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Abstract: In this paper, we use a partition function form game to analyze cartel formation among
firms in Cournot competition. We assume that a firm obtains a certain cost advantage that allows it
to produce goods at a lower unit cost. We show that if the level of the cost advantage is “moderate”,
then the firm with the cost advantage leads the cartel formation among the firms. Moreover, if the
cost advantage is relatively high, then the formed cartel can also be stable in the sense of the core of a
partition function form game. We also show that if the technology for the low-cost production can be
copied, then the cost advantage may prevent a cartel from splitting.

Keywords: cartel formation; Cournot competition; partition function form game; stability
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1. Introduction

Many approaches have been proposed to analyze cartel formation. Ref. [1] first intro-
duced a simple noncooperative game to study cartel formation among firms. As shown
by the title of his paper, “A simple model of imperfect competition, where 4 are few and
6 are many”, this result suggests that cartel formation depends deeply on the number of
firms in a market. Ref. [2] distinguished the issue of cartel stability from that of cartel
formation. They focused on firms’ profits at an equilibrium and analyzed the stability of
a cartel. Ref. [3] introduced the notion of a coalition-proof Nash equilibrium to analyze
cartel stability. She defined a coalition-proof stable cartel and showed that there is a unique
coalition-proof equilibrium. Ref. [4] analyzed cartel formation from a dynamic point of
view. They showed that their dynamic process converges to a stable cartel if any.

In contrast to the approaches listed above, Ref. [5] uses a partition function form
game to study an endogenously stable coalition structure in Cournot competition. Ref. [6]
also formulates Cournot competition (and many other economic situations) as a partition
function form game and focuses on the effects of positive/negative spillovers among firms.
Our approach belongs to this group: we use a partition function form game. However, the
following three features distinguish our approach from those of the preceding papers.

1. We consider stable coalition structures. Although we will elaborate later, a coalition
structure is a partition of a player set. Therefore, our analysis includes a situation
where multiple cartels can coexist simultaneously.

2. We use the concept of a core allocation to define the stability of a coalition structure.
For each coalition structure, we assume that the members of each cartel divide their
profit among themselves. We say a coalition structure is stable if there exists a feasible
core allocation in the coalition structure.

3. We introduce asymmetric costs and attempt to solve the so-called “merger paradox”.
More specifically, we consider that a firm obtains new technology and a cost advan-
tage ε ≥ 0 that allow the firm to produce goods at a lower unit cost. We perform
comparative statics for ε.
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Intuitively, to understand the model, we consider a simple example with three firms.
The firms produce homogeneous divisible goods. Let p = a− Q be an inverse demand
function, where Q is the total amount of goods in this market. We first consider symmetric
costs: all firms produce goods at a fixed unit cost c. For simplicity, we assume a− c = 1.
Since there are three firms, by standard calculations, each firm obtains profit 1/16. Note
that if there are n firms, in general, each firm obtains 1/(n + 1)2. We now focus on firms 1
and 2. We suppose that they decide to merge and form their coalition, or a cartel, {1, 2}.
The two firms in the coalition jointly produce goods at the same unit cost c. Therefore, the
market now consists of the two-firm coalition and firm 3. By the same calculations, the
two-firm coalition obtains profit 1/9 (> 1/16) in total. However, it immediately holds that
1

16 + 1
16 > 1

9 , which means that the merger does not necessarily lead to a profit for both
firms 1 and 2. To be more precise, at least one firm decreases its profit and, hence, has no
incentive to join such a coalition. This phenomenon is known as the “merger paradox” in
Cournot competition. According to this standard model, firms may have no incentive to
form their coalitions, while many cartels are reported in our actual market.1

We attempt to address this problem in terms of cost asymmetry, coalition structure,
and the core. We now assume that firm 1 obtains a cost advantage ε ≥ 0. Firm 1 produces
goods at a lower unit cost c1 := c − ε ≤ c. Let c1 ≥ 0. Note that a − c1 = 1 + ε since
a− c = 1. We assume that a coalition that contains firm 1 can enjoy the cost advantage
and produces goods at the lower unit cost c1. We compute each coalition’s profit in every
partition and obtain Table 1.2 In the table, firms j and k mean the symmetric firms 2 and 3.

