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Abstract: Motivated by recent examples of collective effort on the war on terror, we examine the
incentives that retaliation may produce for the endogenous formation of an international counterterror
coalition. We show that there are quite reasonable circumstances under which any nation that is
a target of a terrorist attack finds it desirable to be a member of the international counterterror
coalition, holding the choices of all other nations as given. The incentives to join the coalition are
the group-specific benefits from retaliation enjoyed by each coalition member, the relatively lower
spillover benefit from retaliation enjoyed by each stand-alone nation, and the inability of pre-emptive
measures to avert terrorist attacks. The disincentive to join is the anticipated backlash from retaliation,
which targets coalition members only.
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1. Introduction

Governments often retaliate after some citizens they represent become victims of
terrorist attacks (see, e.g., Crenshaw [1], Merari [2], Lee [3], Lee and Sandler [4], Kydd
and Walter [5], Benmelech et al. [6], Carter [7], and Gaibulloev and Sandler [8]). The U.S.
bombed targets in Tripoli and Benghazi, Libya, on 15 April 1986 as retaliation for the Libyan
sponsored terrorist attack in Berlin that killed two and injured sixty-two U.S. citizens on
4 April 1986 (Lee and Sandler [4]). Since 1967, Israel has demolished houses in areas
occupied by Palestinians as retaliation for Palestinian terrorist attacks (Benmelech et al. [6]).
In response to the 9/11 attacks, the United States and Britain conducted airstrikes on
October 2001 and, later, together with many other allies in Operation Enduring Freedom,
engaged in other military operations, as retaliation against the Taliban and al-Qaeda in
Afghanistan. In coordination with the United States, France bombed ISIS targets in Raqqa,
Syria, on 15 November 2015, following a number of ISIS terrorist attacks in Paris on
13 November 2015.

Terrorists, however, may respond to retaliatory actions with further attacks (see e.g., Lee
and Sandler [4], Jacobson and Kaplan [9], Argomaniz and Vidal-Diez [10], Benmelech
et al. [6], Gaibulloev and Sandler [8], Matthews et al. [11], and Kattelman [12]). The U.S.
retaliatory strikes in Libya in 1986, which received partial support from Britain, produced
several terrorist attacks against U.S. and British interests soon after the airstrikes (Lee and
Sandler, [4]). The Israeli policy of demolishing houses as retaliation against Palestinian
terrorists generated an increase in terrorist attacks after precautionary house demolitions
in 2004 and 2005, because properties of some non-terrorists (i.e., neutrals) were demolished
(Benmelech et al. [6]). Both examples reveal that terrorist attacks following retaliation are
likely if retaliation generates large or nondiscriminatory collateral damages. Airplane and
drone strikes, for example, are prone to cause collateral damages owing to inaccuracy of
information about precise location or signatures of terrorist targets (see, e.g., Gaibulloev and
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Sandler [8] and Allen et al. [13]). Owing to negative publicity, moral outrage, and the desire
for vengeance, counterterror proactive policies, of which retaliation is an example, may
facilitate a terrorist group’s acquisition of resources as well as induce neutrals to become
leaderless jihadists (see, e.g., Enders, Sandler and Cauley [14], Enders and Sandler [15],
Pape [16], Kaplan et al. [17], Faria and Arce [18,19], and Sageman [20]). With a larger
resource endowment, the terrorist organization may supply a greater amount of terrorist
attacks in response to retaliatory actions.

In this paper, we consider the pros and cons of collective retaliation effort against
a terrorist organization. As the paragraphs above reveal, retaliation for terror attacks is
common even though there is evidence that it causes backlash—the phenomenon that
counterterror policies expand the resources available to terrorists (Faria and Arce [19]).
Motivated by Lee [3], Lee and Sandler [4], Cárceles-Poveda and Tauman [21], de Oliveira
et al. [22], Kattelman [12], and the recent examples of collective effort on the war on terror,
we examine the incentives that retaliation may produce for the endogenous formation of an
international counterterror coalition. Lee [3] notes that retaliation against transnational ter-
rorists yields country-specific and international benefits. An example of a country-specific
benefit is the increased security level enjoyed by citizens of a retaliating nation whenever
retaliation reduces the incidence of terrorist attacks. In addition, a nation’s retaliation
effort generates international benefits whenever it leads to a subsequent overall reduction
in terror attacks produced by the targeted terrorist organization. Lee and Sandler [4]
characterize retaliation against transnational terrorists as an action that produces country-
specific and global, purely public, benefits. Unlike Lee [3], they argue that retaliation yields
global consumption benefits that are both nonrival and nonexcludable. This purely public
characteristic motivates free-riding behavior, which makes voluntary cooperation in the
provision of retaliation effort difficult, if not impossible. More recently, Cárceles-Poveda
and Tauman [21] point out that proactive counter-terror measures generate group benefits
from cooperation to members of an international counter-terror coalition, which are not
enjoyed by non-coalition members. Examples of group benefits from cooperation are inter-
national recognition and trade benefits enjoyed by trading agreements among members
of the coalition only. Another important contribution to the study of the effectiveness
of collective counterterror effort is provided by de Oliveira et al. [22]. They show that a
coalition containing three nations is stable if the nations are symmetric and utilize defensive
measures to prevent terrorist attacks promoted by a common terrorist organization.

In our analysis, the coalition engages in defensive and proactive measures. The latter
include pre-emptive actions, which occur prior to terrorist attacks and are observed by the
terrorist organization, and retaliatory actions, which occur after the counterterror coalition
observes terrorist attacks. Coordinated retaliatory actions are desirable because pre-emptive
actions are unable to completely deter attacks from a terrorist organization. Retaliation af-
fects the terrorist organization as a pecuniary externality, yielding a monetary increase in its
resources. As retaliation is known to cause substantial backlash, which subsequently may
lead to an increase in the terrorist organization’s available resources, we include this effect
in the model. For the perpetrators of retaliatory actions, we postulate that retaliation, per se,
may yield group-specific benefits originating from at least three sources: (1) an interna-
tionally coordinated tough position on terrorist attacks in order to deter future terror from
the attacker or other terrorist organizations (i.e., reputation for counterterror leadership);
(2) the sense of increased safety, being avenged (i.e., retribution), well represented by their
elected officials (i.e., politics), or globally empowered (i.e., global prestige) felt by citizens
of coalition members (as in Lee [3]); and (3) as in Cárceles-Poveda and Tauman [21], the
possibility of exclusive trade deals among coalition members. As retaliation effort carried
out by the coalition should produce future global benefits in terms of reduced terrorist
activity, it yields a positive spillover to non-coalition nations. This is in line with the view
advanced by Lee and Sandler [4] that retaliation generates purely public global benefits.

