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Abstract: We introduce a new class of matching mechanisms—quantile stable mechanisms—that
generate stable matchings that can be seen as a compromise between sides of a two-sided market.
We show that responsiveness is a sufficient condition for the existence of such mechanisms and
that all such mechanisms are distinct. We also analyze the manipulability of these mechanisms by
market participants.

Keywords: matching; contracts; auctions; mechanisms; incentives

1. Introduction

We study a two-sided matching market between firms and workers. Each agent can
simultaneously have multiple contracts with agents on the other side of the market and
each agent has strict preferences over sets of contracts. Each contract specifies a firm,
a worker, and some terms that may include a wage, benefits, etc (see Roth [1] and Hatfield
and Milgrom [2] for models of matching with contracts). We focus on stable matchings,
that is matchings in which each agent is willing to keep all of their contracts and there are
no contracts that agents would like to sign, possibly by dropping some of their current
contracts (stable matchings exist when contracts are substitutes Roth [1], Hatfield and
Milgrom [2], Fleiner [3], Klaus and Walzl [4], Hatfield and Kominers [5]. Contracts are
substitutes when a contract that is chosen from a larger set is also chosen from a smaller
subset which includes that contract).

We introduce quantile stable mechanisms: a new class of matching mechanisms that
generate stable matchings that can be seen as a compromise between two sides of the
market, and we study their properties. Two of the quantile-stable mechanisms are well
known and often used: the side-optimal (or, extremal) matching mechanisms that assign
the best stable outcome for one side and the worst for the other. Extremal mechanisms
have been implemented, for instance, in the National Resident Matching Program (NRMP)
to match medical doctors to residency programs Roth [6] and in some school districts to
match students to high schools Abdulkadiroğlu and Sönmez [7]. As far as we know, none
of the non-extremal quantile stable mechanisms has been implemented.

Among the non-extremal quantile stable mechanisms, the median stable mechanism
that produces the median stable matching is a focal matching mechanism a market designer
may want to implement: it is attractive since it may be seen as a compromise solution
that treats both sides of the market in a symmetric way. Indeed, experiments performed
by Echenique and Yariv [8] support this view as they show that agents who match in a
decentralized way tend to coordinate on a particular stable matching, the median stable
matching, when it exists (Echenique and Yariv [8] show that the median stable matching
is selected most frequently by the subjects and that the cardinal representation of ordinal
preferences also impacts which stable matching gets selected. The experimental bargaining
literature also reports that subjects choose the median split, e.g., Anbarci and Feltovich [9].
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Even in settings where the core prediction is that the entire surplus goes to one side of
the market, subjects have a strong propensity towards equal splits, Yan et al. [10]. We
would like to thank an anonymous referee for directing us to the latter two papers). The
median stable mechanism is also as good as the extremal mechanisms from the perspective
of manipulability by both sides of the market; indeed, our Proposition 3 shows that no
quantile stable mechanism is more manipulable than another when we account for agents
on both sides of the market.

The quantile stable mechanisms are defined as follows. For any q ∈ (0, 1] the q-quantile
stable mechanism maps agents’ preference profiles into the dkqe best stable matching for
either firms or workers, where k is the number of stable matchings (dxe is the smallest
integer that is weakly larger than x. An analogous theory is true for q-quantile stable
mechanisms defined in terms of the largest integer that is weakly smaller than kq). For
instance, an extremal mechanism may always select the worker-optimal stable matching,
and, given k stable matchings, the median stable mechanism always selects the matching
that is the d k

2e-best for workers (and hence b k
2c-best for firms).

