) =
u1(dg, b f ) = 0. Accordingly, define u0

1 : Av2 × Av4 → R such that

u0
1(cg) = 3 u0

1(ch) = 1 u0
1(dg) = 0 u0

1(dh) = 2,

and find that u1 ordinally reduced to u0
1 and, hence, that player 1 is adequately informed in this

game. For players 2 and 3, we saw that Sτ
2 = Sτ

3 = {v1, v2, v3, v4} and Iτ
2 = Iτ

3 = ∅. As some
reflection reveals, u2 and u3 thus vacuously reduce to themselves. We therefore immediately see that
their utility functions are of adequate information under τ as well.

Finally, consider once more the game depicted in Figure 11 along with the natural topological
order τ = (v1, v2, v3, v4). Under τ, this game is of adequate information. As Iτ

1 = ∅, this is easy
to see for player 1. For player 2 we have Sτ

2 = {v2, v4} and Iτ
2 = {v1, v3}. Now, we can define u0

2
such that

u0
2(cg) = 1 u0

2(ch) = 4 u0
2(dg) = 8 u0

2(dh) = 2

It then only requires an easy check to see that u2 ordinally reduces to u0
2. For instance,

u0
2(cg) < u0

2(dg) and also

u2(cg, ae) = 2 < 9 = u2(dg, ae) u2(cg, a f ) = 3 1
2 < 7 = u2(dg, a f )

u2(cg, be) = 2 < 7 = u2(dg, be) u2(cg, b f ) = 2 < 4 = u2(dg, b f )

By contrast, under topological order τ′′ = (v2, v1, v4, v3), player 1’s utility function is not
of adequate information. To see this, first observe that Sτ′′

1 = {v1, v3, v4} and Iτ′′
1 = {v2}. Now,

u1(aeg, c) = 2 < 9 = u1(aeh, c), whereas u1(aeg, d) = 5 > 3 = u1(aeh, d). Had there been a
function u0

1 : ASτ′′
1
→ R such that u1 ordinally reduces to u0

1, then both u0
1(aeg) < u0

1(aeg) and

u0
1(aeg) > u0

1(aeg), a contradiction.

The following result establishes that games of adequate information (under a topolog-
ical sorting τ) are fit for backwards induction (under τ).
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Theorem 8. Let τ = (vτ1 , . . . , vτ|V|) be a topological sorting. Then,

(i) games of adequate information under τ are guaranteed to have a Nash equilibrium, which can
be found using our backward induction procedure under τ, and

(ii) games of adequate information simpliciter are guaranteed to have a Nash equilibrium, which
can be found using our backward induction procedure under any topological sorting.

Proof. Let τ = (vτ1 , . . . , vτ|V|) be an arbitrary topological sorting. For part (i), due to
Theorem 7, it suffices to prove that games of adequate information under τ are fit for back-
ward induction under τ. To this end, consider an arbitrary game of adequate information
under τ and consider an arbitrary vertex v. Let i be the player assigned to v. Further-
more, let Iτ

i = {w1, . . . , wk} denote the set of vertices that are inscrutable to i under τ and
Sτ

i = {wk+1, . . . , w|V|} denote the set of vertices that are scrutable to i under τ. We let Y
denote the set of parents of v, and Z the set of vertices with a strictly greater topological
index than v. Then, set X = V \ (Y∪Z∪ {v}) and let X = {x1, . . . , x|X|]}. Observe that X is
the set of vertices that are inscrutable to v under τ, and thus all vertices in X are inscrutable
to i under τ, that is, X ⊆ Iτ

i .
By assumption, player i’s utility function ui : A→ R is adequately informed under τ.

In particular, we may assume that ui ordinally reduces to a function u0
i : ASτ

i
→ R.

Now, consider an arbitrary action profile a = (a1, . . . , a|V|). Having assumed A to be
finite, there must be an action a∗v in Av with

a∗v ∈ arg max
a′v∈Av

ui(aX , aY, a′v, aZ).

Let a∗ = (aX , aY, a∗v , aZ).
Consider an arbitrary a′′v in Av, and let a′′ = (aX, aY, a′′v , aZ). Then, ui(a∗) ≥ ui(a′′).

Having assumed that the game is of adequate information we may assume that there is a
function u0

i : ASτ
i
→ R such that

u0
i (a
∗
Sτ

i
) ≥ u0

i (a
′′
Sτ

i
). (∗)

Consider an arbitrary profile b in A. Then, ui(bIτ
i
, a∗Sτ

i
) ≥ ui(bIτ

i
, a′′Sτ

i
). Now, either v

is scrutable to i or v is inscrutable to i. If the latter, Iτ
i = X ∪ {v}. Then, ui(bX , aY, a∗v , aZ) =

ui(bX , aY, a′′v , aZ). With a′′v having been chosen arbitrarily, a∗v ∈ arg maxa′∈Av
ui(bX , aY, a′v, aZ).

If the former, Iτ
i = X, and we find that ui(bX, aY, a∗v, aZ) ≥ ui(bX, aY, a′′v , aZ). Again, we

may conclude that a∗v ∈ arg maxa′∈Av
ui(bX, aY, a′v, aZ). In either case, and with b hav-

ing been chosen arbitrarily, a∗v ∈
⋂

bX∈AX
arg maxav∈Av

ui(bX, aY, av, aZ), which proves
the case.

Part (ii) follows by an argument that runs along analogous lines as that for part (i),
reasoning about the vertices that are inscrutable to i simpliciter rather than under a specific
topological sorting τ. In this context, observe that, by virtue of Lemma 6, the set Iτ

i of
vertices inscrutable to i under a topological sorting τ constitutes invariably a subset of the
set Ii of vertices inscrutable to i simpliciter.

7. Computing Backwards Induction Solutions for Partial Order Games

In this section, we explore a number of natural computational problems surround-
ing our backwards induction procedure for partial order games and games of adequate
information. We first conduct an asymptotic analysis of our backwards induction proce-
dure. We find that the procedure runs in exponential time in the general case, but that a
considerable speed up is possible if the in-degree of the vertices or the number of their
parents is bounded appropriately. Subsequently, we investigate the computational com-
plexity of deciding whether a partial order game is fit for backwards induction, that is
if the precondition for our procedure to produce a Nash equilibrium holds. In a similar
vein, we also address the closely related question of whether a given partial order game



Games 2022, 13, 2 34 of 49

is a game of adequate information. We find that both these problems are coNP-complete.
Finally, we come to consider the problems of deciding whether a given strategy profile
is a backwards induction solution and whether a given action profile is sustained by a
backwards induction solution. We show that the latter problem is NEXPTIME-complete
for the general case, but that it is PSPACE-complete for total-order games.

7.1. Asymptotic Complexity of Backwards Induction

Due to the compactness of the partial order game representation, our backwards
induction procedure runs in time exponential in the number |V| of vertices. Let v1, . . . , v|V|
be ordered according to the topological sorting τ under which backwards induction is
conducted. Throughout this section, as we did before, for each vertex v, by Y we denote
the parents of v, by Z the vertices with a greater topological index than v, and let X =
V \ (Y ∪ Z ∪ {v}). Then, for each vertex vj, where 1 ≤ j ≤ |V|, with parents Y and τ-
inscrutable vertices X we have to find, an action a∗vj

in Avj such that, for i the active player
at vj,

a∗ ∈
⋂

bX∈AX

arg max
avj∈Avj

ui(bX , aY, avj , f∗Z),

and abort if no such action exists. This requires for each profile aY in AY the computation
of |Avj | ·∏u∈X |Au| utility values ui(aX, aY, avj , a∗Z). Letting Ā = maxv∈V Av, this makes
for a total number of utility computations of

|V|
∑
j=1

j

∏
k=1
|Ak| ≤

|V|
∑
j=1

j

∏
k=1
|Ā| =

|V|
∑
j=1
|Ā|j =

|V|
∑
j=0
|Ā|j − 1 =

|Ā||V|+1 − 1
|Ā| − 1

− 1 = O(|Ā||V|).

