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Abstract: There are many competing game-theoretic analyses of terrorism. Most of these models
suggest nonlinear relationships between terror attacks and some variable of interest. However, to
date, there have been very few attempts to empirically sift between competing models of terrorism or
identify nonlinear patterns. We suggest that machine learning can be an effective way of undertaking
both. This feature can help build more salient game-theoretic models to help us understand and
prevent terrorism.

Keywords: machine learning; terrorism; game theory

1. Introduction

Game-theoretic models of terrorism are a useful tool in understanding the interactions
between states and terrorist groups, the organization of terror groups, and the coordination
of counterterrorism efforts [1]. These models provide insights and testable hypotheses. Yet,
far too often, many of these hypotheses remain untested. Even when model-generated
hypotheses are tested, the focus is on the effect of a particular theory-generated variable
on, say, the likelihood of terrorism. This testing may explore causal channels. However,
because empirical evidence using traditional econometric channels is not organized to
check for relative salience, the importance of a correlation or even causal effect relative to
other such effects is unknown. This inability of traditional econometric techniques to check
for relative salience in an organized way makes it hard to sift among competing theoretical
models. This sort of sifting is essential for policy. A nation plagued by terrorist attacks
needs to know which theoretical model provides the largest counterterrorism impact.

Further, it is essential to know how a particular variable may affect terrorism. Game-
theoretic models have a key strength. They show comparative static or even dynamic
(particularly in evolutionary models) equilibrium shifts. Thus, variables that affect terror-
ism may do so in nonlinear ways. Traditional econometric tests focused on parametric
point estimates are not built to pick up these equilibrium shifts. Nonlinearity, of course,
can often be imposed in econometrics. However, this forces the researcher to guess where
these nonlinearities may be (squaring the variable, for example, defines a particular shape
on a relationship that may or may not be accurate).

Data problems also plague traditional econometric tests of game-theoretic models.
Terrorism is, thankfully, rare. However, empirically, this requires heroic assumptions
about the distribution of data when making inferences. Even without the rarity aspect,
hypotheses testing for significance requires assumptions about the underlying distribution
of data that are swept under the rug. Game theoretic models highlight strategic interaction
between agents, which are often endogenous. Thus, assumptions about the distribution of
data are necessary to estimate efficient and unbiased estimators. Then, there is the issue
of model specification. Model specification is often subject to a researcher’s explicit and
implicit biases. All of this contributes to charges of p hacking in academic research [2].
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We suggest that the full power of game theoretical insights can be validated by machine
learning. This is particularly important for science in cases such as the study of terrorism,
where randomized control trials are impossible or unethical. Therefore, a key contribution
of this paper is to introduce the emerging methodology of machine learning to the game-
theoretic study of terrorism that can, to a great extent, overcome the limitations of classical
regression-based methods [3].

This paper will identify a methodology to identify a robust list of factors that contribute
to an increased risk of terrorism and would inform the government on precisely what
information to monitor in order to be able to anticipate terrorist events before they occur
and would hence contribute to the design of counterterrorism policy at the strategic level.
This set of variables can be the starting point for further causal analysis [4]. Our approach
will rank variables by predictive importance. Counterterrorism policy is by definition
something whose effect happens in the future. Thus, more predictively important variables
can be better candidates for policy.

Predictively important variables are not necessarily causal. However, all causal
variables should predict. We can identify variables that do not predict well. This reduces
the likelihood that these variables are causal. Thus, theoretical models that suggest such
variables matter for terrorism are less likely to be explanations for terrorism. To the best of
our knowledge this sort of approach is new in the literature on terrorism.

Game-theoretic models predict such nonlinear relationships in comparative static
settings. We use machine learning technology to develop partial dependence plots that
let the data reveal how predictive variables affect terrorism. This feature makes machine
learning an essential vehicle for exploring nonlinear relationships between a policy variable
of interest and its effect on the likelihood of terrorism. Moreover, because our algorithms
are theory-agnostic, we can let the data speak to actual relationships that can iteratively
help us build better game-theoretic models.

We lay down some conceptual foundations about terrorism in Section 2. Section 3
describes the machine learning techniques we use. We describe our data in Section 4. We
report our results in Section 5. In Section 6 we provide examples of how our results can be
helpful for validating game theoretic models. Section 7 concludes.

2. Conceptual Foundations

The game-theoretic approach to terrorism tries to identify and deter terrorists through
a cost–benefit lens that highlights the deep interaction between attacker and defender.
Terrorism is a choice for successful rebellions (e.g., in Algeria, Israel, and Cyprus; ) [5,6].
Deterrence involves greater policing/punishment and policies to increase the opportunity
costs of terrorism at the tactical level [7,8]. However, the very act of deterrence elicits a
response [9]. For example, attackers’ and defenders’ efforts may be complementary, which
implies that improving military defense may be counterproductive [10].

The choice of terrorism is also a consequence of the nature of the target. Terrorists
will substitute away from hard targets, suggesting that piecemeal policies that focus on
some targets at the expense of others may be unproductive [11]. The nature of the target
drives even the type of terrorist attack, such that harder targets elicit more suicide attacks
in the context of a club goods model [12]. Moreover, increased military aid creates a moral
hazard problem in recipient countries who now have an incentive to have terrorists attack
them [13].

These lines of research show that terrorism is not a thing in itself; it is a tactical
choice driven by context. Further, the relationship between attackers and defenders is
constantly changing. A priori, there is no reason to believe that these changes have a
linear pattern: Enders and Hoover, for example, empirically show a nonlinear relationship
between income and terrorism [14]. However, despite the nonlinear relationships predicted
by game-theoretic attacker–defender models, most empirical tests, if any, only provide
information on the significance of point estimates. This is insufficient for policymakers
since potential underlying nonlinearities may make average point estimates unhelpful. A
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deer hunter shooting a foot to the left of the deer and a foot to the right of the deer but
claiming he shot the deer on average is correct but will go hungry.

Current empirical research has tended to identify the “correlates” of terrorism and
has largely failed to identify a consistent set of such correlations. Thus, predicting terrorist
attacks has so far mainly been speculative. Machine learning algorithms can provide
scientifically cross-validated predictions of the likelihood of a terrorist attack to provide
national security agencies with an abbreviated, cross-validated list of variables (i.e., policy
levers) that can best identify and hopefully deter terrorism. Machine learning techniques
identify the most predictive variables among those. These algorithms then identify vali-
dated data-driven relationships between a predictively important covariate of terrorism
and the likelihood of terrorism. This approach helps develop better models because they
are theoretically agnostic. This agnosticism can help sift between theoretical models—a
good model should be able to predict robustly. At the same time, predicting the likelihood
of terrorist attacks provides meaningful intelligence for preventing terrorism.

3. Machine Learning

Machine learning (ML) methods are a growing set of methods for predicting and
classifying various outcomes. These approaches have two applications: validating policy
recommendations and testing theory [15]. Policymakers need to understand the potential
effect of a policy before it is implemented, by definition, a matter of prediction. A theory,
too, must be able to predict behavior. Machine learning is not a silver bullet, but it can help
with these issues.