For the quantile stable mechanisms to be well-defined we need to know that dkqe-best
stable matchings exist. We call such matchings, quantile stable matchings. Teo and Sethu-
raman [11], Fleiner [12], Schwarz and Yenmez [13] proved the existence of quantile stable
matchings in one-to-one matching, and Klaus and Klijn [14] and Sethuraman et al. [15]
proved it for responsive preferences in the college admission model; in this model, pref-
erences are responsive if each agent’s preferences over sets of partners on the other side
reflects an underlying ranking of individual partners (in addition to the finite case, Schwarz
and Yenmez [13] study a continuum of potential wages. Cf. also Klaus and Klijn [16] who
study the existence of quantile stable matchings in the roommates problem). In the general
matching-with-contracts model, Chen et al. [17] showed that the existence of quantile stable
matchings is guaranteed by two properties of agents’ preferences: strong substitutes and
the law of aggregate demand (between 2014 and 2016, Chen et al. [17] used to be Section 3.1
of the working-paper draft of the present paper, cf., e.g., Chen et al. [18]. Chen et al. [18]
and Chen et al. [19] subsumed Chen et al. [20], which is obsolete now. The resulting
three papers—the present paper, Chen et al. [17], and Chen et al. [19]—cross-reference and
complement each other. Each has a distinct focus and a distinct set of results). Contracts
are strong substitutes if a contract chosen from a set of contracts is also chosen from any
worse set of contracts including that contract, cf. Echenique and Oviedo [21]. Contracts
satisfy the law of aggregate demand if the number of contracts chosen from a larger set is
weakly greater than the number of contracts chosen from a smaller set, cf. Hatfield and
Milgrom [2].

We complement Chen et al. [17] by showing that both strong substitutes and the law
of aggregate demand are needed in their sufficiency condition, and by observing that
strong substitutes and the law of aggregate demand are satisfied in natural models of job
assignment, including the large firms model studied in Eeckhout and Kircher [22]. We also
contribute to the existence literature discussed above by showing that the responsiveness
of preferences is a sufficient condition for the existence of quantile stable matchings not
only in college admission, but also in the matching with contracts model we study (see
Proposition 1) (except in one-to-one settings, responsive preferences do not necessarily
satisfy strong substitutes (cf. Example 6.8 in Echenique and Oviedo [21]), and thus neither
our general Proposition 1 nor the the college admission results of Klaus and Klijn [14] and
Sethuraman et al. [15] follow directly from Chen et al. [17]).

Our Proposition 2 shows that all quantile stable mechanisms are distinct in suf-
ficiently large markets. Finally, in Proposition 3 we tackle the manipulability of the
quantile stable mechanisms. Following Day and Milgrom [23], Pathak and Sönmez [24],
and Chen et al. [19], we say that a mechanism ψ is as manipulable as mechanism φ for an
agent if whenever the agent can gain from misreporting in φ and achieve a certain outcome,
she can also gain and achieve this outcome by manipulating ψ. A mechanism ψ is more
manipulable than mechanism φ for an agent if it is as manipulable and in addition there
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exists an instance of the market in which she can manipulate ψ but not φ. Leveraging
the results of Chen et al. [19], we show that quantile stable mechanisms can be naturally
ranked for each side of the market in terms of how manipulable they are. In particular,
as we choose a higher quantile for one side of the market, we make the mechanism less
manipulable for that side, but more manipulable for the other side of the market (note that
the mechanism is then choosing a lower quantile for the other side of the market). Thus,
no quantile stable matching is better than another in terms of manipulability when agents
on both sides of the market are strategic.

To the best of our knowledge ours is the first paper to study quantile stable mech-
anisms other than deferred acceptance, and, in particular, the first to study their incen-
tive properties.

2. Model

We study the same setting as our companion papers Chen et al. [17] and Chen et al. [19].
The set of agents is A and it is partitioned into the set of firms F and the set of workers W.
Each contract x specifies a bilateral relationship between a firm and a worker. We denote
the firm associated with contract x by xF ∈ F and the worker associated with this contract
by xW ∈ W. The set of all contracts, denoted X, is finite. For a set of contracts X′ ⊆ X,
X′a ≡ {x|x ∈ X′, a ∈ {xF, xW}} denotes the set of contracts that agent a is associated with.
A set of contracts X′ is feasible if for every firm-worker pair ( f , w) ∈ F×W, |X′f ∩X′w| ≤ 1,
i.e., each firm-worker pair can sign at most one joint contract. A matching is a feasible set
of contracts.

