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Abstract: Global warming, as a result of greenhouse gases, is exceeding the planet’s temperature
stabilization capacities. Thus, greenhouse gas emissions must be reduced. We analyse a bankruptcy
situation aimed at allocating emissions permits of CO2, the predominant greenhouse gas emitted
by human activities. Inspired by the Constrained Equal Awards (CEA) solution for bankruptcy
situations, we introduce a new allocation protocol based on the extension of the CEA solution over
double-weighted bankruptcy situations, including two exogenous parameters aimed at providing
a balance, in the request of emissions permits, between economic activities and the production of
renewable energy. In these bi-criteria allocation problems, we focus on a computational approach to
find an allocation protocol that does not prioritize any particular parameter. As an application of
our method, we first consider CO2 permit allocation problems in European Union (EU) countries,
using real data about the gross domestic product (GDP), the production rate of renewable energies,
and countries’ ’demands’ of CO2 emissions from 2010 to 2014. Then, we compare our approach with
the CEA solution and its single-weighted extension to show the impact of using two weights over
the distribution of CO2 emissions permits; we analyse the correlation between allocations of CO2

emission permits and the distribution of power within the EU Council to study the acceptability of
alternative allocations.

Keywords: bankruptcy situations; CO2 emissions permits; double-weighted allocation protocol

1. Introduction

Climate change and global warming is a major challenge for the international commu-
nity. Greenhouse gases, in particular carbon dioxide (CO2), accumulated in the atmosphere,
cause irreversible damages, and the time required for their repairs could last hundreds of
years. Emissions must be reduced by moving to clean and renewable energy resources,
and the study of responsible sharing policies, in particular CO2 emissions, is one of the
main goals of international climate policies nowadays. The literature on international coop-
eration on climate change has been organized around various international cooperation
forms [1]. The existing methods proposed for emission allowances in CO2 can be classified
into four groups: indicator approach based on one or more indicators, optimization ap-
proach, game theory approach, and hybrid approaches [2]. Certain allocation criteria are
based upon equity principles, such as the grandfathering, consisting of giving an equal right
to emit for all countries, the egalitarianism, giving to each person the same right to emit, or
historical responsibility, according to which long-standing polluters should face a greater
reduction rate, or other principles of distributive justice [3]. Other allocation criteria, where
countries are compensated for reducing their emissions, follow a principle of efficiency, such
as the approach proposed in [4], where the authors argue that efficiency can be defined
as a type of “fairness”. In practice, alternative methods have been proposed to allocate
CO2 emissions among countries and taking into account criteria, such as energy, the gross
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domestic product (GDP), population, energy production, etc. (see [2], for a recent survey),
but no consensus has been reached on any particular allocation protocol.

However, the increasing amount of gas emissions and the limited absorption rate of
the planet, on the one hand1, and the fact that countries, in 2020, have already consumed in
8 months2, all the resources that ecosystems can produce in a single year, it is obvious that
we are facing a claims problem [5,6]. Claims problems, also called bankruptcy situations, are
situations where a given quantity of a divisible resource must be allocated among a group
of agents. Each agent has his own demand, and the total amount of divisible resources
cannot satisfy the demand of all agents. Thus, the problem is to formulate a fair allocation
rule or solution [7] (for a survey on bankruptcy situations, solutions, and their properties
see, for instance, [8,9]). Bankruptcy situations can model different real ecological problems
where a scarce resource, such as food, fishing quotas, medical suppliers, carbon budget, or
water has to be shared among countries, or among the individuals of a population [10].

In this paper, we focus on the allocation of the most important greenhouse gas, carbon
dioxide, whose emissions permits must be shared among European Union (EU) countries,
and where each country has its own claim of CO2 emissions permits. This is not the first
time that bankruptcy situations have been applied to study this problem at the EU level. For
instance, two bankruptcy allocation solutions from the literature, namely, the Constrained
Equal Awards (CEA) [7,8,11] and the Weighted Constrained Equal Awards (WCEA) [12,13],
have been used in [14] to allocate CO2 emissions permits using EU countries’ CO2 claims
and an exogenous weight based on the GDP. For other applications of bankruptcy situations
to the allocation of emissions permits, see also [6]. As far as we know, however, this is the
first study where the CO2 allocation problem has been investigated as a claims problem
from a multi-criteria point of view. Specifically, in this paper, we introduce a preliminary
application of a new allocation method for double-weighted bankruptcy situations based
on the combination of two distinct criteria: the ability of countries to efficiently use their
CO2 emissions permits, and the capacity of countries to produce energy in a sustainable
manner via renewable sources. More precisely, using an extended version of the CEA
solution for bankruptcy situations, we leverage the request of CO2 emissions permits of
EU countries, taking into account both the economic growth of EU countries (in terms of
their GDP) and their sustainable policies, measured as the amount of renewable energy
produced by each country. We also compare the allocation of CO2 emissions permits
provided by the methods considered in this paper with the distribution of power among
the members of the EU Council, which is the main decision making body in the EU. As
a main result of our analysis, we show that the double-weighted allocation protocol well
represents the effective power of countries within the EU Council, and for this reason it
could benefit from a more general consensus within the EU.

The remainder of the paper is organized as follows. The next section is devoted to
the introduction of bankruptcy situations, and to the presentation of related basic notions
and notation. Then, Section 3 introduces a new family of bi-criteria allocation methods for
double-weighted bankruptcy situations, namely, the Double-Weighted Constrained Equal
Awards (DWCEA) methods, and presents an algorithm to compute a specific allocation
protocol. Section 4 is devoted to the application of the proposed protocol introduced in
Section 3 to allocate CO2 emissions permits among EU countries over the years 2010–2014,
and to the comparison of the results provided by the alternative solutions considered in
this study. Section 5 concludes.

2. Preliminary

A bankruptcy situation or bankruptcy problem occurs when there is an infinitely divisible
resource, the estate, to be divided among several agents having different claims and the
same preferences, but there are natural upper limits on the allocation: none should be
awarded more than his demand. Formally, a bankruptcy situation [15], or a claims problem,
is defined by a tuple (N, E, c) (or, simply, (E, c) if the set N is already clearly identified),
where N = {1, 2, . . . , n} is a set of agents, the estate E ∈ R>0 is such that 0 < E < ∑i∈N ci,
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and c ∈ RN
≥0 is a vector of agents’ claims. So, the problem is to divide E among the agents

of N, each agent i ∈ N having her/his own claim ci ≥ 0.
To allocate the estate E among the agents in N, we define an allocations vector as a real

valued vector x ∈ RN , respecting the following properties:

• rationality: xi ≥ 0, for all i ∈ N;
• claim boundedness: xi ≤ ci, for all i ∈ N;
• efficiency: ∑i∈N xi = E .

