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Abstract: In simple dyadic games such as rock, paper, scissors (RPS), people exhibit peculiar se-
quential dependencies across repeated interactions with a stable opponent. These regularities seem
to arise from a mutually adversarial process of trying to outwit their opponent. What underlies
this process, and what are its limits? Here, we offer a novel framework for formally describing
and quantifying human adversarial reasoning in the rock, paper, scissors game. We first show that
this framework enables a precise characterization of the complexity of patterned behaviors that
people exhibit themselves, and appear to exploit in others. This combination allows for a quantitative
understanding of human opponent modeling abilities. We apply these tools to an experiment in
which people played 300 rounds of RPS in stable dyads. We find that although people exhibit very
complex move dependencies, they cannot exploit these dependencies in their opponents, indicating
a fundamental limitation in people’s capacity for adversarial reasoning. Taken together, the results
presented here show how the rock, paper, scissors game allows for precise formalization of human
adaptive reasoning abilities.

Keywords: adversarial reasoning; sequential reasoning; competition; rock-paper-scissors

1. Introduction

At a basic level, human conflict and coordination are rooted in the ability to predict
the behavior of others and make plans accordingly. While this may sometimes involve ad
hoc coordination from first principles, such as well-known Schelling point behavior [1],
more often we find ourselves in repeated interactions, wherein we have the opportunity
to adapt to past outcomes. Everyday life is replete with such dynamics, whether playing
basketball or chess, or simply commuting in traffic among other drivers that are all trying
to get home as fast as possible. Broadly, competitive interactions highlight our ability to
anticipate and respond to others in diverse settings. What cognitive processes underlie
our remarkable ability to anticipate and adapt to the behavior of others around us across
repeated interactions? We argue that this question can be addressed by examining people’s
behavior in repeated adversarial games, such as the rock, paper, scissors game, where
success is a matter of outsmarting one’s opponent, often by identifying predictable patterns
in their choices.

To better understand how people manage the cognitive challenges of adapting to
others in adversarial interactions, researchers have traditionally turned to iterated zero-sum
games. Zero-sum games have the unique character that any player’s gain comes at a loss
to their opponent: they are the “limiting case of pure conflict” [2]. Here, we focus on the
rock, paper, scissors (RPS) game, or roshambo. In this game, two players simultaneously
produce a hand signal indicating their choice of “rock”, “paper”, or “scissors”. The rules
are simple: “rock” beats “scissors”, “paper” beats “rock”, and “scissors” beats “paper”.
The game is perhaps most popular with children, but it has been used in official contexts to
settle court disputes [3] and art auctions [4]. Large-scale RPS tournaments have been held
with human entrants [5], while the potential to test a diverse set of algorithmic strategies
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has also inspired tournaments modeled after [6] in which various bots compete against
each other [7,8] (and more recently on the data science site Kaggle, see https://www.
kaggle.com/c/rock-paper-scissors (accessed on 13 July 2021)). Finally, the dynamics of the
game have made it popular for modeling diverse biological ecosystems [9–14], offering
predictions in evolutionary game theory [15–19], and even studying large-scale market
behavior [20–26].

Beyond its role in popular culture and in various academic disciplines, the rock, paper,
scissors game offers a unique means of studying human adversarial behavior during
repeated interactions. Here, our focus is on decision making across many iterated rounds
against a stable opponent—often hundreds, rather than the “best of 3” used to resolve
household disputes. In such laboratory studies of the rock, paper, scissors game, the large
number of interactions allow people to detect and adapt to potentially complex patterns
in their opponent’s behavior. In fact, due to the game’s simple rules and constrained
space of choices, better performance by one individual over many rounds will not likely
be a result of general game “expertise”, but rather a result of superior reasoning about
dependencies in their specific opponent’s move choices. This reliance on adaptation to
a particular opponent, rather than general game expertise, distinguishes RPS from other
adversarial games like chess, and makes it a purer form of adversarial reasoning. Finally,
RPS, like other mixed strategy equilibrium games, is characterized by its Nash Equilibrium
solution [27], which dictates random move selection, a strategy which presents unique
cognitive challenges for human players. For these reasons, a large body of literature has
examined human behavior over repeated interactions in the rock, paper, scissors game,
motivated by diverse questions about the nature of human learning, sequential behavior,
and perceptions of randomness [28–30].

In the present work, we argue that the rock, paper, scissors game represents an ideal
means of studying human adaptive, adversarial reasoning capacities, i.e., the ability to
outwit another person by discovering patterns in their behavior, and offer a novel set of
results illustrating the limits of this ability. First, we briefly examine the findings from
previous literature on the rock, paper, scissors game with an eye to what existing results
tell us about human adversarial reasoning. We argue that by focusing on failures of Nash
Equilibrium and on coarse heuristics, prior work has largely overlooked the question of
how people adapt to a fallible human opponent over repeated interactions. In this vein,
we next discuss how the structure of the game offers a tractable way of describing the
flexibility and limitations of people’s adaptive reasoning capacities. To illustrate this, we
present an analysis of existing results which suggests that the ability to recognize and
exploit sequential patterns in RPS is highly constrained, revealing the limits of human
adaptive reasoning.

2. Human RPS Behavior Reflects Adversarial Reasoning

First, we consider what is known about human behavior in iterated rock, paper,
scissors games. This literature often starts with the behavioral economics perspective
of comparing human behavior to optimal play and, upon finding a difference, seeks to
explain it in terms of human heuristics or biases. In RPS, optimal behavior is taken to
be uniform random choices, and failures to achieve such randomness are explained as
human failures to generate random sequences. Here, we instead argue that the deviations
from optimality documented in this literature are more consistent with people attempting
to adapt to, and outwit, their opponent, rather than trying and failing to generate truly
random move choices. In short, we argue that the existing literature supports the claim
that human RPS behavior reflects adaptive adversarial reasoning.