Table 1. Profits in Cournot competition with three firms.

Partition {{1},{2},{3}} {{1,j},{k}} {{2,3},{1}} {{1, 2, 3}}
Coalition {1} {2} {3} {1, j} {k} {2, 3} {1} {1, 2, 3}

Symmetric costs 1
16

1
16

1
16

1
9

1
9

1
9

1
9

1
4

Cost advantage ε
(1+3ε)2

16
(1−ε)2

16
(1−ε)2

16
(1+2ε)2

9
(1−ε)2

9
(1−ε)2

9
(1+2ε)2

9
(1+ε)2

4

We focus on the merger of firm 1 and firm 2 again. If coalition {1, 2}’s joint profit
(1+2ε)2

9 is greater than the summation of firm 1’s profit (1+3ε)2

16 and firm 2’s profit (1−ε)2

16 ,
then they have an incentive to merge.3 This inequality holds if and only if 1/16 < ε < 1.
Note that ε can take any nonnegative real number. In other words, if the level of the cost
advantage of firm 1 is “moderate” (namely, 1/16 < ε < 1), then firm 1 profits by merging
with firm 2. If the cost advantage is slight (namely, 0 ≤ ε < 1/16), such a small advantage
is almost negligible and not enough for both firms to improve their profits. If the cost
advantage is very large (namely, 1 < ε), firm 1 no longer needs to merge with firm 2: it is
more profitable for firm 1 to produce goods alone by taking advantage of the very low cost.
The latter two cases still suggest the merger paradox in two different ways, while the first
case suggests the possibility of endogenous cartel formation. Moreover, as long as ε retains
the moderate level 1/16 < ε < 1, coalition {1, 2} also has an incentive to absorb firm 3 and
form the three-firm cartel. Firm 3 also benefits by participating in this cartel.

Given this observation, one might have the following two questions. (i) Is this observa-
tion available for any number of firms? (ii) Are the formed cartels stable? The first question

1 Ref. [7] discusses the merger paradox in a simple framework: In their model, a merger of firms, in most cases, generates a decline of the joint profits,
while, in our settings that are formally introduced later, we assume that a firm obtains cost advantage, and the cost asymmetry gives the firm an
incentive to merge with other firms. Moreover, asymmetric settings are also studied by Ref. [8]. They consider a mixed oligopoly that consists of
private firms and a public firm. They show that there is a merger between a private firm and the public firm that may benefit the members of the
merger.

2 For example, in partition {{1}, {2}, {3}}, firm 1 with the lower unit cost c1 and firms 2 and 3 with the standard unit cost c compete under the same
inverse demand function.

3 There is a profit distribution that improves both firms’ profits.
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may arise from the simple fact that a coalition’s profit depends on the coalition structure in
which the coalition is embedded. For example, in view of Table 1, even in the symmetric
setting, firm 1’s profit is 1/16 if the other two firms are separate, while it is 1/9 if they form
a two-firm coalition. The second question arises from the gap between cartel formation
and cartel stability. As the preceding papers show, to analyze stable coalition structures,
we need to take into account the profit distributions in each coalition. For example, we
focus on partition {{1, 2}, {3}} in the asymmetric setting. In view of Table 1, firm 3 simply

obtains (1−ε)2

9 alone, while firms 1 and 2 must negotiate and divide the profit (1+2ε)2

9 . Given
that firm 1 might be in an advantageous position because of its cost advantage, how do
they distribute the profit to keep their coalition? As mentioned in question (i), this problem
becomes more complicated if we consider n firms and all possible partitions of the n firms.
We employ a partition function form game to address these difficulties. All the propositions
that we provide in this paper hold for any n. Moreover, we apply the core of a partition
function form game to discuss stable coalition structures.

To provide the formal framework, we introduce basic notation in Section 2. We discuss
cartel formation in Section 3 and cartel stability in Section 4. In Section 5, we extend the
basic model so that a firm can copy the technology to produce goods at the low unit cost.
We summarize the results in Section 6. All the proofs are provided in the Appendix A.