Assuming that the players’ utilities are represented by a Boolean circuit, each of these
can be achieved in time polynomial in |A|. Following the definition, we can therefore
compute a backwards induction solution in O(|A||V|) time.

It is not hard to see that, if we restrict ourselves to partial order games of adequate
information in which all vertices have at most log2(|A|) parents, a backwards induction
profile can be computed in time pseudo-polynomial in |A|. If, in addition to their having
at most log2(|A|) parents, every vertex v of a game of adequate information has at most
two actions, that is, |Av| ≤ 2, then a backwards induction profile can be computed in time
polynomial in |A|. Summarising, we have the following proposition.

Proposition 5. Let Yv denote the set of parents of a vertex v. For a partial order game of adequate
information, a backwards induction profile can then be computed in time:

(i) O(|A||V|), in the general case,
(ii) O(|A|log2(|A|)), if |Yv| ≤ log2(|A|) for all vertices v,
(iii) O(|A|), if |Yv| ≤ log2(|A|) and |Av| ≤ 2 for all vertices v.

7.2. Computational Complexity of Backwards Induction

In this section, we investigate the natural computation problems of deciding whether
a backwards induction solution exists in a given partial order game for a given topological
order. Furthermore, we analyse how hard it is to decide whether a given strategy profile
incorporates a backwards induction solution. Finally, recalling that action profiles and
strategy profiles are essentially different objects in the setting of partial order games, we
explore how computational complex it is to decide whether a given action profile is sustained
by a backwards induction solution, that is, whether, for a given action profile a, there is
a backwards induction solution f such that a = af. Throughout this section, we assume
that strategies and utilities are concisely represented as Boolean circuits as outlined in
Section 3.1.

First, we consider the following computational problem concerning the conditions
under which a partial order game is fit for backwards induction. Formally:
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FIT FOR BACKWARDS INDUCTION

Given: Partial order game G and a topological sorting τ of its vertices
Problem: Is G fit for backwards induction under τ?

For total-order games, FIT FOR BACKWARDS INDUCTION is vacuous, as they are all fit
for backwards induction. For general partial order games, however, we have the following.

Theorem 9. FIT FOR BACKWARDS INDUCTION is coNP-complete.

Proof. To see that FIT FOR BACKWARDS INDUCTION is in coNP, let τ be a topological sorting
of the game’s vertices. A certificate for a counterexample is then given by

(i) a vertex v, with Av = {a1, . . . , ak}, and X, Y, and Z the set of inscrutable vertices
with a lower topological index, the set of v’s parents, and the vertices with a higher
topological index than v, respectively;

(ii) a profile aY in AY;
(iii) a profile aZ in AZ;
(iv) a tuple (a′1, . . . , a′k) of k actions a′j in Ak; and

(v) a tuple (b1
X , . . . , bk

X) of k profiles bj
X in AX .

It is easy to verify that such a certificate is still of polynomial size. Observe that, if
ui(b

j
X , aY, a′j, aZ) > ui(b

j
X , aY, aj, aZ) holds for some 1 ≤ j ≤ k, we may conclude that

aj /∈
⋂

bX∈AX

arg max
av∈Av

ui(bX , aY, av, aZ).

Therefore, such a certificate is a counterexample to the game being fit for backwards
induction under τ if and only if ui(b

j
X, aY, a′j, aZ) > ui(b

j
X, aY, aj, aZ) for every 1 ≤ j ≤ k.

Observe that determining the sets X, Y, and Z can be achieved in polynomial time. Having
assumed, moreover, that the utility function ui is part of the input and represented by a
Boolean circuits and evaluation problem for Boolean circuits is solvable in polynomial time,
we find that this is a property that can be checked in polynomial time.

For coNP-hardness, we reduce the complement of SATISFIABILITY. Let ϕ be a proposi-
tional formula in the propositional variables p1, . . . , pm. Let q and r be two additional, fresh,
propositional variables. We construct a partial order Boolean game with three players,
player 1, player 2, and player 3 on a DAG (V, E) with V = {vq, vr, vp1 , . . . , vpm} and E such
that (v, u) ∈ E whenever v = vq and u = vpj for some 1 ≤ j ≤ m, or v = vpj for some
1 ≤ j ≤ m and u = vr. Furthermore, see Figure 12 for an illustration of the construction of
such a DAG in the case ϕ is defined over five propositional variables. Let vq be assigned
to player 1, the vertices vp1 , . . . , vpm to player 2, and vr to player 3. Furthermore, assume
that γ1 = γ2 = > and γ3 = ϕ → (q ↔ r). Consider an arbitrary topological sorting τ of
the vertices.

First, assume that ϕ is not satisfiable. Then, all players are indifferent between all
outcomes, and it can easily be seen that the game is fit for backwards induction under τ.

Finally, assume that assignment α : {p1, . . . , pm} → {0, 1} satisfies ϕ. Observe that vq
is inscrutable to vr and has a lower topological rank under τ. Moreover, vp1 , . . . , vpm are
the parents of vr. Now, let avp1

, . . . , avpm be such that apj = pj if α(pj) = 1, and apj = p̄j if
α(pj) = 0. Furthermore, let bvq = q and b′vq = q̄, and avr = r and a′vr = r̄. Then,

u3(q, avp1
, . . . , avpm , r) > u3(q, avp1

, . . . , avpm , r̄)

but
u3(q̄, avp1

, . . . , avpm , r) < u3(q̄, avp1
, . . . , avpm , r̄).

Accordingly, we may conclude that the game is not fit for backwards induction.
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1 : q, q̄

2 : p1, p̄1 2 : p2, p̄2 2 : p3, p̄3

3 : r, r̄

2 : p4, p̄4 2 : p5, p̄5

Figure 12. Construction of the DAG for the coNP-hardness proof for FIT FOR BACKWARDS INDUCTION

in the case of the formula ϕ being defined over five variables p1 through p5.

The closely related decision problem of whether a given partial order game is of
adequate information, can be formulated as follows.

ADEQUATE INFORMATION

Given: Partial order game G and topological sorting τ

Problem: Is G a game of adequate information under τ?

Again, note that ADEQUATE INFORMATION is vacuous for total-order games. For
general partial order games, we find that the problem of ADEQUATE INFORMATION is
not easier than FIT FOR BACKWARDS INDUCTION. The similarity of the two problems—
and so also the closeness of the concepts of fitness of backwards induction and adequate
information—is revealed by the closeness of their respective proofs of coNP-completeness.

Theorem 10. ADEQUATE INFORMATION is coNP-complete.

Proof. For membership in coNP, let a certificate for a counterexample consist of a player i,
a pair of profiles aS and a′S in AS, and a pair of profiles bI and b′I in AI , where S is the
set of vertices that are scrutable to i under τ and I the set of vertices that are inscrutable
to i under τ. Observe that such a certificate is of polynomial size and that the sets S and I
can be computed in polynomial time. Then, such a certificate (aS, a′S, bI , b′I) defines a
counterexample against the game being of adequate information whenever it is not the case
that ui(aS, bI) ≤ ui(a′S, bI) if and only if ui(aS, b′I) ≤ ui(a′S, b′I). Having assumed that the
utility function ui is part of the input and represented by a Boolean circuit and evaluation
problem for Boolean circuits is solvable in polynomial time, we find that this is a property
that can be checked in polynomial time (see Lemma 2).

The proof of coNP-hardness is by a reduction from the complement of SATISFIABILITY,
and runs along analogous lines as the proof of coNP-hardness of FIT FOR BACKWARDS

INDUCTION. Thus, given a propositional formula ϕ in the variables p1, . . . , pk, construct
the partial order Boolean game as in the proof of Theorem 9.

