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Abstract: The trade-off between the costs and benefits of disclosing a firm’s private information has
been the object of a vast literature. The absence of incentives to share information on a common
market demand prior to competition has been advocated to interpret information sharing as evi-
dence of collusion. Recent contributions have looked at bilateral information sharing, showing that
information sharing is consistent with pairwise stability, This paper studies the networked pattern of
bilateral information sharing on market demand, focusing on the role of heterogeneous information
(firms’ signals have different variances). We show that while pairwise stability predicts that i.i.d.
signals are always shared in groups with a symmetric internal structure (both with and without
side-payment and linking costs), heterogeneous signals are shared in asymmetric core-periphery
architectures, in which “core” firms have more valuable information than periphery firms.

Keywords: information sharing; oligopoly; networks; Bayesian equilibrium

JEL Classification: D43; D82; D85; L13

1. Introduction

In the recent economics literature, networks have been usefully employed to describe
the patterns of communication and of diffusion of information among socio-economic
agents. In the “connection model”, introduced in the seminal paper by Jackson and
Wolinsky [1], agents benefit from the information disclosed by their neighbours and,
with decreasing intensity, by the neighbours of their neighbours and so on. This model
focuses on the benefits that the receiver of information enjoys. However in many economic
applications agents may incur a cost from the disclosure of their own private information.
When this is the case, the incentives to exchange information finally depend on the trade-off
between these costs and the advantage of receiving new pieces of information in return.

This delicate trade-off has been studied in great detail by the literature on information
sharing in oligopolistic markets. In one of the seminal papers of this literature, Vives [2]
has shown that Cournot duopolists have no incentive to share private information before
competing in quantities, unless they produce highly differentiated products. Other seminal
papers have obtained results in the same spirit for markets with more than two firms (see,
among others [3–6] and, more recently, [7]) In terms of economic policy, the absence of
incentives to share information prior to competition directly implies that any evidence of in-
formation sharing should be interpreted as evidence of collusion, with obvious implication
for social welfare (see, for instance, Kuhn and Vives [8] assessment of the EU industry).

All these papers assume that information is disclosed by firms to a centralised agency
(e.g., a trade association), which then processes the information and transmits it back to
firms.1 Recently, Currarini and Feri [9] have studied information sharing when players
make binding exclusive bilateral agreements. In this setting, an information structure is well
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represented as an undirected network, whose nodes are the players that share information,
and whose links are the bilateral sharing agreements. Their analysis applies to general
linear quadratic games, and allows for both strategic complements and substitutes. For the
specific case of Cournot oligopoly with demand uncertainty, it shows that the conditional
correlation of signals may provide Cournot firms with incentives to share information even
when products are perfectly homogeneous.

In the present paper we focus on the case of oligopolistic firms with private informa-
tion on a demand parameter. Oligopolistic markets provide a setting where the networked
structure of information is particularly relevant, since firms’ executives can accomplish
sharing agreements in informal regular meetings, telephone calls, emails and so on, regard-
less of firms’ membership in a trade association. As in all papers prior to [9] we assume
that signals are conditionally independent, but we allow firms to have heterogeneous
information, here modelled in terms of different degree of informativeness of firms’ signals.
The research question is how this heterogeneity affects the way in which information is
shared and exchanged, that is, the architecture of the information sharing network.

We model market competition by means of a simplified version of the oligopolistic
model studied by Gal-Or [6], in which each firm privately observes a piece of a linear
demand curve (we further assume that firms observe signals without noise). Before getting
to know their private signal, firms can engage in voluntary bilateral arrangements, by
which they agree to (truthfully) share their own private information.2

We study the architecture of “pairwise stable” networks (see [1]), that is networks in
which no pair of firms would agree to make a new sharing arrangement, and in which no
firm wishes to unilaterally discontinue an existing one.3 Although somewhat specific, the
additive structure of information we employ allows us to study the case of unconditionally
independent signals (a case ruled out under the usual assumption that firms receive a
signal form the same prior distribution of a single demand parameter) for which we fully
characterise the set of stable networks both for homogeneous and for heterogeneous signals.

More specifically, we find that when signals are i.i.d., information sharing is organised
in fully connected components, that is “groups” of firms in which all members’ informa-
tion becomes common knowledge.4 We also show that when side payments are possible
between sharing firms, then only one sharing group forms, within which all information is
shared. When information sharing involves an exogenous cost (time, coordination efforts,
verification costs, monitoring,. . . ), sharing groups have an incomplete, though regular,
internal structure, and information does not become common knowledge within the group.
In the case of heterogeneous signals we show that non regular architectures emerge. In
particular, core-periphery networks are stable, in which firms with more valuable infor-
mation are embedded in a densely connected core, while the other firms are located at the
periphery of the network.

The paper is organised as follows: Section 2 describes the model. Section 3 contains
all the results. Section 4 concludes the paper.

2. The Model

We consider a n-firms oligopolistic market with linear demand and no costs. The
size of the market, given by the intercept of the demand function, is the sum of n random
variables a1, a2, . . . , an plus a deterministic part A:

p(Q) = A + a− bQ, (1)

where Q ≡
n
∑

i=1
qi is the aggregate produced level in the market, and where a ≡ a1 + a2 +

· · · + an. The random variables (a1, a2, . . . , an) are independently normally distributed
with zero mean and variances σ11, σ22, . . . . , σnn.

Each firm i directly observes the random variable ai. Moreover, and before the
realisation of these private“signals”, firms can share their private information by means
of bilateral contracts. More precisely, any pair of firms i and j can commit to truthfully
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exchange their private information, in which case firm i gets to observe the realisation
of the random variable aj and vice versa. The information structure generated by a set of
bilateral sharing contracts can be usefully described by a non directed network.

Given a set N, a non directed network g is defined as any subset of the set of all
(unordered) pairs of elements in N:

g ⊆ {ij : i ∈ N and j ∈ N, i 6= j}.