Each agent a is endowed with a strict preference relation �a over sets of contracts
that involve agent a, i.e., over 2Xa ≡ {X′|X′ ⊆ Xa}. Agent a’s weak preference relation
is denoted by �a; for all Y, Y′ ⊆ Xa, Y �a Y′ if and only if Y �a Y′ or Y = Y′. Given
�a, let Ca(X′| �a) denote agent a’s most preferred subset of contracts involving agent
a from X′. More formally, Ca(X′| �a) ⊆ X′a and for all Ya ⊆ X′a, Ca(X′| �a) �a Ya. In
notation throughout the paper, we suppress the dependence of Ca on �a when this does
not lead to ambiguity. Ca(X′) denotes the set of contracts chosen from X′ ⊆ X. For any
set of contracts X′, we denote by CW(X′) ≡ ∪wCw(X′) and CF(X′) ≡ ∪ f C f (X′) the sets
of contracts chosen by the sets of workers and firms, respectively. A contract x is called
acceptable to agent a if there exists a set of contracts Xa 3 x such that Xa �a ∅; otherwise
contract x is unacceptable to a.

Our solution concept is stability (see, e.g., Hatfield and Kominers [5]).

Definition 1. Given a preference profile �, a matching Y is stable if

1. for all a, Ca(Y) = Ya (individual rationality) and
2. there does not exist a nonempty set of contracts Z 6 6⊆ Y such that for all a, Za ⊆ Ca(Y ∪ Z)

(no blocking).

Individual rationality requires that each agent is better off by holding all of the
contracts assigned rather than rejecting some of them. No blocking requires that there is no
subset of contracts Z 6 6⊆ Y such that every agent a would choose Za from the union of Y
and Z.

The following assumptions on agents’ preferences play a role in our analysis.

Definition 2. Contracts are substitutes in preferences of agent a if for any contract x ∈ X and
sets of contracts Y, Y′ ⊆ X such that Y ⊆ Y′,

x ∈ Ca({x} ∪Y′)⇒ x ∈ Ca({x} ∪Y).

Contracts are substitutes when a contract that is chosen from a set is also chosen
from any subset that includes the contract. Substitutability guarantees the existence of a
stable matching in many-to-many matching models, cf. Fleiner [3], and it is one of the
main restrictions on preferences in matching theory (this condition was introduced by
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Kelso and Crawford [25], and it corresponds to the independence-of-irrelevant-alternatives
assumption (or Sen’s property alpha) in individual choice theory. When choice rules
are taken as primitives, substitutability needs to be combined with an axiom called the
irrelevance of rejected contracts in order to ensure the existence of stable matchings, cf.
Aygün and Sönmez [26]. This latter axiom is embedded in our setup because we construct
choice rules from agents’ preferences over sets of contracts).

Definition 3. Contracts are strong substitutes in preferences of agent a if for any sets of contracts
Y, Y′ ⊆ X such that Ca(Y′) �a Ca(Y),

x ∈ Ca({x} ∪Y′)⇒ x ∈ Ca({x} ∪Y).

Strong substitutability implies substitutability. Roughly, it states that if a contract is
added to the two sets and chosen from the better set, then it must also be chosen from the
worse set. This concept was first studied by Echenique and Oviedo [21] in their analysis
of matching markets without contracts (as in Echenique and Oviedo [21], our results
remain valid if we relax the strong substitutes condition to require only that: for any
sets of contracts Y, Y′ ⊆ X such that Ca(Y′) = Y′a, Ca(Y) = Ya, and Ca(Y′) �a Ca(Y), if
x ∈ Ca(Y′ ∪ {x}) then x ∈ Ca(Y ∪ {x})).

Definition 4. Contracts satisfy the law of aggregate demand in preferences of agent a if for all
Y, Y′ ⊆ X such that Y ⊆ Y′

|Ca(Y)| ≤ |Ca(Y′)|.

The law of aggregate demand requires that the number of contracts chosen from a
set is bigger than the number of contracts chosen from a subset of this set. The law of
aggregate demand was introduced in Alkan [27], Alkan and Gale [28], and Fleiner [3]
and its implications were thoroughly analyzed by Hatfield and Milgrom [2] (see also
Kojima [29]).

Although the class of environments in which contracts are strong substitutes and
satisfy the law of aggregate demand is limited, it encompasses some interesting examples.
For instance, Hatfield and Milgrom [2] show that if contracts specify monetary payments
and agents’ preferences are quasi-linear, then the law of aggregate demand is satisfied.
Hatfield and Milgrom [2] also provide the endowed assignment model in which contracts
are substitutes in addition to satisfying the law of aggregate demand. The example below
shows that in a natural special case of the endowed assignment model contracts are not
only substitutes but also strong substitutes.