Then, if ϕ is not satisfiable, we find that for all three players, each action profile yields
a utility of 1. It thus immediately follows that the game is of adequate information, as we
can set, for instance, u0

i (aS) = 1 for all players i with set S of scrutable vertices under τ.
For the opposite direction, assume that assignment α : {p1, . . . , pm} → {0, 1} wit-

nesses the satisfiability of ϕ. Observe that vq is inscrutable to player 3 under τ, whereas
vq, vp1 , . . . , vpm are scrutable to player 3. Now let avp1

, . . . , avpm be such that apj = pj if
α(pj) = 1, and apj = p̄j if α(pj) = 0. Then,

u3(q, avp1
, . . . , avpm , r) > u3(q, avp1

, . . . , avpm , r̄)

but
u3(q̄, avp1

, . . . , avpm , r) < u3(q̄, avp1
, . . . , avpm , r̄).

Assuming that the game be of adequate information, there then should be a utility
function u0

3 : AS → R such that from the former it would follow that u0
3(avp1

, . . . , avpm , r) >
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u0
3(avp1

, . . . , avpm , r̄), whereas from the latter u0
3(avp1

, . . . , avpm , r) < u0
3(avp1

, . . . , avpm , r̄), a
contradiction. Accordingly, we may conclude that the game is not of adequate information.

Using Theorems 7 and 8, we know that games that are fit for backwards induction,
like games of adequate information, have Nash equilibria. Thus, Theorems 9 and 10 could
be seen to prove coNP-completeness of weak versions of the non-emptiness problem for
backwards induction. This still leaves the question of whether a given strategy profile is
a backwards induction solution and of whether a given action profile is sustained by a
backwards induction solution, which can be seen as variants of the non-emptiness problem
for backwards induction. The first decision problem can be formulated formally as follows.

IS BACKWARD INDUCTION

Given: Partial order game G that is fit for backwards induction under topological
sorting τ and strategy profile f = ( fv1 , . . . , fv|V|)

Problem: Is f a backwards induction solution of G under τ?

We find that IS BACKWARD INDUCTION is coNP-complete. For the membership part,
recall that Lemma 5 showed that our backwards induction procedure has the one-stage-
deviation property. Let τ be a topological sorted and assume (v1, . . . , v|V|) be sorted according
to τ. The contrapositive of the one-stage-deviation property says that, if a profile f is not
a backwards induction solution, there is one player, who, after some τ-history, wants to
unilaterally deviate and play another action than the one prescribed by f, but otherwise
has no incentive to change their strategy. This prepares the ground for the following result.

Theorem 11. IS BACKWARD INDUCTION is coNP-complete. The problem remains coNP-hard
for total-order games.

Proof. For membership in coNP, one can design a non-deterministic algorithm along the
following lines. Assume vv1 , . . . , vv|V| is ordered according to τ. Guess a vertex vk assigned
to player i along with action profiles a = (aX, aY, avk , aZ) and a′ = (aX, aY, a′vk

, a′Z) (thus,
a′X = aX and a′Y = aY). Let Y denote the parents of vk, Z the vertices with a greater
topological index than vk, and X = V \ (Y ∪ Z ∪ {vk}). Then, check whether

(i) the actions avk , avk+1 . . . , av|V| are in accordance with f = ( fv1 , . . . , fv|V|), that is, for
every k ≤ m ≤ |V|, we have avm = fvm(aYm), where Ym is the set of parents of vm;

(ii) the actions a′vk+1
, . . . , a′v|V| are in accordance with f = ( fv1 , . . . , fv|V|), that is, for every

k < m ≤ |V|, we have a′vm = fvm(a
′
Ym

), where Ym is the set of parents of vm; and
(iii) ui(a′) > ui(a).

In virtue of Lemmas 1 and 2, each of these checks can be performed in polynomial
time in the size of the input. Moreover, if all of these checks are positive, we have found a
counterexample against f being a backwards induction solution.

For coNP-hardness, we reduce the complement of SATISFIABILITY. Given an Boolean
formula ϕ on propositional variables p1, . . . , pk, we construct a partial order Boolean game
Gϕ with one player i with goal formula γi = ϕ ∧ p0, where p0 is a “fresh” variable distinct
from any p1, . . . , pk. Let the vertices vp0 , . . . , vpk be ordered accordingly, that is, p`Epm if
and only if ` < m. Thus, Gϕ is a totally-ordered Boolean game, and, consequently, also
fit for backwards induction. Now, consider the strategy profile f0 = ( f 0

vp0
, . . . , f 0

vpk
) where

each f 0
vpj

is represented by the choice equation pj : ⊥, that is, f0 unconditionally sets every

propositional variable to false. Note that f0 yields player i a utility of 0, that is ui(f0) = 0.
Now, if ϕ is unsatisfiable, so is i’s goal γi, and all strategy profiles yield i the same

payoff. Therefore, f0 is vacuously a backwards induction solution. If, on the other hand, ϕ
is satisfiable, say in virtue of assignment α, let fα = ( fvp0

, . . . , vpk ) be the unconditional
strategy profile represented by the choice equations p0 = > and, for each 1 ≤ m ≤ k,
pm : >, if α(pm) = 1, and pm : ⊥, if α(pm) = 0. It can then easily be verified that player i
has ui(fα) = 1. Accordingly, player i has an incentive to deviate from f0 to fα, indicating
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that f0 is not a Nash equilibrium. By Theorem 7, it then follows that f0 is not a backwards
induction solution either.

Finally, we come to consider the natural counter-part of the IS NASH ACTIONS problem
for the backwards induction procedure, which can formally be stated as follows.

IS BACKWARD INDUCTION ACTIONS

Given: Partial order game G, topological sorting τ, and action profile a = (av1 , . . . , av|V|)

Problem: Is a sustained by a backwards induction solution under τ in G?

We find that BACKWARDS INDUCTION ACTIONS is NEXPTIME-complete for general
partial order games. The hardness part of this result follows again from a reduction from
DEPENDENCY QUANTIFIER BOOLEAN FORMULA GAME (DQBFG).

Theorem 12. For partial order games, BACKWARD INDUCTION ACTIONS is NEXPTIME-
complete.

Proof. A NEXPTIME algorithm to decide BACKWARD INDUCTION ACTIONS can be de-
signed along the following lines. Given a partial order game G, a topological-ordering τ =
(v1, . . . , v|V|) of its vertices, and an action profile a = (av1 , . . . , av|V|), first, guess a strategy
profile f = ( fv1 , . . . , fv|V|). Given that strategies fv are given by a Boolean circuit C fv , this
can be achieved in time not more than exponential in |A|, the size of the set of actions.
Second, check whether f = ( fv1 , . . . , fv|V|) is a backwards induction solution. The inductive
definition of a backwards induction solution suggests a procedure for how this can be
achieved in exponential time. Finally, check whether action profile af as induced by strategy
profile f coincides with the action profile a as it is given in the input. This can be achieved in
time polynomial in the size of the Boolean circuit representing f. Altogether, the algorithm
runs in non-deterministic exponential time.

For hardness, we reduce from DEPENDENCY QUANTIFIER BOOLEAN FORMULA GAME

(DQFG) using a similar construction of a Boolean partial order game as in the proof
of Theorem 4. Given an instance 〈ϕ, X1, X2, Y1, Y2〉 of DQFG with X1 = {x1

1, . . . , x1
|X1|},

X2 = {x2
1, . . . , x2

|X2|}, Y1 = {y1
1, . . . , y1

|Y1|}, and Y2 = {y2
1, . . . , y2

|Y2|}. Let x0 be a ‘fresh’ vari-
able x0 not in X1 ∪ X2 ∪ Y1 ∪ Y2. We define a Boolean partial order game on dependency
graph (V, E) such that V = {x0} ∪ X1 ∪ X2 ∪Y1 ∪Y2 and where E is defined as follows:

(i) x0Ez for all z ∈ X1 ∪ X2 ∪Y1 ∪Y2,

(ii) xi
kExj

m for all xi
k ∈ Xi and xj

m ∈ Xj with i = j and k < m, or i ≤ j,
(iii) x1Ex2, for all x1 ∈ X1 and x2 ∈ X2,
(iv) x1Ey1, for all x1 ∈ X1 and y1 ∈ Y2,
(v) x2Ey2, for all x2 ∈ X2 and y2 ∈ Y2.

