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Abstract: We study the criminal networks that will emerge in the long run when criminals are neither
myopic nor completely farsighted but have some limited degree of farsightedness. We adopt the
horizon-K farsighted set to answer this question. We find that in criminal networks with n criminals,
the set consisting of the complete network is a horizon-K farsighted set whenever the degree of
farsightedness of the criminals is larger than or equal to (n− 1). Moreover, the complete network
is the unique horizon-(n− 1) farsighted set. Hence, the predictions obtained in case of completely
farsighted criminals still hold when criminals are much less farsighted.

Keywords: limited farsightedness; stability; criminal networks

JEL Classification: A14; C70; D20

1. Introduction

There is empirical evidence suggesting that peer effects and the structure of social
interactions matter strongly when explaining an individual’s own criminal or delinquent
behavior. (See Patacchini and Zenou [1], among others.) A criminal’s place in the network
and his know-how regarding the crime business of his partners determine his criminal
opportunities and constraints, as well as his information on these opportunities and
constraints. It is, therefore, crucial to understand how such criminal networks are formed
and structured, and how they evolve and perform.

Different ways of characterizing which network structures are stable have been pro-
posed in the literature, depending on whether (and how far) agents anticipate that their
action may also induce others to change the network relations that they maintain. (Mauleon
and Vannetelbosch [2] provide a comprehensive overview of the solution concepts for
solving network formation games.) The notion of a pairwise stable network, introduced
by Jackson and Wolinsky [3], assumes that agents are able to modify the network one link
at a time, and can choose to change the network if the resulting network implies higher
payoffs for the deviating agents. As such, pairwise stability involves fully myopic agents
in the sense that they do not anticipate that others might react to their actions. At the
other end of the spectrum, a number of solution concepts involve perfectly farsighted
agents, i.e., agents that fully anticipate the complete sequence of reactions that results from
their own actions in the network. However, this assumption of perfect farsightedness,
especially when the number of agents becomes large, requires a very high level of foresight
on behalf of the agents. Kirchsteiger, Mantovani, Mauleon and Vannetelbosch [4] provide
experimental evidence suggesting that subjects are consistent with an intermediate rule
of behavior, which can be interpreted as a form of limited farsightedness. Agents only
anticipate a limited number of reactions by the other agents in response to the actions they
take themselves. (Similar experimental evidence for limited farsightedness is found in
van Dolder and Buskens [5]). In this paper, we study the criminal networks that agents
form when criminals are neither fully myopic nor completely farsighted, but have some
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limited degree of farsightedness. In other words, we show how the predictions about stable
criminal networks relate to the degree of farsightedness.

There is a large literature on the economics of crime. Calvo-Armengol and Zenou [6]
provide a network analysis of criminal behavior. They develop a model where criminals
compete with each other in criminal activities but benefit from being friends with other
criminals by improving their knowledge of the crime business. Individuals decide first
whether to work or to become a criminal, and then they choose the crime effort to exert
provided of being a criminal. (Calvo-Armengol and Zenou [6] mostly focus on cases
where the network is exogenously given. They show that multiple equilibria with different
members of active criminals and levels of involvement in crime business may coexist.)
Ballester, Calvo-Armengol and Zenou [7] develop a criminal network game where each
delinquent decides how much delinquency effort to exert. The network is determined
endogenously by allowing players to join the labor market instead of committing criminal
activities. They find that the optimal enforcement policy consists of removing some key
player or some key group. Such a policy is complex, since it depends both on the wage
and on the network. Indeed, the removal of some players may induce further voluntary
moves from other players, who now find it profitable to leave their criminal activities and
join the labor market. (See also, Bezin, Verdier and Zenou [8] and Lee, Liu, Patacchini and
Zenou [9]).

In this paper, we present a simplified version of the model of Calvo–Armengol and
Zenou [6], which places emphasis on the formation of links and keeps the players’ level
of criminal activities fixed. For simplicity, we also keep the wage in the labor market
low enough, in Calvo-Armengol and Zenou’s model, that all individuals prefer to be-
come a criminal, whatever the social network connecting the criminals. By doing so, we
study the networks that will be formed when criminals have the discretion to choose
their connections.

Herings, Mauleon and Vannetelbosch [10] introduce the notion of a pairwise farsight-
edly stable set to study the networks that will be formed by farsighted players. (Other
approaches to farsightedness in network formation are suggested by the work of Chwe [11],
Xue [12], Herings, Mauleon and Vannetelbosch [13], Mauleon and Vannetelbosch [14],
Dutta, Ghosal and Ray [15], Page, Wooders and Kamat [16], Page and Wooders [17],
Mauleon, Vannetelbosch and Vergote [18], and Ray and Vohra [19]). Herings, Mauleon
and Vannetelbosch [10] analyze a simplified version of the criminal network model of
Calvo-Armengol and Zenou [6], and find that, in criminal networks with three players,
there may be several pairwise stable networks, but the set consisting of the complete
network, where all criminals are linked to each other, is the unique, pairwise, farsightedly
stable set. Moreover, they show that the complete network is a pairwise farsightedly stable
set for any number of players.

Which criminal networks will emerge in the long run when criminals have a limited
degree of farsightedness? We adopt the horizon-K farsighted set of Herings, Mauleon and
Vannetelbosch [20] to answer this question. This paper constitutes the first application of
this concept and demonstrates its tractability.