All nations and the terrorist organization play a sequential game of complete, but
imperfect information as follows. In stage 0, each nation makes a choice to join or not
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to join an international counterterror coalition, taking the choices of all other nations as
given. The choices are observed by all nations and the terrorist organization prior to the
subsequent stage of the game. After being formed, the coalition represents its members and
makes choices to maximize the sum of its members’ payoffs. In stage 1, the coalition and
the stand-alone nations choose their pre-emptive activities, taking each other’s actions as
given. In stage 2, the coalition and the stand-alone nations choose their defensive measures,
taking each other’s choices as given. In stage 3, the terrorist organization makes its choices
concerning terrorist attacks. In stage 4, the coalition decides on the level of retaliation. The
equilibrium concept is subgame perfect equilibrium.

We show that there are quite reasonable circumstances under which each nation in the
globe, holding the choices of all other nations as given, finds it desirable to be a member
of the international counterterror coalition. The incentives to join the coalition are the
group-specific benefits from retaliation enjoyed by each coalition member, the relatively
lower spillover benefit from retaliation enjoyed by each stand-alone nation, and the inability
of pre-emptive measures to avert terrorist attacks. The disincentive to join is the anticipated
backlash from retaliation, which targets coalition members only.

To the best of our knowledge, this is the first paper in the game-theoretic terrorism
literature that explicitly separates retaliatory actions from other proactive actions and
examines the incentives associated with retaliation to the endogenous formation of a
counterterror coalition.

From this point on, the paper is organized as follows. Section 2 presents the simple
model. Section 3 examines the solution to the game played from stages 1 to 4. Section 4
considers the choice made by each nation of whether to join the coalition. Section 5 offers
concluding remarks.

2. Model

We consider a complete information coalition formation game with five stages, one
terrorist organization, and I nations. In the coalitional stage (stage 0), nations decide
whether or not to join a coalition. A generic coalition is denoted by S and has cardinality
(# of members) |S| ≡ s. In stage 1, the coalition chooses the preemptive measures of its
members and non-coalition members decide their pre-emptive measures independently.
Stage 2, where each nation decides the level of its defensive measures, is followed by the
terrorist organization’s selection of a set of countries to attack as well as the magnitudes
of the attacks, in stage 3. Finally, in stage 4, the coalition chooses whether to carry out
retaliatory measures. We call this game a retaliation game.

Pre-emptive measures are actions that increase the costs of or reduce the resources
available to a terrorist organization, reducing the terrorist threat for all potential targets.
In our model, decisions about pre-emptive actions precede those about defensive actions.
The latter can be thought of as measures that improve the nation’s homeland security.

The terrorist organization derives benefits from its attacks according to the function

b(t) =
I

∑
i=1

biti, where t = (t1, t2, . . . , tI) is the vector of attacks (damage inflicted) on

countries i = 1, . . . , I and bi is the marginal effect of an attack on nation i. It incurs a
specific cost ci(ti, di) =

1
2 (di + ti)

2 when it carries out an attack of magnitude ti on country

i, whose defensive effort is di. It also sustains a (common) cost cc(p) =
(

I
∑

i=1
ti

)
ξ(u), where

ξ(u) = αu, α ∈ (0, 1] and u =
I

∑
i=1

pi (In addition to reducing the burden of notation, the

advantage of specifying the common cost this way is that it makes clear how our findings
would change with the specification of ξ(u)), which is imposed on the organization by
the pre-emptive measures p = (p1, p2, . . . , pI) chosen in stage 1. The parameter α can
be interpreted as the sensitivity rate of the terrorist organization’s common cost to pre-
emptive actions.
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The objective of the terrorist organization is to maximize

πT(t, d, p) =
I

∑
i=1

biti −
I

∑
i=1

1
2
(di + ti)

2 −
(

I

∑
i=1

ti

)
ξ(u) (1)

where d = (d1, d2, . . . , dI). The impact of retaliatory actions by the coalition on the terrorist
organization happens through the marginal benefit parameters. We define the marginal ben-

efit of attacking nation i as bi =

{
b + ωR, if i ∈ S

b, if i /∈ S
, where ωR is the pecuniary externality

caused by retaliation. The parameters ω ∈ [0, 1] and R are the marginal external gain and
the magnitude of the retaliation carried out by the coalition, respectively. Retaliation gener-
ates a gain (positive ω) for the terrorist organization when it attacks a coalition member
because backlash leads to an increase in the terrorist organization’s available resources1.

The terrorist organization knows the size and composition of the counterterror coali-
tion when it makes its choices, as well as the identities of stand-alone nations and the
pre-emptive and defensive actions p and d undertaken by all nations. In addition, it knows
how the pecuniary externality associated with retaliation affects its resources and fully
anticipates the amount of retaliation that it will face if it attacks the counterterror coalition.

The payoff of nation i is given by

π(ti, r, di, pi) = βR− 1
2 r2

i − θti − 1
2
(
d2

i + p2
i
)
, if i ∈ S

π(ti, r, di, pi) =
γ
2 βR− θti − 1

2
(
d2

i + p2
i
)
, if i /∈ S

(2)

where R =
I

∑
i=1

ri, ri is the retaliatory effort of nation i, β > 0 is marginal benefit of retaliation,

γ ∈ [0, 2] is a scale parameter that controls how the benefit of retaliation to stand-alone
nations compares to that of coalition members, and θ > 0 is the marginal damage from a
terrorist attack suffered by each nation. The first two terms in a member nation’s payoff
comprise the benefit it gets from retaliatory actions and a variable cost that includes
monetary expenditures. For simplicity, we assume that stand-alone nations do not find
it desirable to carry out retaliatory actions—thus, only the coalition retaliates, implying
ri = 0 for i /∈ S and R = ∑

i∈S
ri.

The coalition faces different scenarios in stages 1 and 4 of the game. Its objective
function in the first stage is to maximize the sum of its members’ payoffs, that is,

ΠC(r, d, p, t) = ∑
k∈S

π(tk, r, dk, pk) = ∑
k∈S

[
βR− 1

2
r2

i − θtk −
1
2

(
d2

k + p2
k

)]
(3)

given the optimal values of r =
(
ri1 , ri2 , . . . , ris

)
, p and t, where i1, i2, . . . , is are the mem-

bers of coalition S. In the last stage, the coalition chooses ri, i ∈ S, which maximizes

∑
k∈S

[
βR− 1

2 r2
i

]
= sβR− 1

2 ∑
k∈S

r2
i if ∑

k∈S
tk > 0, and R = 0 otherwise.

To finalize the description of our model, we need to take a closer look at the coalition
formation stage 0. Nations simultaneously choose whether they want to join a coalition S,
|S| ≡ s ≤ I, or play the game independently. To test which coalitions are stable, we follow
D’Aspremont et al. [23] and apply the internal and external stability criteria:

Internal stability : π∗m(S) ≥ π∗m(S\{m}), ∀m ∈ S

External stability : π∗n(S) ≥ π∗n(S ∪ {n}), ∀n /∈ S
(4)

3. Equilibrium Analysis

Our equilibrium concept is subgame perfection. Utilizing backward induction, we
start the analysis with an examination of the last stage of the game. In the last stage,
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the coalition chooses ri, i ∈ S, in order to maximize sβR − 1
2 ∑

k∈S
r2

i if ∑
k∈S

tk > 0, and

R = 0 otherwise. If ∑
k∈S

tk > 0, which is the case under our assumptions, the first-order

condition yields
sβ− ri = 0⇒ ri = sβ, (5)

which implies R = ∑
i∈S

ri = s2β. The optimal retaliation level for each coalition member is

equal to the sum of the marginal benefits of retaliation enjoyed by the entire coalition. As the
objective function of the coalition is strictly concave, the unique solution is a maximum.