Observe that under this definition on X1 ∪X2, the relation E is complete and transitive.
We extend E to a topological sorting τ such that, for instance,

τ = (x0, x1
1, . . . , x1

|X1|, x2
1, . . . , x2

|X2|, y1
1, . . . , y1

|Y1|, y2
1, . . . , y2

|Y2|).

The players of the Boolean game are the same as in the instance of DQBFG, where B
controls {x0} ∪X1 ∪X2, W1 the variables in Y1, and W2 those in Y2. Their goals are given by

γB = x0 ∧ ϕ γW1 = γW2 = ⊥.

Observe that all vertices are scrutable to player B under τ and that the white players
have the same utility for every outcome. It therefore follows that the game constructed is
of adequate information and hence fit for backwards induction.

We are now in a position to show that the profile

ā = (x̄0, x̄1
1, . . . x̄1

|X1|, x̄2
1 . . . , x̄2

|X2|, ȳ2
1, . . . ȳ1

|Y1|, ȳ2
1 . . . , ȳ2

|Y2|),
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which sets all variables, including x0, to false, is sustained by a Nash equilibrium in G′ if
and only if 〈ϕ, X1, X2, Y1, Y2〉 is a postive instance of DQBFG.

First, assume 〈ϕ, X1, X2, Y1, Y2〉 is a postive instance of DQBFG. Then, the white team
has a joint winning strategy in the original DQBFG-game given by Boolean functions β1
and β2 on the variables X1 and X2, respectively. Next, define strategies f∗W1

and f∗W2
for W1

and W2 in the Boolean partial order game that are given by the following choice equations
for i = 1, 2 and j = 1, . . . , |Yi|,

yi
j : (x0 → ϕβi (xi

1, . . . , xi
|Xi |)) ∧ (x̄0 → ⊥)

As the dependency graph (V, E) respects the information dependencies of the DQBFG-
instance, observe that fW1 and fW2 together embody a winning strategy to render ϕ false
if x0 is played. Let B’s unconditional strategy f∗B be defined by the choice equations of the
form xi

j : ⊥, setting xi
j to false for all for i = 1, 2 and j = 1, . . . , |Xi|. Observe that for the

strategy profile f∗ = (f∗B, f∗W1
, f∗W2

), we have that af∗ = ā, as desired. As W1 and W2 will not
have their goal achieved under any action profile, their strategies trivially conform with
the backwards induction procedure. Observe furthermore that B does not get their goal
satisfied no matter which strategy plays against f∗W1

and f∗W2
. If B sets x0 to false, their goal

is not satisfied in a self-defeating fashion. By setting x0 to true, B will induce W1 and W2
to play a winning strategy rendering ¬ϕ false and therewith γB as well. This in particular
holds for any backwards induction strategies B has at their disposal, and it follows that f∗

is a backwards induction solution sustaining ā.
For the opposite direction, assume that 〈ϕ, X1, X2, Y1, Y2〉 is a negative instance of DQBFG.

Analogously to the proof of Theorem 4, it can then be shown that the constructed partial
order Boolean game does not have a Nash equilibrium sustaining ā. In virtue of the contra-
positive of Theorem 7, there is no backwards induction solution sustaining ā, giving us the
result.

The computational complexity of BACKWARD INDUCTION ACTIONS reduces consider-
ably when we restrict attention to total-order games. Still, the problem is PSPACE-complete
for this class of games. To prove this result, we first introduce some auxiliary notation
and terminology.

Recall that if the dependency graph (V, E) of a total-order game is such that v0E · · · Ev|V|,
then τ = (v0, . . . , v|V|) is the only topological sorting of the vertices. Moreover, the parents
of each vertex vk are all vertices with a lower topological index. The set {v1, . . . , vk−1} of
parents of vertex vk we will denote by Yk, on the understanding that Yk = ∅, if k = 0. Simi-
larly, we will denote by Zk = {vk+1, . . . , v|V|} the set of vertices with a higher topological
index than vk, here on the understanding that Zk = ∅, if k = |V|.

For a = (av1 , . . . , av|V|) an action profile and h = (av1 , . . . , avk ) a τ-history of a, we now
introduce the auxiliary concept of a being sustained by a backwards induction solution at
history h of a. This enables us to reason recursively about action profiles being sustained
by backwards induction solutions without having to make explicit reference to specific
underlying strategy profiles. Formally, for action profile a = (av1 , . . . , av|V|) and τ-history
h = (av1 , . . . , avk ) of a, we say that a is sustained (by backwards induction) at h, if either
h = a, or h = (av1 , . . . , avk ) for some 0 ≤ k < |V| and the following two conditions hold:

(a.i) action profile a is sustained by backwards induction at history (av1 , . . . , avk , avk+1),
(a.ii) for every bvk+1 ∈ Avk+1 , there is an action profile a′ = (av1 , . . . , avk , bvk+1 , bvk+2 . . . , bv|V|)

that is sustained by backwards induction at history (av1 , . . . , avk , bvk+1) and which is
such that ui(a) ≥ ui(a′), where i is the player active at vk+1.

We now have the following lemma.

Lemma 7. For total-order games, an action profile a = (av1 , . . . , av|V|) is sustained by a backwards
induction solution if and only if a is sustained by backwards induction at all histories of a. Moreover,
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a is sustained by a backwards induction solution only if a is sustained by backwards induction at
the empty history ().

Proof. As we are dealing with total-order games, first observe that, for each vertex v, the
set X of vertices that are neither a parent of v nor have a greater topological index than v is
empty. Thus, Condition (1) in the definition of a backwards induction solution f∗ for partial
order games reduces to

f ∗vk+1
(av1 , . . . , avk ) ∈ arg max

bvk+1∈Avk+1

ui(av1 , . . . , avk , bvk+1 , fvk+2 , . . . , fv|V|), (BI’)

for all 0 ≤ k < |V|, and where i is the player active at vk+1.
As an auxiliary concept, we define a strategy profile f = ( fv1 , . . . , fv|V|) to sustain

action profile a = (av1 , . . . , av|V|) (by backwards induction) at history h = (av1 , . . . , avk ),
if either a = h, or both

(f.i) f sustains a at (av1 , . . . , avk , avk+1),
(f.ii) fvk+1(av1 , . . . , avk ) = avk+1 , and
(f.iii) for all bvk+1 ∈ Avk+1 with bvk+1 6= avk+1 , we have that f sustains action profile

(av1 , . . . , avk , bvk+1 , fvk+2 , . . . , fv|V|) at history (av1 , . . . , avk , bvk+1) and,

ui(av1 , . . . , avk , avk+1 , avk+2 . . . , av|V|) ≥ ui(av1 , . . . , avk , bvk+1 , fvk+1 , . . . , fv|V|),

where i is the player active at vk+1.

The we split the proof up in three parts, where we prove, respectively, the following
statements (I), (II), and (III), below. In conclusion then put them together again, to prove
the lemma.

(I) for all 0 ≤ k ≤ |V| and all action profiles a = (av1 , . . . , av|V|), a is sustained at
(av1 , . . . , avk ) if and only if some strategy profile f = ( fv1 , . . . , fv|V|) sustains a at
(av1 , . . . , avk ).

(II) strategy profile f = ( fv1 , . . . , fv|V|) sustains action profile a = (av1 , . . . , av|V|) at
history () if and only if af = a and for every 0 ≤ k ≤ |V| and all action pro-
files x = (xv1 , . . . , xvk , fvk+1 , . . . , fv|V|), strategy profile f sustains x at (xv1 , . . . , xvk ).

(III) for every 0 ≤ k ≤ |V| and every action profile x′ = (xv1 , . . . , xvk , fvk+1 , . . . , fv|V|),
strategy profile f sustains x at history h = (xv1 , . . . , xvk ) if and only if strategy profile
f = ( fv1 , . . . , fv|V|) is a backwards induction solution.

Part (I) is by induction on |V| − k. For the basis, where k = |V|, consider an arbitrary
action profile a = (av1 , . . . , av|V|) and arbitrary history h = (av1 , . . . , avk ). In this case, we
find that h = a and immediately that a is sustained at h. Moreover, every strategy profile
sustains a at h in this case.