The elements of N are called nodes, and a pair ij ∈ g is called a “link”. We denote by
Ng

i = {j ∈ N : ij ∈ g}∪ {i} the neighbourhood of i in g, with cardinality ng
i (this cardinality

is called“degree” of i). We will denote by g− ij the network obtained from g by deleting
the link ij ∈ g and by g + ij the network obtained from g by adding the link ij /∈ g.

The network g is connected if for all pairs i and j in N there exists a connecting
path P(i, j), that is, a set {i1, i2, . . . , ik} such that i = i1, j = ik, and ipip+1 ∈ g for all
p = 1, . . . , k− 1.

Given the network g, the network h is a subnetwork of g if h ⊆ g; with abuse of
notation we denote the set of nodes in h by Nh := {i ∈ N : {(i, 1), . . . , (i, n)} ∩ h 6= ∅}.
We say that h is a component of g if it is connected and if for all i ∈ Nh and j /∈ Nh we
have ij /∈ g. The size of a component h is denoted by n(h), that is, the cardinality of the
set Nh. A component h is: (i) regular if ng

i = ng
j ∀i, j ∈ Nh, that is, all nodes in Nh have the

same degree, in this case we call ng
i the degree of the component, (ii) completely connected if

n(h) = ng
i = ∀i ∈ Nh, that is, it is regular and its size coincides with its degree. With some

abuse of terminology, we will say that the network g is regular when all its components
are regular.

2.1. The Bayesian Cournot Game for a Given Network

After the realisation of the random variables a1, a2, . . . , an firms play the Cournot game
with incomplete information Γg, in which the information available to firm i is given by
the set of signals it observes, that we denote by ag

i . The ex-ante expected profits in such
game will determine the incentives of firms to make information sharing arrangements
(see next subsection).

A pure strategy for firm i is a function si : R
ng

i
+ → R+ setting a quantity level for each

possible vector of signals observed by i. Let E
[
πi(s1, s2, . . . , sn)|ag

i

]
denote the expected

profit of firm i in g given ag
i and given that quantities are fixed according to the strategy

profiles (s1, s2, . . . , sn). A Bayesian Nash equilibrium of this game Γg is a profile of strategies
(s∗i )i=1,...,n such that for all i, for all qi and for all ag

i :

E
[
πi(s∗i , s∗−i)|a

g
i

]
≥ E

[
πi(qi, s∗−i)|a

g
i

]
.

2.2. The Link Formation Stage

Firms arrange sharing contracts before they actually observe their own signals, and
anticipate the equilibrium outcome in the Cournot game. Incentives to share information
are therefore defined in terms of ex-ante expected profits in alternative networks. We will
denote by Eg

i the expectation of firm i taken over all possible realizations of ag
i ; moreover, to

keep notation simple, we denote by πi(ag
i ) the expected equilibrium profit E

[
πi(s∗i , s∗−i)|a

g
i

]
of firm i in Γg given ag

i .
The notion of pairwise stable network, first introduced in [1], provides a minimal

notion of stability in the link formation process, requiring that no link is added or severed
from a stable network.
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Definition 1. The network g is pairwise stable iff:

Eg
i

[
πi(ag

i )
]
−Eg

i

[
πi(ag−ij

i )
]
≥ 0 and Eg

j

[
πj(ag

j )
]
−Eg

j

[
πj(ag−ij

j )
]
≥ 0 ∀ ij ∈ g; (2)

if Eg
i

[
πi(ag+ij

i )
]
−Eg

i

[
πi(ag

i )
]
> 0 then Eg

j

[
πj(ag+ij

j )
]
−Eg

j

[
πj(ag

j )
]
< 0 ∀ ij /∈ g. (3)

A stronger notion of stability allows each firm to revise any subset of its links (instead
of only one link), and any pair of firms to form a new one. This notion of pairwise
Nash stability has been sometimes used in the literature (see [12]). We will primarily be
concerned with the notion of pairwise stability, which most stresses the bilateral nature of
our analysis.5

3. Results

In this section we present the main results starting with how firms use information
in a given network. Then we study information sharing first in the case of homogeneous
signals (with and without side payments and linking costs) and then we move to the case
of heterogeneous signals that allow more complex equilibrium architectures.

3.1. Bayesian Cournot Equilibrium for a Given Network

By standard results on linear Cournot games with incomplete information (see Radner
(1962)), equilibrium strategies are affine in signals, that is:

si(ag
i ) = αi + ∑j∈Ng

i
βijaj, (4)

where αi is the constant term of the equilibrium strategy of firm i, and by βij the coefficient
applied by firm i to each element aj of the vector ag

i .

Proposition 1. Equilibrium parameters are defined by the following set of equations:

βij =

1− b ∑
h∈Ng

j \{i}
βhj

2b
, ∀j ∈ Ng

i (5)

αi =
A− b ∑h 6=i αh

2b
. (6)

The proof this and all other results of the paper can be found in the Appendix A. We
first note that the α parameters are defined by an independent set of equations, and that
they do not depend on the network g. Since the expected values of all signals is zero, this
implies that the expected aggregate quantity is the same in each network.

We then observe that the expression for the terms β has intuitive interpretations
that highlight the role of the network in shaping equilibrium behaviour. The term βij
(measuring the reaction of firm i to the observed signal aj) is determined by the use that
firm i makes of signal aj to estimate the intercept minus a term that measures the use that
other firms make of signal aj, that is, firm i reacts less to signal aj the more numerous are the
firms that observe aj and base their decisions on it. Intuitively, the information provided by
signal aj is more valuable the less it is observed by other firms—a clear congestion effect on
which we will return in the next sections. From (5) we note that for each j, the equilibrium
coefficients applied to signal aj by the firms in Ng

j are determined by an independent set of

identical equations, so that βij = βhj for all i and h in Ng
j . From (6) αi = αh for all i, h ∈ N.

These considerations are summarised in the following corollary.
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Corollary 1. Equilibrium parameters are:

βij =
1

b(ng
j − 1)

, ∀i ∈ N and ∀j ∈ Ng
i (7)

αi =
A

b(n + 1)
, ∀i ∈ N. (8)

We finally determine expected equilibrium profits in Γg. The following result relates
the expected profits of a firm to its equilibrium quantity (see Proposition 1 in [14]).