Example 1. Consider a many-to-one matching market between firms and workers. Each firm has a
technology and a set of jobs to fill. A worker can fill any of a firm’s jobs but no firm can use one
worker for two jobs, nor assign two or more workers to the same job. A contract specifies the firm,
the job, the worker, and the wage transfer. Each worker-job pair generates an output; this output
does not depend on what other workers the firm employs or how it assigns them to jobs. The firm’s
payoff is the sum of outputs from its different jobs, net of wage transfers. If all available contracts for
a particular job at a firm yield negative net output, then the firm leaves that job unfilled. Workers
choose among contracts based on the wages offered; if no non-negative wage contract is available,
then the worker accepts none.

To date, we have described the endowment assignment model of Hatfield and Milgrom [2].
In their model, contracts are substitutes and satisfy the law of aggregate demand, but the strong
substitutes condition may fail. To guarantee that this last condition is satisfied, we assume that
each worker is characterized by a one-dimensional ability parameter. If the worker’s output in a job
depends only on the job and the worker’s ability (but not on their identity otherwise), and if output
is increasing in worker’s ability, then contracts are strong substitutes (Eeckhout and Kircher [22]
study a continuous version of this example. In particular, taking the limit of our model in the case of
quasi-linear preferences with monetary increments, like in Schwarz and Yenmez [13], one can use
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our results to show that the set of competitive equilibria in Eeckhout and Kircher [22] has a quantile
structure. We can also generalize this example to a many-to-many matching market. For further
analysis of the endowment assignment model, see Delacretaz et al. [30]).

3. Quantile Stable Matchings

As a preparation to study the quantile stable mechanisms, let us briefly review and
further develop the theory of the quantile stable matchings from Chen et al. [17]. Suppose
that {X1, . . . , Xk} is the set of stable matchings. For each agent a, consider the set of
contracts that agent a signs in these matchings: {X1

a , . . . , Xk
a}. Reorder these sets of contracts

so that X(1)
a �a . . . �a X(k)

a . Let Xi
W ≡ ∪

w∈W
X(i)

w and Xi
F ≡ ∪

f∈F
X(i)

f for 1 ≤ i ≤ k. That

is, Xi
W assigns each worker the i-th best outcome among all stable matching outcomes,

and Xi
F assigns each firm the i-th best outcome among all stable matching outcomes.

Chen et al. [17] showed that Xi
W are well-defined stable matchings provided contracts

are substitutes, satisfy the law of aggregate demand for all agents, and are strong substitutes
for workers (as strong substitutes are satisfied when workers have unit demand and satisfy
the standard substitute condition, the existence then condition then takes a simpler form).
Furthermore, for any firm f , Xi

W � f X j
W if i ≥ j. An analogous results holds true for

Xi
F. Their existence result allows us to call Xi

W the i-th quantile stable matching for
workers. In particular, X1

W is the worker-optimal stable matching and Xk
W is the worker-

pessimal stable matching. In the analogous case, when contracts are strong substitutes for
firms, we define the quantile, firm-optimal, and firm-pessimal stable matchings for firms.
Furthermore, the quantile stable matchings for firms and workers are exactly the same with
the polarization of interests property, Xi

W = Xk+1−i
F , when contracts are strong substitutes

for both workers and firms. Thus, the worker-optimal stable matching is the firm-pessimal
stable matching, the (2)-nd quantile stable matching for workers is the (k− 1)-th quantile
stable matching for firms, etc. In particular, when k is odd, there exists a stable matching
that assigns all agents their median stable matching outcomes since X(k+1)/2

F = X(k+1)/2
W .

We complement Chen et al. [17] by showing that both their conditions are needed in
their result: the quantile stable matchings other than the worker-optimal and firm-optimal
stable matchings need not exist when either the strong substitute condition or the law
of aggregate demand fails (the worker-optimal and firm-optimal stable matchings are
exceptions. The lattice structure established in Alkan [27] and Fleiner [3] implies that the
side-optimal stable matchings exist whenever contracts are merely substitutes and satisfy
the law of aggregate demand). We establish the necessity of these two conditions via two
examples presented in the Appendix A.