So, according to an allocation vector, every agent should receive a non-negative
allocation, smaller or equal than her/his claim, and the entire estate should be divided
completely among the agents. We are interested in defining a general allocation method,
also called rule or solution, which is a function that associates to each bankruptcy situation
an allocation vector. In the literature on bankruptcy situations, several rules have been
proposed to allocate the estate (see, for instance, [7–9,11]).

In this work, we will focus on the Constrained Equal Awards (CEA) rule, and on some
weighted version of the CEA rule. Formally, for each bankruptcy situation (E, c) with N as
the set of players, the CEA rule yields an allocation vector CEA ∈ RN

≥0, such that:

CEAi(E, c) = min{λ, ci}, (1)

for each agent i ∈ N and where λ ∈ R≥0 and

∑
i∈N

min{λ, ci} = E. (2)

This method can be defined as an iterative procedure. In the first iteration, all agents
receive the same amount of estate, which must be smaller or equal than the smallest
claim among the agents. Then, the agents with the smallest claim leave the game. A new
iteration starts by equally allocating the remaining part of the estate, if any, among the
remaining agents, and paying attention to allocate to each agent no more than the second
smallest claim. Then, the agents claiming the second smallest claim leave the game, and
the procedure is repeated among the remaining agents until there is no more estate to be
shared.

A weighted bankruptcy situation [12,13], is a triple (N, E, c, w) where (N, E, c) is a
bankruptcy situation and w = (w1, w2, . . . , wn) is a vector of positive weights. The Weighted
Constrained Equal Awards (WCEA) solution [12,13] is inspired by the CEA rule, and takes
into account not only players’ claims, but also their weights, which modify the impact of
the claims over the final allocation. The allocation vector provided by the WCEA rule is
the unique vector WCEA ∈ RN

≥0 such that:

WCEAi(E, c, w) = min{ci, λ∗wi}, (3)

for each agent i ∈ N and where the parameter λ∗ is such that

∑
i∈N

min{ci, λ∗wi} = E (4)

In the last section of this paper, we also make use of some concepts from cooperative
game theory. Specifically, we compare allocation vectors for bankruptcy situations with
the vector provided by the Shapley and Shubik (Sh–Sh) power index [16] for a simple game
representing the voting rule at the EU Council [17]. A simple game is a pair (N, v) where
N is a set of agents, or voters, and v is the characteristic function of the game that associates
to each coalition S ⊆ N a value v(S) ∈ {0, 1} such that v(N) = 1 and v(∅) = 0. The
standard interpretation of a simple game is that v(S) = 1 means that coalition S is winning,
according to some voting rule, while v(S) = 0 means that S is losing, according to the same
voting rule. The Shapley and Shubik power index [16] is defined as the map φ associating
to any simple game (N, v) a vector of numbers representing the P-power of voters [18],



Games 2021, 12, 78 4 of 21

which is interpreted as the voters expected shares of a fixed prize for winning the elections,
and is computed as the expected marginal contribution of each voter i ∈ N over all possible
permutations of voters, i.e., φi(v) = ∑S⊆N\{i}

s!(n−s−1)!
n!

(
v(S ∪ {i})− v(S)

)
, where s is the

cardinality of coalition S.

3. Double-Weighted Constrained Equal Awards Rule (DWCEA)

Previous studies on bankruptcy situations and their solutions can be seen as an alloca-
tion approach where only one criterion, agent’s claim, is considered. Weighted bankruptcy
situations [12] keep into account one more parameter to determine allocation vectors. In
this section, we introduce a richer framework for bankruptcy situations, considering two
vectors of weights at once, in addition to the vector of claims.

We denote by (N, E, c, w1, w2) a double-weighted bankruptcy situation on a set of agents
N and where E ∈ R>0 is a strictly positive estate, c = (ci)i∈N is the vector of non-negative
claims such that ∑i∈N ci > E, and w1 = (w1

i )i∈N and w2 = (w2
i )i∈N are two vectors of

non-negative weights. We denote by DW the family of all double-weighted bankruptcy
problems. An allocation rule φ : DW → RN

≥0 is a map that associates to any double-
weighted bankruptcy situation (E, c, w1, w2) ∈ DW an allocation vector in RN such that
∑i∈N φi(E, c, w1, w2) = E. Some interesting properties for an allocation rule for double-
weighted bankruptcy situations are the following. Equal treatment: an allocation rule φ
satisfies equal treatment if for all (E, c, w1, w2) ∈ DW , if i, j ∈ N are such that ci = cj,
w1

i = w1
j and w2

i = w2
j , then φi(E, c, w1, w2) = φj(E, c, w1, w2). Composition: An allocation

rule φ satisfies composition if for all (E, c, w1, w2) ∈ DW such that w1
i = w2

i = 1 for all
i ∈ N and for all 0 ≤ E′ ≤ E we have φ(E, c, w1, w2) = φ(E′, c, w1, w2) + φ(E − E′, c −
φ(E′, c, w1, w2), w1, w2). Invariance under claims truncation: an allocation rule φ satisfies
invariance under claims truncation if for all (E, c, w1, w2) ∈ DW we have φ(E, c, w1, w2) =
φ(E, cE, w1, w2), where cE ∈ RN is such that cE

i = min{ci, E} for all i ∈ N.
In the attempt to further extend the WCEA rule to situations with two vectors of

weights, in this paper, we introduce a Double-Weighted Constrained Equal Awards (DWCEA)
solution, which associates to any double-weighted bankruptcy situation a particular alloca-
tion vector x ∈ RN

≥0 satisfying the following conditions:

xi(E, c, w1, w2) = min(ci, λ∗1w1, λ∗2w2) (5)

for each agent i ∈ N and with λ∗1 , λ∗2 ∈ R≥0 such that

∑
i∈N

min(ci, λ∗1w1, λ∗2w2) = E (6)

As it often happens in multi-criteria decision problems, in general, we face a wide
choice of allocation vectors that satisfy the constraints specified by relations (5) and (6) for
some λ∗1 and λ∗2 . Therefore, in order to select a specific allocation vector, in the next section
we introduce a computational approach to find parameters λ∗1 and λ∗2 that do not require
to assume any specific priority on the criteria represented by the two weight vectors.

