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Abstract: Hepatitis B (HBV) is one of the most common infectious diseases, with a worldwide annual
incidence of over 250 million people. About one-third of the cases are in China. While China made
significant efforts to implement a nationwide HBV vaccination program for newborns, a significant
number of susceptible adults and teens remain. In this paper, we analyze a game-theoretical model of
HBV dynamics that incorporates government-provided vaccination at birth coupled with voluntary
vaccinations of susceptible adults and teens. We show that the optimal voluntary vaccination brings
the disease incidence to very low levels. This result is robust and, in particular, due to a high HBV
treatment cost, essentially independent from the vaccine cost.

Keywords: hepatitis B; epidemiology; vaccination; public health; game theory; Nash equilibrium

1. Introduction

Worldwide, an estimated 250 to 350 million people are infected with hepatitis B virus
(HBV), and 600 to 800 thousand will die from complications of the disease each year [1–3].
This statistic persists despite the availability of highly effective HBV vaccines and the
implementation of widespread vaccination programs beginning in the 1980s [4]. The
prevalence of HBV infection varies throughout the world and is endemic in many of the
most populous regions, including China, Southeast Asia, and parts of Africa and the Middle
East, where between 8% and 15% of the population is chronically infected [5,6]. More
than three-quarters of those infected with HBV live in the Asia-Pacific region, including
93 million people in China alone [4,7]. Infection with hepatitis B leads to chronic and severe
liver disease, particularly cirrhosis and hepatocellular carcinoma (HCC), which account for
the vast majority of HBV-related deaths [8,9].

Hepatitis B virus replicates in the liver and is spread by infected bodily fluids, primar-
ily blood [6]. Replication is rapid and typically colonizes 70% of human liver cells within a
few weeks of infection [2]. If an individual has an immune response and is able to clear
the acute infection, such a response typically occurs after the liver is largely colonized; this
delayed immune response presents a challenge for the timely diagnosis of HBV and may
contribute to its propensity to spread. If the immune response fails to fully suppress the
virus, the disease will progress to a chronic carrier state [2]. The likelihood of progression
from acute to chronic infection is inversely related to the age of the individual at exposure.
In about 95% of cases, adults’ immune systems are able to clear the virus, while children
are far more likely to develop chronic infection [2]. Children under the age of 5 develop
chronic infection at a rate of 25–30%, and newborns with carrier mothers have a 90% risk
of chronic infection [10].

Transmissions of HBV between humans can be classified as either perinatal, sexual,
or parenteral [8]. Perinatal transmission is of particular importance to the global hepatitis
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B problem, due to the extremely high risk of chronic infection in infants born to carrier
mothers [6,8]. Mother-to-child represents the primary mode of transmission in highly en-
demic regions—those with a population seroprevalence of at least 8% [6]. In low-endemic
regions—those with population seroprevalence below 2%—sexual transmission and par-
enteral transmission (for example, from intravenous drug use) are more significant [6],
though these modes of transmission carry a relatively low risk of chronicity [8].

In China, vaccination of newborns against HBV has been recommended since 1992,
and government-funded vaccination was implemented in 2002 [3,11]. The first dose of the
vaccine is typically administered 24 h after birth, with follow-up doses at 1 and 3 months of
age [11]. Long-term studies of the vaccination program in China have indicated that timely
administration of HBV vaccines in newborns is 88% effective [11]. These programs have
succeeded in reducing the infection prevalence among young children; vaccine coverage,
however, varies between provinces and locations of birth (hospital vs. home birth) [3,4,12].
This may be due to rural communities typically having lower access to healthcare and other
government services than urban regions. The income status is the main barrier for HBV
vaccination by adults in rural China [13], where the HBV prevalence is 5.86% as opposed
to 3.29% in urban areas [14].

While vaccination of newborns has been explicitly prioritized, reducing the prevalence
of infection among adults has thus far not seen significant investment. Recent studies of
HBV prevalence among Chinese adults indicate that vaccine coverage is higher in more
economically prosperous regions [15]. Furthermore, the nationwide prevalence of HBV
infection in adults remains high and represents a significant risk of virus transmission
to unvaccinated individuals, both children and adults [14]. The sheer size of the human
population in China and the high endemicity justifies further study into strategies to reduce
disease prevalence in the adult population, as China continues to contribute significantly
to the global burden of HBV.