For the induction step, consider an arbitrary 1 ≤ k < |V|, and equally arbitrary action
profile a = (av1 , . . . , av|V|) and history h = (av1 , . . . , avk ).

First, assume that a is sustained at (av1 , . . . , vk), and let i be the player active at vk+1.
Then, a is also sustained at (av1 , . . . , vk+1). By the induction hypothesis, there is a strategy
profile f that sustains a at (av1 , . . . , vk+1). Moreover, as k < |V|, for each bvk+1 ∈ Avk

with bvk+1 6= avk+1 , there is an action profile a′ = (av1 , . . . , avk1 , bvk+1 , bvk+2 . . . , bv|V|) that
is sustained at history (av1 , . . . , avk−1 , bvk , bvk+1) such that ui(a) ≥ ui(a′). Let Avk+1 =

{b1
vk+1

, . . . , b
|Avk+1 |
vk+1 }. By the induction hypothesis, for each 1 ≤ j ≤ |Avk+1 |, there is a strat-

egy profile gj = (gj
v1 , . . . , gj

v|V|) sustaining action profile (av1 , . . . , avk , bj
vk+1 , gj

vk+2 . . . , gj
v|V|)

at history (av1 , . . . , avk , bj
vk+1), and which is such that

ui(a) ≥ ui(av1 , . . . , avk , bj
vk+1 , gj

vk+1 , . . . , gj
v|V|).
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Now, define the strategy profile f∗ = ( f ∗v1
, . . . , f ∗v|V|) such that for 1 ≤ k ≤ |V| and

every history x = (xv1 , . . . , xm), where 0 ≤ m ≤ |V|,

f ∗vm(x) =





f j
vm(x) if xvk+1 = aj

vk+1 and m > k,

gj
vm(x) if xvk+1 = bj

vk+1 and m > k,
avm otherwise.

It is now easy to check that, by construction, strategy profile f∗ sustains a at history
(av1 , . . . , avk ), as desired. In particular, observe that f ∗vk+1

(av1 , . . . , avk ) = avk+1 .
For the opposite direction, assume that strategy profile f = ( fv1 , . . . , fv|V|) sustains

action profile a = (av1 , . . . , av|V|) at history (av1 , . . . , avk ), where k < |V|. Then, by defini-
tion, strategy profile f = ( fv1 , . . . , fv|V|) also sustains action profile a = (av1 , . . . , av|V|)

at history (av1 , . . . , avk=1). By the induction hypothesis, we then immediately obtain
that a is sustained at history (av1 , . . . , avk+1). Now, consider an arbitrary bvk+1 ∈ Avk+1

with avk+1 6= bvk+1 , along with history (av1 , . . . , avk , bvk+1). Then, f sustains action profile
(av1 , . . . , avk , bvk+1 , fvk+2 , . . . , fv|V|) at history (av1 , . . . , avk , bvk+1). We have, moreover, that
ui(a) ≥ ui((av1 , . . . , avk , bvk+1 , fvk+2 , . . . , fv|V|)). By the induction hypothesis, we find that
action profile (av1 , . . . , avk , bvk+1 , fvk+2 , . . . , fv|V|) is sustained at history (av1 , . . . , avk , bvk+1),
which proves the case.

For part (II), first assume that af = a and that for every 0 ≤ k ≤ |V|, strategy profile f
sustains action profile (xv1 , . . . , xvk , fvk+1 , . . . , fv|V|) at history (xv1 , . . . , xvk ). The latter then
holds in particular for k = 0, that is, for history (). Accordingly, f sustains action profile
( fv1 , . . . , fv|V|) = af at history (). Our initial assumption that af then gives the result for this
direction.

For the opposite direction, assume that strategy profile f = ( fv1 , . . . , fv|V|) sustains
action profile a = (av1 , . . . , av|V|) at history (). First, we find that by repeatedly apply-
ing condition (f.ii) gives us af = a. Now, consider an arbitrary 0 ≤ k ≤ |V| and
action profile x = (xv1 , . . . , xvk , fvk+1 , . . . , fv|V|). We prove by induction on k that f sus-
tains (xv1 , . . . , xvk , fvk+1 , . . . , fv|V|) at history h = (xv1 , . . . , xvk ).

First assume that k = 0, that is, h = (). In that case, x = ( fv1 , . . . , fv|V|) = af. We have
already seen that af = a, and, thus, the base case immediately follows from the assumption
that f = ( fv1 , . . . , fv|V|) sustains action profile a = (av1 , . . . , av|V|) at history ().

For the induction step, let k > 0. In case k = |V|we have h = a and we are done imme-
diately. Otherwise, by the induction hypothesis, we may assume that f sustains action pro-
file (xv1 , . . . , xvk−1 , fvk , . . . , fv|V|) at history (xv1 , . . . , xvk−1). If fvk (xv1 , . . . , xvk−1) = xk, then
it follows from condition (f.i) that f sustains (xv1 , . . . , xvk , fvk+1 , . . . , fv|V|) at (xv1 , . . . , xvk ).
If fvk (xv1 , . . . , xvk−1) 6= xk, then still fvk (xv1 , . . . , xvk−1) ∈ Avk . Now, it follows from condi-
tion (f.iii) that f sustains (xv1 , . . . , xvk , fvk+1 , . . . , fv|V|) at (xv1 , . . . , xvk ).

For part (III), first assume, for every 0 ≤ k ≤ |V| and action profile x = (xv1 , . . . , xvk , fvk+1 ,
. . . , fv|V|), that strategy profile f = ( fv1 , . . . , fv|V|) sustains x at history h = (xv1 , . . . , xvk ).
Now, consider an arbitrary history (z1, . . . , zk) for some 1 ≤ k < |V|. Then, by assumption, f
sustains action profile (zv1 , . . . , zvk , fvk+1 , . . . , fv|V|) at history (zv1 , . . . , zvk ). As k < |V|, we
find that (z1, . . . , zk) 6= (z1, . . . , zk, fvk+1 , . . . , fv|V|). Therefore, by condition (f.iii), we then
find that

fvk+1(zv1 , . . . , zvk ) ∈ arg max
bvk+1∈Avk+1

ui(zv1 , . . . , zvk , bvk+1 , fvk+2 , . . . , fv|V|),

where i is the player active at vk+1. It thus follows that f is a backward induction solution.
For the opposite direction, assume that f = ( fv1 , . . . , fv|V|) is a backwards induction

solution. Now, consider an arbitrary 0 ≤ k ≤ |V|. We prove by induction on |V| − k, that,
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for every action profile x = (xv1 , . . . , xvk , fvk+1 , . . . , fv|V|), strategy profile f sustains x at
history h = (xv1 , . . . , xvk ).

For the basis assume let k = |V|. Consider an arbitrary action profile x = (xv1 , . . . , xvk )
along with history h = (xv1 , . . . , xvk ). Obviously, h = x, and, thus, immediately that f
sustains x at history h.

For the induction step, let k < |V|. Again, consider an arbitrary action profile
x = (xv1 , . . . , xvk , fvk+1 , . . . , fv|V|) along with history h = (xv1 , . . . , xvk ). By the induction hy-
pothesis, we find, for all action profiles y = (yv1 , . . . , yvk+1 , fvk+1 , . . . , fv|V|), that f sustains y
at history (yv1 , . . . , yvk+1). This holds in particular for histories (xv1 , . . . , xvk , bvk+1) where
bvk+1 ∈ Avk+1 . For bvk+1 = fvk+1(xv1 , . . . , fvk ), we obtain condition (f.i). Condition (f.ii) is
trivially satisfied. Finally, having assumed that f is a backwards induction solution, we
find that,

ui(xv1 , . . . , xvk , fvk+1 , fvk+2 , . . . , fv|V|) ≥ ui(xv1 , . . . , xvk , bvk+1 , fvk+2 , . . . , fv|V|),

for all bvk+1 ∈ Vvk+1 with bvk+1 6= fvk+1(xv1 , . . . , fvk ) and i the player active at vk+1. We may
therefore conclude that f sustains x = (xv1 , . . . , xvk , fvk+1 , . . . , fv|V|) at (xv1 , . . . , xvk ), proving
part (III).