In stage 3, the terrorist organization chooses the attack levels that maximize its payoff
under the constraint that the retaliation of the coalition follows the formula above. It will
thus solve the maximization problem below:

maxπ(t, d, p) = ∑
i∈S

(
b + s2ωβ

)
ti + ∑

i/∈S
bti −

I

∑
i=1

1
2
(di + ti)

2 −
(

I

∑
i=1

ti

)
ξ(u) s.t. ti ≥ 0, ∀i (6)

The Lagrangean function is

L(t, µ) = ∑
i∈S

(
b + s2ωβ

)
ti + ∑

i/∈S
bti −

I

∑
i=1

1
2
(di + ti)

2 −
(

I

∑
i=1

ti

)
ξ(u) +

I

∑
i=1

µiti, (7)

where µ = (µ1, µ2, . . . , µI) is the vector of Lagrange multipliers. Before we look at the first-order
conditions, we show that this Lagrangean is concave. All the terms of L(t, µ) that depend on the

ti’s are linear, with the exception of −
I

∑
i=1

1
2 (di + ti)

2, so it suffices to show that the latter is a concave

function of t. It is easy to see that this is the case, as its Hessian matrix is negative definite:
−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

 (8)

The necessary and sufficient first-order conditions are as follows:

(i) ∂L
∂ti

= b + s2ωβ− di − ti − ξ(u) + µi = 0, if i ∈ S

(ii) ∂L
∂ti

= b− di − ti − ξ(u) + µi = 0, if i /∈ S

(iii) ti ≥ 0, µi ≥ 0 and µiti = 0 ∀i

(9)

We assume that the terrorist organization chooses a positive level of attack for every nation (and later
check if this assumption is satisfied in equilibrium). Then, µi = 0 ∀i and

b + s2ωβ− di − ti − ξ(u) = 0⇒ ti = b + s2ωβ− di − ξ(u), i ∈ S

b− di − ti − ξ(u) = 0⇒ ti = b− di − ξ(u), i /∈ S
(10)

Note that the sole difference in attack levels is a function of the pecuniary externality that
retaliation produces. As the externality is non-negative, the amount of terrorist activity in a nation
that is a member of the counterterror coalition is at least as large as the activity in a stand-alone nation.

In stage 2, nation i maximizes its payoff with respect to di. It knows that the terrorist organization
will behave according to the reaction functions derived above. The other arguments in its payoff
functions are given. Therefore, we can rewrite their payoff functions as follows:

π(di) =
s2 β2

2 − θ
[
b + s2ωβ− di − ξ(u)

]
− 1

2
(
d2

i + p2
i
)
, if i ∈ S

π(di) =
γs2 β2

2 − θ[b− di − ξ(u)]− 1
2
(
d2

i + p2
i
)
, if i /∈ S

(11)

As the payoff functions are strictly concave, the necessary and sufficient conditions for a unique
maximum are as follows:

∂π

∂di
= θ − di = 0⇒ di = θ, ∀i (12)
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Each nation finds it optimal to set its level of defensive effort equal to its marginal damage
from terrorism.

In stage 1, the coalition and stand-alone nations choose their pre-emptive measures. Let us start
with a non-member nation. It chooses its pre-emptive measure pi to maximize

π(pi) =
γ

2
s2β2 − θ[b− θ − ξ(u)]− 1

2

(
θ2 + p2

i

)
=

γ

2
s2β2 +

θ2

2
− θ[b− ξ(u)]−

p2
i

2
(13)

Clearly, this is a concave function of pi for any ξ(u), such that ∂2ξ(u)/∂p2
i = 0 (which is the

case under the functional form of ξ(u) in our model). The first-order conditions give us, for all i /∈ S,

∂π

∂pi
= θ

dξ(u)
du

− pi = 0⇒ pi = αθ, (14)

where we used the facts that ∂ξ(u)/∂pi = dξ(u)/du, because ∂u/∂pi = 1 and dξ(u)/du = α. Each
stand-alone nation sets its amount of pre-emptive effort equal to its marginal effective damage from
terrorism avoided with pre-emptive action. The latter is proportional to the terrorist organization’s
sensitivity rate to pre-emptive actions.

The coalition wishes to maximize

ΠC
(
r, t−i/∈S, d−i/∈S, p−i/∈S

)
= ∑

k∈S

[
βR− 1

2
r2

i − θtk −
1
2

(
d2

k + p2
k

)]
(15)

subject to the expressions for the optimal levels of t−i/∈S, d−i/∈S, and r. After some algebra, the
objective function becomes

ΠC(p) = ∑
k∈S

[
s2β2

2
− θ
[
b + s2ωβ− θ − ξ(u)

]
− 1

2

(
θ2 + p2

k

)]
(16)

The coalition wants to maximize the expression above with respect to pk, k ∈ S. Notice that the
objective function is concave. The first-order conditions are

∂ΠC(p)
∂pk

= sθ
dξ(u)

du
− pk = 0 ⇒ pk = sαθ, k ∈ S (17)

As externalities within the coalition are internalized, each coalition member provides pre-
emptive effort equal to the sum of effective marginal damages. As pre-emptive efforts are a global
public good, stand-alone nations “easy ride” on the higher provision levels of coalition members.
This is a disincentive to join the counterterror coalition.

The proposition below summarizes the equilibrium of the retaliation game for ξ(u) = αu.

Proposition 1: The unique pure strategy subgame-perfect Nash equilibrium of the retaliation game
is given by the following:

i. Retaliation: r∗i = sβ.
ii. Defensive measures: d∗i = θ, ∀i.
iii. Preemptive measures: p∗i = αθ, i /∈ S; p∗i = sαθ, i ∈ S
iv. Terrorism activities:

t∗i = b + s2ωβ− θ − α2θ
(

I − s + s2) = b + s2ωβ− θ
[
1 + α2(I − s + s2)], i ∈ S

t∗i = b− θ − α2θ
(

I − s + s2) = b− θ
[
1 + α2(I − s + s2)], i /∈ S

Before we proceed, we need to check under what conditions our assumption that the terrorist
organization chooses a positive level of attack for every nation is valid. It is easy to see from part (iv)
of Proposition 1 that t∗i > 0 ∀i if b > θ + α2θ

(
I − s + s2). As I − s + s2 reaches a maximum at s = I,

this condition is satisfied if b > θ + α2θ I2, which depends only on model parameters. In words, the
benefit the terrorist organization enjoys when it attacks a non-member nation needs to be sufficiently
high. This condition, which we assume holds true, does not affect the coalition stability results of the
next section, where the parameter b, as it turns out, plays no role.