Lemma 1. Ex-ante expected profits of firm i in the game Γg are given by:

Eg
i

[
πi(ag

i )
]
= bEg

i

[
s∗i (ag

i )
2
]
.

Since s∗i (ag
i )

2 is a square of a linear function in ag
i (i.e., Equation (4)), using the assump-

tion of signals independence and Corollary 1, it follows that ex-ante profits are given by a
constant term plus a term that is proportional to the variance of the equilibrium quantities.

Corollary 2. Ex-ante profits are of firm i in the game Γg are given by: :

Eg
i

[
πi(ag

i )
]
=

A2

b(n + 1)2 + ∑j∈Ng
i

σjj

b(ng
j − 1)2

. (9)

Note that the summatory represents the variance of the equilibrium quantities mul-
tiplied by parameter b. Therefore the ex-ante profits of firm i are increasing with the
variability of its strategy. It directly follows that the difference in ex-ante profits in two
different networks is measured by the difference in the variance of equilibrium quantities.

3.2. Information Sharing When Signals Are Homogeneous

Here we assume that signals have the same variance. For this case the next proposition
states necessary and sufficient conditions for a network to be pairwise stable.

Proposition 2. A network g is pairwise stable if and only if both of the following conditions
are verified.

For all ij ∈ g

1
(ng

j + 1)2
≥ 1

(ng
i )

2
− 1

(ng
i + 1)2

; (10)

1
(ng

i + 1)2
≥ 1

(ng
j )

2
− 1

(ng
j + 1)2

. (11)

For all ij /∈ g:

1
(2 + ng

j )
2
>

1
(1 + ng

i )
2
− 1

(2 + ng
i )

2
(12)

implies
1

(2 + ng
i )

2
<

1
(1 + ng

j )
2
− 1

(2 + ng
j )

2
. (13)

The intuition behind conditions (10)–(13) can be explained as follows. Conditions (10)
and (11) require that no link in a stable network is severed. On the LHS of (10) is the loss
to firm i from severing the link ij in terms of i’s equilibrium quantity’s variance; this is
measured by the variability of firms i’s strategy with respect to signal aj (see Lemma 1),
normalised by the number of firms that see signal aj (the larger this number, the less
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valuable is signal aj). This loss in expected profits has to be larger than the gain from
severing link ij (RHS); this is measured as the increase in the “value” of signal ai, which
in case of severance of link ij is observed by one less firm. Condition (11) requires the
same for j. Conditions (12)–(13) requires that no link is added to a stable network. On the
LHS of (12) is the gain to firm i from forming the new link in terms of the variability of
firm i’s strategy with respect to the newly acquired signal aj; on the RHS is the net loss in
variability due to the fact that one additional firm (firm j) observes signal ai. If the LHS
exceeds the RHS for firm i, then the reverse must hold for firm j (condition (13)).

Note that the incentives to form or sever link ij only depend on the degrees of the
nodes i and j, and on no other features of the network. In particular, the gain in profit due
to a link with node j decreases with the degree of j. It is indeed possible to determine two
thresholds in the degree of a node j: the value F(ni) above which a node i of degree ni
would not maintain the link ij, that is, if nj > F(ni) condition (10) is not satisfied; the value
f (ni) above which a node i of degree ni would not form the new link ij; that is, if nj > f (ni)
inequality (12) is not satisfied. These thresholds are formally defined in Lemma A1 in
the Appendix A, where we show, together with other properties, that both F and f are
increasing in ni, meaning that the incentives of node i to link with a given node j increase
with the degree of i.

The next proposition fully characterises the set of pairwise stable networks for the
case of i.i.d. signals.

Proposition 3. Let n ≥ 3. The set of pairwise stable networks contains: the empty network,
the complete network, and all networks made of s ≤ n− 3 isolated nodes and p ≥ 1 completely
connected components of size n1 ≥ 3, n2, . . . , np such that ni > f (ni−1) for all i = 2, . . . , p.

The set of pairwise stable networks characterised in Proposition 3 is very large. How-
ever, Proposition 3 provides two precise qualitative predictions on how information is
shared in equilibrium. First, information sharing is essentially organised in groups (the
completely connected components), within which the transmission of information is equiv-
alent to one in which firms publicly disclose their signal to all other firms in the group.
This type of public disclosure characterises all previous works on the subject, and is here
obtained endogenously as a result of private and bilateral arrangements. Second, informa-
tion sharing groups must be of different size, to make sure that firms in different groups do
not form links (in fact, from point 3.d in Lemma A1 in the Appendix A, firms with similar
degree link together).

Now we study two extensions: in the first we allows for side-payments, in the second
we impose an exogenous link cost.

3.2.1. Side-Payments

The above definition of pairwise stability implicitly rules out the possibility of side
payments between firms which are contingent on the sharing of information. In the
presence of such transfers, condition (2) and (3) would be replaced by the following
condition (see [1]):

Eg
i

[
πi(ag

i )
]
+ Eg

j

[
πj(ag

j )
]
− Eg

i

[
πi(ag−ij

i )
]
− Eg

j

[
πj(ag−ij

j )
]
≥ 0 ∀ ij ∈ g; (14)

Eg
i

[
πi(ag+ij

i )
]
+ Eg

j

[
πj(ag+ij

j )
]
− Eg

i

[
πi(ag

i )
]
− Eg

j

[
πj(ag

j )
]
≤ 0 ∀ ij /∈ g. (15)

We obtain a more narrow prediction for the case in which firms can agree on side-
payments which are contingent on information sharing. In this case, the formation of links
that bridge two components is made easier by the sharing of individual gains, and at most
one component of information sharing firms can be compatible with stability.
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Proposition 4. When side payments are possible, the set of pairwise stable networks contains: the
empty network, the complete network, all networks g made of one completely connected component
h of size n(h) ≥ 3 and n− n(h) isolated nodes.