A horizon-K farsighted set of networks identifies the networks that emerge in the
long run when players have a reasoning horizon equal to K. It is defined as the smallest
set of networks, so that there are no deviations by the players to networks outside the
set, whereas it is possible to reach at least one network in the set from any initial network.
Herings, Mauleon and Vannetelbosch [20] show that a horizon-K farsighted set always
exists, and provide easy-to-verify conditions that must be reached for a set of networks
to be a horizon-K farsighted set. When K is equal to 1, the concept is identical to the
pairwise myopically stable set introduced by Herings, Mauleon and Vannetelbosch [10].
(The myopic stable set of Demuynck, Herings, Saulle, and Seel [21] generalizes the pairwise
myopically stable set to a large class of social environments, and shows how it unifies
the most important concepts of non-cooperative game theory, such as Nash equilibrium,
and cooperative game theory, such as the core.) In that case, it consists of the pairwise
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stable networks of Jackson and Wolinsky [3], as well as the closed cycles of Jackson and
Watts [22]. The value of K reflects the reasoning horizon of the players, and when K tends
towards infinity, we reach the limit case of the farsightedly stable set of Herings, Mauleon
and Vannetelbosch [10].

Although a horizon-K farsighted set may consist of multiple networks, in our appli-
cation to criminal networks, the complete network, where all criminals are connected to
each other, constitutes a horizon-K farsighted set consisting of a single network whenever
the reasoning horizon of a criminal is at least equal to the number of other criminals.
When the reasoning horizon of the criminals is exactly equal to this number, then this is
the unique horizon-K farsighted set. Such a uniqueness result is striking in the literature
on networks, which has provided many examples where a large multiplicity of stable
networks is obtained. For example, in both the connections and co-author model in Jackson
and Wolinsky [3], there are multiple pairwise stable networks for reasonable specifications
of the parameter values.

Hence, we can obtain a very sharp prediction for intermediate degrees of farsight-
edness (i.e., a degree of farsightedness equal to n− 1), and show that a limited degree of
farsightedness (i.e., at least n− 1) is sufficient to recover the predictions obtained in the
case of completely farsighted criminals. The robustness of the complete network, compared
to the other pairwise stable networks, for intermediate degrees of farsightedness reveals
the importance of knowing the degree of farsightedness of criminals in order to determine
which criminal networks are likely to emerge in the long run. The adequate policy to
reduce crime when facing a symmetric, highly connected network, such as the complete
network, could differ from the policy which is needed to reduce crime in a different type of
network. Patacchini and Zenou [1] investigate whether weak ties (friends of friends) play
an important role in providing information about crime. Individuals can have strong and
weak ties, and can learn about crime opportunities through these. They find that increasing
the percentage of weak ties increases the crime rate in the economy. They conclude that an
effective policy should be measured by both the possible crime reduction it implies and the
group interaction it engenders. This result confirms that better knowledge of the degree of
farsightedness of criminals is, therefore, important in determining which criminal networks
are likely to emerge, and how to implement adequate delinquency-reducing policies.

Recently, Lindquist and Zenou [23] present a selective review of several key network
studies and findings from the crime literature. They argue that the economic approach pro-
viding network-based policies is a valuable complement to the more traditional approach
that focuses on the observed structure of the network. The economic approach allows for
a comparison of the effectivity of group-based policies (e.g., changing the group norm)
versus individual-based policies (e.g., targeting), and when targeting is more appropriate,
it specifies who policy-makers should target in order to generate the greatest reduction
in crime. Arresting key individuals may dismantle non-hierarchical crime structures, de-
scribed as loose associations of independent contractors or brokers (such as some Canadian
car theft associations and some criminal organizations of human smuggling from China to
the United States), but identifying and arresting key groups may be necessary to dismantle
strongly hierarchical crime structures (such as the Mafia, where leaders are well-connected)
or gangs of well-connected criminals with a high degree of centrality (i.e., a complete
network). Hence, once criminals have limited farsightedness, groups of well-connected
criminals (such as the Mafia and some types of gang) would emerge. When this is the case,
instead of targeting key criminals, group-based policies that make it difficult for criminals
to establish mutual links should be implemented.

The paper is organized as follows. In Section 2, we introduce some notations and
basic properties of criminal networks. In Section 3, we define the notion of a horizon-K
farsighted set. In Section 4, we identify the horizon-K farsighted set of criminal networks.
Finally, in Section 5, we conclude.
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2. Criminal Networks

Let N = {1, . . . , n} be the finite set of criminals. Throughout the paper, we assume
that n ≥ 3. A criminal network g is simply a list of which pairs of criminals are linked to
each other, and ij ∈ g indicates that i and j are linked under g. The complete network of the
set of criminals S ⊆ N is denoted by gS and is equal to the set of all subsets of S of size 2.
(Throughout the paper, we use the notation ⊆ for weak inclusion and  for strict inclusion.
Finally, the notation # is used for the cardinality of a set.) It follows that the empty network
is denoted by g∅. Let g|S = {ij ∈ g | i, j ∈ S} be the network found by deleting all links
from g, except those between players in S. The set of all possible networks or graphs on
N is denoted by G, and consists of all subsets of gN . The cardinality of G is denoted by
n′ = 2n(n−1)/2.