We will now highlight some important features of the equilibrium allocation. First, note that an
increase in ω, the marginal external transfer from retaliation, increases terrorist attacks on nations
that are members of the counterterror coalition, but does not affect attacks on stand-alone nations.
The impact of ω is augmented by the size of the coalition because the larger the number of coalition



Games 2022, 13, 1 7 of 16

members attacked, the larger the effects of retaliation on the terrorist organization. An increase in b,
the marginal benefit of a terrorist attack, increases the terrorist organization’s attacks on both coalition
members and stand-alone nations at the same rate. As one expects, terror attacks decrease with
the effectiveness of pre-emptive measures (i.e., α) and with the marginal damage caused by terror
(higher θ) owing to defensive and pre-emptive measures. As pre-emptive and retaliatory measures
are members of a family of proactive measures, they are naturally competing measures to achieve the
same goal—namely, to reduce the terrorist organization’s available resources. The key difference is
the timing at which they occur. Pre-emptive actions occur before attacks and retaliatory actions occur
afterwards. A necessary condition for retaliation is the failure of pre-emptive actions to completely
deter terrorist attacks, because retaliation occurs only if coalition members are attacked. The incentive
to retaliate and thus to join the counterterror coalition is higher the lower the effectiveness of pre-
emptive actions. We will clearly demonstrate this connection below in our analysis of coalitional
stability and size.

An increase in β, the marginal benefit to a member nation of retaliatory actions, increases
the amount of retaliation and increases terrorist attacks on a member nation. Terrorist attacks on
stand-alone nations are not affected by changes in β.

4. Stable Coalitions
We start this section with a proposition providing the conditions for internal and external stability.

Proposition 2: The internal and external stability conditions are as follows, where |S| ≤ I:
Internal stability:(

β[β(1− γ)− 2θω]− α2θ2)s2 + 2
(

β2γ + 2α2θ2)s− (β2γ + 3α2θ2) ≥ 0 for all i ∈ S.

External stability:(
β[β(1− γ)− 2θω]− α2θ2)s2 + 2

[
β(β− 2θω) + α2θ2]s + β(β− 2θω) ≤ 0 for all i /∈ S.

Proof. See Appendix A. �

This proposition has important implications for the size of stable coalitions. For instance,
it implies that full cooperation in the form of a grand coalition is possible under certain conditions.
We will establish these conditions momentarily, but first, we introduce new notation.

Define the internal and external stability functions, respectively, as

ψ(s|β, θ, ω, α ) =
(

β[β(1− γ)− 2θω]− α2θ2)s2 + 2
(

β2γ + 2α2θ2)s− (β2γ + 3α2θ2)
and
ϕ(s|β, θ, ω, α ) =

(
β[β(1− γ)− 2θω]− α2θ2)s2 + 2

[
β(β− 2θω) + α2θ2]s + β(β− 2θω)

(18)

Both functions are quadratic in s, and thus can be written in the generic form ax2 + bx + c.
We define

a = aint = aext = β[β(1− γ)− 2θω]− α2θ2

bint = 2
(

β2γ + 2α2θ2)
cint = −

(
β2γ + 3α2θ2)

bext = 2
[
β(β− 2θω) + α2θ2]

cext = β(β− 2θω)

∆int = b2
int − 4acint

∆ext = b2
ext − 4acext

s−int = smallest root of ψ(s|β, θ, ω, α )

s+int = largest root of ψ(s|β, θ, ω, α )

s−ext = smallest root of ϕ(s|β, θ, ω, α )

s+ext = largest root of ϕ(s|β, θ, ω, α )

(19)

To better understand how ψ(s|β, θ, ω, α ) and ϕ(s|β, θ, ω, α ) behave, we generate a few pictures
for different values of the parameters, shown in Figure 1. In the first two, α = θ = 1 and γ = ω = 0.5,
with β = 3 in Figure 1A and β = 1 in Figure 1B. The values of the parameters in Figure 1C are
α = θ = 1, ω = 0.5, γ = 1.5, and β = 10. The graphs of the internal and external stability functions
are shown in red and blue, respectively. For a coalition to be stable, the red curve needs to be on or
above the x axis, and the blue curve needs to be on or below the x axis.
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In Figure 1A, the grand coalition is stable (The blue, external stability curve is not shown because
the grand coalition satisfies external stability by default). In Figure 1B,C, coalitions of sizes 2 and 4,
respectively, are the only stable coalitions. This shows that there is a variety of possible scenarios as
far as coalition stability is concerned. The size of a stable coalition can be quite small or as large as the
total number of nations, depending on specific combinations of values of the parameters. It is also
possible for parameter values to be such that no coalition of any positive size is stable (these cases
will be identified and discussed at the end of this section).
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The corollaries below systematize our findings in this regard, starting with the grand coalition.

Corollary 1: The grand coalition is stable under the following conditions:

(i) a ≥ 0.
(ii) a < 0, ∆int ≥ 0, and s−int ≤ I ≤ s+int.

Proof. See Appendix A. �

Before we explore scenarios where conditions (i) and (ii) hold, it is important to stress that the
findings in the corollary depart from the results frequently obtained in the literature on internal and
external stability of coalitions, which Barrett [24] refers to as the “paradox of cooperation”: Stable
coalitions are either small or, if they are large, the full cooperation aggregate payoff is not much larger
than the no cooperation aggregate payoff. The reason for this phenomenon is the positive externality
generated by players’ actions. As coalitions become larger, the payoffs of outsiders increase, making
it more difficult to sustain stability.

Barrett [24] studies a pollution abatement game with identical countries with independent cost
functions and shows, through simulations, that large coalitions are only stable when the cost of abate-
ment is relatively small compared with its benefit. However, when this is true, coalitions with many
countries do not increase net benefits by very much compared with the non-cooperative outcome.
Cooperation would increase net benefits considerably when the cost and benefit of abatement are
both large, but in this case, large coalitions are not stable. Yi [25] also analyses a game with identical
countries, but considers a more general framework where several coalitions of different sizes can be
formed. He considers a variety of endogenous coalition formation rules and shows that the grand
coalition is usually not an equilibrium outcome in the presence of positive externalities. More recently,
Finus and McGinty [26] show analytically that the largest stable coalition in a pure public good game
with no transfers and where coalition members have identical individual benefit and cost functions is
comprised of three nations.

Our findings show that the grand coalition is stable under a variety of conditions. Condition (i)
in the corollary requires γ < 1, which means that the marginal benefits generated by the coalition’s
retaliatory actions are substantially larger for coalition members. That is not sufficient for a ≥ 0
though, which can be written as β[β(1− γ)− 2θω] ≥ α2θ2. According to this inequality, the marginal
benefit of retaliation β has to be high enough with respect to factors that measure sensitivity to
terrorist activities (θ), backlash (ω), and the impact of pre-emptive measures on terrorist costs (α).

The fact that the grand coalition is stable for high enough β (modulated by γ) is surprising.
A high β is associated with strong positive externalities, in which case nations have a strong incentive
to free ride, typically leading to a violation of internal stability. What is happening here is that
retaliation also has a private good component, measured by γ. When the private benefit to coalition
members is high enough (γ is low enough), it pays to stay in the coalition.