We also improve upon Klaus and Klijn [14] and Sethuraman et al. [15] by showing that
responsiveness of preferences is sufficient for the existence of quantile stable matchings
beyond the college admission model they study.

Definition 5. An agent a has responsive preferences over contracts if there exist a quota qa
and a strict ordering ma on contracts Xa and the empty contract ∅ such that (1) agent a prefers
the empty set of contracts to any set of contracts |Y| > qa, and (2) agent a prefers a set of
contracts Y ≡ {y1, . . . , y|Y|} ⊆ Xa (indexed so that y1 ma . . . ,may|Y|) to another set of contracts
Z ≡ {z1, . . . , z|Z|} ⊆ Xa (indexed so that z1 ma . . . ,maz|Y|) such that Y 6= Z whenever |Y| ≤ qa
and either

• |Y| ≥ |Z|, yi ma zi or yi = zi for every 1 ≤ i ≤ |Z|, and yi ma ∅ for every |Z|+ 1 ≤ i ≤ |Y|,
or

• |Y| ≤ |Z| and yi ma zi or yi = zi for every 1 ≤ i ≤ |Y| and ∅ ma zi for every |Y|+ 1 ≤ i ≤
|Z|.

If agent a has responsive preferences then there is an order over individual contracts
and from each set of contracts agent a chooses the best contracts without exceeding its
quota. Note that a contract x is acceptable for agent a if x ma ∅.
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Proposition 1. If all agents’ preferences are responsive, then for all i between 1 and the number of
stable matchings k, the contract sets Xi

W and Xi
F are stable matchings; moreover, Xi

W = Xk+1−i
F .

This result does not directly follow from Chen et al. [17] because strong substitutes
may fail for responsive preferences; cf. Example 6.8 in Echenique and Oviedo [21]. Still
we are able to prove the proposition by reducing it to the results of Chen et al. [17]. The
structure of the reduction has the same steps as the argument in Roth and Sotomayor [31]
in which they prove that the classical lattice structure of the marriage problem carries over
to the college admissions problem when colleges have responsive preferences. We first
create an auxiliary one-to-one matching problem with contracts. In this auxiliary problem,
the set of agents consists of qa numbered copies of each agent a from the original problem;
for each pair of replicas of agents f and w from two sides of the market, the set of contracts
they can sign is isomorphic to the set of contracts f and w can sign in the original problem.
We construct agents’ preferences in the auxiliary problem as follows. Take an agent â, who
is a replica of agent a in the original problem. Take any two contracts x̂ and ŷ created
from contracts x, y ∈ Xa. If x �a y in the original problem, then x̂ �â ŷ in the auxiliary
problem. If x is identical to y in the original problem, then the contracts x̂ and ŷ are with
two different numbered replicas of the same original-problem-agent, and agent â ranks
the two contracts according to the numbers of the replicas. For the auxiliary one-to-one
matching problem with contracts, Theorem 2 of Chen et al. [17] implies that there is a lattice
structure on stable matchings. Following the same steps as Roth and Sotomayor [31] we
then conclude that this lattice induces a lattice on stable matchings in the original problem.

4. Quantile Stable Mechanisms

Finally, let us define the quantile stable mechanisms and examine their incentive prop-
erties. Fix one side of the matching market, say firms. For each q ∈ (0, 1], the q-quantile
stable mechanism ϕq is the mapping from agents’ preference profiles to matchings such
that for every preference profile �, the mechanism ϕq(�) selects the dkqe-th quantile stable
matching for firms where k is the number of stable matchings under �. Here, dxe denotes
the lowest integer equal to or larger than x (all our results remain valid for mechanisms
that always select the bkqc-th quantile stable matching, where bxc is the highest integer
smaller than or equal to x).

In light of the discussion above, the quantile stable mechanisms are well defined when
we restrict attention to the domain of preferences that satisfy strong substitutes and the
law of aggregate demand, and Proposition 1 shows that they are also well defined on the
domain of responsive preferences. In what follows we assume that the quantile stable
mechanisms we study are defined on one of these two preference domains.