So far, all stable structures that differ from the empty network only admitted fully
connected components.

3.2.2. Costly Links

Now we study the case in which the formation of a link has a fixed and exogenous
cost c, representing all monetary expenditures that a firm bears in order to arrange and
execute an information sharing arrangement. Interestingly, in this new setting both market
conditions (the slope b of the demand function) and the variance σ of signals turn out to
play a role in shaping the incentives of firms to form and sever links. The following new
stability conditions are obtained by a minor modification of the proof of Proposition 2: for
all ij ∈ g:

1
(ng

j + 1)2
+

1
(ng

i + 1)2
− 1

(ng
i )

2
≥ b2c

σ
(16)

1
(ng

i + 1)2
+

1
(ng

j + 1)2
− 1

(ng
j )

2
≥ b2c

σ
. (17)

For all ij /∈ g:

1
(2 + ng

i )
2
+

1
(2 + ng

j )
2
− 1

(1 + ng
i )

2
>

b2c
σ

(18)

implies
1

(2 + ng
j )

2
+

1
(2 + ng

i )
2
− 1

(1 + ng
j )

2
<

b2c
σ

. (19)

A more elastic demand (small b) provides higher incentives to maintain (and to form)
links (this is in line with the intuition that more competitive markets, and therefore a lower
strategic interdependence of firms, facilitate information sharing—see [15]). These incen-
tives also increase with the variance σ, which has the effect of scaling up the informational

gain of new connections. It will be convenient to refer to the gross cost parameter C =
b2c
σ

,
and refer to the single elements of C only when these provide interesting economic insights.

An interesting question is whether incomplete and stable components can emerge,
and, in this case, of which size. For all c ≥ 0, let fC(ni) be the value above which a node
i of degree ni would not form the new link ij; that is, if nj > fC(ni) condition (18) is not
satisfied; and let m1(C) ( m2(C)) be the first integer above (below) the smaller (larger)
solution of

(
2

(m+1)2 − 1
(m)2

)
≥ C. With this notation we can state the following proposition.

Proposition 5. Let c > 0, then the set of pairwise stable networks contains the empty network
and all networks made of s ≤ n − m1(C) isolated nodes and p ≥ 1 regular components h
with n(h) > m1(C). Components h with n(h) > m1(C) have the following characteristics: (i)
if n(h) ≤ m2(C) are fully connected, otherwise have degree equal to m2(C); (ii) each pair of
components h, h′ with n(h) ≤ n(h′) < m2(C) satisfies n(h′) > fC(n(h)).

Proposition 5 basically sets the upper bound m2(C) on the degree of a stable completely
connected component. Although one may be tempted to understand this as a consequence
of the large aggregate cost paid in completely connected components of large size, this is
not the case. Indeed, here the decision to sever or maintain a given link only depends on
the comparison between the change in payoffs and the marginal cost c. What drives the
existence of the upper bound m2(C) is, instead, the fact that the incentives to maintain a
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link are decreasing in the degree of the nodes, and larger components fail to be stable as
a result. There is therefore an inverse relation between the density of a component (ratio
between average degree and size) and its size.

3.3. Sharing Heterogeneous Signals in Core-Periphery Networks

In this section we relax the assumption that signals are identically distributed, and
allow the variances of signals (i.e., the parameters ai) to differ across firms. The stability
conditions of Proposition 2 are modified to account for this new source of heterogeneity:
the network g is pairwise stable if and only if:

- for all ij ∈ g:

σjj

(ng
j + 1)2

≥ σii

(ng
i )

2
− σii

(ng
i + 1)2

(20)

σii

(ng
i + 1)2

≥
σjj

(ng
j )

2
−

σjj

(ng
j + 1)2

, (21)

- for all ij /∈ g:

σjj

(2 + ng
j )

2
>

σii

(1 + ng
i )

2
− σii

(2 + ng
i )

2
(22)

implies
σii

(2 + ng
i )

2
<

σjj

(1 + ng
j )

2
−

σjj

(2 + ng
j )

2
. (23)

We see that, given the degrees ng
i and ng

j , the incentive of i to sever the link ij increases

with the ratio of variances
σii
σjj

(conditions (20) and (21)) and the incentive of i to form

the link ij decreases with
σii
σjj

(condition (22)). This effect can be understood in terms of

the additional variability of i’s equilibrium quantity coming from the link ij. The higher
the term σjj, the higher the additional variability of i’s quantity due to the link ij, and the
higher the informational “ value” of j’s signal for firm i. Similarly, the higher the term σii,
the lower the incentive of firm i to form the link ij; this because it is more costly to share
a signal with higher variance with one additional firm. Again, a high value of σii reflects
therefore a high informational value of i’s signal.

Note that in this setting of heterogeneous variance, a firm with high variance may not
wish to maintain a link (or to form a new one) with another firm with same degree but
lower variance. As a consequence, while the empty network is always a pairwise stable
information structure (as was proved for the case of i.i.d. signals), the complete network
may fail to be stable when firms have significant heterogeneity in variances. However, as
the next proposition shows, this can only happen when the number of firms is small.

Proposition 6. (1) The empty network is pairwise stable for all distributions of variances, even
if side payments are possible; (2) There exist configurations of variances for which the complete
network is not pairwise stable; (3) For every configuration of variances, there exists a finite number
of firms n̄ such that for all n ≥ n̄ the complete network is pairwise stable.

While we refer to the Appendix A for details, the intuition of this result is clear: when
the degree of two nodes increases, their difference in variances becomes less and less
relevant in the stability conditions (20) and (21).