Possible strategies to target HBV infection in adults include antiviral therapies for
infected individuals and vaccination for susceptible individuals. While antiviral therapies
used to impose a significant financial burden on patients, and the drugs were priced out
of reach of the average Chinese adult [16,17], the costs of generic drugs have decreased
dramatically, which made chronic HBV treatment with highly efficacious drugs much more
cost-effective and affordable [18].

There are now many mathematical models of HBV dynamics, see, for example, [19–21]
for recent reviews. ODE models typically include a version of susceptible, latent, acutely
infected, chronic, recovered and/or vaccinated compartments, see for example [3,12,22–26].
Age has also been incorporated into the models, and many age-dependent models have
been developed [27–31].

Game theory [32] is now increasingly applied to help model disease prevention,
including HBV [33], Hepatitis C [34], polio [35], chikungunya [36], meningitis [37], mon-
keypox [38], cholera [39], Ebola [40], dengue [41], malaria [42], toxoplasmosis [43], African
trypanosomiases [44], visceral leishmaniasis [45] and many others. While [46–48] studied
the cost-effectiveness of vaccination against Hepatitis A from a population perspective,
the key factors in determining the level of vaccination within a community are the risk
perception and vaccination costs from the individual’s perspective [49]. The game-theoretic
models can make accurate predictions about vaccination coverage. For example, a high
relative typhoid vaccine cost can be linked to a low vaccine coverage in Ghana [50] and
a variance of relative costs can explain the variances of Chagas disease incidence rates
across countries in Latin America [51]. Many recent studies such as [52–59] used multi-
agent–simulation (MAS) methodology, thus allowing considerable flexibility and realism
in the modeling approach. Moreover, vaccine imperfection was considered in [60], and [61]
studied vaccination games on social networks. A cost efficiency analysis of voluntary
vaccination was performed in [62].

Here we add a game-theoretic component to a model of [12] to assess the effectiveness
of the vaccination strategy among the population of adults and adolescents. Our aim is
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to see whether voluntary vaccination can help eliminate HBV infections. We introduce
the ODE model, provide its equilibrium solution and effective reproduction number in
Section 2. We add the game-theoretic component in Section 3. Our main results, the optimal
voluntary vaccination strategies, are shown in Section 4.1. We perform the sensitivity
analysis in Section 4.2 and conclude the paper with a discussion in Section 5.

2. Model of HBV Dynamics

We adopt an epidemiological model for HBV from [12]. The model incorporates all
key aspects of HBV dynamics, including imperfect vaccination, waning immunity, and
vertical disease transmission.

The compartmental model is shown in Figure 1. The population is normalized to
one and divided into five homogeneous compartments: susceptible (x); exposed (e); acute
infections (y); carrier (c); and individuals with temporary immunity that was gained either
naturally or through vaccination (v).

x e y c vλ σ qr1 r2

µ µ

µωεc

µ µ µ

µω(1− εc) µ(1−ω)

(1− q)r1

(1−ω)p

δ

Figure 1. Compartmental model of Hepatitis B. The population is divided into five compartments:
susceptible (x), exposed (e), acutely infected (y), chronically infected (c), and temporarily immune (v)
individuals. Descriptions of parameters are given in Table 1.

Individuals are born at the rate µ, and we assume that all newborns are now vacci-
nated. The vaccine efficacy is assumed to be (1−ω); only a fraction of (1−ω) of vaccinated
individuals enter the compartment v. If the vaccine failed and a child is born to a carrier
mother, it can become exposed with probability ε, that is, individuals enter the compart-
ment e at the rate µωεc. The rest of the newborns enter the susceptible compartment x at
the rate µω(1− εc).

The immunity wanes and the individuals become susceptible at the rate δ. A sus-
ceptible individual becomes exposed either through the contact with an acutely infected
individual (at the rate βy) or the carrier (at the rate βαc). The force of infection is thus

λ = β(y + αc). (1)

To avoid the infection, susceptible individuals vaccinate at the rate p. As with the newborn
vaccination, we assume that the vaccine efficacy is (1−ω).