The network obtained by adding a link ij to network g is denoted by g + ij, and the
network that results from deleting link ij from network g by g− ij. Let N(g) = {i ∈ N |
∃j ∈ N, such that ij ∈ g} is the set of criminals who have at least one link in the network g.
A path in a network g ∈ G between criminals i and j of length K ≥ 1 is a finite sequence of
criminals i0, . . . , iK with i0 = i and iK = j, such that for any k ∈ {0, . . . , K− 1}, ikik+1 ∈ g,
and such that each criminal in the sequence i0, . . . , iK is distinct. A network g is connected
if, for each pair of criminals i and j in N(g), such that i 6= j there is a path between i and j in
g. A non-empty network h ⊆ g is a component of g if h is connected and for any i ∈ N(h)
and j ∈ N(g), ij ∈ g implies ij ∈ h. The set of components of g is denoted by C(g). By
knowing the components of a network, we can partition the criminals into maximal groups
within which criminals are connected. Let P(g) denote the partition of N into components
and singletons induced by the network g. That is, the set S of players belongs to P(g) if,
and only if, either there is network h in C(g), such that S = N(h), or there exists i /∈ N(g),
such that S = {i}.

Next, we present a simplified version of the Calvo-Armengol and Zenou model [6].
Given some criminal networks g, the elements of P(g) are called criminal groups. Each
criminal group S has a positive probability πS(g) of winning the loot B > 0. It is assumed
that the bigger the criminal group, the higher its probability of obtaining the loot. This
assumption captures the idea that delinquents learn from other criminals belonging to the
same group regarding how to commit crime in a more efficient way, by sharing know-how
on the technology of crime. We assume that the probability of winning the loot is given by
πS(g) = #S/n.

The network architecture determines how the loot is shared among the criminals in
the group. Consider some criminal i ∈ N and let S ∈ P(g) be the criminal group i which
belongs to. Let di(g) denote the degree of criminal i in g; i.e., the number of links criminal i
has in g. We define ci(g) = maxj∈S dj(g) as the maximum degree in this criminal group.
A criminal i who is part of a group S ∈ P(g) expects a share αi(g) of the loot given by

αi(g) =

{
1

#{j∈S|dj(g)=cj(g)} , if di(g) = ci(g),

0, otherwise.

That is, within each criminal group, the criminal that has the highest number of links
gets the loot. If two or more criminals have the highest number of links, then they share
the loot equally among them.

Criminal i has a probability qi(g) of being caught. It is assumed that the higher the
number of links a criminal has, the lower his individual probability of being caught. We
assume that the probability of being caught is simply given by

qi(g) =
n− 1− di(g)

n
.

In case a criminal is caught, a fraction φ of his personal gains from crime are seized.
We require φ < n/(n− 1) to guarantee that expected payoffs are positive for a criminal
with the highest degree in his group.
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The total payoffs of criminal i belonging to criminal group S ∈ P(g) are, therefore,
equal to

Yi(g) = πS(g)αi(g)(1− qi(g)φ)B (1)

=

{
#S
n

1
1 #{j ∈ S | dj(g) = ci(g)}(1− n−1−di(g)

n φ)B, if di(g) = ci(g),
0, otherwise.

3. Horizon-K Farsighted Set

To determine the criminal networks that emerge in the long run when criminals
are neither fully myopic nor completely farsighted, but have some limited degree of
farsightedness, we use the horizon-K farsighted set as introduced by Herings, Mauleon
and Vannetelbosch [20]. In this section, we provide a formal definition of this concept in
Definition 3, state a useful result to determine whether a set of networks is a horizon-K
farsighted set and establish the uniqueness of a horizon-K farsighted set in Theorem 1.

A farsighted improving path of length K ≥ 1 from a network g to a network g′

is a finite sequence of networks g0, . . . , gK with g0 = g and gK = g′ such that for any
k ∈ {1, . . . , K − 1} either (i) gk+1 = gk − ij for some ij, such that Yi(gK) > Yi(gk) or
Yj(gK) > Yj(gk), or (ii) gk+1 = gk + ij for some ij, such that Yi(gK) > Yi(gk) and Yj(gK) ≥
Yj(gk). If there exists a farsighted improving path of length K from g to g′, then we write
g →K g′. For a given network g and some K′ ≥ 1, let fK′(g) be the set of networks
that can be reached from g by a farsighted improving path of length K ≤ K′. That is,
fK′(g) = {g′ ∈ G | ∃K ≤ K′ such that g →K g′}. Let f∞(g) = {g′ ∈ G | ∃K ∈ N such
that g→K g′} denote the set of networks that can be reached from g by some farsighted
improving path. Lemma 1 in Herings, Mauleon and Vannetelbosch [20] shows that, for
every K ≥ 1, for every g ∈ G, it holds that fK(g) ⊆ fK+1(g), and that for K ≥ n′ − 1,
for every g ∈ G, it holds that fK(g) = fK+1(g) = f∞(g).