We next turn to the existence of pairwise stable networks with non completely con-
nected components. Since signals with large variance possess higher informational value,
the incentive to link to firms observing such signals may remain high even when these
firms have a large degree. We can therefore envisage stable architectures in which firms
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with large variance have larger degree than firms with low variance. We show that a special
class of incomplete architectures, usually referred to as “core-periphery networks”, can
be pairwise stable for suitable distributions of variances. In more detail, core periphery
networks present a dense set of interconnected nodes—the core—each linked with all nodes
in the network, and sets of peripheral nodes which are internally connected and are linked
with the core nodes. Formally, a core-periphery network g consists of a set {g1, g2, . . . , gH}
of fully connected subnetworks, such that i ∈ gk and j ∈ gm implies that ij /∈ g for all
k 6= m such that k ∈ {2, 3, . . . , H} and m ∈ {2, 3, . . . , H}, and such that i ∈ g1 and j ∈ gk
implies ij ∈ g for all k = 1, 2, 3, . . . , H. We call the subnetwork g1 core (with size nc), and
the subnetworks {g2, . . . , gH} peripheries. We define a symmetric core-periphery network as
one in which all peripheral firms have the same size np ≥ 1. We also say that peripheries
are consecutive in variances if they can be obtained as a consecutive partition of the set of
peripheral nodes ordered with respect to variance.

Proposition 7 provides two qualitative features of pairwise stable symmetric core-
periphery networks: peripheral firms are organised in groups that are consecutive in
variance, and core firms have larger variance than peripheral firms.

Proposition 7. Every symmetric pairwise stable core periphery network is such that periph-
eries are consecutive in variances. Moreover, for each given size np, there exists a finite n′

such that if n > n′ then every symmetric pairwise stable core periphery network is such that
mini∈g1 σi > maxj∈g\g1

σj.

Intuitively, core firms observe signals that are publicly observed, and have therefore
lower informational value. These signals are more“desirable” the larger their variance,
from which the second result in Proposition 7. An example of pairwise stable core periphery
network is the following (see Figure 1).

Example 1. Consider a network with 5 nodes: node 1 is the “core” node, while the two peripheries
are {23} and {45}. Variances are σ1 = 1, σ2 = σ3 = 1

5 , σ4 = σ5 = 1
2 . Relevant stability

conditions (20)–(23) (for links 12, 15 and 34, respectively) are satisfied:

1
36

+
1
5

1
16
≥ 1

25
;

1
36

+
1
2

1
16
≥ 1

25
;
(

1
2
+

1
5

)
1

25
≤ 1

5
1
36

.

Figure 1. Core-Periphery Network with five nodes.

4. Concluding Remarks

We have studied the incentives of oligopolistic firms to share information on a ran-
dom demand intercept by means of bilateral contracts. We have assumed that sharing
agreements are bilateral, and that firms can revise one sharing agreement at a time. Our
results have shown that when the cost of implementing a sharing agreement are not too
high and information is symmetric, then sharing occurs in groups or coalitions, within
which information is universally disclosed. When costs are high, information is shared
“locally” within groups, with each firm disclosing only to a subset of other group members.
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When information is heterogeneous, then asymmetric sharing architectures arise, where
core firms (with less informative signals) share more intensely than periphery firms.

All of our analysis has made the assumption that signals are shared at the ex-ante
stage, before private information is revealed to firms. An interesting alternative approach
would allow firms to share information at the interim stage, and explore the rich strategic
structure of an interim model of information sharing. One possible conjecture would be
that in this case the complete network could emerge as the unique stable structure. In a
nutshell, the mechanism would go as follows. Given that firms have an incentive to hide
good signals and to reveal bad signals, one could suppose that firms adopt a threshold
strategy, hiding their private information when it is good (the signal is greater than a given
level) and revealing it when it is bad (below that level). Differently from the ex-ante stage,
here the disclosure decision is itself informative: when a firm does not reveal, it implicitly
signals to possess good information. This would trigger an update of the competitors’
priors upwards. In turns, this update would move the thresholds in the disclosure strategy
upwards and, by successive iterations, the threshold would reach the maximum admissible
value of the signal, with the total unraveling of information. We leave this important issue
for future research.
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Appendix A

Proof of Proposition 2. After the realization of the random variables a1, a1,. . . ,an, each
firm i ∈ N faces the following problem max

si
E
[
πi(si, s−i)|a

g
i

]
where E

[
πi(si, s−i)|a

g
i

]
=A + ∑

j∈Ng
i

aj − bE

[
∑
j 6=i

sj

(
ag

j

)
|ag

i

]
− bsi

(
ag

i

)si

(
ag

i

)
.

The first order condition of the firm’s problem is: si

(
ag

i

)
=

A+ ∑
j∈Ng

i

aj−bE

[
∑
j 6=i

sj

(
ag

j

)
|ag

i

]
2b .

Replacing sj

(
ag

j

)
by (4) we get si

(
ag

i

)
=

A+ ∑
j∈Ng

i

aj−bE

[
∑
j 6=i

[
αj+∑h∈Ng

j
β jhah

]
|ag

i

]
2b that is affine in

signals in ag
i . By algebric manipulation we find the α parameters as all parts that do not

depend on signals and βij as the sum of all terms that multiply by signal aj.

Proof of Lemma 1. To explicitly derive the term Eg
i

[
πi(ag

i )
]
, consider the equilibrium

condition for firm i in the game Γg:

s∗i
(

ag
i

)
=

A + ∑
j∈Ng

i

aj − bE

[
∑
j 6=i

s∗j
(

ag
j

)
|ag

i

]
2b

(A1)
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which can be rewritten as:

s∗i
(

ag
i

)
=

E

[
A + ∑

j∈N
aj − b ∑

j∈N
s∗j (ag

j )|a
g
i

]
b

=
E
[

P(a, g)
∣∣∣ag

i

]
b

, (A2)

where P(a, g) is the market price given realization a in network g.
The ex-ante expected profit of firm i can therefore be expressed as the expectation of

πi(ag
i ) taken over ag

i (see (A2)):

Eg
i

E

 P(a, g)E
[

P(a, g)|ag
i

]
b

∣∣∣∣∣∣ag
i

 = Eg
i

E
[

P(a, g)
∣∣∣ag

i

]2

b

 = bEg
i

[
s∗i
(

ag
i

)2
]

. (A3)

Proof of Proposition 2. From Lemma 1, ex-ante profits are given by bEg
i

[
s∗i
(

ag
i

)2
]