2.1. Normative Strategies

The starting point for exploring human behavior in the rock, paper, scissors game has
traditionally focused on whether people adhere to the normative standards of Nash Equi-
librium [27], in which a strategy is chosen to optimize performance under the assumption
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of an equivalently rational, optimizing opponent. RPS belongs to the class of zero-sum
cyclic dominance games [31]. Their cyclic nature is best illustrated with the well-known
rules of RPS, where “rock” beats “scissors” and “paper” beats “rock”, but “paper” is beaten
by “scissors” (see Figure 1a for an illustration of this). Thus, every choice is dominated by
one other and no choice is better than another, unless you have some information about
what the opponent will choose. Such games are not limited to three-choice paradigms like
RPS; cyclic games with many more choices provide a unique means of studying large-scale
group behaviors [32].

(a) Cyclic dominance in rock, paper, scissors (b) Categorizing move transitions

Figure 1. The rock, paper, scissors game. (a) Shows the cyclic dominance relations of the three
move choices: “rock” beats “scissors”, “scissors” beats “paper”, “paper” beats “rock”. (b) The cyclic
dominance structure means that the relationship between one move and the next can be characterized
into one of three “transitions”: a “positive” transition or shift “up” to the move that would beat
the previous move (+), a “negative” transition or shift “down” to the move that would lose to the
previous move (−), and a “stay” transition which repeats the same move (0).

Given that no move is better than any other in a cyclic dominance game, how should
one make strategic decisions in the rock, paper, scissors game? The zero-sum nature of
the game ensures that for a single player, their opponent’s win is always their loss, so any
degree to which a player’s decisions are predictable will allow their opponent to exploit
them for a greater gain. Therefore, the best strategy for a rational player paired with an
equally rational opponent is to choose moves so as to not create any exploitable patterns
in their choices: to choose the three options randomly, with equal probability. Cyclic
dominance games belong to the broader class of mixed strategy equilibrium (MSE) games
(see [33] ch. 3 for review), with a single Nash Equilibrium (NE) [27] that requires a mixed
strategy of playing each move (e.g., “rock”, “paper”, and “scissors”) in equal proportion,
with no conditional dependence from one game to the next. Indeed, the appeal of studying
decision making in RPS and other similar games has been in large part due to the fact
that they impose such strong, testable constraints on optimal play; constraints that human
behavior often fails to exhibit.

2.2. Human Behavior Exhibits Sequential Patterns

Some of the earliest research in mixed strategy equilibrium games like RPS puzzled
over whether people could in fact meet the high standards of random play under the Nash
Equilibrium strategy [34–36]; for an overview of significant early results, see [33] ch. 3. A
large body of work has shown that in the rock, paper, scissors game and other MSE games,
people exhibit a range of sequential regularities or dependencies in their move choices that
run counter to equilibrium play. A full review of these results is beyond the scope of the
current paper, but here we offer a sample, surveying evidence for sequential dependencies
in order of increasing behavioral complexity [28].
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A first pass analysis of people’s behavior in the rock, paper, scissors game often looks
at whether their overall distribution of move choices is consistent with the mixed strategy
equilibrium proportions of 1/3 for each move. In repeated rounds of RPS, a number of
studies have found people to have a slight overall bias towards “rock”, though this is not
always significant [37–41]. Further, other results have observed a modest preference for
“paper” or “scissors” [42] and in many cases people show no distinguishable preference
at all [43–46]. In the broader space of MSE games, it is noted in [33] that marginal choice
probabilities tend to align with equilibrium proportions.

Though marginal move distributions are often approximately consistent with equi-
librium random selection, a key feature of the Nash Equilibrium strategy is that players
not display any conditional dependence on their own or their opponents’ previous moves.
Thus, a player that continually cycles from “rock” to “paper” to “scissors” will produce
an overall distribution of moves that appears identical to the mixed strategy equilibrium
but the statistical dependence on their own previous move will be highly exploitable by
a perceptive opponent. Following prior work [28], we will refer to a transition from one
move to the move that beats it (e.g., “rock” to “paper”) as shifting up (denoted with a + in
tables and figures); a transition from one move to the same move (e.g., “rock” to “rock”)
as staying (denoted with a 0 in tables and figures), and a transition from one move to the
move that loses to it (e.g., “rock” to “scissors”) as shifting down (denoted with a − in tables
and figures). See Figure 1b for a complete illustration of the transitions between moves.

Evidence of transition dependencies in people’s moves is not widespread, but [40] find
a slight overall preference for staying compared to shifting up or down which diminishes
with the relative value of wins over ties, suggesting that stronger reward incentives may
improve people’s tendency to approximate equilibrium play. Indeed, related work has
argued for a relationship between transition dependencies in competitive settings and
limitations in executive control; it was found in [47] that people with schizophrenia had
a strong dependence on their opponent’s previous move, tending to select moves that
would beat what their opponent had just played (this is often referred to as a Cournot Best
Response strategy [48]). Finally, evidence is presented in [39] for a stickiness of transition
dependencies, namely that participants who shifted up in a previous transition were more
likely to continue shifting up and participants who shifted down in a previous transition
were more likely to shift down again (no such persistence was found for staying).

The best documented higher-order move dependencies in the rock, paper, scissors
game are transitions conditioned on prior outcome. This is exemplified by win-stay, lose-shift
(WSLS) behavior. In the context of the rock, paper, scissors game, such a strategy amounts to
changing the rates of particular transitions (+, −, 0) depending on whether the preceding
game outcome was a win, loss, or tie. The appeal of WSLS as a possible explanatory
mechanism for people’s decisions in games like RPS comes from its prominence in other
settings where it can be seen as a computationally simple heuristic that enables broadly
adaptive behavior [49,50]. A number of studies have found evidence of outcome-dependent
transition behavior in the rock, paper, scissors game [40,41,51–53]. Subsequent work has
further explored the separability of win-stay and lose-shift behaviors [38], as well as the
factors mediating their respective magnitudes [37,39,54].