The exposed individuals cannot infect others but slowly acquire acute infection at
the rate σ. The acute stage lasts for the time 1/r1. A fraction (1− q) of acutely infected
individuals recover and gain immunity; they move to v. However, a fraction q progresses
to a chronic carrier stage, c. The recovery rate from the chronic stage is very slow, r2.

To keep the population size constant, we assume no disease-induced mortality and
that the death rate is the same as the birth rate.
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Since v = 1− (x + e + y + c), the model yields the following set of equations.

dx
dt

= µω(1− εc)− λx− (1−ω)px + δ[1− (x + e + y + c)]− µx

de
dt

= λx + µωεc− σe− µe

dy
dt

= σe− r1y− µy

dc
dt

= qr1y− r2c− µc.

(2)

Table 1. Description of the symbols and parameters used in the model. The rates are per capita per
year. The costs are in US dollars.

Symbol Description Base Value Range Source

µ Death rate and birth rate 1/76 [0.01, 0.015] [63]

ω
Proportion of failed
immunization 0.12 [0, 0.2] [11]

σ Incubation rate 3 [1, 6] [64]
δ Rate of loss of immunity 0.033 [0.01, 0.067] [65]

r1
Recovery rate from acute
infections 4 [3, 5] [19]

r2 Recovery rate of carriers 0.025 [0.005, 0.025] [27]

ε
Probability of transmission from
carrier mothers 0.78 [0.7, 0.9] [66]

q Probability of an acute infection
becoming chronic 0.04 [0.02, 0.06] [67]

p Vaccination rate varies [0, 0.3] assumed
β Transmission rate 10 [5, 15] [27]

α
Reduction factor for transmission
from carriers 0.16 [0.1, 0.2] [27]

Kv Cost of vaccination $3 [1, 5] [68]
Ky Cost of acute infection $300 [100, 500] [69]
Kc Cost of chronic infection $1000 [100, 2000] [18]

KHBV Expected cost of infection $1895 Equation (11)
K Relative cost of infection 0.0016 Kv/KHBV

pNE Optimal vaccination rate varies Equation (16)

pHI
Vaccination rate needed for herd
immunity varies Equation (15)

Km Minimal K for which pNE = 0 varies Equation (20)
λ Force of infection varies Equation (1)

πnv
Probability of infection if
unvaccinated varies Equation (12)

πv
Probability of infection if
vaccinated varies Equation (13)

The effective reproduction number R0 is the average number of secondary infec-
tions caused by a single infectious individual in a wholly susceptible population [70].
Following [12] and using the next-generation matrix method [71], we obtain

R0 =
βσx0(r2 + µ + αqr1)

(σ + µ)(r1 + µ)(r2 + µ)− σµωεqr1
(3)

where
x0 =

µω + δ

(1−ω)p + δ + µ
(4)

is the value of x at the disease-free equilibrium.
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When R0 < 1, there is no HBV in the population and when R0 ≥ 1, there is a unique
endemic equilibrium given in [12] as follows.

x∗ =
(σ + µ)(r1 + µ)(r2 + µ)− µωεqr1σ

βσ(r2 + µ + αqr1)
(5)

y∗ = − ((1−ω)p + δ + µ)x∗ − (µω + δ)

βx∗
(

1 + αqr1
r2+µ

)
+ δ
(

r1+µ
σ + 1 + qr1

r2+µ

)
+ µωεqr1

r2+µ

(6)

e∗ =
r1 + µ

σ
y∗ (7)

c∗ =
qr1

r2 + µ
y∗. (8)

The effective reproduction number changes with the population vaccination rate p. There
is a threshold herd immunity vaccination rate pHI such that R0 < 1 when p > pHI and
R0 > 1 when p < pHI. Figure 2a shows how the effective reproduction number R0 depends
on p, and Figure 2b shows how the force of infection λ depends on p.