. Using

the relation E[x]2 = E
[
x2]+ var(x) we can write:

Eg
i

[
πi(ag

i )
]
= bEg

i

[
s∗i
(

ag
i

)2
]
= b

(
Eg

i

[
s∗i
(

ag
i

)]2
+ var(s∗i

(
ag

i

)
)

)
. (A4)

Since from the definition of equilibrium coefficients and from the fact that all signals have
zero mean, we also have that Eg

i

[
s∗i
(

ag
i

)]
= A

b(n+1) irrespective of the graph structure.
Then we can write condition (2) in definition 1 (the difference between the profits of
firm i in graphs g and g′ = g − ij, for ij ∈ g) as the difference in the two variances of
equilibrium quantities:

Eg
i

[
πi(ag

i )
]
− Eg′

i

[
πi(ag′

i )
]
= b

[
var(s∗i

(
ag

i

)
)− var(s∗i (ag′

i ))
]
. (A5)

To obtain an expression for this difference, let us explicitly derive the equilibrium coeffi-
cients βij and αi for this case. Solving conditions (7) and (8) we obtain:

βij =
1

b
(

ng
j + 1

) , ∀i ∈ N and ∀j ∈ Ng
i ; (A6)

αi =
A

b(n + 1)
∀i ∈ N. (A7)

Using (A6) and (A7), the equilibrium quantity of firm i in game Γg is given by:

s∗i
(

ag
i

)
=

A
b(n + 1)

+ ∑
k∈Ng

i

ak

(ng
k + 1)b

, (A8)

with variance:
var
(

s∗i
(

ag
i

))
= ∑

k∈Ng
i

σ

(ng
k + 1)2b2

. (A9)

For Γg′ we obtain:
s∗i (ag′

i ) =
A

b(n + 1)
+ ∑

k∈Ng′
i

ak

(ng′
k + 1)b

(A10)

with variance:
var(s∗i (ag′

i )) = ∑
k∈Ng′

i

σ

(ng′
k + 1)2b2

. (A11)
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The only two terms that are different in the sums of the above expressions of variances are

those that concern signals j and i. Using the fact that ng′

i = ng
i − 1 we obtain that:

var(s∗i (ag
i ))− var(s∗i (ag′

i )) =
σ

b2

[
1

(ng
j + 1)2

+
1

(ng
i + 1)2

− 1
(ng

i )
2

]
. (A12)

The conditions for the link ij not to be severed from g are therefore (10) and (11).
We now turn to the condition for the link ij /∈ g not to be formed. Firm i has an

incentive to form ij inducing the network g′ = g + ij if

var(s∗i (ag′

i ))− var(s∗i (ag
i )) > 0. (A13)

Stability requires that if (A13) holds then:

var(s∗i (ag′

i ))− var(s∗i (ag
i )) < 0. (A14)

Using again the expression for variances and the fact that ng′

i = ng
i + 1 we obtain

conditions (12) and (13).

Lemma A1.
1. Let

F(ni) =

√
n2

i (1 + ni)2

1 + 2ni
− 1 (A15)

and suppose ij ∈ g, then player i has an incentive to sever link ij if and only if nj > F(ni) .
2. Let

f (ni) =

√
(ni + 1)2(2 + ni)2

2ni + 3
− 2 (A16)

and suppose ij /∈ g, then player i has no incentive to form link ij if and only if nj > f (ni).
3. Moreover the following properties hold:

(a) F(ni) and f (ni) are strictly increasing.
(b) F(ni)− 1 = f (ni − 1).
(c) F(ni)− F(ni − 1) > 1.
(d) ni ≤ f (ni) if and only if ni ≥ 2 and ni ≤ F(ni) if and only if ni ≥ 3.
(e) F(ni) < f (ni) for all ni ≥ 2.

Proof of Lemma A1. Part 1: The condition such that player i has not incentive to sever a

link ij ∈ g is given in (10). Solving it by nj we obtain nj ≤
√

n2
i (1+ni)2

1+2ni
− 1 = F(ni).

Part 2: The condition such that player i has incentive to form a link ij /∈ g is given

in (12). Solving it by nj we obtain nj ≤
√

(ni+1)2(2+ni)2

2ni+3 − 2 = f (ni).

Part 3: Point (a) is implied by the fact that the RHS of (A15) and (A16) are increasing in
n: their derivatives are always positive for all n. To prove point (b), consider the equations
defining F(n) and f (m), respectively:

1
n2 −

1
(1 + n)2 =

1
(1 + F(n))2 (A17)

1
(1 + m)2 −

1
(2 + m)2 =

1
(2 + f (m))2 (A18)
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The LHS of (A17) and of (A18) coincide for all m = n− 1. It follows that also the RHS must
coincide for such values, and this happens when f (n− 1) = F(n)− 1. Point (c): For n = 2
we obtain:

F(n)− F(n− 1) =

√
36
5
−
√

4
3
> 1.

We then compute the derivative d
dn [F(n)− F(n− 1)], that it is positive for all value n > 2.

Point (d): Simple algebraic manipulation of conditions (A15) and (A16). Point (e): Directly
from (b) and (c).

Proof of Proposition 3. Let g be pairwise stable network. (i) We first show that only
regular networks can be pairwise stable. Let h be a non regular component of g. Consider
now the node with maximal degree i, and let j be such that ng

i > ng
j and ij ∈ h (such link

must exist for at least one node with maximal degree). This means that there exists some
node k 6= j such that ik ∈ h and jk /∈ h. By point (1) in Lemma A1 pairwise stability of g
imposes the following requirements on the degrees of nodes i, j and k:

ng
k ≤ F(ng

i ) and ng
i ≤ F(ng

k ); (A19)

ng
j ≤ F(ng

i ) and ng
i ≤ F(ng

j ). (A20)