Further, the machine learning techniques we use do not require assumptions about the
underlying distributions of the variables and the error terms. Thus, statistical issues arising
out of problems such as endogeneity may be less relevant in these prediction models. For
example, say we can identify a highly predictive variable, say X, for terrorism. The predic-
tive value alone, shorn of endogeneity considerations, suggests that policy and academic
research should focus on understanding the relationship between X and terrorism. This
investigation would include how other variables may influence X as well. Thus, machine
learning is a good place to start an investigation as well. Just because X predicts terrorism
does not mean it is causal. However, if it is a good predictor then there must be something
about X that deserves further scrutiny. By the same token, variables that do not predict
terrorism can hardly be causal. A causal variable, by definition, should be predictive. Theo-
retical models that highlight variables that fail to predict are therefore unlikely to be good
explanations for terrorism. This logic allows us to eliminate nonpredictive variables from
consideration as casual factors. This process of reasoning provides a path for eliminating
theoretical models that are unlikely to causally explain terrorism.

From a policy perspective, predictive analysis has a more direct affect. Say the predic-
tive variable X is, upon further econometric analysis, is also found to be causal. Then, X
can potentially be a policy lever because we know X predictably causes terrorism. There-
fore, manipulating X can potentially reduce terrorism. Thus, machine learned prediction
analysis can supplement econometric techniques for policy analysis.

Everything we noted above can be done using econometrics. However, econometrics
requires assumptions about the underlying distribution of the variables. The concomitant
endogeneity and specification problems and potential solutions are both susceptible to bias
and a source of competing explanations for terrorism. For example, a particular theoretical
model might suggest an empirical link between a variable and terrorism that can be tested.
Such a test may even reveal a causal link with the right instrument. Yet, without a sense
of the predictive salience of this link relative to other competing links we can have no
idea whether this causal link is good explanation for terrorism. This is particularly an
issue for game theoretic models because these by definition highlight endogenous strategic
interactions. Machine learning models, by focusing on accurate prediction even in the
presence of endogeneity are particularly suited for the empirical investigation of game
theoretic models.
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This paper suggests that validated ML techniques can help determine whether a
particular theoretical model of terrorism has predictive salience relative to others. In the
process, we address some problems inherent in interpreting machine-learned results.

We will build an empirical model using several parametric and nonparametric ML
techniques (classical regression, Poisson regression, artificial neural network, regression
tree, bootstrap aggregating, boosting, and random forest) to measure how and how well
publicly available economic, geographic, and institutional variables predict the frequency
and severity of terror attacks [16]. The first step in this process will be to identify the
machine learning approach that best predicts terrorism.

Next, using the best technique, we will identify the most important variables for
predicting terrorism. This process can help validate the predictive salience of a theoretical
model relative to others.

Finally, we plot the partial dependency plots for terrorism to show how each vari-
able impacts terrorism across the distribution of its values. This technique is important
because game-theoretic analysis gives us reason to believe that many of the correlates of
terrorism have nonlinear impacts. Partial dependence plots also help us interpret results
more meaningfully.

ML techniques identify tipping points in the range of a particular variable that may
place a country at a lower or higher risk of terrorism. We illustrate these tipping points
using partial dependence plots, which show how the incidence and severity of terror attacks
fluctuate across each variable’s observed values. Further, by identifying the variables that
have the most predictive power, we could help develop a framework to distinguish between
competing theoretical explanations of terrorism. Suppose, for instance, political models of
terrorism may suggest that terrorism may be a tactic employed by disenfranchised groups
with little or no voice in government. In contrast, economic models may suggest that groups
employ terrorism as a signal of credibility to gain a seat at the negotiating table against
the regime when it divvies up rents from resource wealth. Suppose ML methodologies
rank democracy as a better predictor of terrorism than primary commodities exports, for
example. In that case, we can assume that the political model may be a better explanation
of terrorism than the economic model, or vice versa. Moreover, this approach can eliminate
correlates of conflict that do not predict terrorism. Presumably, correlates that do not
predict well cannot be considered as variables that cause terrorism. Such culling also helps
build better specified and more precise models.

Our ML approach will help us better understand causal patterns explaining terrorism.
Moreover, we offer a better understanding of how to predict terrorism, which will help
policymakers design counterterrorist policies. The remainder of this section outlines the
prediction algorithms we use to predict the aggregate terror risk for a country. Readers
who are familiar with these algorithms—or will be bored by a technical description of
them!—may skip to the results section. Those looking for a more detailed description of
the algorithms may consult their coverage by [16].

3.1. Classical and Other Regression Analysis

Using given data from a learning sample, L = {(y1, x1), . . . (yN, xN)}, any prediction
function, d(xi), maps the vector of input variables, x, into the output variable (the number
of terror attacks), y. An effective prediction algorithm seeks to define parameters that
minimize an error function such as the mean absolute deviations or mean squared error,
over the predictions. In linear regression models, d(xi) is simply a linear function of the
inputs. A linear model with the MSE error function yields the ordinary least squares (OLS)
regression model:

ROLS(d)=
1
n ∑N

i=1(yi − d(xi))
2,

where d(xi) = xiβ is a linear function of the inputs.
Although OLS can sometimes yield good predictions (on average, the best prediction

among all linear models, in fact), it has some undesirable properties in the case of predicting
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terror attacks. Specifically, since a large number of cases in our sample experience no terror
attacks at all, while some of them experience very large numbers of attacks, we will expect
the OLS model to predict negative numbers of terror attacks for some observations—which
is nonsense.

As an alternative, one corrects this problem by estimating a Poisson regression, which
will estimate the average number of terror attacks conditional on the inputs, x, to be an
exponential function of a linear combination of the inputs expressed as:

λ = E(y|x) = eβx.

This means that the probability of observing a specific number of terror attacks will be:

p(y|x) = eyxβe−exβ

y!
.

The Poisson model then proceeds by estimating the parameters to maximize the
likelihood function for this Poisson probability distribution.

While these more sophisticated regression methods successfully purge the bias from
the individual parameter estimates that might result from overdispersion, they do so to
the detriment of the model’s overall predictive accuracy. Alternative approaches, which
ensure a relatively high degree of accuracy while also avoiding nonsensical predictions, use
nonparametric tree methods or combinations of trees to predict the number of terror attacks.

3.2. Artificial Neural Networks (ANNs)

A feedforward artificial neural network is a series of binary regression models con-
necting each of the K input variables to M hidden nodes, over which, in the case of a
regression problem such as ours (as opposed to a classification problem in the case of a
binary target variable), a linear regression connects the hidden nodes to the output we hope
to predict in the final layer. The logistic function is the usual activation function in the first
layer, but in general any sigmoid function will have the desired properties. In a regression
problem such as ours, the final layer usually contains only one output; the same is true for
classification problems involving a binary output. For classification problems involving
multinomial outputs, there can be any number of outputs. Thus, this methodology is quite
flexible. Hence, with one output node, an ANN estimates K·M parameters.