(a) (b)

Figure 2. (a) Dependence of the effective reproduction number R0 on the vaccination rate p of susceptible individuals.
(b) Dependence of the force of infection λ at equilibrium on the vaccination rate p. When p < pHI the equilibrium is
endemic, and when p > pHI the equilibrium is disease-free. Parameter values as specified in Table 1.

3. Game-Theoretical Model of Vaccination Decisions

Here we follow the framework introduced in [32] and add a game-theoretical compo-
nent to the model of [12] discussed in the previous section.

The players of the game are adult and teen individuals who chose whether to
(re)vaccinate or not. We note that due to vaccine failures and vaccine waning, even if
100% are vaccinated at birth, all individuals are eventually at risk of HBV infection. The
payoffs Es to a player using strategy s ∈ {v, nv} for vaccinate and not vaccinate are given by

Ev = −Kv − πvKHBV (9)

Env = −πnvKHBV (10)

where Kv is the cost of vaccination, KHBV is the expected cost of HBV infection. Here πnv
is the lifetime probability of becoming infected if not vaccinated, while πv is the lifetime
probability of HBV infection after recieving a vaccine.

The solution of the game, called the Nash equilibrium, is the population-level vaccina-
tion strategy at which no individual can increase their own payoff by deviating from the
population strategy.
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The cost of vaccination, Kv, includes direct costs associated with obtaining the vaccine,
indirect costs such as negative side effects, the time loss and the travel cost, and perceived
costs such as the fear of vaccines [72]. The expected cost of HBV infection, KHBV, similarly
includes direct, indirect, and perceived costs. We can evaluate

KHBV = Ky +
qr1

r1 + µ
Kc (11)

which reflects the cost of acute infection Ky and the cost of chronic infection Kc. The cost
of the chronic infection is adjusted by the probability of developing the chronic infection;
this probability is calculated as the probability of transitioning from the acute state y to the
chronic state c. Many costs associated with vaccination and infection cannot be quantified,
but it can be assumed in the short term that these costs are constant. The estimates for
the direct costs are given in Table 1. The direct costs may be paid by the government or
insurance companies. However, the individuals still have to consider the indirect costs
(such as lower quality of life), and we assume that the indirect costs are correlated with the
direct costs.

The probabilities πnv and πv are determined as follows. If an individual does not
vaccinate, they become exposed with probability λ

λ+µ and then progress to acute infection
with probability σ

σ+µ :

πnv =
λ

λ + µ
· σ

σ + µ
. (12)

Note that, by (1), the force of infection λ depends on y and c, and hence by Equations (6)
and (8) on the population’s vaccination rate p.

A vaccinated individual can become infected if the vaccine fails (with probability ω)
or vaccine did not fail (with probability (1−ω)) but the vaccine-induced immunity wanes
over time (with probability δ

δ+µ ). Thus,

πv =

(
ω +

(1−ω)δ

δ + µ

)
· πnv. (13)

To find the Nash equilibrium, we solve Env = Ev for p ∈ [0, 1], that is,

πnv = K− πv (14)

where K = Kv/KHBV is the relative cost of the HBV infection. If Ev < Env for all p ∈ [0, ∞),
then pNE = 0.

4. Results
4.1. Optimal Vaccination Strategies

When R0 < 1, there is no disease in the population. Thus, the optimal vaccination
rate is pNE = 0 and the vaccination rate needed for the herd immunity is pHI = 0. When
R0 ≥ 1, the herd immunity rate is given by

pHI =

(
µω + δ

x∗
− µ− δ

)
(1−ω)−1, (15)

see [12], and the Nash equilibrium (i.e., the solution of Equation (14)) for small enough K is
given by

pNE = pHI −
µKb

d(a− K)(1−ω)
, (16)
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where

a = (1−ω)

(
σ

σ + µ

)(
µ

δ + µ

)
(17)

b = β

(
1 +

αqr1

r2 + µ

)
+ δ

(
r1 + µ

σ
+ 1 +

qr1

r2 + µ

)
+

µωεqr1

r2 + µ
(18)

d = β

(
1 +

αqr1

r2 + µ

)
. (19)

For the parameter values as in Table 1, pHI = 0.11065 and pNE = 0.11055. This means
that the optimal vaccination rate is very close to the rate needed to eradicate the disease
and if slightly over 11% of susceptible individuals vaccinate every year, the herd immunity
should be achieved.