Put differently, part (i) of Corollary 1 states that, when the benefit stand-alone nations enjoy
from retaliation is relatively small compared with that of coalition members (γ < 1), the internal
stability condition will be satisfied for any coalition size if β is large enough. The rationale is that, if a
coalition member stays in the coalition, it stands to benefit substantially from the retaliatory actions
of the coalition, whereas as a stand-alone nation, it still benefits from retaliation, but to a considerably
smaller extent2.

The condition a ≥ 0 can also be satisfied when θ, ω, and α are sufficiently low. The parameter
θ measures the marginal damage suffered by a nation when it is attacked. When θ is low enough,
coalition members do not care much about the fact that retaliation increases the likelihood they will
suffer a terrorist attack, making internal stability easier to satisfy. A similar reasoning applies to the
parameter ω, which captures the marginal external gain (due to backlash) from retaliation enjoyed by
the terrorist organization3. A smaller ω translates into fewer attacks (or attacks of smaller magnitude)
on member nations, which makes them less sensitive to the negative effects of retaliation. Finally,
the impact of the parameter α on the possibility of full cooperation (and thus maximal coordinated
retaliation effort) is also reasonable. As this parameter measures the sensitivity rate of the terrorist
organization’s common cost to preemptive actions, a decrease in α means that pre-emptive actions
become less effective as deterrence instruments, generating weaker positive externalities enjoyed by
free riders.

Full cooperation is also feasible when condition (ii) in Corollary 1 is satisfied. Let us assume that
∆int ≥ 0, which can be shown to be true, with a little bit of algebra, when β > 2θω4. One scenario
where condition (ii) may hold is γ < 1 and yet a < 0. In this case, it can be shown that there is a β > 0
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such that s−int ≤ I ≤ s+int (see proof in the Appendix A). The interpretation is similar to that of part (i)
of Corollary 1; that is, if the positive spillover of retaliation on stand-alone nations is limited (γ < 1),
full cooperation is possible when the marginal benefit of retaliation (β) is high enough in relation to
the following: (a) factors that channel potential negative effects of retaliation on coalition members,
namely, the marginal damage caused by terrorist attacks (θ) and backlash (ω), which increase terrorist
attacks in member nations; and (b) the effectiveness rate of pre-emptive measures in making the
terrorist activities costly (α).

Figure 2 below illustrates this scenario. We set α = θ = 1 and γ = ω = 0.5, and let β vary from
0.5 to 2.7325 in increments of 0.05. The graph shows how the maximum number of stable coalitions
depends on β.
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The maximum number of stable coalitions is an increasing function of β, and it is always possible
to find a β such that the grand coalition is stable.

Another scenario under which condition (ii) of Corollary 1 may be satisfied is γ ≥ 1, for it
implies a < 0. However, in this case, the number of nations I cannot be too high. In fact, as s+int has a
limit as β increases without bound (see Appendix A), it is possible for I > s+int, and then the grand
coalition is not stable. In sum, even if the marginal benefit of retaliation becomes larger and larger
compared with the other parameters, there is a limit to the size of stable coalitions. If the total number
of nations is higher than that limit, full cooperation will not be possible. It is important to point out
that this result is driven by the fact that the spillover effect of retaliation on stand-alone nations is
relatively high in this case (γ ≥ 1), making it harder to satisfy internal stability.

A possible combination of parameters in this scenario is shown in Figure 3 below. We again
set α = θ = 1 and ω = 0.5, but now γ = 1.5. β varies from 1.5 to 10 in increments of 0.1. The graph
shows how the maximum number of stable coalitions depends on β.

Now that we are done discussing the stability of the grand coalition, we shift gears and focus
on situations where only smaller coalitions or even no coalitions are stable.

Corollary 2: When a < 0 and ∆int ≥ 0, a coalition of size |S| = s < I is stable if s+ext ≤ s ≤ s+int < I.

Proof. See Appendix A. �
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The importance of Corollary 2 is that it shows it is possible to obtain different degrees of
cooperation between nations depending on how large the marginal benefit of retaliation β is in
comparison with the potential negative effects of retaliation on coalition members, measured by θ

and ω, and the effect of pre-emptive measures on the terrorist’s common cost, measured by α6. As
mentioned in our discussion about stability under γ < 1 and a < 0, larger values of β, all else the
same, increase the maximum size of a stable coalition. We can always ensure full cooperation for
large enough β, but, given β, only coalitions smaller than the grand coalition will be stable if the
number of nations is such that s+int < I.

A similar reasoning applies to the case γ ≥ 1, but now there is a limit to the maximum size of a
stable coalition. It is still possible for the grand coalition to be stable, but only if the total number of
nations is relatively small.

Our last corollary establishes conditions under which there are no stable coalitions with more
than one nation. In this case, only the non-cooperative solution is viable.

Corollary 3: There is no stable coalition with size |S| = s > 1 if one of the following conditions is
satisfied: (i) a < 0 and ∆int < 0; (ii) a < 0, ∆int ≥ 0 and s+int < 2.

Proof. See Appendix A. �

Once again, stability hinges on the relationship between the benefit of retaliation parameter
β, the “cost” of retaliation (from the perspective of coalition members) parameters θ and ω, and
the effectiveness of pre-emption parameter α. When β is not large enough with respect to the other
parameters, no coalition is stable. Figure 4 illustrates this scenario.

In Figure 4, the parameters were set at α = θ = 1, γ = 1.5, ω = 0.5, and β = 0.5. Notice how
internal stability is not satisfied for any s greater than approximately 1.7.

Table 1 collects all the results of this section.



Games 2022, 13, 1 12 of 16

Games 2022, 12, x FOR PEER REVIEW 14 of 21 
 

 

of a stable coalition. We can always ensure full cooperation for large enough β , but, 
given β , only coalitions smaller than the grand coalition will be stable if the number of 

nations is such that ints I+ < . 
A similar reasoning applies to the case 1γ ≥ , but now there is a limit to the maxi-

mum size of a stable coalition. It is still possible for the grand coalition to be stable, but 
only if the total number of nations is relatively small. 

Our last corollary establishes conditions under which there are no stable coalitions 
with more than one nation. In this case, only the non-cooperative solution is viable. 

Corollary 3: There is no stable coalition with size 1S s= >  if one of the following con-

ditions is satisfied: (i) 0a <  and int 0Δ < ; (ii) 0a < , int 0Δ ≥  and int 2s+ < . 

Proof. See Appendix A. □ 

Once again, stability hinges on the relationship between the benefit of retaliation pa-
rameter β , the “cost” of retaliation (from the perspective of coalition members) parame-
ters θ  and ω , and the effectiveness of pre-emption parameter α . When β  is not 
large enough with respect to the other parameters, no coalition is stable. Figure 4 illus-
trates this scenario. 

 
Figure 4. Only the grand coalition is stable—Corollary 3. 