Finally, it was found in [55] that in many rounds of paired human dyad play, people
exhibit a range of additional dependencies, with more complex dependencies being more
pronounced. Taken together, these results have broad agreement that people’s move
choices exhibit unique sequential dependencies which violate NE. This raises an important
question: given the failure to implement equilibrium strategies in mixed strategy games like
RPS, what accounts for people’s behavior, particularly the various sequential dependencies
in their move choices?

2.3. Existing Accounts of Empirical Behavior Are Insufficient

The most prominent account of why human behavior in the rock, paper, scissors
game and other MSE games displays such sequential dependencies focuses on people’s
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misapprehensions about what it means to be random in the first place. A large body of work
on subjective randomness has revealed that people often have poor intuitions about what
constitutes a random sequence [56,57]. Concretely, when prompted to evaluate or produce
a sequence of simulated coin flips (or simulate any other random variable) people tend
to favor sequences that (i) have an equal number of heads and tails, (ii) under-represent
“runs” (e.g., HHH) and (iii) over-represent alternations (HTH) [58,59]. In a series of studies
exploring these biases in adversarial settings, Rapoport and Budescu propose a model in
which randomness is a matter of “local representativeness” across a limited memory of
prior events [30,60,61]. Essentially, their model suggests that behavior in mixed strategy
equilibrium games like the rock, paper, scissors game represents people doing their best
to produce random outcomes. With only a limited memory for prior events, participants
will make choices that exemplify the features of subjective randomness exhibited in prior
literature.

While there is ample evidence that our judgments of random events depart systemati-
cally from true randomness, this is unlikely to explain human behavior in repeated rounds
of the rock, paper, scissors game. Empirical support for behaviors that show a conditional
dependence on opponent choices and prior outcomes suggests that people are doing something
more complicated than merely attending to the (subjective) randomness of their own move
choices (see [62] for discussion of complex opponent-responsive properties). What then
can explain people’s behavior, particularly the sequential patterns they exhibit, in repeated
MSE games?

Another common explanation is that people may be using stable heuristics that
produce winning, or at least adequate, outcomes in the long run. For instance, win-stay,
lose-shift (WSLS) is a “fast and frugal” decision rule [49] that can be applied in a variety
of adversarial settings; indeed, WSLS outperforms the well-known “tit-for-tat” strategy
in evolutionary Prisoner’s Dilemma simulations [63]. This finding fits within a broad
literature on the evolution of cooperation examining the strength of various heuristic-based
strategies across many interactions, though such findings typically describe population
dynamics rather than individual behavior [6,64–66]. Nonetheless, fixed heuristics like
WSLS might drive people’s choices in repeated adversarial interactions and may explain
behavioral regularities in the rock, paper, scissors game [29,39,40]. The authors of [54]
propose a variation of a stable heuristic like win-stay, lose-shift, suggesting that it is not
one heuristic, but a result of two independent heuristic processes that separately react to
reward and loss. Consistent with this, participants respond more quickly to losses than
wins [54] and exhibit fairly distinct EEG signatures when responding to different game
outcomes [37,54]. Further, it appears that win-stay behavior may not arise as consistently
as lose-shift [37,39] and may be more vulnerable to fluctuations in game rewards [38].
Whether win-stay and lose-shift reflect a single mechanism or not, this class of accounts
suggests that human behavior in the rock, paper, scissors game is best explained by a
conjunction of stable heuristics.

While win-stay, lose-shift and other heuristic strategies may offer people a simple
decision process, they are also insufficient to explain human behavior in repeated rounds
of the rock, paper, scissors game. For one, dependencies in people’s move choices extend
beyond such heuristics to a variety of other complex sequential regularities which cannot
be as easily accounted for [55]. Second, an emphasis on heuristics as a basis of people’s
decision making in repeated RPS interactions fails to address the ways in which people
exhibit more dynamic, adaptive behavior, such as exploiting biases in their opponent’s
choices [44,46,62].

Recent Results Suggest People Are Trying to Outwit Their Opponents

A complete account of human behavior in repeated MSE games like the rock, paper,
scissors game should accommodate the adaptive character of people’s decision making
over many interactions. Consider, for example, playing repeated rounds with an opponent
that simply plays “rock” over and over. Here, subjective randomness or win-stay, lose-
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shift responding would be surprising. Though trivial, this illustrates a critical underlying
dynamic in repeated MSE games: Optimal play depends on the predictability of the opponent.
Heuristics or subjectively random behavior may be adaptive against an unexploitable
opponent, and may serve as a useful fallback when one is losing, but they are not the best
policy when facing a fallible opponent. In large-scale algorithmic RPS tournaments, random
strategies often under-perform precisely because they fail to detect stable dependencies in
their opponent’s moves that could be exploited [7,8].1

Despite its intuitive appeal, the role of adaptive, adversarial reasoning in repeated
RPS interactions has been largely overlooked in the prior literature. Most empirical studies
of rock, paper, scissors behavior pair participants either against automated opponents
employing a random strategy [37–39,43,44,46,54,67], or against a shuffled group of human
opponents [32,40,41,51,52]. In both cases, participants cannot adapt to the dependencies
of their opponent. Random computer choices are simply unexploitable, while random
assignment of opponents ensures that sequential choices are independent and identically
distributed, and thus equally unexploitable through more sophisticated adversarial reason-
ing. Thus, these results cannot address whether decision making over repeated interactions,
including the sequential regularities observed in prior empirical work, may result from an
effort to outwit one’s opponent.