A DWCEA Solution Algorithm with No Priority over Criteria

The algorithm studied in this section is based on the general principle that a DWCEA
solution should grant the same importance to the different criteria represented by the
two weight vectors. Based on this assumption, we introduce Algorithm 1 providing a
solution for problem (5) under the constraint (6) with the objective to find feasible λ∗1 and
λ∗2 without arbitrarily promoting the use of one of the two criteria to drive the choice of
these parameters.
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Algorithm 1 Double-Weighted method’s algorithm
Input: Estate E, Set of player N, Claims vector c, weight vectors w1, w2
Output: an allocation vector x ∈ RN

≥0

ForEach i ∈ N: λ1
i = ci

w1
i

, λ2
i = ci

w2
i

λS
1 ← SortIncrλ1, λS

2 ← SortIncrλ2

moy =
medianλS

1+medianλS
2

2
λPrev

1 ← moy , λPrev
2 ← moy

ForEach i ∈ N: xi = min(ci, w1
i λPrev

1 , w2
i λPrev

2 )
S = ∑i∈N xi
Begin Bloc 1:
if S = E then

λ∗1 = λPrev
1

λ∗2 = λPrev
2

ForEach i ∈ N:
xi = min(ci, w1

i λ∗1 , w2
i λ∗2)

end if
End Bloc 1
It← 0
while It ≤ |N|+1

2 AND S 6= E do
if S > E then

Algorithm A1
end if
if S < E then

Algorithm A2
end if

end while
return x

Algorithm 1 starts by calculating, for every player i ∈ N, a value λ1,i =
ci
w1

i
and a value

λ2,i =
ci
w2

i
, then it sorts these values in incremental order, yielding vectors λS

1 and λS
2 . In

the initial iteration, the same value moy =
medianλS

1+medianλS
2

2 is affected to parameters λPrev
1

and λPrev
2 , which are the temporary parameters used to compute the allocation. Starting

the search for parameters λ∗1 and λ∗2 from the median moy ensures a kind of neutrality for
the importance of both criteria in the allocation computation, and it guarantees a minimal
worst-case number of iterations before reaching the final λ∗1 and λ∗2 , since this procedure
will be iterated at most N

2 + 1 times. At each iteration of the algorithm, the sum of the
allocations, S = ∑i∈N min(ci, w1

i λPrev
1 , w2

i λPrev
2 ), can take three possible values:

(1) S = E, i.e., the sum of allocations is equal to the estate. In this case, we immediately
have that λ∗1 = λPrev

1 and λ∗2 = λPrev
2 .

(2) S > E, i.e., the sum of allocations is strictly larger than the estate. So, λ1 and/or λ2

must be decreased. In this situation, Algorithm 1 selects the first sorted λS
1 < λPrev

1
as X and the first sorted λS

2 < λPrev
2 as Y. Then, we choose the biggest value among

X and Y to change the corresponding λPrev
j value, j ∈ {1, 2}, and we keep the same

value for the other λPrev
k 6=j ; then, we recompute S and we reiterate the procedure until

we obtain S = E, as shown in Algorithm A1 (see Appendix A).
(3) S < E, i.e., the sum of allocations is strictly smaller than the estate, we have to increase

λ1 and/ or λ2. So, λPrev
j , j ∈ {1, 2}, will be updated to the smallest value among X,

the first λS
1 > λPrev

1 , and Y, the first λS
2 > λPrev

2 , and we keep the same value for the
other λPrev

k 6=j ; then, we recompute S and we re-iterate the procedure until we obtain
S = E, as shown in Algorithm A2 (see Appendix A).
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After a number of iterations It > N
2 + 1, half of the agents’ demands are considered,

and if the sum of allocations does not satisfy the efficiency constraint,
E = ∑i∈N min(ci, w1

i λPrev
1 , w2

i λPrev
2 ), the algorithm starts the “LastComputing” procedure.

The same “LastComputing” procedure is also called at an iteration It such that S < E
and such that S > E at iteration It− 1 (or, inversely, at iteration It such that S > E and
such that S < E at iteration It− 1). Basically, as shown in the corresponding pseudo-code
in Appendix A, the Last “LastComputing” procedure transforms the double-weighted
bankruptcy situation with two weight vectors in a single weighted bankruptcy situation,
using the parameter λPrev

j , j ∈ {1, 2}, which did not change since the previous iteration.
It is obvious that the solution provided by Algorithm 1 satisfies the equal treatment

property. It also satisfies the composition property, as any solution satisfying conditions
(5) and (6) when applied to a double-weighted bankruptcy problem (E, c, w1, w2) with
w1 = w2 yields the allocation provided by the WCEA solution applied to the weighted
bankruptcy problem (E, c, w1), and the WCEA solution satisfies the composition property
on the class of weighted bankruptcy problems (see [12,13]). Instead, we cannot guarantee
that the solution provided by Algorithm 1 satisfies the property of invariance under claims
truncation, as the use of vector cE instead of c may affect the procedure to compute λPrev

1
and λPrev

2 along the iterations of Algorithm 1.
We now introduce an example of calculations provided by Algorithm 1.

Example 1. Consider the double-weighted bankruptcy situations (E, c, w1, w2) with N = {1, 2, 3}
as the set of agents, E = 20 and the other parameters as shown in Table 1.

Table 1. A double-weighted bankruptcy situation (E, c, w1, w2) with N = {1, 2, 3} as set of agents
and estate E = 20.

Agent i ci w1
i λ1

i = ci
w1

i
w2

i λ2
i = ci

w2
i

1 6 3 2 12 1
2

2 10 2 5 2 5
3 20 8 5

2 5 4

At the first iteration of Algorithm 1, the vectors λS
1 = (2, 5

2 , 5) and λS
2 = ( 1

2 , 4, 5) are

defined to sort the ratios ( ci
w1

i
)i∈N and ( ci

w2
i
)i∈N , respectively, and the value moy =

5
2+4

2 = 13
4

is calculated as the average of the two medians of λS
1 and λS

2 . This value moy is assigned to
the variables λPrev

1 and λPrev
2 . The provisional allocation for the three agents is computed as

x1 = min{6, 3× 13
4 , 12× 13

4 } = 6 for agent 1, x2 = min{10, 2× 13
4 , 2× 13

4 } = 6.5 for agent 2
and x3 = min{20, 8× 13

4 , 5× 13
4 } = 16, 25 for agent 3. For the sum of allocations S = 28.75

is larger than the estate E = 20, the procedure calls Algorithm A1 (see Appendix A). Now,
at the new iteration (It = 1 in Table 2), the procedure selects the largest value between
λS

1 and λS
2 which is also smaller than moy = 13

4 , and such a value is used to set the new
λPrev

j for the corresponding weight j ∈ {1, 2}, while the value λPrev
k 6=j is maintained equal

to its value at the previous iteration. So, at It = 1, λPrev
1 = 5

2 and λPrev
2 = moy = 13

4 . A
new allocation for λPrev

1 and λPrev
2 is computed, and the procedure continues as detailed

in in Table 2, till the sum of allocations becomes strictly smaller than the estate E = 20
(this happens at the iteration It = 3 of Table 2. At this point, the largest (and closest to
moy) value between the λPrev

1 and λPrev
2 is selected (so, λPrev

1 = 2 in the specific case), and
the LastComputing process is called to calculate the final allocation corresponding to the
WCEA allocation defined by relations (3) with claims vector (min{ci, w1

i λPrev
1 ))i∈N . The

relevant parameters calculated at each iteration of Algorithm 1 are shown in Table 2.
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Table 2. Parameters computed at each the iteration It of Algorithm 1 on the double-weighted
bankruptcy situation of Example 1, with λS

1 ← {2, 5
2 , 5} and λS

2 ← {
1
2 , 4, 5}.