We present a diagram of a simple ANN for predicting terror attacks in Figure 1. In the
figure, each connection corresponds to a weight for each input variable (I1, . . . , I5) and bias
(constant) terms (B1 and B2) into the hidden nodes (H1 and H2), or into the output node
(O1). In the diagram, we show a two-layer neural network (the inputs do not count as a
layer) with five inputs, two hidden nodes, and a constant. The link function connecting the
hidden layer to the outputs, and which is not explicitly shown, is linear.
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Using a least-squares objective, the estimation of the ANN minimizes:

R(α, β; x) = ∑N
i=1(yi − f (α, β; xi))

2,

where f (α, β; xi) = Zβ connects the hidden layer to the output, and Z = 1
1+exp(xα)

is the
logit function connecting the inputs to the hidden layer. Using the first order conditions
with respect to the parameters for the hidden layer, α, and the parameters to the output
layer, β, the estimation finds the solution according to a gradient descent rule:

βr+1
m = βr

m −∑N
i=1

∂R
∂βr

m
− λβr

m,

where l is called the “weight decay” and acts as a penalty on the parameter and ef-
fectively restricts the parameters towards zero to avoid “overfitting” the model to the
learning sample.

ANNs often perform well in situations where the interplay between input components
is more important than any of their values. As such, they are often used in image and pat-
tern recognition problems. We estimate the network using the nnet package implemented
in R [17]. This implementation uses a single hidden layer (in which we used 100 nodes and
100 iterations). This work used all default options, save for specifying that the final layer
should be linear. The initial weights were chosen randomly, and the goal function was the
sum of the squared errors.

3.3. Regression Trees

Classification and regression trees (CART) diagnose and predict outcomes by finding
binary splits in the input variables to optimally divide the sample into subsamples with
successively higher levels of accuracy in the output variable, y. Therefore, unlike linear
models, where the parameters are linear coefficients on each input variable, the parameters
of the tree models are “if–then” statements that split the dataset according to the observed
values of the inputs. We provide only a brief summary of tree construction as it pertains to
our objectives [18].

More specifically, a tree, T, has four main parts:

1. Binary splits to splits in the inputs that divide the subsample at each node, t;
2. Criteria for splitting each node into additional “child” nodes, or including it in the set

of terminal nodes, T*;
3. A decision rule, d(x), for assigning a predicted output value to each terminal node;
4. An estimate of the predictive quality of the decision rule, d.

The first step is achieved at each node by minimizing a measure of impurity. The most
common measure of node impurity, and the one we use for our tree algorithms, is the mean
square error, denoted R̂(d)= 1

n ∑N
i=1(yi − d(xi))

2. Intuitively, this method searches for the
cutoff in each input that minimizes errors, then selecting which input yields the greatest
improvement in node impurity using its optimal splitting point.

Then, a node is declared to be terminal if one of the following conditions is met:
(1) that the best split fails to improve the node impurity by more than a predetermined
minimum improvement criterion; or (2) the split creates a “child” node that contains fewer
observations than the minimum allowed (Note that there is a tradeoff here: setting lower
values for the minimum acceptable margin of improvement or the minimum number
of observations in a child node will lead to a more accurate prediction (at least within
the sample the model uses to learn). However, improving the accuracy of the algorithm
within the sample may lead to overfitting in the sense that the model will perform more
poorly out-of-sample). At each terminal node, the decision rule assigns observations with
a predicted outcome based on some measure of centrality. In the case of count (number of
terror attacks or fatalities) or continuous (amount of property damage) outcomes, centrality
is usually the mean of the observations conditional on reaching that node.
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The predictive quality of the rule is also evaluated using the mean square error,
R̂(d)= 1

n ∑N
i=1(yi − d(xi))

2. This misclassification rate is often cross-validated by split-
ting the sample several times and re-estimating the misclassification rate each time to
obtain an average misclassification of all of the cross-validated trees.

3.3.1. Boosting Algorithms

Iteratively re-estimating or combining ensembles of trees by averaging their predic-
tions can often improve the accuracy of a tree algorithm. Boosting algorithms, bootstrap
aggregating (bagging), and random forests all predict outcomes using ensembles of classifi-
cation trees. The basic idea of these algorithms is to improve the predictive strength of a
“weak learner” by iterating the tree algorithm many times by either modifying the distri-
bution by reweighting the observations (boosting), randomly resampling a subset of the
learning sample (bagging), or randomly sampling subsets of the input variables (random
forest). These approaches then either classify the outcomes according to the outcome of
the “strongest” learner once the algorithm achieves the desired error rate (boosting), or
according to the outcome of a vote by the many trees (bagging).

Boosting has been proposed to augment the strength of a “weak learner” (an algorithm
that predicts poorly) [19,20]. Specifically, for a given distribution D of importance values
assigned to each observation in L, and for a given desired error, R̃, and failure probability,
ϕ, a strong learner is an algorithm that has a sufficiently high probability (at least 1 − ϕ)
of achieving an error rate no higher than R̃. A weak learner has a lower probability (less
than 1 − ϕ) of achieving the desired error rate. Boosting algorithms for classification create
a set of M classifiers, F = (f 1, . . . , fM) that progressively reweight the importance of each
observation based on whether the previous classifier predicted it correctly or incorrectly.
Modifications of the boosting algorithm for classification have also been developed for
regression trees [21,22].

Starting with a D1 = (1/N, . . . , 1/N), suppose that our initial classifier, f 1 = T (single-
tree CART, for example), is a “weak learner” in that the misclassification rate, R̂(d) is greater
than the desired maximum desired misclassification rate, R̃. Next, for all observations in
the learning sample, recalculate the distribution weights for the observations as:

D2 =
D1(i)

Z2
×


R̂1(d)

1−R̂1(d)
i f d1(xi) = yi

1 otherwise
,

where Zm is a scaling constant that forces the weights to sum to one.
The final decision rule for the boosting algorithm is to categorize the outcomes ac-

cording to d(x) = argmax
y∈Y

∑m:dm(x)=y log
(

1−R̂m(d)
R̂m(d)

)
. Using this decision rule and its corre-

sponding predictions, we calculate the estimate of the misclassification rate in the same
way as in step (4) of the single tree algorithm.

3.3.2. Bootstrap Aggregating (Bagging)

The bagging method proposed by [23] takes random resamples, {L(M)}, from the
learning sample with replacement to create M samples using only the observations from
the learning sample. Each of these samples will contain N observations—the same as the
number of observations in the full training sample. However, in any one bootstrapped
sample, some observations may appear twice (or more), others not at all. Note that the
probability that a single observation is selected in each draw from the learning set is
1/N. Hence, sampling with replacement, the probability that it is completely left out of
any given bootstrap sample is (1 − 1/N)N. For large samples this tends to 1/e. The
probability that an observation will be completely left out of all M bootstrap samples, then,
is (1 − 1/N)NM. The bagging method then adopts the rules for splitting and declaring
nodes to be terminal described in the previous section to build M classification trees.
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To complete steps (3) and (4), bagging needs a way of aggregating the information
of the predictions from each of the trees. The way that bagging (and, as we will soon
see, a random forest) does this for class variables is through voting. For classification
trees (categorical output variables), the voting processes each observation through all of
the M trees that was constructed from each of the bootstrapped samples to obtain that
observation’s predicted class for each tree. Note that the observations under consideration
could be from the in-sample learning set or from outside the sample (the test set). The
predicted class for the entire model, then, is equal to the mode prediction of all of the trees.
For regression trees (continuous output variables), the voting process calculates the mean of
the predicted values for all of the bootstrapped trees. Finally, the bagging calculates the
redistribution estimate in the same way as it did for the single classification tree, using the
predicted class based on the voting outcome.