What happens when people play against opponents that are exploitable, such as sta-
ble human adversaries? A handful of recent studies asking this question yield behavior
consistent with flexible, adaptive reasoning, rather than simple heuristics or subjective ran-
domness. First, in repeated interactions with opponents that exhibit a strong bias towards
certain moves, people often show an above-chance capacity to exploit the opponent [44,46]
consistent with basic reinforcement learning mechanisms [68]. Notably, this adaptability
appears to be limited to very strong opponent biases, even over many trials [69–71]. How-
ever, efforts to outwit a stable opponent extend beyond reinforcement learning and draw
on more structured pattern recognition abilities when opponent behavior is more nuanced.
The authors of [43] find that people adapt to bots that exhibit a Cournot Best Response
transition strategy, but their ability to do so is limited by prior exposure to an opponent
with a simple move bias, suggesting a strong role of context in adversarial reasoning. The
authors of [62] provide a relatively thorough investigation of people’s ability to adapt
to neural network opponents with a memory for various numbers of previous moves,
showing that people are reliably able to beat a lag1 opponent whose moves are primarily
based on the previous move, but behave more similarly to a lag2 opponent that draws
on the two previous rounds. However, recent work has found that people can detect
even more complex transition and outcome-dependent transition strategies over many
rounds [37,54,72]. Finally, results in [73] indicate that when paired with opponents that
exploit regularities in participants’ own move choices, people are able to counteract such
exploitation for simpler behavioral dependencies. Taken together, these results suggest
that over many RPS interactions with a stable opponent, people are highly attuned to the
structured dependencies which make players themselves and their opponents exploitable.

In sum, recent results suggest that people’s behavior over many rounds against a
potentially exploitable opponent can be explained by the desire to outwit that opponent,
rather than merely attempting to respond randomly or relying on stable heuristics. But
how flexible is this ability, and what are its limitations? What sorts of hypotheses about
behavioral structure can people entertain and track on the basis of an opponent’s sequential
decisions? Addressing these questions requires characterizing the space of uniquely
identifiable strategies that may be exploited, and estimating whether people attend to these
regularities when playing repeated rounds of RPS. The rest of this paper focuses on these
technical challenges.

3. RPS Behavior Reveals Structure of Adversarial Reasoning

Human behavior during repeated interactions in mixed strategy games like the rock,
paper, scissors game may be explained by ongoing attempts to outwit one’s opponent. How-
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ever, it remains an open question how people are able to adapt to regularities in an op-
ponent’s behavior. What kind of dependency structures can people detect and respond
to? Prior work has examined the ways that different sequential patterns in RPS can be
categorized [28]. Building on these results, we begin by providing an overview of how the
complex dependencies observed in people’s move decisions are structured and show how
people’s exploitability along these dimensions can be quantified. We then demonstrate how
such measures can be used to explore which behavioral regularities people successfully
exploit against a stable opponent. We apply these methods to experimental data from prior
work by [55] to explore how well different sequential regularities predict people’s move
decisions and the degree to which they successfully exploit regularities in an opponent’s
behavior. In this way, we show that behavior in the rock, paper, scissors game offers novel
insights into how people perform adaptive, adversarial reasoning.

3.1. Sequential Dependencies in RPS Can Be Systematically Described
3.1.1. Individual Dependencies

The level at which people are able to outwit their opponents (i.e., the scope of their
adversarial reasoning abilities) is reflected in the structure and complexity of the sequential
dependencies they can detect and exploit, and how much they do so over many rounds.
How can we define this structure, and how do we then assess whether these dependencies
are exploited by a savvy player? In the rock, paper, scissors game, the space of exploitable
dependencies can be described in increasing order of complexity based on the number
of prior events that impact a player’s move choices [28,55]. In other words, sequential
dependencies in a player’s RPS moves are expressible in terms of how the probability of a
particular decision—either a move selection or a transition between moves—is statistically
impacted by some form of previous event: the player’s own previous move, their opponent’s
previous move, etc. If a player or bot is behaving randomly, the probability of any decision
will be equal no matter what previous event is considered; every move or transition is just
as likely given every previous move or outcome. However, to the degree that a player’s
behavior is exploitable, they will exhibit non-uniform move or transition probabilities
conditioned on a particular event, such as their previous move. The greater the departure
from a uniform distribution conditioned on the prior event, the more exploitable a player
is, i.e., the more they exhibit this dependency. Broadly, the more prior events required to
evaluate the dependency, the more complex it is. Questions about a person’s adversarial
reasoning abilities in RPS therefore come down to measuring whether and how much they
can recognize these dependencies in their opponent.

To illustrate, the tables in Figure 2 show how outcome-based transition dependencies like
win-stay, lose-shift can be represented. Here, each state of a dependency event like previous
outcome is given a unique row on the left side of the table. The dependencies in Figure 2
have a row for each possible outcome from the previous round—win (W), tie (T), and loss
(L)—but a simpler dependency based on, e.g., one’s own previous move might instead
have a row for “rock”, “paper”, and “scissors”. Each column indicates a possible decision
based on that row-wise dependency event. In Figure 2, these decisions are move transitions:
shift up (+), stay (0), or shift down (−). Once again, a simple dependency in which move
choices are based on one’s own previous move could be expressed with possible move
decisions (“rock”, “paper”, “scissors”) in each column instead of transitions. Each cell in
the tables in Figure 2 then represents the probability that the player chooses the action in
the cell’s column following the dependency event in the corresponding row. If players did
not exhibit any dependency on a row-wise outcome, the probabilities in each cell in that
row would be 1/3, signaling that each transition (column value) is equally likely given that
row value. However, the more a player exhibits a particular dependency, the greater the
disparity between their transition probabilities given each possible outcome. This encoding
of patterned behavior therefore allows us to express each unique class of dependencies
that a player could exploit in their opponent through the choice of different row-wise
events and column-wise actions. The ability to express RPS dependencies in this way is not
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limited to outcomes affecting transition choices, as in Figure 2, but applies at every level of
behavioral complexity. This structure for expressing classes of sequential patterns therefore
provides a formal mechanism for outlining the hypothesis space of behavioral regularities
people exhibit and can adapt to. In the next section, we discuss this space, in particular, the
relationship between different dependencies.