An important concept in the analysis of networks is the one of pairwise stability,
as was introduced in Jackson and Wolinsky [3]. A network g ∈ G is pairwise stable if
(i) for every ij ∈ g, Yi(g) ≥ Yi(g − ij) and Yj(g) ≥ Yj(g − ij), and (ii) for every ij /∈ g,
if Yi(g) < Yi(g + ij), then Yj(g) > Yj(g + ij). We say that a network g′ is adjacent to g
if g′ = g + ij or g′ = g− ij for some ij. A network g′ defeats g if either g′ = g− ij and
Yi(g′) > Yi(g) or Yj(g′) > Yj(g), or if g′ = g + ij with (Yi(g′), Yj(g′)) > (Yi(g), Yj(g)).
(We use the notation (Yi(g′), Yj(g′)) > (Yi(g), Yj(g)) for Yi(g′) ≥ Yi(g) and Yj(g′) ≥ Yj(g)
with at least one inequality holding strictly, (Yi(g′), Yj(g′)) ≥ (Yi(g), Yj(g)) for Yi(g′) ≥
Yi(g) and Yj(g′) ≥ Yj(g), and (Yi(g′), Yj(g′)) � (Yi(g), Yj(g)) for Yi(g′) > Yi(g) and
Yj(g′) > Yj(g).) A network is pairwise stable if, and only if, it is not defeated by another
network. It is also easy to see that g′ ∈ f1(g) if and only if g′ defeats g. We can, therefore,
define the pairwise stable networks P1 as those g ∈ G, for which f1(g) = ∅. For K ≥ 1, let
PK = {g ∈ G | fK(g) = ∅} denote the set of horizon-K pairwise stable networks. (Jackson [24]
defines a network as farsightedly pairwise stable if there is no farsighted improving
path emanating from it. This concept reverts to P∞ and refines the set of pairwise stable
networks.) Clearly, if K′ > K, then PK′ ⊆ PK. For values of K above 1, the use of PK as a
solution concept suffers from a number of drawbacks. Not only are these sets often empty,
at a more fundamental level, they are problematic as a solution concept as they allow for
deviations to networks that are not stable themselves, and do not ultimately result in a
stable network.

A refinement of pairwise stability is obtained when we require the network g to defeat
every other adjacent network, so g ∈ f1(g′) for every network g′ adjacent to g. We call such
a network g pairwise dominant. For K ≥ 1, a network g ∈ G is horizon-K pairwise dominant
if, for every g′ adjacent to g, it holds that g ∈ fK(g′). The set of horizon-K pairwise dominant
networks is denoted by DK.

The set f 2
K(g) = fK( fK(g)) = {g′′ ∈ G | ∃g′ ∈ fK(g) such that g′′ ∈ fK(g′)} consists

of those networks that can be reached by a composition of two farsighted improving paths
of length, at most K from g. We extend this definition and, for m ∈ N, we define f m

K (g)
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as those networks that can be reached from g by means of m compositions of farsighted
improving paths of a length of, at most, K. Let f ∞

K denote the set of networks that can be
reached from g by means of any number of compositions of farsighted improving paths of
length at most K. Lemma 2 in Herings, Mauleon and Vannetelbosch [20] shows that, for
every K ≥ 1, and for every g ∈ G, it holds that f ∞

K (g) ⊆ f ∞
K+1(g), and that for K ≥ n′ − 1,

for every g ∈ G, it holds that f ∞
K (g) = f ∞

K+1(g) = f ∞
∞ (g).

Jackson and Watts [22] have defined the notion of a closed cycle. A set of networks
C is a cycle if, for any g′ ∈ C and g ∈ C \ {g′}, there is a sequence of improving paths
of length 1, connecting g to g′, i.e., g′ ∈ f ∞

1 (g). A cycle C is a maximal cycle if it is not a
proper subset of a cycle. A cycle C is a closed cycle if f ∞

1 (C) = C, so there is no sequence
of improving paths of length 1 starting at some network in C and leading to a network
that is not in C. A closed cycle is necessarily a maximal cycle. For every pairwise stable
network g ∈ P1, the set {g} is a closed cycle. The set of networks belonging to a closed
cycle is non-empty.

The notion of a horizon-K farsighted set is based on two main requirements: horizon-K
deterrence of external deviations and horizon-K external stability.

A set of networks G satisfies the horizon-K deterrence of external deviations if all
possible deviations from any network g ∈ G to a network outside G are deterred by a threat
of ending worse-off or equally well-off. (We use the notational convention that f−1(g) = ∅
for every g ∈ G.)

Definition 1. For K ≥ 1, a set of networks G ⊆ G satisfies horizon-K deterrence of external
deviations if for every g ∈ G,

(a) ∀ ij /∈ g such that g + ij /∈ G,
∃g′ ∈ [ fK−2(g + ij) ∩ G] ∪ [ fK−1(g + ij) \ fK−2(g + ij)] such that
(Yi(g′), Yj(g′)) = (Yi(g), Yj(g)) or Yi(g′) < Yi(g) or Yj(g′) < Yj(g),

(b) ∀ ij ∈ g such that g− ij /∈ G,
∃g′, g′′ ∈ [ fK−2(g− ij) ∩ G] ∪ [ fK−1(g− ij) \ fK−2(g− ij)] such that
Yi(g′) ≤ Yi(g) and Yj(g′′) ≤ Yj(g).

Condition (a) in Definition 1 captures the addition of a link ij to a network g ∈ G,
which leads to a network g + ij outside of G, is deterred by the threat of ending in g′. Here,
g′ is such that either there is a farsighted improving path of length smaller than or equal
to K− 2, from g + ij to g′, and g′ belongs to G, or there is a farsighted improving path of
length equal to K − 1 from g + ij to g′, and there is no farsighted improving path from
g + ij to g′ of smaller length. Condition (b) is a similar requirement, but for the case where
a link is severed. (Since the degree of farsightedness of players is equal to K, Herings,
Mauleon and Vannetelbosch [20] distinguish farsighted improving paths of length less
than or equal to K− 2 after a deviation from g to g + ij, and farsighted improving paths of
length equal to K− 1. In the former case, the reasoning capacity of the players is not yet
reached, and the threat of ending in g′ is only credible if it belongs to the set G. In the latter
case, the only way to reach g′ from g requires K steps of reasoning or even more; one step
in the deviation to g + ij and at least K− 1 additional steps in any farsighted improving
path from g + ij to g′. Since this exhausts the reasoning capacity of the players, the threat
of ending in g′ is credible, irrespective of whether it belongs to G or not.)