In Figure 4, the parameters were set at 1α θ= = , 1.5γ = , 0.5ω = , and 
0.5β = . Notice how internal stability is not satisfied for any s greater than approxi-

mately 1.7. 
Table 1 Summary of stability conditions. 

Table 1. collects all the results of this section. 

Condition Internally stable Externally Stable Stable 

0a ≥  All coalitions Only the grand coalition (by 
default). No other coalition is 

Only the grand coalition 

Figure 4. Only the grand coalition is stable—Corollary 3.

Table 1. Summary of stability conditions.

Condition Internally Stable Externally Stable Stable

a ≥ 0 All coalitions
Only the grand coalition (by default).
No other coalition is externally stable

because s+ext < s+int < 1.
Only the grand coalition

a < 0, ∆int < 0 No coalition This case was not investigated. No coalition

a < 0, ∆int ≥ 0, s+int < 2 No coalition Grand coalition (by default) and
coalition of size s < I if s ≥ s+ext.

No coalition

a < 0, ∆int ≥ 0, s+int ≥ 2
Coalition of size
s−int ≤ s ≤ s+int.

Grand coalition (by default) and
coalition of size s < I if s ≥ s+ext.

Grand coalition,
if s−int ≤ I ≤ s+int,

or a coalition of size
s < I if s+ext ≤ s ≤ s+int.

If we take a closer look at the scenarios where stable coalitions are possible, we realize there are
two possibilities: (1) only the grand coalition is stable (when a ≥ 0); (2) either the grand coalition or a
coalition of size s < I is stable, but not both (when a < 0, ∆int ≥ 0, and s+int ≥ 2). If the stable coalition
in this scenario is of size s < I, there are no stable coalitions of other sizes s′ < I (this follows from
the fact that s+int − s+ext = 1).

To summarize, we have shown how coalition formation in the retaliation game depends on the
intricate relationship between the overall and private marginal benefits of retaliation, the marginal
damage caused by a terrorist attack, the backlash after retaliation, and the impact of pre-emptive
measures on terrorist’s costs. The key aspect of our findings is that, despite being members of the
same category of proactive measures, retaliatory and preventive actions have differentiated effects on
the incentives to join a coalition.

5. Conclusions
We build a simple model to capture key factors that influence potential strategic coalitional

counterterror retaliatory effort by multiple nations that fight a common, strategic, terrorist organiza-
tion. The key factors that we consider are as follows: (i) the sequential nature of strategic moves, with
retaliation occurring at the last stage; (ii) the group-specific and internalized public benefits from
retaliation enjoyed by coalition members; (iii) the external public benefit from retaliation enjoyed by
stand-alone nations; (iv) the external backlash benefit produced by retaliation and enjoyed by the
terrorist organization; and (v) the effective rate of pre-emptive counterterror measures in producing
a cost to terrorist activities. Motivated by various observations of joint international retaliation
triggered by terrorist attacks, we focus on retaliation by a potential counterterror coalition only.
Stand-alone nations do not engage in retaliation.
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Because retaliation and pre-emptive measures are members of the same family of proactive mea-
sures, retaliation becomes a viable and necessary additional weapon in the combat of terrorism when
it proves to be a sufficiently different product if compared with pre-emptive measures. Retaliation
is a desirable differentiated product in any of the various circumstances under which counterterror
coalitions, including the grand coalition, emerge in equilibrium. We demonstrate that the grand
coalition is stable depending on the factors that yield a positive net gain to any nation of being a
member of the counterterror coalition relative to being a single free rider. In such circumstances, the
group-specific marginal benefit from retaliation enjoyed by coalition members and the lower private
marginal benefit from retaliation enjoyed by each stand-alone nation as a spillover are fundamentally
important. For example, the subgame perfect equilibrium involves full cooperation whenever the
group-specific marginal benefit from retaliation enjoyed by each coalition member is sufficiently large,
while the external marginal benefit from retaliation enjoyed by a stand-alone nation is sufficiently
small. The factors that may hinder the emergence of the grand coalition in equilibrium are backlash
and the effectiveness rate of pre-emptive measures in making terrorist activities costly to the terrorist
organization. The lower the effectiveness of pre-emptive measures, the more desirable retaliation
becomes as a collective instrument to fight terror.
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Appendix A

Proof of Proposition 2. In order to check the internal stability of a coalition, we compare the payoff
of a member m of the coalition S when it stays in the coalition:

s2β2

2
+

θ2

2
− θ
(

b + s2ωβ− αuS
)
− 1

2
(sαθ)2 (A1)

to its payoff when it leaves:

γ

2
(s− 1)2β2 +

θ2

2
− θ
(

b− αuS\{m}
)
− 1

2
(αθ)2 (A2)

Therefore, a nation stays in the coalition if

s2 β2

2 + θ2

2 − θ
(
b + s2ωβ− αuS)− 1

2 (sαθ)2 ≥ γ(s−1)2 β2

2 + θ2

2 − θ
(
b− αuS−1)− 1

2 (αθ)2

⇒ β2
[
s2 − γ(s− 1)2

]
− 2θ

(
b + s2ωβ− αuS)− s2α2θ2 + 2θ

(
b− αuS−1)+ α2θ2 ≥ 0

⇒ β2
[
s2 − γ(s− 1)2

]
− 2βθωs2 + 2αθ

(
uS − uS−1)− α2θ2(s2 − 1

)
≥ 0

(A3)

Now, we turn to external stability. The payoff of a stand-alone nation is

γ

2
s2β2 +

θ2

2
− θ
(

b− αuS
)
− α2θ2

2
(A4)

and its payoff if it joins the coalition is

(s + 1)2β2

2
+

θ2

2
− θ
(

b + (s + 1)2ωβ− αuS+1
)
− (s + 1)2α2θ2

2
(A5)
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External stability requires

γ
2 s2β2 + θ2

2 − θ
(
b− αuS)− α2θ2

2 ≥ (s+1)2 β2

2 + θ2

2 − θ
(

b + (s + 1)2ωβ− αuS+1
)
− (s+1)2α2θ2

2

⇒ (s + 1)2β2 − γs2β2 − 2θ
(

b + (s + 1)2ωβ− αuS+1
)
− (s + 1)2α2θ2 + 2θ

(
b− αuS)+ α2θ2 ≤ 0

⇒ β2
[
(s + 1)2 − γs2

]
− 2βθω(s + 1)2 + 2αθ

(
uS+1 − uS)− α2θ2

[
(s + 1)2 − 1

]
≤ 0

(A6)

In order to evaluate the stability conditions, we need to find uS =
I

∑
i=1

p∗i . We plug in the optimal values of

the pi’s to obtain the following:

uS = ∑
i/∈S

pi + ∑
i∈S

pi = (I − s)αθ + s(sαθ) = αθ
(

I − s + s2
)

(A7)

Given these expressions, we can write

uS − uS−1 = αθ
(

I − s + s2)− αθ
(

I − (s− 1) + (s− 1)2
)

= αθ
(

I − s + s2 − I + s− 1− s2 + 2s− 1
)
= 2(s− 1)αθ

and, similarly,

uS+1 − uS = αθ
(

I − (s + 1) + (s + 1)2
)
− αθ

(
I − s + s2)