With (I) through (III) in place, we conclude the proof as follows. Consider an arbitrary
action profile a = (av1 , . . . , av|V|). First, assume, for all 0 ≤ k ≤ |V|, that a is sustained
by backwards induction at (av1 , . . . , avk ). Then by (I), for all 0 ≤ k ≤ |V|, there is some
strategy profile f = ( fv1 , . . . , fv|V|) that sustains a by backwards induction at (av1 , . . . , avk ).
For the particular case wherein k = 0, we find that this strategy profile f that sustains a
by backwards induction at (). By repeated application of (f.ii), moreover, it can easily be
established that af = a. Part (II) then yields that for every 0 ≤ k ≤ |V| and all action pro-
files x = (xv1 , . . . , xvk , fvk+1 , . . . , fv|V|), strategy profile f sustains a at history (xv1 , . . . , xvk ).
Finally, by virtue of (III), we may conclude that f is a backwards induction solution that
sustains a.

For the opposite direction, assume that f is a backwards induction solution sustaining a.
Therefore, af = a, and, accordingly, (av1 , . . . , avk , fvk+1 , . . . , fv|V|) = (av1 , . . . , av|V|) for all
0 ≤ k ≤ |V|. Part (III) yields furthermore that for every 0 ≤ k ≤ |V|, strategy profile f
sustains action profile a′ = (av1 , . . . , avk , fvk+1 , . . . , fv|V|) at history (av1 , . . . , avk ). It now
follows, for every 0 ≤ k ≤ |V|, that f sustains a at history (av1 , . . . , avk ). With part (I), we
may now conclude that, for all 0 ≤ k ≤ |V|, action profile a is sustained by backwards
induction at (av1 , . . . , avk ), as desired.

Finally, observe that the second part of the lemma also follows from the above argu-
ment.

The intuition behind Lemma 7 is that, for a strategy profile f sustaining an action
profile a = (av1 , . . . , av|V|) to be a backward induction solution, it does not suffice just to
induce a, in the sense that af = a. It should, in addition, incorporate a threat strategy at
every vertex vk that succeeds in deterring the player active at vk to play any action other
than avk , that is, the action prescribed by a. The lemma, moreover, shows that a strategy
profile that achieve this can be constructed from the strategy profiles that achieve this at
each history.

We introduce the following auxiliary decision problem, solving which is an important
subroutine in our proof of PSPACE-membership of BACKWARDS INDUCTION ACTIONS for
total-order games.

BACKWARD INDUCTION GUARANTEE

Given: Total-order game G, action profiles a = (av1 , . . . , av|V|)

and history h = (av1 , . . . , avk ), player i, and r ∈ R.
Problem: Is a sustained by backwards induction at h such that

ui(a) ≤ r?
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We find that BACKWARD INDUCTION GUARANTEE is in PSPACE for total-order games.

Lemma 8. For total-order games, BACKWARD INDUCTION GUARANTEE is in PSPACE, that is,
the problem can be solved in space polynomial in the size of the game.

Proof. Let a total-order game be given together with an action profile a = (av1 , . . . , av|V|).
We prove by induction on |V| − k, that for all histories h = (av1 , . . . , avk ) of a, all players i,
and all values r ∈ R the problem BACKWARD INDUCTION GUARANTEE can be solved in
polynomial space.

For the basis, assume k = |V|. Then, h = a, and consider an arbitrary player i and
arbitrary value r ∈ R. In this case, it suffices to compute ui(a) and check whether ui(a) ≤ r.
By Lemma 2, this achieved in polynomial time, and hence in polynomial space as well.

For the induction step, let k < |V|. Consider an arbitrary player j and an arbitrary
value r ∈ R. Let, furthermore, i be the player active at avk . Now, we first check whether a
is sustained by backward induction at history havk+1 = (av1 , . . . , avk+1). By virtue of the
induction hypothesis, this can be achieved in polynomial space by computing BACKWARD

INDUCTION GUARANTEE for a, history havk+1 , player i, and value r = ui(a). If this check is
negative, we can conclude immediately and output “no”.

Otherwise, we deploy two binary counters with, respectively, log2 |A(x)| and
log2 |H| = O(|V| log2 |A|) digits to run through all actions bvk+1 in Avk and all action profiles

(av1 , . . . , avk , bvk+1 , b′k+1 . . . , b′v|V|),

respectively. We then subsequently check for each bvk+1 in Avk+1 whether some action profile
b = (av1 , . . . , avk , bvk+1 , b′k+1 . . . , b′v|V|) is sustained by backwards induction at (av1 , . . . , avk ,
bvk+1) with ui(b) ≤ ui(a). Then, a is sustained by backwards induction a history
h = (av1 , . . . , avk+1) if and only if for each bvk+1 in Avk+1 at least one of these checks is
positive. Moreover, as some reflection reveals, all of these checks are independent and, by
the induction hypothesis, we may assume that all of them can be achieved in polynomial
space, we may conclude that the subsequent execution of these checks can be performed in
polynomial space as well, giving us the result.

With Lemma 8 in place, we are now in a position to now demonstrate the last main
result of this section.

Theorem 13. For total-order games, BACKWARDS INDUCTION ACTIONS is PSPACE-complete.

Proof. For membership in PSPACE , let a total order game with v1E · · · Ev|V| and an action
profile a = (av1 . . . , av|V|) be given. Observe that the topological order τ = (v1, . . . , v|V|) is
fixed by E. By virtue of Lemma 7, it suffices to check whether a is sustained by backwards
induction at the empty history () for value k = ui(a), where i is the player active at v1.
Lemma 8 ensures that this can be achieved in space polynomial in the input.

For PSPACE-hardness, we reduce from QBF, which is known to be PSPACE-hard.
Let Φ = Q1x1, . . . , Q|X|x|X| ϕ(x1, . . . , xk) be a fully quantified propositional formula over
X = {x1, . . . , x|X|}, where each Qi is either ∃ or ∀. We let X∀ and X∃ denote the sets of
universally quantified variables and existentially quantified variables in Φ, respectively.
Furthermore, for each variable xi with 1 ≤ i ≤ |X|, we let Bi denote the set of Boolean
functions on the variables x1, . . . , xi−1. With each profile β = (β1, . . . , β|X|) in B1 × · · · ×
B|X|, we associate an a valuation αβ : X → {1, 0} such that

αβ(x1) = β1 αβ(xi+1) = βi+1(αβ(x1), . . . , αβ(xi−1)).
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We construct a total-order Boolean game GΦ with two players: player 1 and player 2.
The propositional variables our game is based on are given by x1, . . . , x|X| together with an
additional ‘fresh’ variable x0. The players’ preferences are captured by

γ1 = x0 ∧ ¬ϕ γ2 = x0 ∧ ϕ.

We assign control over variable xi to player 1, if Qi = ∀, and to player 2, if Qi = ∃.
Moreover, the auxiliary variable x0 is assigned to the control of player 1. The dependency
graph ({x0, . . . , xk}, E) is defined such that xiExj if and only if i < j. The game GΦ is a
total-order game and, thus, fit for backwards induction. Backwards induction solutions
are therefore bound to exist. We now demonstrate that Φ = Q1x1, . . . , Q|X|x|X| ϕ evaluates
to true if and only if the action profile x̄ = (x̄0, x̄1, . . . , x̄|X|) is sustained by a backwards
induction solution in GΦ.

First assume for the “only if”-direction, that Φ holds. Then, there is a profile of Boolean
functions βi for the variables in X∃, such that for all profiles Boolean functions β j for the
variables xj ∈ X∀, such that the assignment αβ1,...,β|V| : X → {0, 1} satisfies ϕ. On this basis
we define a strategy profile f∗ = (f∗1 , f∗2), where f∗1 and f∗2 are given by the following choice
equations for each xi ∈ X∀ ∪ {x0} (controlled by player 1) and each xj ∈ X∃ (controlled by
player 2):

xi : ⊥ xj : x0 ∧ ϕβ j(x1, . . . , xj−1).