A set of networks G satisfies horizon-K external stability if, from any network outside
of G, there is a sequence of farsighted improving paths of lengths smaller than or equal to
K, leading to some network in G.

Definition 2. For K ≥ 1, a set of networks G ⊆ G satisfies horizon-K external stability if, for
every g′ ∈ G \ G, f ∞

K (g′) ∩ G 6= ∅.
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This requirement implies that if we allow players with a degree of farsightedness equal
to K to successively create or delete links, they will ultimately reach the set G irrespective
of the initial network.

Definition 3. For K ≥ 1, a set of networks GK ⊆ G is a horizon-K farsighted set if it is a minimal
set satisfying horizon-K deterrence of external deviations and horizon-K external stability.

Herings, Mauleon, and Vannetelbosch [20] prove that a horizon-K farsighted set of
networks exists. For K = 1, Theorem 3 of Herings, Mauleon, and Vannetelbosch [20] show
that there is a unique horizon-1 farsighted set consisting of all networks that belong to a
closed cycle. This result does not carry over to higher levels of K.

As shown by Herings, Mauleon, and Vannetelbosch [20], the collection of horizon-K
farsighted sets is independent of K when K ≥ n′ + 1. Moreover, for every pairwise far-
sightedly stable set G∞ defined by Herings, Mauleon and Vannetelbosch [10], there is a
set G′ ⊆ G∞ such that G′ is a level-(n′ + 1) farsighted set. (Herings, Mauleon and Van-
netelbosch [10] define a pairwise farsightedly stable set as a set G∞ of networks satisfying
horizon-∞ deterrence of external deviations and minimality, but with horizon-∞ external
stability replaced by the requirement that, for every g′ ∈ G \ G∞, f∞(g′) ∩ G∞ 6= ∅.)

The following theorem of Herings, Mauleon and Vannetelbosch [20] will be used in
the next section to identify the horizon-K farsighted set of criminal networks.

Theorem 1 (Herings, Mauleon and Vannetelbosch [20]). Consider some K ≥ 2. If g ∈ DJ
for some J < K and for every g′ ∈ G \ {g}, it holds that g ∈ f ∞

K (g′), then {g} is a horizon-K
farsighted set. If, moreover, g ∈ PK, then {g} is the unique horizon-K farsighted set.

Theorem 1 requires that g ∈ DJ for some J < K, so we have to show that g ∈ f J(g′)
for all g′ adjacent to g. The higher J, the weaker this requirement, so we could replace the
requirement g ∈ DJ for some J < K by g ∈ DK−1. To show that g ∈ f ∞

K (g′) for all g′ 6= g,
we have to find a sequence of farsighted improving paths of K at most, which connect
g′ to g. Very often, the analysis of farsighted improving paths of small lengths is already
sufficient. The higher K, the easier it is to satisfy the conditions of Theorem 1 and to find
a singleton horizon-K farsighted set. it ic necessary, to show that g ∈ PK requires that
fK(g) = ∅. This requirement is more difficult to satisfy for increasing values of K.

4. Horizon-K Farsighted Set of Criminal Networks

Throughout this section, we assume n ≥ 3. Figure 1 presents the pay-offs for three-
player criminal networks with B = 9 and φ = 1 in expression (1). Table 1 shows the
farsighted improving paths for the different possible values of K. It can be verified that the
farsighted improving paths for the three-player case do not depend on the specific choices
for B and φ.
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Table 1. The elements of fK(g) \ {g} for 3-player criminal networks with B = 9 and φ = 1.

g f1(g) f2(g) fK(g), K ≥ 3

g0 g1, g2, g3 g1, g2, g3 g1, g2, g3, g7

g1, g2, g3 g7 g7

g4 g1, g2, g7 g1, g2, g7 g1, g2, g3, g7

g5 g1, g3, g7 g1, g3, g7 g1, g2, g3, g7

g6 g2, g3, g7 g2, g3, g7 g1, g2, g3, g7

g7

For the three-player case, we compute the closed cycles and use Theorem 3 in Herings,
Mauleon and Vannetelbosch [20] to conclude that G1 = P1 = {g1, g2, g3, g7} is the horizon-
1 farsighted set, so G1 consists of all pairwise stable networks. There are many networks
that are stable when players are myopic.

For K ≥ 2, we apply Theorem 1 to show that GK = {g7} is the unique horizon-K
farsighted set. It holds that g7 ∈ D1 and g7 ∈ f ∞

2 (g) for every g 6= g7, so {g7} is a horizon-K
farsighted set. Since g7 ∈ PK, it follows from Theorem 1 that {g7} is the unique horizon-K
farsighted set. If criminals behave myopically, they may not go beyond forming a single
link in the three player case. However, with a degree of farsightedness of at least 2, the
complete criminal network emerges as the unique prediction.