Figure 2. Sample schematic for illustrating dependencies exhibited during rock, paper, scissors play.
Above are three distinct versions of an outcome-dependent transition dependency like win-stay,
lose-shift. Shaded squares indicate gradations in the probability of a given transition (column) given
each prior event (row).

3.1.2. Combining Dependencies

Critically, the various classes of sequential dependencies that a player can exhibit in
her move choices are not independent, but rather are arranged in an expressive hierarchy.
Dependencies exhibited at one level will affect other levels that rely on the same information.
For example, a player’s distribution over moves given her previous move subsumes her
marginal distributions over transitions and moves—any pattern in her overall move or
transition distributions will be reflected in the distribution of moves given her previous
move. Why is this important when describing people’s adaptive behavior? If a player
exhibits a tendency toward a particular move following each previous move, this will in
part reflect any lower-level biases in their moves and transitions. Describing their behavior
as following a strategy of gravitating toward particular moves after each previous move
must factor in the degree to which they are simply favoring some moves or transitions.
Similarly, if a player is able to exploit an opponent seemingly on the basis of regularities
in the opponent’s moves following each previous move, we want to know that they are
not primarily sensitive to simpler dependencies in the opponent’s transition or move base
rates. Broadly, the dependency signal for a given dependency structure will include the
dependency signal from its lower-level subsidiaries.

The schematic in Figure 3 shows the inheritance relationship among increasingly
complex sequential move and transition dependencies. As the dependencies become more
complex, they inherit from a greater number of simpler regularities. While this does
not show the full space of possible regularities (such a space is technically infinite), we
include any behavioral dependencies that have been observed in prior work (i.e., all of
those discussed in our review of existing literature) or in previous attempts to frame these
structures [28,73]. For researchers attempting to quantify how much people are exploitable
or are successfully exploiting opponents on the basis of these dependencies, this structure
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poses a credit assignment problem: how to identify when a dependency is being exploited
above and beyond the lower-level dependencies it is based on? The key to attributing
behavior at the right level of complexity is to use this hierarchical dependency structure
when evaluating the regularities in people’s move choices. In other words, to untangle the
unique contribution of a higher-order dependency structure from the exploitability arising
from its subsidiaries, we partial out the subsidiary dependencies based on the relationships
in Figure 3. This allows us to ask how much each dependency contributes to explaining
individual behavior. As we show below, this logic can be applied not only to estimating a
given player’s level of exploitability within a given structure, but also to estimating how
much this dependence is exploited by their opponent.

Figure 3. Schematic for quantifying complexity of dependencies exhibited during rock, paper, scissors
play. On the left are three levels of increasing complexity for regularities in players’ move choices.
In the middle and right columns are equivalent complexity levels for dependencies players exhibit
in their transitions between moves, either relative to their own previous move, or relative to the
opponent’s. The arrows illustrate the hierarchical relationship across these regularities, indicating for
example how second-level move dependencies carry some of the dependency signal captured by
first-level move and transition dependencies.

3.2. Quantifying How Much People Exhibit and Exploit Sequential Dependencies

In the previous section, we showed that the exploitable dependencies people exhibit
over repeated rounds of the rock, paper, scissors game can be described in terms of
how events like previous moves or outcomes impact the probability of subsequent move
decisions. We further showed that the relationship among different dependencies of
this sort prevents us from treating them independently without correcting for the shared
structure across dependencies. How then can we quantify how much a player exhibits a
given dependency and, relatedly, how much their opponent is able to exploit it?

3.2.1. Measuring Exploitability with Information Gain

We measure how predictable a player’s behavior is subject to a particular dependency
via conditional entropy and information gain. In the rock, paper, scissors game, the
player has three choices, a1−3 ∈ A. This action space A can either represent the move
choices (“rock”, “paper”, and “scissors”), or the transitions (+, −, 0) relative to the player’s
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previous move or relative to the opponent’s previous move (the set of transitions encodes
additional information about either the player or their opponent’s previous move but is
otherwise the same). A player’s propensity to make some choices more than others in a
given context c (i.e., how exploitable they are in this context), can be summarized as the
probability distribution P(ai | c). The Shannon entropy [74] of the distribution over those
choices describes how unpredictable they are:

H(A | c) = −
3

∑
i=1

P(ai | c) log2 P(ai | c),

and will take on a value, in bits, between 0—for completely deterministic behavior, where
one of the three actions is always chosen in a given context—and log2 3 for uniform
behavior where all three actions are equally likely.

In the base case, where the context, c is an empty set, this definition is sufficient,
and reduces to entropy over actions H(A). However, for all non-trivial contexts, we
calculate the Shannon entropy for each possible state in the context and average over
them. For instance, a strategy such as “win-stay, lose-shift” describes a distribution over
self-transitions that varies with context defined as the outcome of the preceding round.
Our entropy calculation must factor in the full partition over contexts C that a dependency
structure imposes. In the case of win-stay, lose-shift, the relevant dependency structure
defined by the context partition is: C = {win, loss, tie}. The unpredictability of choices
given a context partition is therefore given by the conditional entropy marginalized over
the contexts in that dependency structure:

H(A | C) = ∑
c∈C

P(c)H(A | c).

To characterize how much behavioral regularity may be captured via a particular
dependency structure defined by the partition over contexts (C), we ask how much informa-
tion is gained about actions by taking that dependency structure into account. Specifically,
we can subtract the conditional entropy under that dependency structure from a uniform
distribution over choices, to calculate the information gained by using that dependency
structure to predict a player’s moves or transitions:

I(A | C) = log2 3− H(A | C).

Intuitively, this measure quantifies the improvement gained by predicting a player’s
moves or transitions using a particular dependency relative to a random baseline. Large in-
formation gain for a given dependency structure suggests that a player is highly exploitable
via that dependency. Low values suggest that their behavior is not easily distinguished
from random choices given the prior events in C.