Note now that since ng
i > ng

j , then ng
i − 1 ≥ ng

j (remember that degrees are integers,

then ng
i − 1 ≥ ng

j ). This, together with (A19), implies ng
j ≤ F(ng

k )− 1. This together with

point 3(b) in Lemma A1 implies ng
j ≤ f (ng

k − 1) and finally, by point 3(a) in Lemma A1,

we conclude that ng
j < f (ng

k ). It means that player k has incentive to form link jk. For g
to be stable, link jk should not form, therefore stability conditions require that player j
has no incentive to form link jk, that is ng

k > f (ng
j ). This together with ng

k ≤ ng
i , imply

that ng
i > f (ng

j ); using (A20) we obtain that f (ng
j ) < F(ng

j ), contradicting point 3(e) of
Lemma A1. (ii) Now we show that the components in g must be either of size at least 3 and
completely connected or isolated nodes. Consider a regular and not completely connected
component h with n(h) ≥ 3, then 3 ≤ ng

i < n(h) ∀i ∈ Nh; by point 3(d) in Lemma A1,
ng

i ≤ f (ng
i ) for all i ∈ Nh; by point (2) in Lemma A1, every i ∈ Nh has an incentive to form a

link with any other j ∈ Nh/i. Now consider a regular and completely connected component
h with n(h) ≥ 3 then ng

i = n(h) ∀i ∈ Nh. By point 3(d) of Lemma A1, ng
i ≤ F(ng

i ), then by
point (1) in Lemma A1 each i ∈ Nh has not incentive to sever a link ij ∈ h. Therefore we
can conclude that all components in g with size at least 3 must be completely connected.
Suppose a component h with n(h) = 2, then ng

i = 2 ∀i ∈ Nh; by point 3(d) of Lemma A1
F(ng

i ) < ng
i ∀i ∈ Nh, then by point (1) in Lemma A1 all i ∈ Nh have an incentive to sever

a link ij ∈ h. Suppose an isolated player i. By point 3(d) in Lemma A1 f (1) < 1, then by
point (2) in Lemma A1, player i has not incentive to form any link. A direct implication of
these results is that the complete network and the empty network are both stable. (iii) Now
we show that if h, h′ ∈ g are completely connected components of size n(h) ≥ n(h′) ≥ 3,
then f (n(h′)) < n(h). Note that ng

i = n(h) ∀i ∈ Nh and ng
i = n(h′) ∀i ∈ Nh′ . Suppose

f (n(h′)) > n(h) then, by point 2 in Lemma A1, all i ∈ Nh′ have an incentive to form a link
with any player j ∈ Nh. Therefore stability conditions require that each player j ∈ Nh has
not incentive to form a link with any player i ∈ Nh′ , that is f (n(h)) < n(h′). It implies
that f (n(h′)) > n(h) > n(h′) > f (n(h)), that is f (n(h′)) > f (n(h)) a contraddiction with
point 3(a) in Lemma A1. This result implies that in g any pair of completely connected
component of size at least 3 (say h and h′, n(h) ≥ n(h′)) must satisfy f (n(h′)) < n(h). A
direct implication of this result is that in g cannot be two components of equal size.

Proof of Proposition 4. Note that all unstable networks due the formation of new link
studied in proof Proposition 3 remain unstable with side payments, then we can restrict
to all other cases: if in the networks described in Proposition 3 new links form and if
components of size 2 are stable. Let g be pairwise stable network. Consider two agents
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i, j ∈ N with degree, respectively, m and n and suppose ij /∈ g. Using the same steps in the
proof of Proposition 2, condition (15) can be written as:

1

(m + 2)2 −
1

(n + 1)2 +
1

(n + 2)2 +
1

(n + 2)2 −
1

(m + 1)2 +
1

(m + 2)2 ≤ 0 (A21)

Arranging the LHS we get:

m2 − 2

(2 + 3m + m2)
2 +

n2 − 2

(2 + 3n + n2)
2 ≤ 0 (A22)

By direct computation we can see that condition (A22) is not satisfied if m ≥ 2 and
n ≥ 2; in addition, for n = 1 (A22) is satisfied for all m ≥ 1. These results imply that: (i) in
network g cannot be incomplete components; (ii) in network g cannot be separate fully
connected components of size at least 3; (iii) in network g can stay isolated nodes. The
proof of the results in proposition directly follows.

Proof of Proposition 5. Among two agents, say i and j, the incentive to form a new link ij
or no to sever link ij, is larger for the agent with larger degree. Indeed the incentive for
agent i to form link ij is larger that for agent j if: 1

(nj+2)
2 + 1

(ni+2)2 − 1
(ni+1)2 > 1

(ni+2)2 +

1
(nj+2)

2 − 1
(nj+1)2 , that is satisfied for ni > nj. This result allows us to consider stability

conditions only for the firm with smaller degree.
With this result in hand, we first show that only regular networks can be pairwise

stable. Let g be pairwise stable network and h be a non regular component of g. Consider
now the node with maximal degree i, and let j be such that ng

i > ng
j and ij ∈ h . This means

that there exists some node k 6= j such that ik ∈ h, jk /∈ h and ng
i ≥ ng

k The pairwise stability
of g imposes the following requirements on the degrees of nodes i, j and k:

1

(ni + 1)2 +
1(

nj + 1
)2 −

1
nj

2 ≥ C (A23)

1

(ni + 1)2 +
1

(nz + 1)2 −
1

nz2 ≥ C (A24)

and either

1

(nz + 2)2 +
1(

nj + 2
)2 −

1
(nj + 1)2 < C (A25)

or

1(
nj + 2

)2 +
1

(nz + 2)2 −
1

(nz + 1)2 < C (A26)

or both. Note that (A26) is not compatible with (A24): 1
(ni+1)2 ≤ 1

(nj+2)
2 and 1

(nz+2)2 −
1

(nz+1)2 > 1
(nz+1)2 − 1

nz2 ∀nz ≥ 1. Therefore for stability we have to check the case in which

(A26) is unsatisfied and (A25) is satisfied. It is possible if and only if nz < nj, but this
implies that (A25) is not compatible with (A23). Secondly we show that in a pairwise stable
network a subset M ⊆ N of agents could be isolated nodes. To prove it is enough to note
that this is possible when c = 0 (see Proposition 3) and it is due to the negative incentive of
isolated nodes to form any link. When c > 0 these incentives reduce. Third, we prove that
for each C there exist integers m1(C) ≤ 4 and m2(C) ≥ 4 such that two firms with equal
degree m have an incentives to maintain their link if and only if m1(C) ≤ m ≤ m2(C). As a
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consequence, for all m in this range, two firms with degree m− 1 have an incentive to form
a link. To see this, note that the stability condition (16) can be rearranged as follows:(