We note that pNE = 0 whenever K ≥ Km where

Km =
pHI(1−ω)ad

µb + pHI(1−ω)d
. (20)

As shown in Figure 3, pNE decreases as the relative cost of vaccination increases. Further-
more, when K > 0, pNE < pHI. The effective reproduction number R0 remains close to the
threshold value of 1 for small values of relative cost, then increases sharply as K approaches
a critical threshold Km at which no vaccination is optimal.

(a) (b)

Figure 3. (a) The graph of optimal population vaccination rate pNE as a function of relative cost K. Note that pNE = pHI

only when K = 0. (b) Variation in R0 at the optimal vaccination rate as a function of relative cost K.

4.2. Sensitivity and Uncertainty Analysis

We performed uncertainty and sensitivity analysis using the LHS-PRCC scheme [73,74].
LHS stands for the Latin Hyper-cube Sampling, also called a stratified sampling without
replacement technique. The random parameter distributions are divided into equal prob-
ability intervals, which are then sampled. The sampling is performed independently for
each parameter. It gives an unbiased estimate of the average model output and requires
fewer samples than simple random sampling to achieve the same accuracy [75]. PRCC,
partial rank correlation coefficient, between model parameter P and model output O is a
correlation coefficient

rRP ,RO =
Cov(RP, RO)√

Var(RP)Var(RO)
(21)

between RP and RO, which are residuals of the rank-transformed linear regression models
for P and O. PRCC is a robust sensitivity measure for nonlinear but monotonic relationships
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between inputs and the output, as long as little to no correlation exists between the
inputs [76]. A PRCC value of ±1 means a perfectly linear relationship while a PRCC value
of 0 means no linear relationship. The LHS-PRCC scheme is described in detail in [76] and
the MATLAB and R implementation can be found in [77].

Three response functions were selected for the LHS-PRCC analysis: (1) the effective
reproduction number R0 given by (3); (2) the optimal vaccination rate pNE given by (16);
and (3) the relative difference between the optimal vaccination rate and the herd immunity
vaccination rate, |pHI − pNE|/pHI. The results are shown in Figure 4.

There is a strong negative correlation between the vaccination rate in susceptibles
(p) and the effective reproduction number (R0). The effective reproduction number also
shows negative correlation with recovery rate of carriers (r2) and acute cases (r1), and the
death and birth rate (µ). There is a strong positive correlation between R0 and the loss
of immunity (δ), probability of chronic infection (q), transmission rate (β), and relative
infectiousness of carriers (α). The proportion of failed immunizations (ω) also positively
correlates with R0. There is essentially no dependence on the proportion of unimmunized
children born to infectious mothers (ε) or the incubation rate (σ), which is expected because
these parameters do not significantly affect the total number of infections in a population.

The PRCCs for the optimal vaccination are very similar to the PRCCs for R0 for all
parameters that pNE and R0 have in common. With the exception of the incubation rate σ
(which does not have any significant effect), the parameters which increase (or decrease)
the effective reproduction number also increase (or decrease) the optimal vaccination rate.
This is because R0 and the herd immunity vaccination level pHI are highly correlated and,
as seen from Figure 4e, pNE is essentially identical to pHI. Note that pNE is not overly
sensitive to changes in the vaccination cost or the cost of the infection. This is caused by an
already low relative cost K. Note that when R0 < 1, the optimal response is pNE = 0, so
the Figure 4c–f focus only on parameters for which R0 ≥ 1.

The relative difference between the optimal vaccination rate and herd immunity
vaccination rate is always very small, typically less than 10−2 and the distribution peeks
around at 3× 10−3. This means that pNE is very close to pHI regardless of the variation of
model parameters, and the prediction that the optimal voluntary vaccination can help to
eradicate HBV is very robust. There is a strong negative correlation with the probability of
chronic infection (q) and the transmission rate (β). An increase in any of these parameters
means that pNE would follow pHI even closer. There is also a strong positive correlation
with the cost of the vaccine (Kv) and the recovery rates (r2 and r1). An increase in any of
these parameters would mean that the optimal voluntary vaccination levels would differ
more from the level needed to achieve herd immunity.