2. Preliminaries

Let N = {1, ..., n} be a set of firms. Throughout this paper, we assume n ≥ 3. Let S
be a coalition of firms: S ⊆ N. By |S|, we denote the cardinality of coalition S, namely, the
number of firms in coalition S. We typically use P to denote a partition. Let Π(S) be the
set of all partitions of coalition S. We denote the number of coalitions in partition P by |P|.
An embedded coalition is (S,P) with ∅ 6= S ⊆ N and S ∈ P ∈ Π(N). Let EC(N) be the
set of all embedded coalitions of N. A partition function v assigns a real number to each
embedded coalition, v : EC(N)→ R. A partition function form game is a pair (N, v).

The framework of Cournot competition is the same as the one we mentioned in
Section 1. The firms produce homogeneous goods. They are free to form coalitions among
themselves. Let

p = a−Q

be an inverse demand function, where Q is the total amount of products in this market,
Q = ∑j∈N qj. We first briefly introduce a symmetric setting as a benchmark. Every firm
produces output at a fixed unit cost c. For simplicity, we assume

a− c = 1.

We obtain a partition function form game in the same manner as Section 1 (see
Table 1): for every (S,P) ∈ EC(N), we have

v(S,P) = 1
(|P|+ 1)2 .

Now, we suppose that a firm, for example, firm 1, obtains a cost advantage ε ≥ 0. Let
c1 be the new unit cost of firm 1, namely,

c1 = c− ε,

where let 0 ≤ c1 ≤ c. As long as a coalition contains firm 1, the coalition can enjoy the cost
advantage and produces goods at the lower cost c1. The following proposition provides
the partition function vε in the presence of the cost advantage ε.
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Proposition 1. Let ε ≥ 0. For any (S,P) ∈ EC(N),

vε(S,P) =
{ 1

(|P|+1)2 (1 + ε|P|)2 if 1 ∈ S,
1

(|P|+1)2 (1− ε)2 otherwise.

Proposition 1 allows us to use the following simple notations. First, for anyP ∈ Π(N), let

ρ := |P|.

We use v1(ε, ρ) to denote the profit of the coalition containing firm 1. By v(ε, ρ), we
denote the profit of a coalition with the standard cost. Formally,

v1(ε, ρ) :=
1

(ρ + 1)2 (1 + ερ)2,

v(ε, ρ) :=
1

(ρ + 1)2 (1− ε)2.

Therefore, each coalition’s profit depends on a nonnegative real number ε and a
natural number ρ.

3. Cartel Formation

The partition function provided in Proposition 1 specifies “which coalition obtains
how much profit in which coalition structure” in the presence of the cost advantage of
firm 1. The following result shows that any coalition that consists of firms with the standard
cost has an incentive to split. Moreover, this disintegrative tendency holds for any ε.

Proposition 2. For any ρ ≥ 3 and any ε ≥ 0,

v(ε, ρ− 1) < 2v(ε, ρ).

Note that ρ means (the number of coalitions in) the coalition structure after the split,
and ρ− 1 means that before the split. The right-hand side, 2v(ε, ρ), means the summation
of the profits of the (sub)coalitions, say, T and T′, that belonged to the same coalition, say,
S = T ∪ T′, before the split. Therefore, this proposition states that regardless of what profit
distribution is made in the original coalition S, either T or T′ has an incentive to deviate
from S. The inequality ρ ≥ 3 is required because if ρ = 2, then either one of the two
coalitions contains firm 1, and this proposition does not apply.4

Proposition 2 also suggests that the merger paradox persists among the firms with the
standard cost. Who leads cartel formation? The following proposition answers
this question.

Proposition 3. For any ρ ≥ 2 and any ε ≥ 0, let

m(ε, ρ) := v1(ε, ρ− 1)− (v1(ε, ρ) + v(ε, ρ)).

For the sign of m(ε, ρ), Table 2 holds, where η(ε) := −1−
√

3ε2−4ε+2
3ε−1 for 0 ≤ ε < 1/3, and m

denotes the gains from cooperation.

4 Note that v(ε, ρ) means the profit of a coalition with the standard cost.
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Table 2. The sign of m(ε, ρ).