Here, ϕβ j denotes the Boolean formula representing Boolean function β j. Note, fur-

thermore, that af∗ = x̄.
First observe that for all action profiles a = (ax0 , . . . , ax|X|) with ax0 = x̄0, the valua-

tion αa will satisfy neither γ1 nor γ2. Some reflection, thus reveals that f∗ sustains x̄ at all
histories h = (ax0 , . . . , axk ) with avx0

= x̄0, particular at history avx0
. Now observe that f2

incorporates a winning strategy for player 2 in the “subgame” that results if player 1 sets x0
to true. Therefore, ϕ will be satisfied by the valuations induced by the Nash equilibria
in which x0 is set to true—if any such Nash equilibria exist. As, by Theorem 7, every
backwards induction solution is a Nash equilibrium, it follows that every action profile
a = (ax0 , . . . , ax|X|) with ax0 = x0 that is sustained by backwards induction will render ϕ

true, and, hence, player 1’s goal γ1 false. Now let f′ = (f′1, f′2) be a strategy profile that
sustains some action profile a′ = (a′x0

, . . . , a′x|X|) with a′x0
= x0 by backwards induction at

history h′ = x0. Observe that we may assume the existence of such a strategy profile. At
this juncture, consider the strategy profile f∗∗ = ( f ∗∗x0

, . . . , f ∗∗x|X|) defined such that for all
histories h = (ax0 , . . . , axk−1) with 0 ≤ k < |X| and i ∈ {1, 2},

f ∗∗i (h) =

{
f ∗1 (h) if ax0 = x̄0,
f ′2(h) otherwise.

Using the auxiliary formal apparatus introduced in the proof of Lemma 7, we find
that f∗∗ sustains action profile x̄ at x̄0 and action profile (x0, f ∗∗x1

, . . . , f ∗∗|V|) at x0. Moreover,
u1(x̄) ≥ u1(x0, f ∗∗x1

, . . . , f ∗∗x|X|). As player 1 controls x0, we may therefore conclude that f∗∗

sustains x̄ at (). By Lemma 7, we may now conclude that x̄ is sustained by a backwards
induction solution, as desired.

For the “if”-direction, assume that Φ does not hold. In this case, it can be seen that
player 2 does not have a winning strategy in the “subgame” that results if x0 is set to true.
Now, consider an arbitrary strategy profile f̄ = (f̄1, f̄2) that sustains x̄. Then, player 1’s goal
is not satisfied if f̄ is played. Moreover, as player 2 does not have a winning strategy in the
“subgame” after x0 is set to true, player 1 has some strategy f∗i with which they set x0 to
true and such that (f∗1 , f̄2) guarantees γ1 to be satisfied. Accordingly, player 1 will want
to deviate to f∗1 and strategy profile f̄ is not a Nash equilibrium. By Theorem 7, strategy
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profile f̄ is not a backwards induction solution either. Having chosen f̄ arbitrarily, we get
the result.

With this result in place, we can now present the proof of Theorem 6, which stated
PSPACE-completeness of IS NASH ACTIONS for total-order games. We show that, given
an action profile a = (av1 , . . . , av|V|), a given total-order game G can be transformed into
a total-order game Ga in which a is sustained by a backwards induction solution if and
only if a is sustained by a Nash equilibrium in the original game G. We then leverage
Theorem 13 to prove PSPACE-membership of IS NASH ACTIONS.

Formally, let G be a partial order game defined on dependency graph (V, E), and
let a = (av1 , . . . , av|V|) be an action profile. Then, we define Ga as exactly the same game
as G, be it with the following binary utility functions ua

i : A → {0, 1}. For a given action
profile b = (bv1 , . . . , bv|V|), we say that player j is the first to deviate from a (to b) if, for
some 1 ≤ k ≤ |V|, player j is active at vk, bvm = avm for all m < k, and bvk 6= avk . For each
player i, we set ua

i (a) = 1 and, for every action profile b 6= a where player j is the first
player deviate from a to b, we define

ua
i (b) =





0 if i = j and uj(b) ≤ uj(a),
2 if i = j and uj(b) > uj(a),
2 if i 6= j and uj(b) ≤ uj(a),
0 if i 6= j and uj(b) > uj(a).

We now have the following two lemmas, the first of which shows that the game Ga preserves
the Nash equilibria of G.

Lemma 9. Let a = (av1 , . . . , av|V|) be an action profile of a total-order game G. Then, a is sustained
by a Nash equilibrium in G if and only if a is sustained by a Nash equilibrium in Ga.

Proof. First assume that f = ( fv1 , . . . , fv|V|) be a Nash equilibrium sustaining a in G.
Therefore, af = a. For contradiction, also assume that f does not do so in Ga. Then, there
is some player i and some strategy gi, such that ua

i (a) < ua
i (a

(f−i ,gi)). Obviously, player i
is the first to deviate from a to a(f−i ,gi). Thus, ua

i (a) = 1 and ua
i (a

(f−i ,gi)) = 2, and, by
definition of ua, we find that ui(af) < ui(a(f−i ,gi)). It therefore follows that f is not a Nash
equilibrium of G, a contradiction.

Now assume that f is a Nash equilibrium sustaining a in Ga. Therefore, af = a. It
suffices to show that f is also a Nash equilibrium in G. To this end, consider an arbitrary
player i and strategy gi for i. If a(f−i ,gi) = af, we are done immediately. Otherwise, i is the
first player to deviate from af to a(f−i ,gi). Because f is a Nash equilibrium in Ga, we find
that ua

i (a
f) ≥ ua

i (a
(f−i ,gi)). As af = a, we have ua

i (a
f) = 1. Observe that it now follows that

ua
i (a

(f−i ,gi)) = 0. Accordingly, ui(a(f−i ,gi)) ≤ ui(a), and thus ui(a(f−i ,gi)) ≤ ui(af). We may
conclude that f is a Nash equilibrium in G, as desired.

For total-order game Ga, we can furthermore show that if there is a Nash equilibrium
that sustains action profile a, then there is also a backwards induction that does the same.
The converse of this statement is immediate, as every backwards induction solution is also
a Nash equilibrium (Theorem 7).

Lemma 10. Let a be an action profile of a total-order game G. Then, a is sustained by a Nash
equilibrium in Ga if and only if a is sustained by a backwards induction solution in Ga.

Proof. By virtue of Theorem 7, the “if”-direction of the lemma is immediate. For the oppo-
site direction, assume that a is sustained by a Nash equilibrium f∗. For contradiction, also
assume that a is not sustained by any backwards induction solution. As we are dealing with
total-form games, we may assume the existence of backwards induction solutions. These we
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may also assume to be Nash equilibria in virtue of Theorem 7. Now, let g = (gv1 , . . . , gv|V|)

be any backwards induction solution and let ag = b = (bv1 , . . . , bv|V|). Furthermore, let
1 ≤ k ≤ |V| be the greatest index such that gvk (av1 , . . . , avk−1) 6= fvk (av1 , . . . , avk−1) and
assume i to be the player active at vk. We may also assume that f is the backwards in-
duction solution for which there are the fewest histories h = (xv1 , . . . , xv`) such that some
player j 6= i is active at v` and fv`(h) 6= gv`(h). Furthermore, observe that, by choice
of k, we have that a = (av1 , . . . , avk , gvk+1 , . . . , gv|V|). Having assumed that g is a backwards
induction solution, we find moreover that

1 = ui(a) = ui(af) < ui(ag) = ui(b) = 2.

Now, observe that ag 6= a(f−i ,gi); otherwise, f would not be a Nash equilibrium.
Accordingly, there must be some player j 6= i and some vertex vk′ with k < k′ ≤ |V| and at
which player j is active such that

fvk+1(av1 , . . . , avk−1 , bvk , . . . , bk′−1) 6= gvk+1(av1 , . . . , avk−1 , bvk , . . . , bk′−1).