We first show that all quantile stable mechanisms are different:

Proposition 2. For any q, q′ ∈ (0, 1] such that q 6= q′, there exists a matching market such that
ϕq is different than ϕq′ .

To prove this proposition, it is sufficient to consider the case q > q′ as the other case
is symmetric. Let k be such that k(q− q′) > 1. Consider the following market: All agents
have unit demand and every firm-worker pair uniquely defines a contract. Let firm fi rank
workers as follows wi � fi

wi+1 � fi
. . . � fi

wi+k−1 (subscripts are added modulo k) and let
worker wi+k−1 rank firms as follows fi �wi+k−1 fi+1 �wi+k−1 . . . �wi+k−1 fi+k−1. Under this
preference profile there are k distinct stable matchings and all quantile stable matchings are
different. In this market, the q-quantile stable mechanism is different from the q′-quantile
stable mechanism since k(q− q′) > 1.

Finally, we study the manipulability properties of quantile stable matchings using
Definition 5 from Chen et al. [19]. Fix a mechanism φ. We need the following notation for
the set of improvements,

M(a, φ,�) =
{

φ
(
�′a,�−a

)
| �′a∈ Pa and φ

(
�′a,�−a

)
�a φ(�)

}
,
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which is comprised of improvements that agent a can obtain by misreporting to mechanism
φ when the preference profile is �. Mechanism ψ is as manipulable as mechanism φ for
agent a if

M(a, ψ,�) ⊇ M(a, φ,�)

for every preference profile �∈ P. Mechanism ψ is more manipulable than mechanism φ
for agent a if ψ is as manipulable as φ for agent a and there exists a preference profile �∈ P
such that

M(a, ψ,�) ) M(a, φ,�).

As Chen et al. [19] discuss, this definition of manipulability comparison is equivalent to ma-
nipulability comparisons studied by Day and Milgrom [23] and Pathak and Sönmez [24].
The latter paper also studies less demanding manipulability concepts, and a fortiori our
Proposition 3 remains valid for these less demanding concepts.

Proposition 3. Let q, q′ ∈ (0, 1] be such that q > q′. Then either

• ϕq = ϕq′ , or
• ϕq is more manipulable than ϕq′ for all firms and ϕq′ is more manipulable than ϕq for all

workers.

This proposition follows from Chen et al.’s (2016) polarity result discussed above (for
the preference domain satisfying strong substitutes and the law of aggregate demand) and
from our Proposition 1 (for the domain of responsive preferences) when combined with
the equivalence of manipulability and side-welfare established in Chen et al. [19]. To apply
the latter equivalence we need to observe that each of the above two preference domains
is closed in the sense of Chen et al. [19]: A preference profile domain P is closed if for all
�∈ P and for all matchings Y that are stable with respect to �, if the preference relation �′a
ranks sets of contracts in the same way as �a except that only contracts in Ya are acceptable
to agent a, then (�′a,�−a) ∈ P.

5. Conclusions

We defined the class of quantile-stable mechanisms and analyzed their properties.
These mechanisms are further studied by Fernandez [32], as part of their analysis of the
absence and presence of regret in matching mechanisms.
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Appendix A. Necessity Examples

In the following example, we show that strong substitutes cannot be replaced with
substitutes in the existence results of Chen et al. [17].

Example A1. There are two firms f1, f2; and four workers w1, w2, w3, and w4. Workers have
unit demand. There is only one contract that each firm-worker pair can sign. To ease notation,
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each contract is denoted by the pair of agents associated with this contract. Let x1 = { f1, w1},
x2 = { f1, w2}, x3 = { f1, w3}, x4 = { f1, w4}, x5 = { f2, w1}, x6 = { f2, w2}, x7 = { f2, w3},
and x8 = { f2, w4}. Preferences are as follows: (A set of contracts {xi, . . . , xj} is denoted by
xi . . . xj to ease notation. If a set of contracts is omitted from the preference list of an agent, the agent
prefers the null contract to that set of contracts).

� f1 : x1x3, x1x4, x2x3, x2x4, x1, x3, x2, x4;

� f2 : x6x8, x5x8, x6x7, x5x7, x6, x8, x5, x7;

�w1 : x5, x1;

�w2 : x2, x6;

�w3 : x7, x3; and

�w4 : x4, x8.