2 ≤ ρ ≤ n

1 < ε negative
ε = 1 zero

1/3 ≤ ε < 1 positive

0 ≤ ε < 1/3 positive zero negative
if 2 ≤ ρ < η(ε) if ρ = η(ε) if η(ε) < ρ ≤ n

For example, if 1 < ε, m(ε, ρ) is negative for every ρ with 2 ≤ ρ ≤ n. Similarly, if
0 ≤ ε < 1/3 and 2 ≤ ρ < η(ε), then m(ε, ρ) is positive. If m(ε, ρ) is positive, then both
the coalition containing firm 1 and a coalition without firm 1 have an incentive to merge
into one large coalition. In contrast, if it is negative, either one of them has an incentive
to deviate from the large coalition. If zero, they are indifferent between merger and split.
Figure 1 describes this relationship. Note that for ρ ≥ 2, we have

η−1(ρ) =
ρ2 − 2ρ− 1

3ρ2 − 1

and limρ→∞ η−1(ρ) = 1/3.

Figure 1. Cost advantage and tendency of coalition formation.

We can derive the following three implications from Proposition 3 and Figure 1.

• As shown in the area β, if the level of the cost advantage is “moderate”, firm 1 obtains
an incentive to lead coalition formation. Moreover, as long as ε retains the moderate
level, each merger benefits all participants.

• The area γ shows that if the cost advantage is slight and if there are three or more
coalitions, then such an advantage ε is too small for firm 1 to lead cartel formation. In
this case, the symmetric setting and the asymmetric setting are hardly different.

• In contrast, if the cost advantage is very large as the area α describes, then such
“strong” firm 1 no longer needs any cartel. Firm 1 has an incentive to be alone and
produce goods by taking full advantage of the very low unit cost.
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Moreover, by combining Propositions 2 and 3, we can depict the flow of splits and
mergers among firms. To demonstrate this, we provide the following four-firm example.

Example 1. We consider four firms, N = {1, 2, 3, 4}. Set partitions as follows: for {i, j, k} =
{2, 3, 4},

P1 = {{1, 2, 3, 4}};
P2A = {{1}, {i, j, k}},P2B = {{1, i}, {j, k}},P2C = {{1, i, j}, {k}};
P3A = {{1}, {i, j}, {k}},P3B = {{1, i}, {j}, {k}};
P4 = {{1}, {2}, {3}, {4}}.

These partitions cover all possible coalition structures of the four firms. Figure 2 shows
the splits and mergers among these firms. The three dashed downward arrows are derived from
Proposition 2. Therefore, these three arrows hold for any ε ≥ 0. Proposition 3 generates the upward
arrows with continuous lines. These upward arrows are conditional. Since n = 4, the maximum
of ρ is 4. If ε satisfies η−1(4) = 7/47 < ε < 1, then all the upward arrows are valid. However,
if ε is in η−1(3) = 1/13 < ε < 7/47, the arrow from P4 to P3B would point downward. The
two upward arrows from P2B and P2C to P1 are valid as long as ε is less than 1. If ε exceeds 1, all
arrows would point downward.

We now focus on a sequence of splits and mergers. For example, we consider P3A. Let ε satisfy
7

47 < ε < 1: all arrows in Figure 2 are valid. In particular, three arrows are available from partition
P3A. Regardless of which arrow one follows, there is a sequence of mergers that reaches P1. All
partitions, including P4, have such a sequence.

Figure 2. Splits and mergers among four firms.

This observation generalizes to any number of players. Proposition 3 implies the
following result.

Corollary 1. For any n ≥ 3, there exists ε such that for every partition P ∈ Π(N) \ {{N}}, we
can find a sequence of two-coalition mergers that starts from P and reaches {N}.

Figure 2, together with Corollary 1, suggests that the grand coalition can be formed
if 7

47 < ε < 1. However, as we mentioned in Section 1, forming a coalition structure does
not necessarily mean that the coalition structure is stable. Its stability depends on the
profit allocation the firms decide within the coalition. In Section 4, we provide a condition
for coalition structures to be (un)stable. Proposition 4 is the formal statement that covers
all coalition structures of n firms. Figure 3 shows the application of Proposition 4 to the
four-firm case.
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4. Cartel Stability