2
(m + 1)2 −

1
(m)2

)
≥ C. (A27)

The LHS of expression (A27), when defined on the set of integers, reaches a maximum
at m = 4, and is increasing for m ≤ 3 and decreasing for m ≥ 4. The values m1(C) and
m2(C) are the first integers above and below the smaller and larger solutions of (A27) taken
with equality, respectively. Suppose a regular component h with degree m, then: (a) if
n(h) < m1(C) then m < m1(C); directly follows that all firms have incentives to sever
links; (b) if m1(C) ≤ n(h) ≤ m2(C) and (i) m < m1(C) then all firms have an incentive to
sever one link; (ii) n(h) > m ≥ m1(C), then all pairs of firms have an incentive to form
one link; (iii) n(h) = m component h is pairwise stable (and completely connected); (c) if
n(h) ≥ m2(C) and (i) m < m2(C), then all pairs of firms have an incentive to form one
link; (ii) m > m2(C) then all firms have an incentive to sever one link; (iii) m = m2(C)
component h is pairwise stable (and no completely connected).

Finally consider two completely connected components h and h′ such that n(h) = n,
n(h′) = m and m1(C) ≤ n ≤ m < m2(C). By previous results no agent has incen-
tive to sever one link. Then any agent in h has not incentive to form a link with any
other agent in h′ if: 1

(m+2)2 + 1
(n+2)2 − 1

(n+1)2 < C; by algebric manipulation we get

m >

√
(n+1)2(2+n)2

2n+3+(n+1)2(2+n)2C
≡ fc(n)

Proof of Proposition 6. (1) Consider an empty network. A link ij will form only if both
agents i and j have incentive to form it. Agent i has an incentive to form a link ij if
condition (22) is satisfied, that is,

σjj
9 + σii

9 −
σii
4 > 0, that implies

σjj
σii

> 5
4 ; by the same steps

we find that agent j has an incentive to form this link only if σii
σjj >

5
4 . It is directly verifiable

that both conditions are uncompatible. Now suppose that side payments are possible. In
this case a new link will form if and only the change in aggregate payoff of agents i and j
is positive, that is, 2

(
σjj
9 + σii

9

)
− σjj

4 −
σii
4 > 0, which is never verified for all values of σjj

and σii.
(2 and 3) From (20), the condition for firm i to maintain the link ij in the complete

network g is:
σii
σjj
≤ n2

1 + 2n
. (A28)

To prove (2) we note that for a given n can exist variances σii and σjj such that (A28)
is not verified. To prove (3) we note that the RHS of (A28) grows without bound with n,
implying that, for given σii and σjj, (A28) would be satisfied for n large enough.

Proof of Proposition 7: Let us first show that peripheral components are consecutive in
variances. Consider components hk and hk+1 of size np. By the structure of a symmetric
core-periphery network, the degree of each node in these components is np + nc. Let j be
the firm with highest variance in hk and let l be the firm with lowest variance in hk. For
firm j not to sever the link jl we need:

σjj(
np + nc

)2 ≤
σjj + σll(

np + nc + 1
)2 . (A29)

Suppose now that there exists firm i ∈ hk+1 such that σii < σjj. We show that in this case
σii < σll . In order for firm j not to form a link with firm i wee need:

σjj

(m + nc + 1)2 >
σjj + σii

(m + nc + 2)2 . (A30)
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Conditions (A29)–(A30) imply:

(m + nc + 1)2(m + nc + 1)2

(m + nc + 2)2(m + nc)
2 <

(
σjj + σll

)(
σjj + σii

) . (A31)

If σii ≥ σll we have that

(m + nc + 1)2(m + nc + 1)2

(m + nc + 2)2(m + nc)
2 ≤ 1 (A32)

which is never satisfied.
Let us next show that for n large enough the core firm with lowest variance (say σcc)

has higher variance than the peripheral firm with highest variance (say σjj). The condition
for firm j not to sever the link jc is:

σjj

(m + nc)
2 ≤

σjj

(m + nc + 1)2 +
σcc

(n + 1)2 . (A33)

After some manipulation of (A33) we obtain the following condition:

σcc

σjj
≥ (n + 1)2

(m + 1)2
2m + 3

(m + nc + 1)2 . (A34)

As n grows (an keeping m fixed, which requires that the number of peripheral components
and/or the size nc grows with n), the term on the LHS of condition (A34) need to grow,
and eventually become larger than 1 for a finite value of n.

Notes
1 A difference is then made whether information is transmitted to all firms independently of their disclosure strategy, or only to

firms that disclosed their own private information (exclusive contracts).
2 The assumption that revelation is truthful is crucial to our results. As shown in Ziv [10], if information is not verifiable ex-post,

then firms would always lie about their observed signal. However, several studies have pointed out that information on a
common demand shock is based on some hard evidence and is not merely cheap talk (see, for instance, Doyle and Snyder’s [11]
study on U.S. car industry). This observation is more relevant the longer is the time horizon over which sharing arrangement are
repeated.

3 This notion of stability is admittedly a weak one, in that it does not allow firms to revise more than one link at a time. A stronger
notion, called “pairwise Nash stability”, also requires that no firm wishes to revise any subset of its existing links.

4 This result parallels a similar findings in [9], obtained for a different statistical model.
5 An even stronger notion, defined as Strong Stability by Jackson and van den Nouweland [13], would allow any subset S of

firms to revise all their link (but not to form new links with firms outside S). Since this notion seems to bring us further away
from the spirit of bilateral sharing, we do not consider it in this paper.
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