3.3.3. Random Forests

Like bagging, a random forest is a tree-based algorithm that uses a voting rule to
determine the predicted class of each observation. However, whereas the bagging random-
izes the selection of the observations for each tree, a random forest may randomize over
multiple dimensions of the classifier [24]. The most common dimensions for randomizing
the trees are selecting the input variables for the node of each tree and the observations
included for constructing each of the trees. We briefly describe the construction of the trees
for the random forest ensemble below.

A random forest is a collection of tree decision rules, {d(x, Θm), m = 1, . . . , M}, where
Θm is a random vector specifying the observations and inputs that are included at each
step of the construction of the decision rule for that tree. To construct a tree, the random
forest algorithm takes to following steps:

i Randomly select n ≤ N observations from the learning sample;
ii At the “root” node of the tree, select k ∈ K inputs from x;
iii Find the split in each variable selected in (ii) that minimizes the mean square error at

that node and select the variable/split that achieves the minimal error;
iv Repeat the random selection of inputs and optimal splits in (ii) and (iii) until some

stopping criteria (minimum improvement, minimum number of observations, or
maximum number of levels) is met.

The bagging method described in the previous subsection is in fact a special case of a
random forest where, for each tree, Θm, of a random selection of n = N observations from
the learning sample with replacement (and each observation having a probability of being
selected in each draw equal to 1/N) and sets the number of inputs to select at each node, k,
equal to the full length of the input vector, K so that all of the variables are considered at
each node.

3.4. Validation and Testing of Predictive Accuracy

Once we have built our learning algorithm, the next issue is to evaluate the validity
of our error estimates and the predictive strength of our models. Error estimates (R[d])
can sometimes be misleading if the model we are evaluating is overfitted to the learning
sample. These error estimates can be tested out-of-sample or cross-validated using the
learning sample.

To test the out-of-sample validity, we simply split the full dataset into two random
subsets of countries: the first, known as the learning sample (or training sample) contains the
countries and observations that will build the models; the second, known as the test sample,
will test the out-of-sample predictive accuracy of the models. The out-of-sample error rates
will indicate which models and specifications perform best, and will help reveal if any of
the models are overfitted.

To validate the error rates, machine learning uses either hold-out validation or cross-
validation. In our study, we have used hold-out validation, which involves training the
models using one portion (in our case 70% selected at random) of the dataset. The algorithm
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then tests the learned model by measuring the mean square error between the predicted
value and the actual value in the 30% of the data unseen by it. A model with an acceptably
low error rate in the sample unseen by it is presumably a good predictive model. This out
of sample test also guards against overfitting. An overfitted model may be highly accurate
in the learning sample but it would be unlikely to predict well in the test sample.

4. Data

As a first step in analyzing some preliminary data on terrorism, we have predicted the
number of terror attacks using each of the seven models described above (OLS regression,
Poisson regression, regression tree, random forest, bagging, and boosting). For our specifi-
cation, we have included 69 input (or explanatory) variables that cover most of the ones
discussed in Gassebner and Luechinger’s survey of the empirical literature on conflict [25].

We measure our output (or “dependent”) variable, Terror Attacks, as the total number
of terror attacks in a country in the last five years. This variable comes from the Global
Terror Database published by the University of Maryland and covers 1970–2014. When we
combine all of the variables, our sample covers 1975–2014, since some entire data sources,
such as the Database of Political Institutions, do not become available until 1975. To
maintain the spirit of “prediction” in our model, we then consider our input (“explanatory”)
variables as five-year lagged averages of the preceding five years. Moreover, we only
consider the variables at nonoverlapping five-year intervals so that none of the same
information is contained in consecutive time intervals in our sample. In this sense, at
any given point in time, policymakers will be able to use our model to predict whether a
country will likely experience a greater or lesser number of terror incidents in the next five
years. Moreover, this approach reduces the risk of endogeneity; the past can potentially
affect the future, but it seems unlikely that the future can affect the past. In addition, this
lagging reduces the risk of collider bias among the potential predictors if one were to
interpret partial dependence plots causally. Collider bias happens when the target variable
(Y, terrorism here) and a variable of theoretical interest (say T) affects a third variable, say
X, in the model. In that case, if the researcher is interested in justifying a causal relationship
between T and Y, X should be taken out of the model specification. Placing the target
variable in the future helps justify that there can be no such relationship. We do not interpret
our partial dependence plots causally.

From the Cross-National Time Series [26] we take the numbers of assassinations,
demonstrations, government crises, guerrilla warfare incidents, purges, riots, and strikes
as measures of underlying low-level social instability. We also take the number of cabinet
changes and executive changes as measured of political instability, and the effectiveness of
the legislature as a measure of political legitimacy.

From the Database of Political Institutions [27] we take the number of checks on
power; executive and legislative indices of electoral competition; legislative, government,
and opposition fractionalization indices; government Herfindahl index; and government
polarization index as measures of the concentration (or not) of power and accountability (or
not) within the government. We then include the changes in veto players, the existence of
electoral fraud, executive tenure, the presence of a military executive, and political stability
and executive power measures. Finally, we include plurality voting and proportional
representation as indicators of structural differences in electoral rules.

Next, we take several indices of government quality from the International Country
Risk Guide [28]. It is important to remember that, for each of the ICRG indices, a higher
value always coincides with “better” outcomes on this dimension of institutional quality.
For example, in the case of the “internal conflict” (or “external conflict”) index, a higher
value for the index somewhat counterintuitively corresponds to less conflict. The same can
be said for “ethnic tensions”, “religious tensions” and “military in politics”—in each of
these cases, higher values relate to less of the (bad) thing that the variable name implies.
That being said, we include the following indices from the ICRG: the bureaucratic quality
and corruption indices as measures of the transparency of government; ethnic tensions,



Games 2021, 12, 54 10 of 20

external conflict, internal conflict, law and order, and religious tensions as measures of
the levels of latent (or open) social hostility, and the government’s ability to ease those
hostilities; government stability and investment profile indices as measures of the govern-
ment’s credibility in carrying out stated policies and refraining from expropriation; and
democratic accountability and military in politics indices as a measure of the legitimacy
and responsiveness of the regime to the public’s preferences. We also add the Polity2
index and regime durability from the Polity IV Project as additional measures of legitimacy
and responsiveness.

As measures of economic and cultural divisions within society, we include measures
of income inequality and ethnic and religious fractionalization. The former comes from the
Standardized World Income Inequality Database [29]. The latter come from [30], which in
turn come from the Atlas Naroda Mira [31].

Finally, we include numerous measures of economic human development from the
World Development Indicators from the World Bank. They are: aid and development
assistance; arms exports and imports; public education and health spending; female labor
force participation; foreign direct investment (FDI); fuel exports; gross domestic product
(GDP) per capita; government consumption; the stock of foreign born immigrants; infant
mortality; the inflation rate in consumer prices; life expectancy; literacy; military expendi-
tures; military personnel; population and its rate of growth; portfolio investment; primary,
secondary, and tertiary school enrollment rates; social contributions; telephones per 100,000
people; the unemployment rate; urban population; and the youth dependency ratio.