While information gain provides an intuitive measure for how much a player exhibits a
particular dependency, it fails to reflect the hierarchical structure of dependencies described
previously. In other words, the information gain associated with a given dependency
structure will not capture just the information unique to that structure. For instance, if a
player shows a bias toward choosing “rock”, that predictable dependency will also show
up in the information gain over each move conditioned on the previous move. To uniquely
identify the information gained for a particular dependency structure, we must consider
the hierarchical structure of different dependencies shown in Figure 3.

Given the hierarchical relationship among dependency structures in Figure 3, we can
define an operation Φ(C) which yields all the upstream nodes (parents, grandparents, etc.)
of a given dependency structure. For instance, the dependency structure capturing the
tendency to choose “rock”, “paper”, or “scissors” given one’s previous choice has two
parents: an overall move bias to choose “rock”/“paper”/“scissors”, and a preference for
particular self-transitions (+/−/0). Using this, we can calculate a corrected information
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gain for a particular dependency structure by subtracting the information gained from the
parent dependency structures:

I∗(A | C) = I(A | C)− ∑
B∈Φ(C)

I∗(A | B).

This calculation yields a measure of the information about actions that can be uniquely
captured in a given dependency structure. The ability to attribute sequential patterns in
behavior to a particular dependency structure is critical for understanding the cognitive
processes underlying adversarial reasoning in the rock, paper, scissors game. Prior work
has shown that certain patterns of outcome-based transition behavior (i.e., win-stay, lose-
shift) are isomorphic to much simpler patterns of Cournot best responding when a player’s
self-transitions are re-cast as transitions relative to their opponent’s previous move [28].
Because of this isomorphism, conclusions about whether a savvy player is exploiting
complex outcome-based patterns in their opponent, or is simply sensitive to the pattern of
Cournot transition responses may be ambiguous. Here, by correcting the information gain
for a given dependency structure to reflect all upstream parents, we can identify the extent
to which people exhibit dependencies of a certain complexity, without being misled by the
possibility of a complex dependency being mimicked by a simpler one. More broadly, this
provides a means of quantifying how much players exhibit rich and complex patterns in
their move choices over many rounds. Answering this allows us to then address questions
at the heart of adversarial reasoning in the rock, paper, scissors game: which behavioral
patterns do people exploit in their opponents? Generally, what is the relationship between
how much people exhibit a particular behavioral regularity and how much their opponents
are able to exploit it?

3.2.2. Measuring How Much Players Are Exploited with Expected Win Count Differentials

To understand the relationship between a player’s exploitable behavior patterns
and whether their opponent in fact uses these patterns to their advantage, we extend
the information gain measure described previously to reflect the outcomes that might
be expected by fully exploiting a given dependency in a player’s moves. Intuitively, the
level at which a player’s decisions over repeated rounds are exploitable can be thought
of as the number of games their opponent could expect to win by taking advantage of
the patterns their choices exhibit. We refer to this as the expected win count differential for a
given dependency structure. The win count differential is simply the number of games
that one player wins over the course of many rounds minus the number of games won by
their opponent. A positive win count differential for one player indicates that they were
able to win more often than their opponent and higher win count differentials indicate
more successful exploitation of the opponent. The expected win count differential, then,
captures how much advantage a player could theoretically obtain by choosing moves
which maximally exploit a particular dependency in their opponent’s moves. Given a
non-uniform (exploitable) distribution over an opponent’s actions P(ai | c), a player’s
expected win count differential for a given action aj is equal to ∑i P(ai | c) · v(aj, ai), where
v(aj, ai) ∈ {−1, 0, 1} is the outcome of playing a particular move aj against the opponent’s
move ai: increasing the player’s win count by 1, decreasing by 1, or tying for a change of
0. Given this, the player has an optimal action j∗ that maximizes their expected win count
differential over all possible opponent moves:

j∗ = arg maxj ∑i P(ai | c) · v(aj, ai).

This optimal choice in turn yields an expected win-count differential of: E[v | c] =
∑i P(ai | c) · v(j∗, ai). And averaging over all contexts (for example, the set of all previous
moves by the player), this yields:

E[v | C] = ∑
c∈C

E[v | c]P(c).
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The expected win count differential for a given dependency context C captures how
exploitable a player is along that dimension, much like the information gain measure
described previously. In fact, the difference between the expected win count differential
and the information gain for a particular dependency structure is often small, since lots
of information in a given dependency will translate directly into expected win count
differentials. However, not all low-entropy distributions are equally exploitable. For
instance, a player that chooses their moves with the distribution 60% “rock”, 30% “paper”,
and 10% “scissors” can be exploited to achieve an average win count differential (per
round) of 0.5 by playing “paper”. Meanwhile, a move distribution of 60% “rock”, 10%
“paper”, and 30% “scissors” only yields an expected win count differential of 0.3 (by
playing “scissors”; playing “paper” yields an expected win count differential of only 0.2).
These two distributions have the same entropy and information gain, but one is nearly
twice as exploitable as the other, in terms of the achievable win count differential. Thus,
expected win count differential tells us not just how much information is available at a
given dependency structure, but how exploitable such information is.

As a measure of how exploitable a player’s behavior is, expected win count differential
also enables us to investigate the relationship between how much a player’s opponent could
theoretically exploit patterns in their behavior, and how much their opponent actually
did so. This is because expected win count differentials can be directly compared to
observed win count differentials in dyads, indicating whether regularity at a particular
dependency structure might explain the observed pattern of advantage seen in a pair of
players. Given a set of many repeated RPS games between pairs of stable opponents, we
can use each player’s level of exploitability for a given dependency—their expected win
count differential—as predictors in a regression over the true win count differentials in each
dyad. This provides a first approximation of how much of the variance in empirical win
count differentials can be explained by the different ways that players exhibit exploitable
behavior across many dyads.