It = 0: λPrev
1 = λPrev

2 = moy =
5
2 +4

2 = 13
4

Agent ci w1
i × λPrev

1 w2
i × λPrev

2 xi

1 6 3× 13
4 = 9.75 12× 13

4 = 39 6
2 10 2× 13

4 = 6.5 2× 13
4 = 6.5 6.5

3 20 8× 13
4 = 26 5× 13

4 = 16.25 16.25

S = 28.75 > E

It = 1: X ← 5
2 , Y ← 1

2 , λPrev
1 = 5

2 , λPrev
2 = moy

Agent ci w1
i × λPrev

1 w2
i × λPrev

2 xi

1 6 3× 5
2 = 7.5 12× 13

4 = 39 6
2 10 2× 5

2 = 5 2× 13
4 = 6.5 5

3 20 8× 5
2 = 20 5× 13

4 = 16.25 16.25

S = 27.25 > E

It = 2: X ← 2, Y ← 1
2 , λPrev

1 = 2, λPrev
2 = moy

Agent ci w1
i × λPrev

1 w2
i × λPrev

2 xi

1 6 3× 2 = 6 12× 13
4 = 39 6

2 10 2× 2 = 4 2× 13
4 = 6.5 4

3 20 8× 2 = 16 5× 13
4 = 16.25 16

S = 26 > E

It = 3: X ← 2, Y ← 1
2 , λPrev

1 = 2, λPrev
2 = 1

2

Agent ci w1
i × λPrev

1 w2
i × λPrev

2 xi

1 6 3× 2 = 6 12× 1
2 = 6 6

2 10 2× 2 = 4 2× 1
2 = 1 1

3 20 8× 2 = 16 5× 1
2 = 2.5 2.5

S = 9, 5 < E

LastComputing Process: λ∗1 ← λPrev
1 , λ∗2 ← 2

Agent ci w1
i × λ∗1 w2

i × λ∗2 xi

1 6 3× 2 = 6 12× 2 = 24 6
2 10 2× 2 = 4 2× 2 = 4 4
3 20 8× 2 = 16 5× 2 = 10 10

S = 20 = E

Example 2. Consider the double-weighted bankruptcy situations (E, c, w1, w2) with N = {1, 2, 3}
as the set of agents, E = 30 and the other parameters as shown in Table 1. Similar to Example 2, we
show all the iterations of Algorithm 1 in Table A1, Appendix B. Notice that at iterations It = 0 and
It = 1, it is called Algorithm A2, instead of Algorithm A1, as in Example 1, for S < E at It = 0
and S > E at It = 1.

4. DWCEA Applied to CO2 Emissions Permits

In the context of global climate negotiations, an imperative step is to find an agreement
or a strategy to be adopted for the reduction of CO2 emissions. However, CO2 emissions
permits are limited and countries have to find a common consensus over methods to
allocate emissions permits. In this paper, we analyse EU country claims on CO2 emissions
permits, taking into account the limits in emission of CO2 recommended by the Kyoto
protocol [19].

In order to retrospectively determine an allocation method that can be considered
both efficient and equitable by EU countries, we focus on data provided by the World Bank
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Open Data project3. Precisely, for each of the five years from 2010 to 2014, we consider a
double-weighted bankruptcy situation (N, Ey, cy, wy,1, wy,2), y = 2010, . . . , 2014, with the
27 EU countries as the set N of agents, and the following features as vectors of claims
and weights: the actual CO2 emission data from 2010 to 2014, as the vector of claims cy;
the quantity of GDP over the same time interval, as the first weight vector wy,1 reflecting
the economic growth rate of a country; finally, the production of renewable energy, as the
second weight vector wy,2 quantifying the sustainability of policies adopted by each country.
Figure 1 summarizes the total fraction of these three parameters for the 27 EU countries
during the period 2010–2014. According to the Kyoto protocol [19], which imposed by 2010
a reduction of 22% of the CO2 total emissions in 1990, we set the estate E of each of the five
bankruptcy problems considered over the years from 2010 to 2014, equal to the 78% of the
total amount of CO2 emitted by all EU countries in 1990.

Figure 1. Percentage distribution of total EU CO2 emissions, GPD and renewable energy production
of each EU country over the interval time of five years from 2010 to 2014 (all data were collected from
the World Bank Open Data project in 2020, see https://data.worldbank.org/indicator/EN.ATM.CO2
E.KT?view=chart (accessed on 6 September 2021)).

We applied Algorithm 1 to each bankruptcy situation (N, Ey, cy, wy,1, wy,2) to obtain
the DWCEA allocations for years y = 2010, . . . , 2014, and we computed the CEA allocations
over the bankruptcy situations (Ey, cy) as well as the WCEA allocations over the weighted
bankruptcy problems (Ey, cy, wy,1) and (E, c, wy,2), respectively, for each year from 2010 to
2014. All of those allocations of CO2 emissions permits are reported in Tables A2–A5 in
Appendix B.

As expected, the allocation yielded by the CEA solution completely satisfies small
claims of emission permits. Instead, countries with high demands (i.e., Germany, UK,
Italy and France), are drastically limited in their claims and receive the same amount of
emission permits. The allocation provided by the WCEA solution based on GDP as the
unique weight, favours countries with high GDP by giving more than half of the estate
to the four countries with the highest GDP (i.e., Germany, UK, France, and Italy), while
using the renewable energy as the unique weight, it completely satisfies some countries
with intermediate emissions claims, (e.g., Denmark, Sweden, Finland, and Portugal), as
well as countries having high claims and high renewable energy production (e.g., Germany
and Spain).

Considering both the GDP and renewable energy as weights in Algorithm 1 to provide
a DWCEA method, the countries respecting a specific threshold of both weights receive
their total claims of emission permits, as it happens for Denmark, Sweden, Austria, and
Spain in 2010, and for France and UK in 2014. Compared to the allocation generated by
the WCEA solution based on GDP only as the weight, we can notice that the DWCEA
allocation increases the amount of emission permits for 13 countries in 2010, 16 countries

https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?view=chart
https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?view=chart
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in 2011 and 2012, and 19 countries in 2013 and 2014. Instead, compared to the results
obtained by the WCEA based on renewable energy as unique weight, we can observe an
improvement in allocations for 17 countries for 2010 and 2011, and at least 14 countries
from 2012 to 2014. Furthermore, in 2010, Denmark and Sweden were completely satisfied
with whatever allocation method is used; Malta and Austria, in 2010, obtained an equal
amount by DWCEA and WCEA based on renewable energy only, and Ireland, Finland,
and France, in 2014, received the same amount of emissions permits according to DWCEA
and WCEA based on GDP only.