Rather than exhaustively describing the distributional characteristics and justifying the
inclusion of each variable, we kindly refer the reader to visit Gassebner and Luechinger’s
survey and the references therein to the various studies that have already provided such a
description and justification [25]. For readers interested in some of the characteristics of the
observed data in our sample, we have included the descriptive statistics for all 69 variables
in Table 1.

We can see from the table that each of our explanatory variables has omitted values
to varying degrees. The tree-based methods (single trees, boosting, bagging, and random
forest) can automatically exploit the full information available by using surrogate infor-
mation or using the median or mode at that branch of a tree as a best guess the value of
a missing data point. Standard parametric methods (in our case Poisson regression and
neural networks) do not do this automatically, and regression methods that do (such as
full-information maximum likelihood), might do so in ways that give different imputations
of the missing data.

To resolve this, we preprocess our data using random forest imputation. The basic
idea is that we consider a covariate that does not have missing data (in our case conflict),
and perform a random forest model to predict that variable (instead of the true variable
of interest since that would be “cheating” for running the full model). Next, whenever
the algorithm encounters a missing value at any tree node, the imputation substitutes the
median or mode for that variable and continues with the subsequent splits. Therefore, the
imputed values in each tree exploit the full complement of conditional distribution for
that variable based on that tree. Averaging over all of the trees, we obtain imputed values
for missing data points that uses as much relevant data about the conditional distribution
of the variable as possible. It also has the advantage of creating imputed values that are
naturally bounded by the domains of the observed data. Parametric methods such as
multiple imputation estimate parameters based on an assumed distribution for the missing
variables, and depending on the sensitivity of the parameters and the distributions of the
covariates, may lead to extreme values outside of the logical bounds for a given variable
(e.g., negative income).
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Table 1. Variables and descriptive statistics.

Variable Source Obs Mean Std. Dev. Min. Max.

Terror Attacks GTD 6411 86.88 375.81 0 10,701
Assassinations CNTS 5318 0.21 0.84 0.00 18.50

Cabinet Changes CNTS 5310 0.44 0.37 0.00 3.50
Demonstrations CNTS 5318 0.52 1.15 0.00 14.00

Effectiveness of Leg. CNTS 5297 1.74 0.94 0.00 3.00
Executive Changes CNTS 5310 0.19 0.28 0.00 3.00
Government Crises CNTS 5318 0.13 0.27 0.00 2.67
Guerrilla Warfare CNTS 5318 0.12 0.32 0.00 2.60

Purges CNTS 5318 0.03 0.13 0.00 2.50
Riots CNTS 5318 0.31 1.05 0.00 18.20

Strikes CNTS 5318 0.12 0.34 0.00 3.40
Changes in Veto Players DPI 4838 0.12 0.15 0.00 1.00

Checks on Power DPI 4831 2.52 1.60 1.00 17.00
Exec. Electoral Comp. DPI 4850 5.15 2.08 1.00 7.00

Executive Years in Office DPI 4859 7.93 7.68 1.00 45.00
Electoral Fraud DPI 4214 0.14 0.32 0.00 1.00

Government Frac DPI 4428 0.19 0.25 0.00 1.00
Government Herfindahl DPI 4428 0.82 0.25 0.02 1.00
Government Polarization DPI 4673 0.36 0.69 0.00 2.00

Legislative Frac. DPI 4419 0.46 0.30 0.00 1.00
Leg. Electoral Comp. DPI 4855 5.41 2.00 1.00 7.00

Military Executive DPI 4856 0.21 0.39 0.00 1.00
Opposition Frac DPI 3362 0.45 0.27 0.00 1.00
Plurality Voting DPI 3877 0.68 0.46 0.00 1.00

Proportional Rep. DPI 3474 0.58 0.49 0.00 1.00
Bureaucratic Quality ICRG 3376 2.11 1.19 0.00 4.00

Corruption ICRG 3376 3.08 1.35 0.00 6.00
Democratic Accountability ICRG 3376 3.64 1.62 0.00 6.00

Ethnic Tensions ICRG 3376 3.91 1.44 0.00 6.00
External Conflict ICRG 3376 9.48 2.22 0.00 12.00

Government Stability ICRG 3376 7.45 2.10 1.00 11.50
Internal Conflict ICRG 3376 8.61 2.62 0.03 12.00

Investment Profile ICRG 3376 6.94 2.34 0.08 12.00
Law and Order ICRG 3376 3.60 1.48 0.25 6.00

Military in Politics ICRG 3376 3.66 1.80 0.00 6.00
Religious Tensions ICRG 3376 4.54 1.35 0.00 6.00

Polity2 Polity IV 4520 1.16 7.26 −10.00 10.00
Regime Durability Polity IV 4569 23.99 28.73 0.00 198.00

Ethnic Fractionalization Reynal-Querol 4749 0.45 0.28 0.01 0.96
Religious Fractionalization Reynal-Querol 4749 0.28 0.23 0.00 0.78
Income Inequality (Gini) SWIID 3350 38.52 9.87 16.49 69.35

Area WDI 6110 682,865 1,717,163 2 16,400,000
Off. Aid & Dev. Assistance WDI 4045 0.08 0.11 −0.01 0.76

Arms Exports WDI 1703 0.01 0.08 0.00 1.50
Arms Imports WDI 3976 0.04 0.12 0.00 3.32

Education Spending WDI 3436 4.45 2.32 0.59 44.30
Foreign Direct Investment WDI 4602 2.80 4.72 −32.30 72.50
Female Labor Force Part. WDI 3293 50.12 17.55 9.20 90.80

Fuel Exports WDI 3875 16.82 28.33 0.00 100.00
GDP per Capita WDI 4807 9560.35 16,016.19 65.64 141,000.00

Government Consumption WDI 4538 16.47 6.87 3.37 84.50
Health Spending WDI 2647 3.48 2.21 0.01 18.36
Immigrant Stock WDI 4975 8.07 13.75 0.03 86.80
Infant Mortality WDI 5103 48.11 40.72 2.18 174.00

Inflation WDI 4168 32.94 254.00 −17.60 6522.40
Life Expectancy WDI 5074 64.79 10.58 24.30 82.50

Literacy Rate WDI 1549 73.42 23.01 10.90 100.00
Military Expenditures WDI 2995 2.74 3.03 0.09 48.60

Military Personnel WDI 3092 1.88 2.23 0.06 35.80
Population WDI 5190 30.94 116.87 8.82 1316.00

Population Growth WDI 5190 1.80 1.44 −4.84 15.50
Portfolio Investment WDI 4000 0.01 0.16 −0.02 4.88
Primary Enrollment WDI 4763 97.05 22.35 15.80 208.00

Secondary Enrollment WDI 4407 60.84 33.35 2.13 155.60
Social Contributions WDI 1203 17.11 15.02 0.00 59.97

Telephones WDI 5127 14.70 18.58 0.01 103.42
Tertiary Enrollment WDI 4135 18.62 19.36 0.00 99.20

Unemployment WDI 3007 9.03 6.78 0.20 59.50
Urban Population WDI 5190 50.33 24.51 4.18 100.00