However, this approach faces the same fundamental challenge as the uncorrected
information gain measure described earlier; expected win count differentials for different
behavioral regularities will be influenced by the rich interdepencence of these regularities
shown in Figure 3. Thus, predicting empirical win count differentials using raw expected
win count differentials fails to accommodate the role of lower-level dependencies in higher-
level expected win count differentials. In this context, to correct expected win count
differentials for upstream dependencies, we cannot simply subtract them, as we can for
information gain. Instead, we correct for the hierarchy in Figure 3 within the observed
win count differential regression itself. To illustrate, when predicting observed win count
differentials across experimental dyads, we only use the simplest dependencies in Figure 3
as direct predictors. To partial out the role of these lower-level dependencies in more
complex dependencies, we include the residuals from separate regressions of expected
win count differentials for each higher-level dependency predicted by expected win count
differentials for the dependencies they inherit from. For example, a player’s level of
exploitability using second-level move strategies in Figure 3, such as their choice given their
prior choice, can be predicted based on their exploitability using first-level move strategies
(base rate of “rock”, “paper”, and “scissors”) and first-level transition strategies (base rate
of +, −, and 0 transitions). The residuals from this prediction using expected win count
differentials indicate how much of the variance in a given second-level move strategy
cannot be accounted for by the first-level strategies. These residuals can then serve as
predictors for the second-level variables in the original regression of observed dyad win
count differentials. In this manner, we can isolate the unique dependency arising at a
certain level of behavior, rather than attributing lower-level dependencies to the more
abstract, higher-order structure.

To summarize, we have argued that behavior in repeated rounds of the rock, paper,
scissors game provides a window into how people perform the sort of adaptive, adversarial
reasoning that allows them to outwit a stable opponent. We first showed that a player’s
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exploitable behavior—patterns that their opponent might use to their advantage—contains
structure illustrated in their conditional move or transition probabilities subject to various
contingencies like their previous move. We further showed how these regularities are
hierarchically arranged. Given this, we next showed how a player’s exploitability, i.e.,
the degree to which they exhibit a given dependency structure, can be quantified using
measures of information gain and expected win count differential. The former indicates
exactly how much signal is contained in a player’s patterned behavior, and the latter
incorporates the way this signal can be exploited. Finally, we showed how the level of
exploitability that a player exhibits can be used to investigate which sources of exploitability
contribute to the observed pattern of players exploiting their opponents, thus providing
clues about the underlying nature of people’s adversarial reasoning in this setting. In the
next section, we show how these measures can be applied to empirical data to explore the
flexibility and limitations of people’s ability to outwit an opponent.

4. Adversarial Reasoning in RPS Relies on Detecting Simple Regularities

In the previous section, we showed how sequential regularities in people’s move
decisions in the rock, paper, scissors game can be formally described and quantified. This
might serve as the basis for a more precise characterization of the dependencies people
exhibit in their own behavior in adversarial settings, as well as the patterns they can detect
and exploit in opponents. In other words, this framework offers a unified view of the
decision-making biases shown in the rock, paper, scissors game move choices [39,40,47,55],
and the complexities of modeling opponent behavior in the same setting [43,54,62,72,73].

Here, we show how the measures from the previous section can be applied to empirical
data from a set of rock, paper, scissors dyads. In [55] 116 participants were paired into
stable dyads and data were collected for 300 rounds of the rock, paper, scissors game in
each dyad. Because participants in this experiment were playing with the same opponent
for 300 consecutive rounds, players had ample time to try and learn sequential patterns
in their opponent’s moves. Indeed, the authors find that the distribution of empirical win
count differentials across the 58 dyads is overall significantly larger than would be expected
under random play, suggesting that players found ways to outwit their opponents. How
did some participants perform the adaptive, adversarial reasoning necessary to gain a
steady advantage over their opponents? Here, we attempt to answer this question using the
measures outlined in the previous section. We first examine the average information gain
for a range of sequential dependencies proposed in [55] to quantify how much participants
exhibited exploitable patterns. Next, we explore the relationship between observed win
count differentials and expected win count differentials to assess which patterns best
explain participants’ ability to outwit their opponents.

4.1. People Exhibit Complex Behavioral Dependencies

The data from [55] suggest that across 300 rounds, people exhibit stable predictable
behaviors that might form the basis of exploitation by their opponents. Here, we ask
how predictable their behavior was for a range of sequential regularities. In particular,
we ask how the Shannon entropy over RPS choices for a given player is reduced when
conditioning on some prior dependency. As outlined above, the reduction in entropy
compared to chance behavior represents the information gain from taking each dependency
structure into account. Figure 4 shows average information gain across participants for
eight different dependency structures that increase in complexity from left to right. We plot
the “uncorrected” information gain values for each dependency alongside the “corrected”
information gain to account for the hierarchical structure of these dependencies as described
previously. Larger information gain (in bits) indicates a greater level of predictability for
that particular dependency. The uncorrected values show a steady increase in information
gain as the complexity of the dependency increases on x, suggesting greater and greater
predictability for more complex sequential patterns. However, the corrected values suggest
that some of this increase can be attributed to higher-level patterns carrying signal from
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lower-level ones. Nonetheless, the complex dependencies at the right retain some signal
even after correction, providing evidence that people’s move choices are exploitable using
a range of sequential patterns that vary in their complexity.

Figure 4. Change in average information gain (bits) as a result of incorporating the hierarchical
structure in Figure 3. The information gain reflects how exploitable individuals were for each of the
dependencies shown. For more complex dependencies, individual exploitability decreases when
corrected for simpler low-level dependencies. Error bars show one SEM.

4.2. Players Exploit Simple Behavioral Dependencies in Their Opponents

Across repeated rounds of the rock, paper, scissors game with a stable opponent,
Ref. [55] show that some players are able to reliably outwit their opponents. But among
dyads that exhibit higher win count differentials, what kinds of regularities in one player’s
move choices form the basis of this exploitation by their opponent? In other words, which
dependencies do people successfully exploit?