We also notice similarities among allocations of some countries over the five studied
years. To be more specific, we investigated those similarities by means of an unsupervised
clustering technique, namely, the K-means method, based on the 1-distance notion to
measure the similarity of each country’s allocation distribution over the years from each
cluster’s reference centre [20]. This unsupervised clustering technique aims at grouping
records (countries) of the data set into K distinct clusters according to their similarities, and
each record can only be found in one cluster at a time. Note that countries’ emissions are
naturally divided in small, medium ,and high emission levels. For this reason, we applied
the K-means method with K = 3, to define three distinct groups reflecting the impact on
CO2 emissions of different EU countries. The clustering on CO2 emission records over the
five years is reported in Table 3(1) and shows a group G1 of countries with low emissions, a
group G2 formed by countries with medium emissions and, finally, a group G3 containing
high emissions countries.

The results of the clustering procedure using the CO2 emissions and the allocation
distributions over the five years provided by the considered solutions CEA, WCEA with
GDP only as weight, and WCEA with renewable energy only as weight, and DWCEA
are shown in Table 3(2–5), respectively. Table 3(2) shows the clusters in accordance with
the allocation distribution over the five years yielded by the CEA solution: notice that
countries in groups G1 and G2 have low and medium demands and are totally satisfied
with respect to their claims from 2010 to 2014. However, in Group 3, only the Netherlands,
which has a medium emission distribution, is totally satisfied over 5 years. Other members
of cluster G3 receive the same amount despite their different claims (except Spain, who has
been totally satisfied since 2013).

Groups formed according to the allocation distribution over the five years by the
WCEA solution based on GDP only, are presented in Table 3(3). We observe that group
G1 is defined by countries with a lower GDP, group G2 by countries with intermediate
GDP, and the last group, G3, is formed by countries with high GDP. Two countries from
group G2 (i.e., Denmark and Sweden), and only one country from group G3 (i.e., France),
are totally satisfied throughout the five years. So, these groups show a high association
between emissions permits claims and GDP, whose effect plays in favour of countries with
a large internal economic production.

In Table 3(4), concerning the clusters on allocation distributions over the five years
provided by the WCEA solution based on the renewable energy only over the five years,
group G3 contains countries with high emissions, which are also characterized by high
levels of renewable energy production. In this group, Spain and Germany obtain their
claims for all studied period. Even if the effect of the activities producing CO2 is still
predominant, here, countries with a high production of renewable energy show a similar
allocation distribution over time, and those that are fully satisfied for at least three years are
in groups with intermediate and high claims and also high renewable energy production
at the same time.
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Table 3. Outcomes of the K-means clustering application over allocation records provided by
alternative allocation methods. Names in bold indicate countries that are totally satisfied at least for
3 years.

Table 3(1): Clustering EU country emissions Maps: EU country emissions

Group 1 Group 2 Group 3

Malta Romania Spain
Cyprus Greece Poland
Latvia Belgium France

Luxembourg Czech republic Italy
Lithuania Netherlands Germany
Slovenia
Estonia
Croatia

Slovakia
Ireland

Bulgaria
Denmark
Portugal
Hungary
Sweden
Finland
Austria

Table 3(2): Clustering CEA allocations Maps: CEA allocations

Group 1 Group 2 Group 3

Malta Romania Netherlands
Cyprus Greece Poland
Latvia Belgium France

Luxembourg Czech republic Italy
Lithuania Denmark Germany
Slovenia Bulgaria Spain
Estonia Portugal
Croatia Hungary

Slovakia Sweden
Ireland Finland

Austria

Table 3(3): Clustering WCEA GDP allocations Maps: WCEA GDP allocations

Group 1 Group 2 Group 3

Malta Austria Spain
Cyprus Greece France
Latvia Belgium Italy

Luxembourg Czech republic Germany
Lithuania Netherlands
Slovenia Poland
Estonia Ireland
Croatia Denmark

Slovakia Portugal
Bulgaria Sweden
Romania Finland
Hungary
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Table 3. Cont.

Table 3(4): Clustering WCEA renewable energy Maps: WCEA renewable energy

Group 1 Group 2 Group 3

Malta Austria Italy
Cyprus Greece Spain
Latvia Belgium Germany

Luxembourg Czech republic
Lithuania Netherlands
Slovenia Poland
Estonia Finland
Croatia Denmark

Slovakia Portugal
Bulgaria Sweden
Hungary France
Ireland Romania

Table 3(5): Clustering DWCEA allocations Maps: DWCEA allocations

Group 1 Group 2 Group 3

Malta Austria Italy
Cyprus Greece Spain
Latvia Belgium Germany

Luxembourg Czech republic France
Lithuania Netherlands
Slovenia Poland
Estonia Finland
Croatia Denmark

Slovakia Portugal
Bulgaria Sweden

Hungary
Ireland

Romania

Finally, Table 3(5) presents the clusters generated on the allocation distribution over
the years by the DWCEA allocation method. In this case, clusters are more homogeneous
because they are generated by a balance among their claims, their economic levels, and
their attitudes to employ green energy. According to the DWCEA allocation distribution
over time, only Ireland, Denmark, Sweden, and Austria receive their full claims for at least
three years due to their weight on renewable energy production. So, the trade-off between
GDP and renewable energy production in the DWCEA allocation method seems to play in
favour of countries characterized by intermediate levels of CO2 claims and GDP and, at
the same time, good levels of renewable energy production.

The clusters provided by the K-means analysis can be interpreted as groups of coun-
tries equally affected by each proposed allocation method over the years. So, it seems
reasonable to assume that countries in a cluster are guided by common interests and
similar goals when faced with the possibility to accept or not a proposed allocation method.
Therefore, we analysed the ability of these groups to influence the decision making process
in the EU, and in particular on the voting process in the EU Council, which is the main
collegiate body defining the overall political priorities of the EU, over the five year interval
2010–2014. For this reason, we focused on the ability of the different clusters of countries to
impose a decision according to the voting system adopted during the same period by the
EU Council. According to the EU rules (following the Treaty of Lisbon, effective since 2009,
and operative for the voting rule of the EU Council since 2014), a decision is approved by
the EU Council if it is supported by a coalition of at least 55% of countries representing
at least 65% of the EU population (and keeping into account that a coalition may block a
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decision if it contains at least four countries globally representing at least 35% of the EU
population). Using the calculator provided by the EU Council4, we found the alternative
combinations of clusters that may lead to the approval of a decision according to the voting
system of the EU Council, which are summarized by Table 4.

Table 4. Cluster combinations that are able to approve a decision according to the EU Council voting
systems.