Youth Dependency WDI 5000 62.07 23.94 19.44 114.40

5. Results
5.1. Predictive Quality

Table 2 reports the predictive quality of each of the models using the 70 variables. The
best models we see to predict the overall number of terror attacks are the single regression
tree, random forest, and bagging predictors, which reduce the overall MSE in the learning
sample by about 64%, and 63%, and 59%, respectively, compared to the unconditional
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sample mean. An average of all of the models’ predicted values (which sometimes provides
a better prediction, especially in cases of classification) improves the MSE by about 49%.
In comparison, OLS regression improves the MSE by about 26%. However, as we might
expect, the trees that use random bootstrapping (bagging and random forest) predict
considerably better out of sample, with a test sample MSE reduction of 71% and 70% of
the total MSE, respectively. Of particular interest here is the fact that these models achieve
a significant reduction in the MSE despite the exclusion of the lagged number of terror
attacks in our model since the pre-existing level of violence has been shown to be one of the
strongest predictors of current and future violence in studies of conflict [32]. We exclude
lagged terror attacks because we are partly looking to predict (a reason to include), but also
looking to select a model to build theories and test causal effects (subsequent analyses).
Lagged attacks would improve the prediction but would explain so much of the variation
that we are not left with much to select a model on

Table 2. MSEs for the various learning models.

Learning Sample Test Sample

MSE % Decrease MSE % Decrease

OLS Regression 107,708.05 25.71% 98,119.17 26.12%
Poisson

Regression 151,539.85 −4.52% 139,385.78 −4.96%

Neural Network 144,695.12 0.20% 132,389.28 0.31%
Regression Tree 52,038.41 64.11% 80,182.62 39.62%

Boosting
Predictor 141,677.19 2.28% 129,790.58 2.27%

Bagging
Predictor 59,866.71 58.71% 40,202.12 69.73%

Random Forest 54,271.19 62.57% 38,504.85 71.01%
Average of All

Predictors 74,564.39 48.57% 76,391.30 42.48%

Total MSE 144,987.24 132,802.82

It is worth noting that the Poisson regression model, which tends to yield more
valid estimates of causal effects, actually increases the MSE of the predictor compared to
a prediction based on the simple sample mean. This is not quite the case for the neural
network model, but we can see that the neural network and boosting models predict
relatively poorly both in and out of sample.

5.2. Variable Importance

Table 3 reports the variable importance levels (measured as the percentage of the total
reduction in MSE that is attributed to that variable) based on the single regression tree,
boosting, bagging, and random forest models, which predicts conflict the best, although
different algorithms or different runs of the same algorithm may identify different sets of
predictors [15]. Theoretically agnostic algorithms may choose a predictive variable one
time and another at a different time if they are predictive substitutes. The risk for this
happening is reduced for algorithms such as random forests, bagging, or boosting because
the algorithm learns by taking multiple subsamples and averaging the results. We take this
one step further by averaging the variable importance results across several algorithms to
give us a sense of confidence in the stability of the variable importance ranking.
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Table 3. Variable importance rankings.

Variable Tree Bagging Boosting Forest Average

Assassinations 7.618 24.930 62.966 12.388 14.979
Guerrilla War 2.677 10.735 30.698 9.436 7.616

Military Personnel 15.482 4.166 0.000 2.555 7.401
Religious Frac 12.386 4.761 0.000 3.218 6.788

Military Politics 12.682 1.913 1.082 3.529 6.042
Health Spending 3.765 4.390 2.499 3.548 3.901

Year 1.882 5.704 0.000 3.888 3.825
Population 0.947 3.568 0.394 5.562 3.359

Exec Yrs in Office 6.441 1.940 0.000 1.315 3.232
Fuel Exports 6.193 1.455 0.000 1.227 2.958

Dem Accountability 5.222 1.243 0.000 1.411 2.625
Effectiveness of Leg 0.000 3.104 0.000 3.041 2.048

Aid & Assistance 2.528 0.973 0.000 1.826 1.775
Gini 0.981 2.106 0.000 2.083 1.723

Tertiary Enrollment 2.053 0.752 0.000 2.023 1.609
Female LFPR 0.000 1.226 2.361 3.213 1.480

Portfolio Investment 0.000 2.695 0.000 1.600 1.432
Area 1.858 1.194 0.000 0.837 1.297

Arms Imports 1.425 1.402 0.000 1.009 1.279
Strikes 0.662 1.369 0.000 1.711 1.247

Ethnic Tension 0.733 0.467 0.000 2.409 1.203
Checks 1.702 1.248 0.000 0.615 1.188

Internal Conflict 0.969 0.125 0.000 2.257 1.117
Telephones 1.882 0.435 0.000 0.697 1.005
Law Order 1.322 0.560 0.000 0.966 0.950

GDP pc 0.235 0.842 0.000 1.736 0.938
Urban Population 1.710 0.404 0.000 0.645 0.920

Ethnic Frac 0.469 1.336 0.000 0.885 0.897
Polity 2 0.000 1.355 0.000 1.244 0.866

Investment Prof 0.321 1.019 0.000 1.169 0.836
Legislative Frac 1.425 0.532 0.000 0.549 0.835

Riots 0.307 0.729 0.000 1.382 0.806
Primary Enrollment 1.425 0.170 0.000 0.687 0.761

Arms Exports 0.000 1.233 0.000 0.950 0.728
Demonstrations 0.179 0.464 0.000 1.511 0.718
Unemployment 0.000 0.813 0.000 1.310 0.708

Religious Tension 0.000 0.300 0.000 1.601 0.634
Infant Mortality 0.000 0.773 0.000 1.046 0.606

Secondary Enrollment 0.000 0.848 0.000 0.765 0.537
Immigrant Stock 0.016 0.672 0.000 0.816 0.501
Reg Durability 0.248 0.547 0.000 0.609 0.468

Gov Consumption 0.000 0.369 0.000 0.824 0.398
Gov Stability 0.618 0.089 0.000 0.441 0.383
Corruption 0.075 0.472 0.000 0.584 0.377

Life Expectancy 0.000 0.242 0.000 0.889 0.377
Youth Dependency 0.000 0.286 0.000 0.842 0.376

FDI 0.000 0.372 0.000 0.719 0.363
Fraud 0.346 0.106 0.000 0.421 0.291

Opposition Frac 0.000 0.304 0.000 0.560 0.288
Inflation 0.207 0.326 0.000 0.300 0.278

External Conflict 0.259 0.140 0.000 0.428 0.276
Bureaucratic Qual 0.000 0.277 0.000 0.501 0.259
Leg. Elec. Comp. 0.248 0.192 0.000 0.295 0.245
Exec. Elec. Comp. 0.000 0.262 0.000 0.465 0.242

Literacy Rate 0.000 0.143 0.000 0.574 0.239
Population Growth 0.000 0.394 0.000 0.302 0.232
Proportional Rep 0.000 0.368 0.000 0.326 0.231

Social Contributions 0.000 0.173 0.000 0.515 0.229
Military Expend 0.167 0.212 0.000 0.277 0.219

Purges 0.331 0.051 0.000 0.179 0.187
Education Spending 0.000 0.243 0.000 0.304 0.182