We note that there is quite a large uncertainty about the true values of vaccine effec-
tiveness ω [11] and vaccine waning δ [65]. However, our analysis, specifically Figure 4f,
indicates that none of these parameters have a significant effect on the qualitative results.
The optimal voluntary vaccination helps with the HBV elimination regardless of the exact
values of ω and δ.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Results of the uncertainty (left-hand side panels) and sensitivity (right-hand side panels) analysis. Three response
functions were considered: (1) the effective reproduction number R0 (panels (a,b)); (2) the optimal vaccination rate pNE

when R0 > 1 (panels (c,d)); and (3) the relative difference between the herd immunity vaccination rate and the optimal
vaccination rate |pHI − pNE|/pHI when R0 > 1 (panels (e,f)). The parameter ranges are as in Table 1.
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5. Conclusions and Discussion

We investigated the impact of individual decisions for or against vaccination by
applying the game-theoretic approach [32] to an epidemiological model of [12]. The
model parameters were selected from data specific to the current HBV epidemic in China,
which accounts for a significant portion of HBV infections and HBV-related deaths world-
wide. Our results show that given the success of current efforts to inoculate children [11],
population-level herd immunity against HBV can be obtained through annual vaccination
of approximately 11% of adults and teens who are susceptible. The model also predicts that
optimal voluntary vaccination levels closely match the levels needed for the herd immunity.
This prediction is very robust and essentially independent on relatively large variances in
model parameters. Consequently, the voluntary vaccination program can significantly help
to reduce HBV prevalence in China and contribute to its eventual eradication.

The HBV voluntary vaccination was also recently studied by [33], who based their
model on [3]. They separated vaccine-induced immunity from the natural immunity,
considered a much faster loss of the vaccine-induced protection but assumed no loss of the
natural immunity. They also assumed 100% vaccine efficacy. In the light of recent data that
the vaccine-induced immunity can last 30 or more years [78], the model presented here
is more realistic. However, despite the differences, both models qualitatively agree that
the voluntary vaccination of adults and teens can significantly lower the disease incidence
levels. The predictions are also in agreement with [79], who demonstrated that when the
relative cost of the vaccine is sufficiently low, the optimal voluntary vaccination can yield
to disease elimination even for an imperfect vaccine.

An individual’s age is an important factor for the risk of HBV infection becoming
chronic [10]. Our model should thus be further extended by explicitly including age-
dependency as performed, for example, in [27–31]. We expect that such an extension will
not qualitatively alter the results, and the voluntary vaccination will still be a crucial tool
helping to eliminate HBV. However, the exact quantitative results may change, and it is
thus worthwhile to consider further research in this direction.

For the voluntary vaccination program to work, the relative cost of the vaccine needs to
be low and the population needs to be made aware of the disease. In agreement with [72],
our sensitivity analysis demonstrated that the actual vaccines should be as cheap and
accessible as possible to minimize the patient’s direct cost, time loss, and travel costs. At
the same time, note that the costs of curative HBV treatments are more expensive than
the average Chinese adult can afford, and in many cases, the perceived cost of infection
is inordinately high, leading to fear and discrimination [80]. Our sensitivity analysis also
shows that this high cost of the treatment (and the high risk of becoming a chronic carrier)
is one of the main reasons why the optimal voluntary vaccination levels closely track the
level needed for herd immunity. The high cost of HBV infections means that the relative
vaccination cost is very low even if the vaccine is not provided for free. The actual access to
vaccination, rather than the direct vaccine cost, is thus a more important limiting factor to
achieving the desired vaccination coverage. At the same time, the lack of HBV awareness
is one of the main barriers for the vaccination in rural China [13].

Nationwide efforts are needed to eradicate HBV in China. The efforts in rural areas
could be especially cost-effective and could help reduce regional disparities in the burden
of disease caused by HBV [68]. The eradication efforts should include not only providing
access to vaccination in rural regions but also providing proper education and increasing
the awareness of the general population. The education campaign should stress the
existence and availability of a vaccine to adults and teens.
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