Having assumed that g is a backwards induction solution, we find that

uj(av1 , . . . , avk−1 , bvk , . . . , bvk′−1
, a′vk′

, gvk′+1
, . . . , gv|V|) ≤ uj(av1 , . . . , avk−1 , bvk , . . . , bvk−1 , bvk′ , gvk′+1

, . . . , gv|V|)

= uj(b).

where a′vk′
= fvk′ (av1 , . . . , avk−1 , bvk , . . . , bvk′−1

). Because avk 6= bvk and ui(b) = 2, we have
uj(b) = 0. It now follows that uj(av1 , . . . , avk−1 , bvk , . . . , bvk′−1

, a′vk′
, gvk′+1

, . . . , gv|V|) = 0 as
well. Accordingly,

uj(av1 , . . . , avk−1 , bvk , . . . , bvk′−1
, a′vk′

, gvk′+1
, . . . , gv|V|) ≥ uj(av1 , . . . , avk−1 , bvk , . . . , bvk−1 , bvk′ , gvk′+1

, . . . , gv|V|).

At this juncture, consider the strategy profile g′ = (g′v1
, . . . , g′v|V|) defined such that for

all vertices v` and all histories h = (xv1 , . . . , xv`−1),

g′v(h) =

{
a′vk′

if ` = k′ and h = (av1 , . . . , avk−1 , bvk , . . . , bvk′−1
),

gv`(h) otherwise.

The key observation to make at this point is that g′ is a backwards induction solution
just as well as g is. As a′vk′

= fvk′ (av1 , . . . , avk−1 , bvk , . . . , bvk′−1
), however, we find that for g′

the number of histories h = (xv1 , . . . , xv`) such that there some player j 6= i that is active
at v` and fv`(h) 6= g′v`(h) is one fewer than the same number of such histories for g. This
contradicts our minimality assumption regarding the latter. This concludes the proof.

We are now finally in a position to prove Theorem 6, and establish that IS NASH

ACTIONS is PSPACE-complete for total-order games.

Proof of Theorem 6. For PSPACE-membership, first observe that, given total-order game G
and action profile a = (av1 , . . . , av|V|), we can construct Ga in polynomial time. To see this,
note for each player i, we have to transform the circuit Cui computing i’s utility function ui
in G to a circuit Cua

i
. This can be achieved by adding a polynomial number of gates to

each Cui . We then check whether a is sustained by a backwards induction solution in Ga.
Theorem 13 guarantees that this can be achieved in polynomial space. Lemma 10 then
yields the result.

To prove PSPACE-hardness, we adapt the proof of Theorem 13 and reduce from QBF.
Given an instance Φ = Q1x1, . . . , Q|X|x|X| ϕ(x1, . . . , xk) of QBF, we construct the game GΦ

as in Theorem 13. We demonstrate that Φ = Q1x1, . . . , Q|X|x|X| ϕ evaluates to true if and
only if the action profile x̄ = (x̄0, x̄1, . . . , x̄|X|) is sustained by a Nash equilibrium.

First assume that Φ holds. Then, there is a profile of Boolean functions βi for the vari-
ables in X∃, such that for all profiles of Boolean functions β j for the variables xj ∈ X∀, such
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that the assignment αβ1,...,β|V| : X → {0, 1} satisfies ϕ. As in the proof of Theorem 13, we
consider profile f∗ = (f∗1 , f∗2), where f∗1 and f∗2 are given by the following choice equations
for each xi ∈ X∀ ∪ {x0} (controlled by player 1) and each xj ∈ X∃ (controlled by player 2):

xi : ⊥ xj : x0 ∧ ϕβ j(x1, . . . , xj−1).

Note that af∗ = x̄, and so it suffices to show that f∗ is a Nash equilibrium. Recall that f2
incorporates a winning strategy for player 2 in the “subgame” that results if player 1 sets x0
to true. It follows that for each of player 1’s strategies g1, the assignment α

a(g1,f∗2 ) associated

with action profile a(g1,f∗2) either satisfies ϕ or does not satisfy x0. In either case, player 1’s
goal is not satisfied, and hence does not want to deviate from f∗. Player 2 does not want to
deviate either, as, with player 1 playing f∗1 , variable x0 will be set to false and player 2’s
goal γ2 will not be satisfied no matter which strategy player 2 chooses. We may conclude
that f∗ is a Nash equilibrium, as desired.

Finally, assume that Φ does not hold. In that case, player 2 does not have a winning
strategy in the “subgame” that results if x0 is set to true. Now consider an arbitrary strategy
profile f̄ = (f̄1, f̄2) that sustains x̄, and observe that f̄ does not lead to player 1’s goal being
satisfied. As player 2 does not have a winning strategy when x0 is set to true, there must
be a strategy f∗1 for player 1 such that (f∗1 , f̄2) leads to player 1’s goal γ1 becoming true.
Accordingly, player 1 would like to deviate to f∗1 , and f̄ is not a Nash equilibrium. We may
therefore conclude that x̄ is not sustained by a Nash equilibrium, as desired.

8. Conclusions

Game theorists have developed a huge range of game models since the field was
initiated nearly a century ago. Of these, the most important and prominent are normal form
games and extensive form games. These models differ in the assumptions they make about
the information available to players and their strategies. In this article, we have introduced
a game model in which informational dependencies between decision nodes in a game are
captured in what we call a dependence relation. This dependence relation explicitly states
what information is available when making a choice at a decision node. Although our
partial order games are strictly no more expressive than extensive form games of imperfect
information, they can be exponentially more compact, and we believe they are much more
transparent with respect to the information flow in a game.

The compact representation of non-cooperative settings as partial order games natu-
rally evokes various questions concerning the complexity of computing solution concepts in
this model. We have focussed on Nash equilibrium and backwards induction. We explored
six decision problems surrounding these two solution concepts—NON-EMPTINESS, IS NASH,
IS NASH ACTIONS, FIT FOR BACKWARDS INDUCTION, IS BACKWARDS INDUCTION, and IS

BACKWARDS INDUCTION ACTIONS—for partial-games as well as for the two extremal
subclasses of empty-order games and total-order games. Our results are summarised in
Tables 1 and 2. For each of these problems, we find that computational costs are highest for
general partial order games, rather than for the two extremal classes. This suggests that the
structure of the dependence relation is a major source of complexity.

Table 1. Overview of complexity results surrounding Nash equilibrium in partial order games.

NON-EMPTINESS IS-NASH IS-NASH ACTIONS

empty-order games Σp
2 -compl. coNP-compl. coNP-compl.

partial order games NEXPTIME-compl. coNP-compl. NEXPTIME-compl.
total-order games constant time coNP-compl. PSPACE-compl.
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Table 2. Overview of complexity results surrounding backwards induction in partial order games.

FIT FOR B-I IS B-I IS B-I ACTIONS

partial order games coNP-compl. coNP-compl. NEXPTIME-compl.
total-order games constant time coNP-compl. PSPACE-compl.

Furthermore, note the contrast in complexity between IS NASH and IS BACKWARDS

INDUCTION, on the one hand, and IS NASH ACTIONS and IS BACKWARDS INDUCTION

ACTIONS on the other. Other than in normal-form games, and arguably similar to extensive-
form games, partial order games evince a clear distinction between strategy profiles and
action profiles, with the former being much (exponentially) ‘larger’ objects than the latter,
and of which there can also be exponentially more. Thus, IS NASH and IS NASH ACTIONS

are similar problems, which basically only differ in that the former has a strategy profile as
part of its input and the latter an action profile. We propose that the difference in size and
number between strategy profiles and action profiles accounts for much of the contrast in
computational cost between IS NASH and IS NASH ACTIONS. A similar remark applies to
FIT FOR BACKWARDS INDUCTION and IS BACKWARDS INDUCTION ACTIONS.

For future work, it would be useful to develop software tools to support reasoning
in partial order games, and from a theoretical perspective, it would also be interesting to
consider restrictions on dependence graph structures that might lead to more tractable
decision problems. Finally, of course, it would be valuable to look in more detail at
applications of our model.
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