Military Exec 0.000 0.085 0.000 0.316 0.134
Government Herfindahl 0.000 0.082 0.000 0.235 0.106

PluralityVoting 0.000 0.093 0.000 0.196 0.096
Gov Polarization 0.000 0.063 0.000 0.198 0.087
Government Frac 0.000 0.093 0.000 0.087 0.060
Cabinet Changes 0.000 0.028 0.000 0.085 0.038

Changes in Vetoes 0.000 0.065 0.000 0.018 0.028
Executive Changes 0.000 0.020 0.000 0.044 0.021
Government Crises 0.000 −0.050 0.000 −0.191 −0.080

Here, we see that the first five variables in the list account for close to one-third (about
31 percent) of the overall improvement in the random forest model’s MSE. We also see that
the single strongest predictor of current levels of terrorism is a history of assassinations in
that country, which accounts for about 12% of the total reduction in the MSE in the random
forest model, and 25% of the reduction for the bagging model and 63% of the reduction for
the boosting model. The second strongest predictor, guerrilla war, accounts for about 10%
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of the MSE reduction for the bagging and forest models and over 30% of the decrease for
the boosting model.

After regime-directed violence, two of the following three strongest predictors involve
the extent to which the military engages with everyday life and politics. Military personnel
and the military in politics index account for almost 15% of the reduction in MSE combined,
on average (slightly more in the single tree, somewhat less in the bagging and forest models,
and not in the boosting algorithm). In between these measures of military engagement,
we see religious fractionalization to account for about 7% of the variation on average.
Rounding out the top ten predictors are health spending (3.9% of the MSE), time trend
(3.8%), population (3.6%), executive tenure (3.2%), and fuel exports (2.6%).

At this point, our algorithmic approach suggests we have a group of variables that
predict terrorism quite well. Moreover, we have identified the top predictors of terrorism.
The reader will note that many of the variables identified by the literature do not have
predictive salience [25]. Indeed, many of the variables highlighted in the literature, such as
investment profile, bureaucratic quality, or religious tensions, have very little predictive
salience. This culling helps us identify the kinds of theoretical models that can help us
better understand terrorism. For example, the joint importance of guerilla war and military
personnel is quite high and suggests that terrorism may be best understood as a tactical
choice in asymmetric warfare rather than an outcome of institutional deficiencies in bu-
reaucratic quality or lack of economic opportunity. This sort of explanation lends credence
to the argument that a war on terror is strategically empty—just as a war on the blitzkrieg
or the pincer movement, both tactical choices, would be strategically empty. However,
such explanations are also predicated on the nature of the relationships between the top
predictors and terrorist attacks. We turn to identify just such relations next, highlighting
a methodological approach that is particularly in tune with the nonlinear relationships
predicted by game-theoretic models.

5.3. The Nonlinear Relationship between Greater Security and Terrorism

The next step is to analyze how each of the variables impacts aggregate terror risk. To
do this, we use a partial dependence plot mapping the possible values of the input variable
of interest onto the observed incidence of terror attacks. Partial dependence plots display
the marginal effect of variable xk conditional on the observed values of all of the other
variables, (x1,−k, x2,−k, . . . xn,−k). Specifically, it plots the graph of the function:

f̂ (x) =
1
n

n

∑
i=1

f (xk, xi,−k),

where the summand, f (xk, xi,−k), is simply the observed outcome of the number of ter-
ror attacks.

This section focuses on three partial dependence plots that highlight game-theoretic
models of terrorism that suggest that any fundamental understanding of terrorism should
be understood as a tactical choice by rebel organizations.

Figure 2 shows that guerrilla warfare increases terrorism. While there may be some
overlap between guerrilla warfare and terrorism, agencies that make national security
policies tend to define them as distinct phenomena. Hence, in some cases, we might think
of terrorism and guerrilla warfare as different tactics employed by rebel groups towards
similar ends [33]. Moreover, guerilla warfare predicts terrorism five years out.
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Thus, in Figure 3, more military personnel also translate into more terror attacks
on average, though these averages mask a u-shaped relationship. Last, in Figure 4, we
notice that increased military involvement in politics reduces aggregate terror risk. Taken
together, and in the absence of the predictive salience of such institutional variables such
as bureaucratic quality and investment profile that capture elements of state capacity, we
can grope toward a model of terrorism rooted in the understanding of a specific kind of
state capacity. The nonlinear relationships embedded in this understanding suggest that
game-theoretic models where equilibrium switching is possible due to interactions between
agents are better suited than traditional neoclassical utility maximization approaches.
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State capacity (or the lack thereof) is a reasonably standard explanation for conflict [34].
The theoretical basis for an empirical understanding of this relationship lies in three
concepts: military capacity, administrative quality, and institutional coherence.

Ref. [35] suggests that military personnel and expenditures, bureaucratic quality
measures, and popular institutional measures such as polity or those reported by ICRG
have construct and theoretical validity as a measure of the three elements of state capacity.
We have all these variables as part of our predictive algorithm. Nevertheless, of these
three, it appears that military capacity is most salient for understanding terrorism. Thus,
our algorithm has been pretty specific about what kind of theoretical models are more
likely explanations for terrorist attacks. This suggests that models better understand why
terrorism happens [13]. The how matters as well.

There is a clear equilibrium switch in the number of terrorist attacks as guerilla warfare
intensifies. However, there is an optimum level of intensity beyond which the number of
terrorist attacks is stable. Again, this is the result suggested by game-theoretic models where
equilibrium switches can be, for example, a consequence of changes in the payoffs. An
econometric point parametric estimate would never capture these breakpoints unless, out
of sheer coincidence, the researcher imposes the assumption of such a breakpoint. However,
point estimates can be particularly misleading, for example, in the case of military personnel.
An average effect captured in a point estimate would merely show a positive relationship,
rather than the nuance where (initially at least) increasing military personnel reduces
terrorism, thus suggesting a cost-minimizing optimum amount of military personnel.
Nevertheless, we also have the somewhat counterintuitive but ultimately plausible result
that hardening targets by increasing the number of military personnel elicits more terrorist
attacks than substitute attacks away from these targets. This sort of result is reminiscent of
security dilemmas rather than Beckerian policing models.

On the other hand, we cannot completely throw out institutional coherence as a
predictor of terrorism. Military dictatorships can control terrorist attacks better. This
result provides an interesting counterpoint to the argument that military regimes are more
vulnerable to terrorism [36].

6. Game-Theoretic Model Validation

Others have suggested that machine learning can help validate theoretical models
because they are designed to test whether a model is predictive or not [15,37]. A good
theoretical model should be able to predict behavior.
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Standard econometric approaches to testing models are particularly fraught when it
comes to testing game-theoretic models because endogeneity is a feature rather than a bug
in game-theoretic models. For example, terrorists respond to counterterrorism by changing
their behavior, which in turn suggests changes in counterterrorism. Thus, any econometric
approach to terrorism must be cautious to avoid endogeneity-driven estimation biases.
Many of these methods reduce the predictive value of a model (for example, many causal
studies have very low R-squares). Yet, as we noted above, a good theoretical model should
also be able to predict. Predictive machine learning can help determine whether a causal
variable is also predictive. A causal variable that is also predictive can help convince
academics and policymakers of the salience of a theoretical model.