The remainder of this section is devoted to the analysis of criminal networks with a
general number n of players. As in the three-criminal case, there are many networks that
are pairwise stable in the n-person case. The complete network is easily verified as pairwise
stable. The generalization of the networks g1, g2, and g3 for the three-criminal case to the
n-criminal case would be any network consisting of complete components, where no two
components have the same degree. However, any network with a single component where
all players have a degree at least equal to two, and one player has a degree that is at least
two times higher than the degree of any other player, is pairwise stable.

We will next argue that {gN} is a horizon-K farsighted set whenever K ≥ n− 1.
We first show that the complete network is pairwise dominant.

Lemma 1. For criminal networks, it holds that gN ∈ D1.

Proof. Consider the network gN − ij for some ij. It holds that

di(gN − ij) = dj(gN − ij) < ci(gN − ij) = cj(gN − ij),

so
Yi(gN − ij) = Yj(gN − ij) = 0 < Yi(gN) = Yj(gN),

and gN ∈ f1(gN − ij). We have shown that gN ∈ D1.

We show next that the complete network can be reached from any starting network
by repeated application of, at most, n− 1 degrees of farsightedness.

Lemma 2. For criminal networks it holds for every g ∈ G \ {gN} that gN ∈ f ∞
n−1(g).

Proof.
Step 1. If g has a component which is not complete, then there is g′ ∈ fn−1(g), such that
g ( g′.

Let S ∈ P(g) be a criminal group, such that some internal links are missing, g|S 6= gS.
If, for every i ∈ S, it holds that di(g) = ci(g), so all players in S have the same

degree, then any two unlinked players i and j in S create a link to form the network
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g + ij and improve their payoffs, since the increase in their degree increases the share in
the loot and lowers the probability of being caught for both players, αi(g + ij) > αi(g),
αj(g + ij) > αj(g), qi(g + ij) < qi(g), and qj(g + ij) < qj(g), so Yi(g + ij) > Yi(g) and
Yj(g + ij) > Yj(g). We have that g→1 g + ij, so clearly g + ij ∈ fn−1(g).

If the players in S do not all have the same degree, let i ∈ S be a player with di(g) =
ci(g). If ci(g) < #S − 1, then Player i links with any Player j, such that ij /∈ g to form
the network g + ij. It holds that Yi(g + ij) > Yi(g) > 0, since αi(g + ij) ≥ αi(g) and
qi(g + ij) < qi(g), whereas Yj(g + ij) ≥ Yj(g). We have that g →1 g + ij, so clearly
g + ij ∈ fn−1(g).

If the players in S do not all have the same degree and there is a player in S with
degree #S− 1, then let i ∈ S be a player with di(g) < #S− 1. Player i consecutively links
to all players j ∈ S, such that ij /∈ g, thereby forming a network g′, where he has degree
#S− 1. The payoffs of Player i are, in every step, equal to Yi(g) = 0 until the final step,
where his payoffs increase to Yi(g′) > 0. Every player j that i links to has a degree below
#S− 1 and, therefore, payoffs equal to 0 ≤ Yj(g′). We have that g′ ∈ f#S−2(g) ⊆ fn−1(g)
by Lemma 1 in Herings, Mauleon and Vannetelbosch [20].

Step 2. If all components of g are complete and g 6= gN , then there is g′ ∈ fn−1(g),
such that g ( g′.

The assumptions of Step 2 imply that g consists of at least two criminal groups. Let S1

and S2 be two criminal groups in P(g).
If #S1 = #S2, then form a link between a Player i ∈ S1 and a Player j ∈ S2. Since

qi(g) > qi(g + ij), we have that

Yi(g) =
1
n
(1− qi(g)φ)B <

#S1

n
(1− qi(g + ij)φ)B = Yi(g + ij).

By the same calculation, it follows that Yj(g) < Yj(g + ij), so g→1 g + ij, and, there-
fore, g + ij ∈ fn−1(g).

Otherwise, it holds, without loss of generality, that #S1 < #S2. Select some player
i ∈ S1 and a set J consisting of #S2 + 1− #S1 players in S2, who are consecutively linked
to Player i to form network g′. The resulting finite sequence of networks is denoted
g0, . . . , gK with g0 = g and gK = g′. Notice that K ≤ n − 1. We next show that, for
every k ∈ {0, . . . , K − 1}, (Yi(gk), Yjk (gk)) < (Yi(gK), Yjk (gK)), where jk ∈ J is such that
gk+1 = gk + ijk, thereby proving that (g0, . . . , gK) is a farsighted improving path and
completing the proof of Step 2.

For every player j ∈ J, we have

dj(gK) = di(gK) = ci(gK),

and for all other players, the degree is strictly less than ci(gK), so

Yj(gK) = Yi(gK) =
#S1 + #S2

n
1

#S2 + 2− #S1 (1− qi(gK)φ)B.

For k = 0, we have

Yi(g0) =
1
n
(1− qi(g)φ)B < Yi(gK),

Yj0(g0) =
1
n
(1− qj0(g)φ)B < Yj0(gK),

where we use qi(g0) > qi(gK) and qj0(g0) > qj0(gK) to obtain the strict inequalities.
For k = 1, . . . , K − 1, it holds that Player i is connected to Player j0, so di(gk) <

dj0(gk) = ci(gk), so αi(gk) = 0 and 0 = Yi(gk) < Yi(gK). Similarly, it holds that Player jk
is connected to Player j0, so djk (gk) < dj0(gk) = cjk (gk), so αjk (gk) = 0 and 0 = Yjk (gk) <
Yjk (gK).