= αθ
(

I − s− 1 + s2 + 2s + 1− I + s− s2) = 2sαθ

(A8)

Plugging the expressions above into the internal and external stability conditions, we obtain

β2
[
s2 − γ(s− 1)2

]
− 2βθωs2 + 2αθ[2(s− 1)αθ]− α2θ2(s2 − 1

)
≥ 0

⇒ β2(s2 − γs2 + 2γs− γ
)
− 2βθωs2 + α2θ2(−s2 + 4s− 3

)
≥ 0

⇒ β2s2 − β2γs2 − 2βθωs2 + 2β2γs− β2γ− α2θ2s2 + 4α2θ2s− 3α2θ2

⇒
(

β[β(1− γ)− 2θω]− α2θ2)s2 + 2
(

β2γ + 2α2θ2)s− (β2γ + 3α2θ2) ≥ 0

(A9)

and
β2
[
(s + 1)2 − γs2

]
− 2βθω(s + 1)2 + 2αθ(2sαθ)− α2θ2

[
(s + 1)2 − 1

]
≤ 0

⇒ β2(s2 + 2s + 1− γs2)− 2βθω
(
s2 + 2s + 1

)
+ α2θ2(−s2 + 2s

)
≤ 0

⇒ β2s2 + 2β2s + β2 − β2γs2 − 2βθωs2 − 4βθωs− 2βθω− α2θ2s2 + 2α2θ2s ≤ 0,

⇒
(

β2 − β2γ− 2βθω− α2θ2)s2 +
(
2β2 − 4βθω + 2α2θ2)s + (β2 − 2βθω

)
≤ 0

⇒
(

β[β(1− γ)− 2θω]− α2θ2)s2 + 2
[
β(β− 2θω) + α2θ2]s + β(β− 2θω) ≤ 0

(A10)

respectively, which are expressions on the parameters only. �

Proof of Corollary 1. First, it is helpful to recall that α ∈ (0, 1], β > 0, γ ∈ [0, 2], θ > 0, and ω ∈ [0, 1].

(i) Notice that, for s ≥ 1,

as2 ≥ 0

bints + cint = 2sβ2γ + 4sα2θ2 − β2γ− 3α2θ2

= (2s− 1)β2γ + (4s− 3)α2θ2 > 0

(A11)

which implies ψ(s|β, θ, ω, α ) > 0. This means that internal stability is satisfied for all s ≥ 1. As the grand coalition
is externally stable by default, we conclude that it is stable.

(ii) If a < 0, the quadratic function ψ(s|β, θ, ω, α ) is concave. If its discriminant ∆int is negative, then it has no
real roots, and thus is everywhere below the x axis. In this case, no coalition is internally stable, including
the grand coalition.

If ∆int ≥ 0, we have, for s ≥ 1:

as2 < 0

bints + cint = 2sβ2γ + 4sα2θ2 − β2γ− 3α2θ2

= (2s− 1)β2γ + (4s− 3)α2θ2 > 0

(A12)

This means that the first term in ψ(s|β, θ, ω, α ) is negative and quadratic in s, while the sum of the second
and third terms is positive and linear in s. Thus, ψ(s|β, θ, ω, α ) < 0 for large enough s. Given that ψ(s|β, θ, ω, α )

is concave, internal stability will be satisfied for s−int ≤ s ≤ s+int
7. Therefore, the grand coalition will be stable if

s−int ≤ I ≤ s+int. �

Proof of Corollary 2. We have already seen in the proof of Corollary 1 that (a) when the discriminant ∆int is
negative no coalition is internally stable, so ∆int ≥ 0 is required; (b) under the conditions a < 0 and ∆int ≥ 0,
internal stability holds for s−int ≤ s ≤ s+int.
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External stability, on the other hand, is satisfied for large enough s, because(
β[β(1− γ)− 2θω]− α2θ2)s2 < 0

2
[
β(β− 2θω) + α2θ2]s + β(β− 2θω)

= (2s + 1)β(β− 2θω) + α2θ2s >
=
<

0

(A13)

implies that, even if the sum of the two last terms in ϕ(s|β, θ, ω, α ) is positive, that is, 2
[
β(β− 2θω) + α2θ2]s +

β(β− 2θω) > 0, ϕ(s|β, θ, ω, α ) will be negative for large enough s. Moreover, as ϕ(s|β, θ, ω, α ) is concave when
a < 0, external stability is satisfied for s ≤ s−ext and s ≥ s+ext.

Next, we need to show that s+ext < s+int, for then there will exist an s between s+ext and s+int. The algebra to
obtain this result looks very complicated, but the result is incredibly simple. Using Sympy, a Python library for
symbolic mathematics, we calculated the difference between s+ext and s+int, obtaining s+int − s+ext = 1. Therefore,
there exists a stable coalition s, and if s+int < I, this coalition is smaller than the grand coalition. �

Proof of Corollary 3. We already know from Corollary 1 that there are no internally stable coalitions when a < 0
and ∆int < 0. When a < 0 and ∆int ≥ 0, we know from the proof of Corollary 2 that a coalition of size s will be
stable if s+ext ≤ s ≤ s+int. Thus, if s+int < 2, there is no stable coalition larger than a singleton. �

Proof of implications of condition (ii) of Corollary 1.

Consider a as a function of β, i.e.,

a(β) = β[β(1− γ)− 2θω]− α2θ2

= (1− γ)β2 − 2θωβ− α2θ2 (A14)

This quadratic function in β has the following roots:

β+ =
2θω+
√

4θ2ω2+4(1−γ)α2θ2

2(1−γ)
=

2θω+
√

4θ2[ω2+(1−γ)α2]
2(1−γ)

=
θ
(

ω+
√

ω2+(1−γ)α2
)

(1−γ)

β− =
θ
(

ω−
√

ω2+(1−γ)α2
)

(1−γ)

(A15)

Under the assumption that γ < 1, the discriminant is positive, so there are two real roots. Moreover, a(β) is
convex and a(β) < 0 when β− < β < β+.

When ∆int ≥ 0 (see proof of Corollary 1), it is clear that s+int =
(
−bint −

√
∆int

)
/2a ≥ −bint/2a. Because

lim
β→β+

a = 0 (remember the constraint that a < 0) and bint increases with β, we can always find a β such that

s−int ≤ I ≤ s+int.
If γ ≥ 1, a(β) is always negative. Notice that s+int =

(
−bint −

√
∆int

)
/2a can be written as s+int = p(β)/q(β),

where

p(β) = −2
(

β2γ + 2α2θ2)− [4(β2γ + 2α2θ2)2
+ 4
(

β[β(1− γ)− 2θω]− α2θ2)(β2γ + 3α2θ2)]1/2

and

q(β) = 2β[β(1− γ)− 2θω]− α2θ2

(A16)

are polynomials of degree 2 in β. Therefore, s+int is a rational function in β whose limit is equal to the ratio of the
leading coefficients of p and q. �

Notes

1 The parameter ω captures the differential benefit of attacking a nation that belongs to the coalition. If ω is negative, non-coalition
members will have less incentive to free ride, making cooperation easier. By assuming a non-negative ω, we are making it harder
for cooperation to take place, which increases the robustness of our coalition stability results.