Emissions CEA WCEAGDP WCEARenewable DWCEA

G1 + G3 G1 + G3 G1 + G3 G1 + G2 G1 + G2
G1 + G2 + G3 G2 + G3 G2 + G3 G1 + G2 + G3 G1 + G2 + G3

G1 + G2 + G3 G1 + G2 + G3

Considering the clusters generated by K-means just on the emissions distributions
over the five years, and assuming that all countries within a cluster may only cooperate
within the same cluster, or together with all the countries in another cluster, a decision
can be approved when all countries in cluster G1 and G3 cooperate, or when all countries
cooperate together (the grand coalition). Concerning the clusters obtained on the CEA
allocation distributions over the years, the approval of a new agreement is reached by the
collaboration of group G3 with groups G2 or G1, respectively, or when all countries of
the three groups cooperate to form a grand coalition. Looking at clusters formed with the
allocation distributions yielded by the WCEA solution based only on GDP, we observe
the same winning coalitions as for the CEA solution, whereas for clusters obtained over
the WCEA solution based on renewable energy, an agreement could be reached either by
the coalition of countries in clusters G1 and G2, or by all countries together. A similar
configuration of winning coalitions of clusters is obtained with the allocation distribution
provided by the DWCEA solution, where again the cluster G3 plays a less relevant role to
form winning coalitions in the EU Council. So, even if countries in cluster G3 are never fully
satisfied for at least three years according to the DWCEA solution, their possible common
interest to increase their own allocation would be prevented by the voting mechanism of
the EU Council, which makes cluster G3 non-decisive in forming a winning coalition. A
similar argument holds for countries in cluster G1 that are never totally satisfied, as well as
for the group formed by clusters G1 and G3 together. On the contrary, the group formed
by G1 and G2 together could form a blocking coalition against the use of the DWCEA
solution, but the fact that group G2 contains many countries that are totally satisfied using
the DWCEA method, makes the formation of such a coalition less likely.

As we already observed, the CEA rule fully satisfies countries with a low claim of CO2
emissions permits, but it might encounter an objection to its application from countries
with larger claims, who see their demands of CO2 emissions permits strongly reduced. In
order to mitigate this effect, and improve the acceptability of an allocation by countries
with larger claims, the DWCEA solution can be seen by EU governments and populations
as a fair compromise, keeping into account both the efficiency in production of countries, as
represented by the GDP, and their environmental impact, measured by the rate of renewable
energy production. To measure the level of acceptability of the different allocations of CO2
emission permits, we compared the allocation vectors over the years 2010–2014 with the
Sh–Sh power index [16] computed on the simple game representing the EU Council voting
rule. This power index is used as a benchmark to represent the actual shares of power of
the EU countries according to the voting rule established by the Lisbona treatment (the
data of the Sh–Sh power index used in this paper are from the paper [17], Table A1 on page
7, and refer to the population data of 2015). It is in fact well established that the Sh–Sh
power index in a simple game is an appropriate measure of the P-power of voters (see,
for instance, [17,18]), which is a measure for evaluating the outcome that each voter in a
simple game can expect before playing the game.
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Precisely, to assess the association between the Sh–Sh power index distribution and the
CO2 emission permits allocation vectors, we computed the Pearson correlation between the
vector yielded by the Sh–Sh power index of the EU Council and the sum of CO2 allocations
over the interval 2010–2014 for the most powerful EU countries having Sh–Sh power index
larger or equal to 3% of the total power, as well as for the remaining countries (see Table 5;
the choice of the cut-off follows from the fact that countries with a Sh–Sh index larger or
equal than 3% form the smallest set of countries having two-thirds of the total power).

Table 5. Pearson correlation coefficients for CO2 allocation vectors provided by the four allocation
rules considered in this paper over the interval 2010–2014, and for two groups of countries (groups
are based on the Sh–Sh power index, cut-off 3%).

CEA WCEAGDP WCEARen DWCEA

8 EU countries (Sh–Sh ≥ 3%) 0.69 0.95 0.82 0.90

17 EU countries (Sh–Sh < 3%) 0.89 0.77 0.79 0.78

Figures 2 and 3 show the distribution (in percentage) of total CO2 allocation vectors
over the five years for the most powerful EU countries and the least powerful ones,
respectively. In Figure 2, we observe the systematic cut operated by the CEA rule (dotted
line) on the demand of CO2 permits for the six most powerful countries (precisely, for
Poland, Spain, Italy, UK, France, and Germany), while the the adoption of the DWCEA rule
shows an increase of the association between the allocation of CO2 and the Sh–Sh power
index of more than 20% in terms of the Pearson correlation (see Table 5 for the correlation
coefficients of the different CO2 allocation vectors versus the Sh–Sh index vector). On
the other hand, for the group of countries with Sh–Sh index smaller than 3%, the loss of
correlation with the Sh–Sh power index faced by the DWCEA allocation with respect to
the CEA allocation is much less important, and is in the order of 10% (see Table 5). So, we
argue that the loss of acceptability of the DWCEA versus the CEA for the groups of less
powerful countries, is largely compensated by the double gain of acceptability for the most
powerful ones, and further justified by the use of criteria based on production efficiency
and environmental preservation, which may further encourage small countries to adopt
better technologies to improve their energetic policies.

Figure 2. Percentages of total CO2 emissions permits for the eight most powerful countries (Sh–Sh
power index ≥ 3%) for the four allocation rules considered in this paper. Countries are ordered
according to the Sh–Sh power index (solid line).
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Figure 3. Percentages of total CO2 emission permits for EU countries with Sh–Sh power index strictly
smaller than 3% for the four allocation rules considered in this paper. Countries are ordered according
to the Sh–Sh power index (solid line).

5. Conclusions

The most critical objective in climate change study is to encourage countries world-
wide to limit their emissions by finding a common strategy. In our work, we propose a
new bi-criteria method in order to allocate CO2 emissions permits in EU countries. The
DWCEA method, by giving the same importance to two parameters (GDP and production
of renewable energy), ensures a balance between efficiency and green policies. Using basic
clustering techniques on allocation records over the years 2010–2014, we showed that the
DWCEA allocation method generates allocation distributions over time, having similar
behaviours within clusters of countries characterized by specific levels of decision influence
within the EU Council voting system, and prevent the cluster of larger countries from
claiming extra shares of emissions permits.

We also showed that the allocation suggested by the DWCEA solution could encounter
a larger level of acceptability, with respect to another solution, by the most influential or
powerful EU countries (according to the well established Shapley and Shubik measure of
power [16]), and without drastically affecting the acceptability by less influential countries.
The justification of the trade-off in favour of the larger and most powerful countries is
based on the use of criteria aimed at taking into account both production efficiency and
environmental preservation.

We want to stress the fact that the GDP parameter, which we use extensively in this
preliminary application to estimate the production of a country, is not necessarily the most
appropriate attribute to represent the sustainable growth of a country. We leave for future
research the use of alternative criteria, more oriented to reward an eco-friendly production.

Finally, future research devoted to a more detailed analysis of the axiomatic foundation
of the allocation rule defined according to Algorithm 1 would be relevant. In particular,
considering the variability of the parameters involved in each production process, it
would be interesting to study the monotonicity property of the solution with respect to
changes in countries’ claims, populations, and in the two weights describing the evolving
environmental policies of countries.
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Appendix A

In this Appendix section, we provide the pseudo-code of all relevant routines and
functions that are used by Algorithm 1 to compute an allocation according to the DWCEA
solution introduced in Section 3.