Step 3. For every g ∈ G \ {gN}, it holds that gN ∈ f ∞
n−1(g).
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By combining the results of Step 1 and Step 2, we have that for every g ∈ G \ {gN},
there is g′ ∈ fn−1(g) with strictly more links than g. Since the complete network gN has
n(n− 1)/2 links, we find that gN ∈ f n(n−1)/2

n−1 (g) ⊆ f ∞
n−1(g).

Using Theorem 1, we now prove that the complete network {gN} is a horizon-K
farsighted set for every K ≥ n − 1. (Herings, Mauleon and Vannetelbosch [10] show
that, in the example of criminal networks with n players, the complete network {gN} is a
pairwise farsightedly stable set.) Notice that the level of farsightedness needed to sustain
the complete network {gN} is quite small when compared to the number of potential
networks and the maximum length of paths. (Once the network connecting delinquents is
endogenous, Calvo-Armengol and Zenou [6] find that all complete networks, where all
players in the pool of criminals are linked to each other, are pairwise stable. Notice that the
size of the pool of criminals depends on the wage on the labor market.)

Theorem 2. For criminal networks, it holds that {gN} is a horizon-K farsighted set for every
K ≥ n− 1.

Proof. By Lemma 1 we have that gN ∈ D1. By Lemma 2 we have that for every g′ ∈
G \ {gN} it holds that gN ∈ f ∞

n−1(g′) ⊆ f ∞
K (g′), where the inclusion follows from Lemma 2

in Herings, Mauleon and Vannetelbosch [20]. We are now in a position to apply Theorem 1
and conclude that {gN} is a horizon-K farsighted set.

How about the uniqueness of {gN} as a horizon-K farsighted set? It is tempting to
use the approach of Theorem 1 and show such a result by proving that gN ∈ PK. However,
consider the case with six players and let g′ = gN − 16− 26− 35− 45. For any value of
B and φ, (We maintain the assumption that φ < n/(n− 1).) we claim that g′ ∈ f12(gN),
so gN /∈ P12. Since the network g′ is connected, d1(g′) = d2(g′) = d3(g′) = d4(g′) = 4,
and d5(g′) = d6(g′) = 3, it holds for any i ∈ {1, 2, 3, 4} that Yi(g′) = (1/4− φ/24)B >
B/6 = Yi(gN) and for any j ∈ {5, 6} that Yj(g′) = 0 < B/6 = Yj(gN). The construction of
the farsighted improving path is, however, more subtle than simply deleting links 16, 26,
35, and 45 in some order. Indeed, after the deletion of three such links, there are exactly
two players with the maximum degree and they would obtain strictly lower payoffs by
cutting their link, and would be unwilling to do so. Avoiding this problem requires more
farsightedness and involves all players in {1, 2, 3, 4}, first cutting two of their mutual links,
before severing the links with players 5 and 6, and finally restoring their mutual links. One
explicit farsighted improving path results from gN − 12− 23− 34− 41− 16− 26− 35−
45 + 12 + 23 + 34 + 41 and takes 12 steps. We have denoted the player with an incentive to
cut a link first, so −16, for instance, means that Player 1 cuts his link with Player 6, whereas
−61 would mean that Player 6 cuts his link with Player 1. It can be verified that each step
in this farsighted improving path is feasible.

We conclude this section by showing that if criminals are not too farsighted, then
gN ∈ PK, so {gN} is the unique horizon-K farsighted set. More precisely, we will now
consider K = n− 1. We show first that any network in fn−1(gN) has a single component
involving all players.

Lemma 3. For criminal networks it holds for every g′ ∈ fn−1(gN) that P(g′) = {N}.

Proof. Consider the criminal group S of Player 1 in g′. We show that it contains all players.
Suppose it contains only s ≤ n− 1 players. Then, starting from gN , those s players have
to cut all their links with all other players in N \ S. This involves at least s(n− s) steps.
For a fixed n, the concavity of s(n− s) in s implies that s(n− s) is minimized at s = 1 or
s = n− 1. Substitution of these values of s shows the minimum to be equal to n− 1 at
both s = 1 and s = n− 1. When the s players cut all their links with all other players
in N \ S, all the players in N are strictly worse off, since the probability of being caught
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has strictly increased and the probability of winning the loot has decreased, contradicting
g′ ∈ fn−1(gN).

We show next that the complete network gN is horizon-(n− 1) pairwise stable.

Lemma 4. For criminal networks, it holds that gN ∈ Pn−1.

Proof. Suppose g′ is an element of fn−1(gN). Let g0, . . . , gK with g0 = gN and gK = g′

be a farsighted improving path of length K ≤ n− 1. By Lemma 3 it holds that ci(g′) is
independent from i, so we denote it by c. Let M ⊆ N be such that i ∈ M if and only if
di(g′) = c and denote the cardinality of M by m. It cannot be that m = n, since then all
players have lower payoffs in g′ than in gN because the probability of being caught is
higher in g′ than in gN . Since by Lemma 3 g′ is connected, it follows that Yj(g′) = 0 for
all j ∈ N \M. A player j ∈ N \M will, therefore, not sever a link at any network in the
farsighted improving path g0, . . . , gK. It follows that

∑
i∈M

(n− 1− di(g′)) ≥ ∑
j∈N\M

(n− 1− dj(g′)).