Note that contracts are substitutes and satisfy the law of aggregate demand for all agents.
Moreover, they are also strong substitutes for workers and f2. However, contracts are not strong
substitutes for f1 because even though x1x4 � f1 x2x3, and x4 ∈ C f1({x1, x4} ∪ {x4}) we have
x4 6∈ C f1({x2, x3} ∪ {x4}) = {x2, x3}.

There are four stable matchings: µ1 ≡ {x1, x3, x6, x8}, µ2 ≡ {x1, x4, x6, x7}, µ3 ≡
{x2, x3, x5, x8}, and µ4 ≡ {x2, x4, x5, x7}. When we use the quantile construction above we get:
X1

F = {x1, x3, x6, x8} = µ1, X2
F = {x1, x4, x5, x8}, X3

F = {x2, x3, x6, x7}, X4
F = {x2, x4, x5, x7}

= µ4; and X1
W = {x2, x4, x5, x7} = µ1, X2

W = {x2, x4, x5, x7} = µ1, X3
W = {x1, x3, x6, x8} =

µ4, X4
W = {x1, x3, x6, x8} = µ4. Here X2

F and X3
F are not even matchings, let alone stable.

As the following example shows, the law of aggregate demand is also necessary in the
existence results of Chen et al. [17]. In the following example contracts are strong substitutes
for all agents but the law of aggregate demand fails. There are four stable matchings
including the firm-optimal and the worker-optimal stable matchings, but other quantile
stable matchings do not exist (this example develops Example 5 of Alkan and Gale [28]
who use it to show that the law of aggregate demand is necessary to get the lattice structure
of stable matchings).

Example A2. There are five firms f1, f2, f3, f4, f5; and five workers w1, w2, w3, w4, and w5.
Workers have unit demand. For each firm-worker pair, there is only one contract that they can sign.
To ease notation, each contract is denoted by the pair of agents associated with this contract. Let
x1 = { f1, w1}, x2 = { f1, w3}, x3 = { f1, w5}, x4 = { f2, w2}, x5 = { f2, w4}, x6 = { f2, w5},
x7 = { f3, w3}, x8 = { f3, w1}, x9 = { f4, w4}, x10 = { f4, w2}, and x11 = { f5, w5}. Preferences
are as follows:

� f1 : x1, x2x3, x2, x3;

� f2 : x4, x5x6, x5, x6;

� f3 : x7, x8;

� f4 : x9, x10;

� f5 : x11;

�w1 : x8, x1;

�w2 : x10, x4;

�w3 : x2, x7

�w4 : x5, x9; and

�w5 : x3, x6, x11.

Since workers f3, f4, and f5 have unit demand, contracts are strong substitutes and satisfy the
law of aggregate demand for these agents. However, even though contracts are strong substitutes
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for f1 and f2, they do not satisfy the law of aggregate demand for these two firms. This is straight-
forward. For example, for f1, C f1({x1, x2, x3}) = x1 and C f1({x2, x3}) = {x2, x3}, which imply
|C f1({x1, x2, x3})| < |C f1({x2, x3})|.

There are four stable matchings: µ1 ≡ {x1, x4, x7, x9, x11}, µ2 ≡ {x1, x5, x6, x7, x10}, µ3 ≡
{x2, x3, x4, x8, x9}, and µ4 ≡ {x2, x3, x5, x8, x10}. When we use the quantile construction above we
get: X1

F = {x1, x4, x7, x9, x11} = µ1, X2
F = {x1, x4, x7, x9}, X3

F = {x2, x3, x5, x6, x8, x10}, X4
F =

{x2, x3, x5, x8, x10} = µ4; and X1
W = {x2, x3, x5, x8, x10} = µ4, X2

W = {x2, x3, x5, x8, x10} =
µ4, X3

W = {x1, x4, x6, x7, x9}, X4
W = {x1, x4, x7, x9, x11} = µ4. Here X2

F is not stable since x11 is a
blocking contract, X3

F is not stable because it is not individually rational for w5 as Cw5({x3, x6}) = x3,
and X3

W is not stable because it is not individually rational for f2 as C f2({x4, x6}) = x4.
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