Partial dependence plots can capture equilibrium shifts to capture comparative static
effects of game-theoretic models. We discuss this aspect quite extensively in the previous
section. However, variable importance can help us sift through models of terrorism to
identify more predictive variable specifications. We highlight three examples within subsets
of the game-theoretic literature to emphasize this point.

One strand of the game theoretic literature focuses on group cohesion. Future un-
certainty generated by increased counter terrorism can lead to rebel group splintering,
thereby increasing the risk of terrorism as these splinter groups jockey for survival [38].
Figure 3 highlights just such a result; an increase in military personnel does indeed pre-
dict an increase in the number of terrorist attacks. Further, the first two most predictive
variables, guerrilla warfare and assassinations, also predict an increase in the number of
terrorist attacks. Guerrilla warfare and assassinations also point to significant political
uncertainty. This suggests that political uncertainty may be an important predictor of
terrorist attacks, possibly by affecting group cohesion. These findings would suggest a
deeper, and causal, dive into understanding how rebel group splintering in the face of
political uncertainty may affect terrorism. That is to say, machine-learning can be a first
step toward finding explanations of terrorism in conjunction with game-theoretic models
and causal econometric analysis.

Counterterrorism efforts require global coordination. For example, destroying a
terrorist training ground may require the US to take action in North Africa or the Middle
East. Theoretically, military aid to a country that hosts a terrorist organization creates a
disincentive to remove the terrorist problem [13]. In addition, terrorism is a tactical choice
for a rebel group when facing a formidable state that the rebels do not want to provoke too
much [33].

Both these models suggest that military strength should be a predictor of terrorist
attacks. Our algorithm identifies the size of the military as one of the most important
predictors of terrorism. As noted in Figure 3, an increase in the size of the military predicts
an initial rise in terrorist acts as expected by both the game-theoretic modelsthat predict
an increase in the intensity of terrorist attacks, particularly suicide attacks, when targets
harden [12]. Nevertheless, further increases in the size of the military keep the risk of terror
attacks elevated without increasing terrorist attacks, a potential benefit for a host country
receiving military aid. That is, military size increases terrorism at first and then levels off,
tracking the prediction from Bapat’s model (see Figure 2, p. 311 in [13]).

Equilibrium may also shift from guerrilla warfare to terrorism as a function of the
accuracy of a state’s military action [33]. If terrorist tactics are more provocative, the
probability of a terrorist attack increases. On the flip side, if guerrilla action is more
provocative then the probability of guerilla warfare increases. The point is that as the degree
of provocation changes there is an equilibrium switch from guerilla warfare to terrorism.
Our result in Figure 3 identifies just such an equilibrium switch to increased terrorism as
the intensity of guerilla warfare increases. First of all, this means that equilibrium switches
to more terrorism are related to guerilla warfare. Thus, our result in Figure 3 supports
Carter’s model prediction. However, our result also suggests that, if Carter’s model is a
true reflection of reality, then as guerilla warfare intensifies there is some change in the
underlying parameters in a way that makes terrorist action more provocative. Thus, our
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results suggest that there may be a relationship between guerilla action and provocation that
changes the likelihood of terrorism. This space may bear further theoretical investigation.

Terrorist organizations need to survive to achieve their goals. A strand of the game-
theoretic literature is devoted to understanding how terrorist organizations recruit and re-
tain members while overcoming incentive compatibility problems when secrecy is essential.

De Mesquita’s game-theoretic model suggests that counterterrorism efforts that re-
duce economic opportunity can increase terrorist mobilization [39]. In any case, terrorist
organizations will put more resources into terrorism (presumably leading to more suc-
cessful attacks) when they recruit and retain higher-ability terrorists. Therefore, the BDM
(2005) model would suggest that, empirically, countries with better economic opportunities
would have fewer terrorist attacks. Moreover, he notes that his model suggests, among
other things, that ethnically divided societies would see more terrorist attacks and that
development aid may reduce terrorism (presumably by increasing economic opportunity).

Our results fails to validate many of the predictions of this model [39]. For example, the
variable investment profile includes contract enforcement and risk of expropriation by the
state. These variables are components of economic freedom or opportunity. For example,
the risk of expropriation reduces the likelihood of economic growth [40]. However, this
variable is not an important predictor of terrorism. Moreover, neither ethnic divisions (as
measured by the ethnic tensions variable) nor development aid are important predictors
of terrorism.

Presumably terrorist organizations mobilize to perpetrate terrorist attacks. However,
while factors such as the lack of economic opportunity may indeed affect mobilization,
it seems highly unlikely that they affect terrorist attacks. If economic opportunity was
important for mobilization it should be able to predict terrorism since terrorism is the
purpose for mobilization. This brings into question the role of economic opportunity in
explaining mobilization.

Our examples in this section suggest that some game-theoretic models generate val-
idated predictions while others do not. Now all of these models may be causal. Our
algorithms make no claims for causality. Yet, if a model is a generalizable explanation of
reality, then its predictions should be validated empirically. On this criterion, all models
cannot be treated equally. Further, we show how partial dependence plots, by highlight-
ing nonlinear relationships, can help validate game theoretic models that very typically
generate hypotheses with nonlinear patterns. Further, these results are data-driven and
therefore unbiased by assumptions about any particular theoretical concern. Consequently,
empirical results that are consistent with theoretical consequences provide an unbiased
validation. Last, once again because our results are data-driven rather than based on theo-
retical assumptions, they can give us hints about what areas need a theoretical structure.
Of course, empirical validation of this new theory should give rise to even more spaces
that need theory in an iterative process that slowly erases gaps in knowledge.

7. Conclusions

In this paper, we highlight two aspects of machine learning that can supplement game-
theoretic analysis. First, we can sift among competing theoretical models in a theoretically
agnostic way to identify those models which have the most predictive salience. A good
theoretical model should be able to make predictions. Here, our algorithm suggests that
models predicting economic opportunity, development assistance, and ethnic tensions may
not be predictively salient. In contrast, those that predict a more formidable target would
elicit more terrorist attacks so are predictively salient.

Game-theoretic models, by their very nature, highlight endogenous relationships
driven by strategic interactions. Machine learning algorithms, by focusing on predictive
accuracy instead of tests of significance, can identify whether a variable is predictive or
not even if it is endogenous with the target variable, terrorism. To the extent that causal
variables should be predictive, identifying predictive variables can help jumpstart the
search for causal links. This process is made more efficient because we can eliminate
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variables that are unlikely to be causal because they are not predictive in an empirical
framework that is unbiased by endogeneity problems.

Second, game-theoretic approaches often predict nonlinear relationships between vari-
ables where equilibriums switch in comparative static scenarios. The partial dependence
plots generated by machine learning algorithms can identify these nonlinearities and equi-
librium switches in a theoretically agnostic way. Partial dependence plots are, therefore, a
particularly suitable testing methodology for game-theoretic comparative statics.

Thus, machine learning techniques can reduce bias and help find better explanations
for terrorism. This is important for formulating better counterterrorist policies. These
techniques have other benefits as well. For example, they can impute missing data and
predictively validate the imputation, and they do not require heroic assumptions about the
underlying distribution of data.
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