2 We can show that the impact of a larger β on external stability is similar. Because the (positive) impact of retaliation on the payoff
of coalition members is substantially higher than that on the payoff of stand-alone nations, it is impossible to prevent entry into a
coalition smaller than the grand coalition.

3 In this paper, we do not consider the possibility that retaliation will lead to a reduction of terrorist attacks in nations that are
members of the coalition.

4 The condition β > 2θω is not necessary for ∆int ≥ 0. In fact, ∆int > 0 in all the numerical simulations we carried out.
5 β+ = 2.73205 . . . in this case (see Appendix A for definition of β+).
6 Notice first that, if γ < 1 and a ≥ 0, only the grand coalition is stable.
7 If s−int = s+int = s∗int, ψ(s|β, θ, ω, α ) has a unique real root (∆int = 0) and the grand coalition is stable only when I = s∗int.



Games 2022, 13, 1 16 of 16

References

1. Crenshaw, M. The causes of terrorism. Comp. Politics 1981, 13, 379–399. [CrossRef]
2. Merari, A. Terrorism as a strategy of insurgency. Terror. Political Violence 1993, 5, 213–251. [CrossRef]
3. Lee, D.R. Free riding and paid riding in the fight against terrorism. Am. Econ. Rev. 1988, 78, 22–26.
4. Lee, D.R.; Sandler, T. On the optimal retaliation against terrorists: The paid-rider option. Public Choice 1989, 61, 141–152. [CrossRef]
5. Kydd, A.H.; Walter, B.F. The strategies of terrorism. Int. Secur. 2006, 31, 49–80. [CrossRef]
6. Benmelech, E.; Berrebi, C.; Klor, E.F. Counter-suicide terrorism: Evidence from house demolitions. J. Politics 2015, 77, 27–43.

[CrossRef]
7. Carter, D.B. Provocation and the strategy of terrorist and guerilla attacks. Int. Organ. 2016, 70, 133–173. [CrossRef]
8. Gaibulloev, K.; Sandler, T. What we have learned about terrorism since 9/11. J. Econ. Lit. 2019, 57, 275–328. [CrossRef]
9. Jacobson, D.; Kaplan, E.H. Suicide bombings and targeted killings in (counter-) terror games. J. Confl. Resolut. 2007, 51, 772–792.

[CrossRef]
10. Argomaniz, J.; Vidal-Diez, A. Examining deterrence and backlash effects in counter-terrorism: The case of ETA. Terror. Political

Violence 2015, 27, 160–181. [CrossRef]
11. Mathews, T.; Bagchi, A.; Faria, J.R. Simple analytics of the impact of terror generation on attacker–defender interactions. Public

Choice 2019, 179, 287–299. [CrossRef]
12. Kattelman, K.T. Assessing success of the global war on terror: Terrorist attack frequency and the backlash effect. Dyn. Asymmetric

Confl. 2020, 13, 67–86. [CrossRef]
13. Allen, S.H.; Bell, S.R.; Machain, C.M. Air power, NGOs, and collateral killings. Foreign Policy Anal. 2021, 17, oraa025. [CrossRef]
14. Enders, W.; Sandler, T.; Cauley, J. UN conventions, technology and retaliation in the fight against terrorism: An econometric

evaluation. Terror. Political Violence 1990, 2, 83–105. [CrossRef]
15. Enders, W.; Sandler, T. The effectiveness of antiterrorism policies: A vector-autoregression-intervention analysis. Am. Political Sci.

Rev. 1993, 87, 829–844. [CrossRef]
16. Pape, R.A. The strategic logic of suicide terrorism. Am. Political Sci. Rev. 2003, 97, 343–361. [CrossRef]
17. Kaplan, E.H.; Mintz, A.; Mishal, S.; Samban, C. What happened to suicide bombings in Israel? Insights from a terror stock model.

Stud. Confl. Terror. 2005, 28, 225–235. [CrossRef]
18. Faria, J.R.; Arce, D.G. Terror support and recruitment. Def. Peace Econ. 2005, 16, 263–273. [CrossRef]
19. Faria, J.R.; Arce, D. Counterterrorism and its impact on terror support and recruitment: Accounting for backlash. Def. Peace Econ.

2012, 23, 431–445. [CrossRef]
20. Sageman, M. Leaderless Jihad: Terror Networks in the Twenty-First Century; University of Pennsylvania Press: Philadelphia, PA, USA,

2008.
21. Cárceles-Poveda, E.; Tauman, Y. A strategic analysis of the war against transnational terrorism. Games Econ. Behav. 2012, 71, 49–65.

[CrossRef]
22. de Oliveira, A.R.; Faria, J.R.; Silva, E.C.D. Transnational terrorism: Externalities and coalition formation. J. Confl. Resolut. 2018,

62, 496–528. [CrossRef]
23. D’Aspremont, C.A.; Jacquemin, A.; Gabszewicz, J.J.; Weymark, J. On the stability of collusive price leadership. Can. J. Econ. 1983,

16, 17–25. [CrossRef]
24. Barrett, C. Self-enforcing international environmental agreements. Oxf. Econ. Pap. 1994, 46, 878–894. [CrossRef]
25. Yi, S.-S. Stable coalition structures with externalities. Games Econ. Behav. 1997, 20, 201–237. [CrossRef]
26. Finus, M.; McGinty, M. The anti-paradox of cooperation: Diversity may pay! J. Econ. Behav. Organ. 2019, 157, 541–559. [CrossRef]

http://doi.org/10.2307/421717
http://doi.org/10.1080/09546559308427227
http://doi.org/10.1007/BF00115660
http://doi.org/10.1162/isec.2006.31.1.49
http://doi.org/10.1086/678765
http://doi.org/10.1017/S0020818315000351
http://doi.org/10.1257/jel.20181444
http://doi.org/10.1177/0022002707304814
http://doi.org/10.1080/09546553.2014.975648
http://doi.org/10.1007/s11127-018-0538-0
http://doi.org/10.1080/17467586.2019.1650384
http://doi.org/10.1093/fpa/oraa025
http://doi.org/10.1080/09546559008427052
http://doi.org/10.2307/2938817
http://doi.org/10.1017/S000305540300073X
http://doi.org/10.1080/10576100590928115
http://doi.org/10.1080/1024269052000344855
http://doi.org/10.1080/10242694.2011.604930
http://doi.org/10.1016/j.geb.2010.06.010
http://doi.org/10.1177/0022002716660586
http://doi.org/10.2307/134972
http://doi.org/10.1093/oep/46.Supplement_1.878
http://doi.org/10.1006/game.1997.0567
http://doi.org/10.1016/j.jebo.2018.10.015

	Introduction 
	Model 
	Equilibrium Analysis 
	Stable Coalitions 
	Conclusions 
	Appendix A
	References