Algorithm A1 Allocations’ sum is higher than Estate
Input: Estate E, Set of players N, Claims vector c, weight vectors w1, w2
Output: an allocation vector x ∈ RN

≥0

while S > E and It ≤ |N|+1
2 do

It ++;
Bloc 2:
X ← FirstλS

1
Y ← FirstλS

2
if X > Y then

λPrev
1 ← X

else
λPrev

2 ← Y
end if
End Bloc 2
ForEach i ∈ N: xi = min(ci, w1

i λPrev
1 , w2

i λPrev
2 )

S = ∑i∈N xi
if S = E then

λ∗1 = λPrev
1

λ∗2 = λPrev
2

ForEach i ∈ N:
xi = min(ci, w1

i λ∗1 , w2
i λ∗2)

end if
if S < E then

LastComputing
end if

end while
return x

https://data.worldbank.org/indicator/
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Algorithm A2 Estate is higher than allocations’ sum
Input: Estate E, Set of players N, Claims vector c, weight vectors w1, w2
Output: an allocation vector x ∈ RN

≥0

while S < E and It ≤ |N|+1
2 do

It ++;
Bloc 3:
X ← FirstλS

1
Y ← FirstλS

2
if X < Y then

λPrev
1 ← X

else
λPrev

2 ← Y
end if
End Bloc 3
ForEach i ∈ N: xi = min(ci, w1

i λPrev
1 , w2

i λPrev
2 )

S = ∑i∈N xi
if S = E then

λ∗1 = λPrev
1

λ∗2 = λPrev
2

ForEach i ∈ N:
xi = min(ci, w1

i λ∗1 , w2
i λ∗2)

end if
if S > E then

LastComputing
end if

end while
return x

Algorithm A3 LastComputing Algorithm DWCEA
Input: Estate E, Set of players N, Claims vector c, weight vectors w1, w2
Output: an allocation vector x ∈ RN

≥0

if (λPrev
1 = LowerBoundλS

1 ) OR (λPrev
1 = UpperBoundλS

1 ) then
M← min(c, λ

prev
1 w1)

x ←WCEA(E, M, w2)
else

M← min(c, λ
prev
2 w2)

x ←WCEA(E, M, w1)
end if
return x
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Algorithm A4 Function FirstλS
j for j = 1 or j = 2

Input: λPrev, λS
j : a vector of sorted λj for j = 1 or j = 2

Output: X
if S > E then

%We are looking for the first λ < λPrev

i← 0
while λS

j [i] < λPrev
j do

i← ++
end while
X ← λS

j [i− 1]
else

%We are looking for the first λ > λPrev

i← N
while λS

j [i] > λPrev
j do

i← −−
end while
X ← λS

j [i + 1]
end if
return X

Appendix B

Table A1. Parameters computed at each the iteration It of Algorithm 1 on the double-weighted
bankruptcy situation of Example 2, with λS

1 ← {2, 5
2 , 5} and λS

2 ← {
1
2 , 4, 5}.

It = 0: λPrev
1 = λPrev

2 = moy =
5
2 +4

2 = 13
4

Agent ci w1
i × λPrev

1 w2
i × λPrev

2 xi

1 6 3× 13
4 = 9.75 12× 13

4 = 39 6
2 10 2× 13

4 = 6.5 2× 13
4 = 6.5 6.5

3 20 8× 13
4 = 26 5× 13

4 = 16.25 16.25

S = 28.75 < E

It = 1: X ← 5, Y ← 4, λPrev
1 = moy, λPrev

2 = 4

Agent ci w1
i × λPrev

1 w2
i × λPrev

2 xi

1 6 3× 13
4 = 9.75 12× 4 = 48 6

2 10 2× 13
4 = 6.5 2× 4 = 8 6.5

3 20 8× 13
4 = 26 5× 4 = 20 20

S = 32.5 > E

LastComputing Process: λ∗1 ← λPrev
1 = 13

4 , λ∗2 ←
7
2

Agent ci w1
i × λ∗1 w2

i × λPrev
2 xi

1 6 3× 13
4 = 9.75 12× 7

2 = 42 6
2 10 2× 13

4 = 6.5 2× 7
2 = 7 6.5

3 20 8× 13
4 = 26 5× 7

2 = 17.5 17.5

S = 20 = E
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Table A2. Allocation vectors provided by CEA solution for each year in the interval 2010–2014
(values are in millions of tons of CO2).

Country CEA2010 CEA2011 CEA2012 CEA2013 CEA2014

Austria 67.502 65.02 62.273 62.486 58.712
Belgium 110.824 99.944 95.107 96.97 93.351
Bulgaria 44.114 49.347 44.708 39.6 42.416
Croatia 20.172 19.809 17.994 17.55 16.843
Cyprus 7.708 7.426 6.92 5.948 6.062
Czech republic 111.579 106.908 101.03 98.675 96.475
Denmark 46.641 40.645 36.428 38.533 33.498
Estonia 18.108 18.606 17.624 19.893 19.519
Finland 62.082 56.816 49.134 47.22 47.301
France 220.42 227.373 236.057 242.088 248.389
Germany 220.42 227.373 236.057 242.088 248.389
Greece 83.857 79.842 80.043 69.482 67.319
Hungary 50.233 47.843 44.583 42.141 42.086
Ireland 40.055 35.632 35.592 34.855 34.066
Italy 220.42 227.373 236.057 242.088 248.389
Lativia 8.075 7.294 7.063 7.081 6.975
Lithuania 13.469 13.788 13.832 12.64 12.838
luxembourg 10.968 10.939 10.664 10.051 9.659
Malta 2.56 2.541 2.681 2.34 2.347
Netherlands 183.053 174.168 170.31 173.255 167.303
Poland 220.42 227.373 236.057 242.088 248.389
Portugal 48.137 47.623 46.014 45.427 45.053
Romania 79.413 84.88 81.723 70.945 70.003
Slovakia 36.241 34.525 32.765 33.091 30.678
Slovenia 15.335 15.09 14.782 14.151 12.812
Spain 220.42 227.373 236.057 237.035 233.977
Sweden 52.024 51.734 47.048 44.847 43.421
UK 220.42 227.373 236.057 242.088 248.389

Table A3. Allocation vectors provided by the WCEA solution with GDP as a unique weight (denoted
by WCEA1) for each year in the interval 2010–2014 (values are in millions of tons of CO2).