Since di(g′) > dj(g′) whenever i ∈ M and j ∈ N \M, we have that m > n/2.
Since at least one link ij with i ∈ M and j ∈ N is missing in g′, it follows that the

maximum degree in g′ satisfies c ≤ n− 2.
The number K is equal to the number of times a link ij is severed with i ∈ M and

j ∈ N \M plus the number of times a link ij is cut with i, j ∈ M plus the number of link
additions. We next argue that lower bounds for these three numbers are given by 2(n−m),
2m− n− 1, and 1, respectively.

Since all players in N \M experienced the severance of at least two links, and any
such link is cut by a player in M, a lower bound for the first number is 2(n−m).

For k = 0, . . . , K, let L(gk) = {i ∈ N | di(gk) = n − 1} be the set of players with
degree n − 1 and let `(gk) = #L(gk) be its cardinality. Clearly, it holds that `(gN) = n
and `(g′) = 0. Let k′ be the lowest value of k such that `(gk) ≤ m for all k ≥ k′. Since
`(gk)− `(gk+1) ≤ 2, we find that `(gk′) = m or `(gk′) = m− 1. The sum of the cardinality
`(gk′) of L(gk′) and the cardinality m of M is, therefore, at least 2m− 1. Since there are only
n players, it follows that #(L(gk′) ∩M), the cardinality of the set of players in L(gk′) that
belong to M, is at least 2m− n− 1.

For all k ≥ k′, for all i ∈ L(gk), it holds that Yi(gk) > Yi(g′), since the loot has to be
shared with fewer or the same number of criminals, and the probability of being caught
is strictly lower when comparing gk to g′. Such a player i will, therefore, never choose to
sever a link himself, so whenever a link involving player i ∈ L(gk) is severed when going
from gk to gk+1, it must be by a player in M \ L(gk). It follows that `(gk)− `(gk+1) ≤ 1.
Since #(L(gk′) ∩M) ≥ 2m− n− 1, we find that going from gk′ to g′ involves the deletion
of at least 2m− n− 1 links ij with i, j ∈ M.

We next argue that the move from gK−1 to gK involves a link addition. Supposing
not, then there is ij with i ∈ M, such that gK = gK−1 − ij and Yi(gK) > Yi(gK−1). Since
di(gK−1) = ci(gK−1) > ci(gK) = di(gK), it follows that at gK, i has to share the loot with
more criminals and has a higher probability of being caught than at gK−1, so Yi(gK) <
Yi(gK−1), leading to a contradiction. Consequently, the move from gK−1 to gK involves a
link addition.

We have proven that K ≥ 2(n − m) + 2m − n − 1 + 1 = n, which contradicts our
original supposition that K ≤ n− 1. Consequently, it holds that fn−1(gN) = ∅.

Using Theorem 1 we now prove that the complete network {gN} is the unique horizon-
(n− 1) farsighted set.

Theorem 3. For criminal networks, it holds that {gN} is the unique horizon-(n− 1) farsighted set.
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Proof. By Lemma 1 we have that gN ∈ D1. By Lemma 2 we have that for every g′ ∈
G \ {gN} it holds that gN ∈ f ∞

n−1(g′). By Lemma 4 it holds that gN ∈ Pn−1. We are now
in a position to apply Theorem 1 and conclude that {gN} is the unique horizon-(n− 1)
farsighted set.

We have found that in criminal networks with n criminals, the set consisting of the
complete network is a horizon-K farsighted set whenever the degree of farsightedness of the
criminals is larger thanor equal to (n− 1). Moreover, the complete network is the unique
horizon-(n− 1) farsighted set. Hence, we obtain a very sharp prediction for intermediate
degrees of farsightedness (i.e., a degree of farsightedness equal to n− 1), and show that a
limited degree of farsightedness (i.e., at least n− 1) is sufficient to recover the predictions
obtained in case of completely farsighted criminals. It therefore seems important to acquire
knowledge about the degree of farsightedness of criminals, to determine which criminal
networks are likely to emerge in the long run.

A better knowledge of the structural properties of criminal networks will help in un-
derstanding the impact of peer influence on delinquent behavior and addressing adequate
and novel delinquency-reducing policies. A first line of reasoning would be that crime
could be reduced by increasing the value of the parameter φ, the fraction of the personal
gains of a criminal that are seized when the criminal is caught. On the other hand, higher
values of φ make it more costly to be caught and, as a response, criminals will establish
networks where they have higher degrees and are therefore less likely to be convicted. Our
analysis points towards the complete network as emerging in the long run, irrespective of
the value of φ. The value of φ is, therefore, completely ineffective as a policy instrument.

5. Conclusions

We study the criminal networks that will emerge in the long run when criminals are
neither fully myopic nor completely farsighted, but have some limited degree of farsighted-
ness. We adopt the horizon-K farsighted set of Herings, Mauleon and Vannetelbosch [20]
to show how the predictions regarding stable criminal networks relate to the degree of
farsightedness. A horizon-K farsighted set always exists. We find that in criminal networks
with n criminals, the set consisting of the complete network is a horizon-K farsighted set
whenever the degree of farsightedness of the criminals is larger than or equal to (n− 1).
Moreover, the complete network is the unique horizon-(n − 1) farsighted set. Hence,
a limited degree of farsightedness is sufficient to recover the predictions obtained in the
case of completely farsighted criminals.
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