As described in the previous section, we can begin to address this question by ex-
ploring the relationship between the observed win count differentials in each dyad and
the average expected win count differentials in each dyad for each of the sequential depen-
dencies that players may have relied on to exploit their opponent. Critically, we correct
for the hierarchical relationship among dependencies using the residuals from separate
regressions for complex dependencies where some of the predictability may derive from
simpler underlying dependencies. Using the dyad results from [55] as the basis for this
regression, we find that expected win count differential based on transition dependencies
(the transition base rate (+/−/0)) and opponent previous move dependencies (player’s choice
given opponent’s prior choice) are both significant predictors of empirical win count differ-
entials in each dyad (transition: β̂ = 0.19, p = 0.027; opponent previous choice: β̂ = 0.45,
p = 0.015). In other words, the degree to which players exploit their opponents over 300
rounds is best explained by simple biases that players in the dyad exhibit toward particular
transitions, as well as regularities in player moves given their opponent’s previous move.

But what might the regression look like if we did not correct for the hierarchical
structure of the dependencies? Figure 5 plots the correlation between expected win count
differentials—how much players in each dyad exhibited each dependency—and true win
count differentials, i.e., how much players in each dyad exploited their opponents overall.
Critically, we first plot these correlations using the expected win count differentials for each
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dependency (“uncorrected” correlations), and then substitute them for the the residuals
as described in the previous section (the “corrected” correlations). Figure 5 illustrates the
importance of this correction; revised correlations are broadly lower across the board, but
especially for the most complex dependencies on the right. Therefore, incorporating the
hierarchical structure of the dependencies into the correlation shows that people’s use of
complex regularities when exploiting their opponent may in fact draw heavily on simpler,
low-level behavioral patterns.

Figure 5. Change in the relationship between expected win count differential for each behavioral
dependency and empirical win count differentials as a result of incorporating the hierarchical
structure in Figure 3. For more complex dependencies, the role they play in exploitation among
dyads decreases when we factor in the role of lower-level dependencies. Error bars show one SEM.

5. Discussion

Here, we argued that games like rock, paper, scissors offer a precise and tractable
way to study adaptive adversarial reasoning. We started with the observation that human
play in simple cyclic-dominance games, such as matching pennies or rock, paper, scissors,
systematically deviates from the mixed strategy Nash Equilibrium of purely random play.
In particular, people exhibit a range of sequential regularities in their move choices that are
most consistent with an intuitive but understudied account: people are constantly trying to
outwit their opponents, and behavioral dependencies arise from such adaptive reasoning.

How can we make sense of the behavioral regularities that emerge as a result of
adaptive reasoning in the rock, paper, scissors game? Building on prior work exploring the
cognitive and computational resources required to identify such dependencies [28], we out-
line a schema for formally describing the ways that rock, paper, scissors behavior can reflect
stable patterned regularities. We show that the predictability and subsequent exploitability
of a given dependency can be precisely quantified using measures of conditional entropy
and expected win count differentials. Prior work in this space raised important concerns
about the identifiability of complex dependency structures in a player’s behavior due
to isomorphisms between different patterns in behavior which make distinctly different
cognitive demands of an adaptive opponent [28]. To overcome this challenge, we introduce
analytical techniques that can correct for the hierarchical inheritance structure among
different dependencies, and can thus identify both the extent to which people exhibit, and
exploit, complex behavioral patterns.
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Finally, we validate our approach by applying the proposed measures of exploitability
and adversarial reasoning to a large empirical dataset comprised of repeated rock, paper,
scissors games between a set of stable dyads from [55]. Our results show that incorporating
the hierarchical structure of sequential dependencies into analysis of human behavior
allows for a clear description of how each dependency is reflected in individual decisions.
Concretely, our results offer two key findings which highlight the value of repeated rock,
paper, scissors interactions in understanding human adaptive reasoning capacities. First,
we show that over many rounds against a stable opponent, people exhibit a range of
exploitable dependencies, including some that reflect a high level of complexity. These
however, are attenuated by the expression of simpler dependencies. Next, we show that
despite the range of predictable behavior patterns in people’s decisions, their opponents
largely fail to exploit these same dependencies. Instead, people rely on simple transition
and previous move dependencies in order to outwit their opponents, an intuitive finding
that our results provide concrete, quantitative support for.

The current results show that the rock, paper, scissors game can be fruitfully used
to study the flexibility of human adversarial reasoning. In particular, we show how
people’s behavior across repeated interactions reveals the limits of our capacity to detect
and adapt to sequential behavior patterns. Critically, rock, paper, scissors presents just
one avenue by which these and other similar questions can be addressed. Applying a
similar approach to other mixed strategy equilibrium games, or even a broader set of
strategic interactions altogether, may reveal further insights about adversarial reasoning.
In particular, one interpretation of the current results is that the failure to exploit more
complex dependencies arises from limits in memory. Prior work has considered the impact
of memory length on strategic behavior in a range of domains including RPS [50,62]; the
current results may open the door to a more precise account of such resource limits in
adversarial reasoning.

Together, our results show how the simple rock, paper, scissors game can support
a quantitative perspective on the rich adaptive reasoning and opponent modeling that
underlies human competition. What kinds of complex, patterned behavior can people
detect and adapt to in strategic settings, and how does dyadic behavior reflect exploitation
of these patterns across repeated interactions? We hope that our framework for constructing
and analyzing dependencies in the rock, paper, scissors game allows researchers to better
characterize human adaptive adversarial capacities.
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Note
1 Successful algorithmic strategies in a recent Kaggle RPS tournament highlight this dynamic: https://www.kaggle.com/c/rock-

paper-scissors (accessed on 13 July 2021).
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