Country WCEA12010 WCEA12011 WCEA12012 WCEA12013 WCEA12014

Austria 57.417 59.44 60.14 62.486 58.712
Belgium 70.846 72.66 73.134 69.482 73.843
Bulgaria 7.415 7.916 7.918 11.258 7.893
Croatia 8.766 8.6 8.325 11.728 8.018
Cyprus 3.745 3.781 4.131 5.948 4.359
Czech republic 30.398 31.428 30.461 42.28 28.912
Denmark 46.641 40.645 36.428 38.533 33.498
Estonia 2.856 3.195 3.385 5.075 3.25
Finland 36.306 37.732 37.707 47.22 37.926
France 353.033 331.805 333.228 302.278 303.276
Germany 500.647 518.086 520.573 485.25 541.275
Greece 43.86 39.68 36.086 48.43 32.976
Hungary 19.182 19.41 18.781 27.301 19.494
Ireland 32.519 32.954 33.134 34.855 34.066
Italy 311.348 313.84 304.476 334.097 299.357
Lativia 3.481 3.891 3.678 4.863 3.648
Lithuania 5.439 5.994 6.294 9.372 6.75
luxembourg 7.796 8.273 8.309 10.51 9.228
Malta 1.281 1.311 1.353 2.048 1.563
Netherlands 122.542 123.225 121.763 98.675 122.378
Poland 70.227 72.912 73.498 105.847 75.847
Portugal 34.914 33.764 31.782 27.302 31.947
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Table A3. Cont.

Country WCEA12010 WCEA12011 WCEA12012 WCEA12013 WCEA12014

Romania 24.418 25.419 25.216 38.675 27.754
Slovakia 13.113 13.537 13.722 19.883 6.943
Slovenia 7.035 7.072 6.809 9.715 6.943
Spain 209.75 205.165 196.247 173.255 191.561
Sweden 52.024 51.734 47.048 44.847 43.421
UK 357.657 361.187 391.03 363.443 419.818

Table A4. Allocation vectors provided by the WCEA solution with renewable energy production as
a unique weight (denoted by WCEA2) for each year in the interval 2010–2014 (values are in millions
of tons of CO2).

Country Name WCEA22010 WCEA22011 WCEA22012 WCEA22013 WCEA22014

Austria 67.502 58.9690341 50.3242476 48.6899831 49.2450121
Belgium 66.5044105 72.7969923 68.6554869 66.0842777 65.7096249
Bulgaria 7.86391525 22.1211738 14.2802869 16.645398 15.3401465
Croatia 1.850333 2.2779648 2.8886825 3.82054302 5.1262437
Cyprus 0.78531575 1.5838974 1.7468033 1.91319689 1.74733253
Czech republic 33.4888758 47.0275155 40.3463984 38.4687141 40.0343097
Denmark 46.641 9.0584694 36.428 38.533 33.498
Estonia 10.9406318 10.2241467 9.7535515 6.98580147 7.50746658
Finland 62.082 56.816 49.134 47.22 47.301
France 166.551486 174.477866 165.300608 151.862197 159.723832
Germany 758.86 732.498 739.861 756.900473 719.883
Greece 32.9402305 14.1216021 39.0685812 46.8235923 42.4486051
Hungary 30.465948 11.1896123 16.5368577 15.0656941 15.6488235
Ireland 33.6609998 35.632 30.2733926 29.4234469 31.3141833
Italy 278.07708 330.482862 342.210321 345.318 320.411
Latvia 1.23714125 1.690677 2.7323538 3.63916961 4.4647929
Lithuania 3.99112525 5.6237256 5.165644 5.88000878 6.12944408
Luxembourg 1.71048225 1.6372872 1.4205521 1.46853951 1.60401819
Malta 0.01075775 0.088983 0.1767194 0.20477643 0.41340675
Netherlands 119.324963 109.13765 84.349529 70.6127621 63.9181956
Poland 85.717752 96.1550298 100.87959 85.5848441 97.3435094
Portugal 48.137 47.623 46.014 45.427 45.053
Romania 4.48598175 36.7677756 19.439134 30.37712 45.871613
Slovakia 7.36905875 10.8648243 9.3185499 8.80538628 11.1344218
Slovenia 2.48504025 2.8296594 2.922667 2.81421316 2.86077471
Spain 270.911 270.548 264.779 237.035 233.977
Sweden 52.024 15.6832538 47.048 44.847 43.421
UK 239.037472 256.728998 243.602043 284.205863 323.526244

Table A5. Allocation vectors provided by the DWCEA solution for each year in the interval 2010–2014
(values are in millions of tons of CO2).

Country DWCEA2010 DWCEA2011 DWCEA2012 DWCEA2013 DWCEA2014

Austria 67.5 65.02 59.2867896 44.8095231 58.712
Belgium 72.61 82.104421 80.8827474 31.7920563 73.5489375
Bulgaria 8.59 10.0119837 36.428 38.533 7.86135324
Croatia 2.02 2.56921303 3.403145 4.17207565 7.9857891
Cyprus 0.86 1.78640593 2.0579018 2.39828374 4.34209095
Czech republic 36.56 39.7473206 47.5319264 82.8398009 28.7973403
Denmark 46.64 10.2166362 19.4820042 9.25451589 33.498
Estonia 3.9 4.04015573 4.10746293 4.78923329 3.23685663
Finland 49.56 47.7205688 48.7808458 87.0089472 37.7754291
France 181.84 196.78566 194.739968 190.366523 303.276
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Table A5. Cont.

Country DWCEA2010 DWCEA2011 DWCEA2012 DWCEA2013 DWCEA2014

Germany 683.42 655.230259 631.695144 622.817849 539.121412
Greece 35.96 15.9271136 22.901164 39.8107335 32.8452471
Hungary 26.18 12.6202554 38.5663747 44.847 19.4161707
Ireland 36.75 35.632 35.592 34.855 34.066
Italy 303.6 372.736609 369.469 345.318 298.165642
Latvia 1.35 1.90683779 3.2189748 3.99747153 3.63399825
Lithuania 4.36 6.34274466 6.085624 7.37087206 6.72286212
luxembourg 1.87 1.84662186 1.6735466 1.84088446 9.19093239
Malta 0.01 0.1 0.2081924 0.25669704 1.55669538
Netherlands 130.28 123.091398 99.371834 34.755181 121.891022
Poland 93.58 92.2125004 89.186524 226.031663 75.5455926
Portugal 47.66 42.702371 9.6079055 18.8855677 31.8198291
Romania 4.9 32.1480963 43.7894691 61.0352212 27.643745
Slovakia 8.05 12.2539418 10.9781454 11.0379726 13.9883644
Slovenia 2.71 3.19144431 3.443182 3.52775071 6.91533585
Spain 270.91 259.474424 238.137846 88.5164725 190.798557
Sweden 52.02 17.6884295 47.048 37.5221251 43.421
UK 260.966 289.548588 286.982282 356.26558 418.879797

Notes
1 https://www.unep.org/interactive/emissions-gap-report/2020/ (accessed on 6 September 2021).
2 https://www.nytimes.com/2020/08/19/climate/earth-overshoot-day.html (accessed on 6 September 2021).
3 https://data.worldbank.org/indicator/ (accessed on 6 September 2021).
4 https://www.consilium.europa.eu/fr/council-eu/voting-system/voting-calculator/ (accessed on 6 September 2021).
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