A cartel obtains profit from Cournot competition and distributes the profit among
its members. If some members object to the profit distribution, the members may deviate
from the cartel and form their own coalition. Firms may negotiate on their distribution
before forming their cartel. In the negotiation, if a proposed allocation is profitable for all
members of the coalition, then they form the coalition, and the resulting coalition should
be stable. However, if it is not profitable for some firms, they have no incentive to agree
to such a distribution and will not join the cartel. In this sense, we need to analyze profit
distributions to study stable coalition structures. We use the stability concept known as the
core. We begin with the definition of the core for a partition function from game.5

Let ε ≥ 0. For each partition P ∈ Π(N), the set of feasible allocations is given as
follows: F(ε,P) = {x ∈ RN |∑j∈S xj = vε(S,P) for every S ∈ P}, where the definition of
vε is given in Proposition 1. In other words, every coalition in a partition distributes its
profit within the coalition. Now, we define a deviation. To define a deviation in a partition
function form game, we briefly introduce some useful notations. For any S ⊆ N, let P|S
be the projection of partition P on coalition S, formally P|S = {S ∩ C|C ∈ P , S ∩ C 6= ∅}.
Hence, P|S is the partition of S such that reserves the partition of N by P . For example, if
P = {{1, 2}, {3, 4, 5}} and S = {2, 3, 4}, then P|S = {{2}, {3, 4}}. For simplicity, define

QS,P := {S} ∪ P|N\S.

Therefore, for the same S and P , QS,P = {{2, 3, 4}, {1}, {5}}, which is the partition
that results after the members of S leave partition P and form their own coalition S. For any
P ∈ Π(N) and any x ∈ F(ε,P), a coalition S deviates from x if there exists y ∈ F(ε,QS,P )
such that yj > xj for every j ∈ S.6 The core for partition P is the set of feasible allocations
from which no coalition deviates:

C(ε,P) = {x ∈ F(ε,P)| no coalition S ⊆ N deviates from x,

and we say a partition is stable if the core of the partition is nonempty.
The following proposition shows the relationship between the cost advantage and the

nonemptiness of the core. We define the following number, which serves as a threshold in
the proposition:

h(n) :=
4n− 9
4n + 3

.

Note that n ≥ 3 is assumed throughout this paper, and we have η−1(n) < h(n) for
every n ≥ 3.

Proposition 4. Let ε ≥ 0. If ε satisfies η−1(n) < ε < 1, then C(ε,P) is empty for every
P ∈ Π(N) \ {{N}}. Moreover, for the grand coalition N,

C(ε, {N}) =
{

empty if η−1(n) < ε < h(n),
nonempty if h(n) ≤ ε < 1.

Together with Corollary 1, this proposition suggests the following:

• As long as the cost advantage ε is in the “moderate” interval (η−1(n), 1), Corollary 1
suggests that firm 1 leads coalition formation and reaches the grand coalition N.

5 For the theoretical studies of the core of a partition function form game, see [9–13]. In addition to the core notions for partition function form games,
Ref. [14] initially introduced the notions of α-core and β-core. Ref. [15] provides a detailed summary of these core concepts.

6 One can define a deviation in another way: yj ≥ xj for every j ∈ S and yi > xi for some i ∈ S. These two definitions make no difference in the
following results.
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• Moreover, if ε lies in the particular interval [h(n), 1) ⊆ (η−1(n), 1), then the grand
coalition that is achieved is stable. No coalition has an incentive to deviate from the
grand coalition.

• However, if ε is in (η−1(n), h(n)), the formation of the grand coalition is transient
because every allocation in the grand coalition is not a core allocation. Some coalitions
endogenously deviate from the grand coalition.

Below, we apply Proposition 4 to the four-firm example. Since n = 4, we have

η−1(4) =
7

47
.

For any ε with 7
47 < ε < 1, all upward arrows (and all dashed arrows) are valid in

Figure 2. In this sense, as Corollary 1 states, the grand coalition N is reachable from every
coalition structure. The threshold is given as

h(4) =
7
19

.

Figure 3 summarizes the intervals. If cost advantage ε lies in the most strict interval
7

19 ≤ ε < 1, the grand coalition can be seen as the “goal” of a sequence of splits and mergers
because there is a core allocation in the grand coalition, from which no coalition deviates.
To check the existence of core allocations, we consider two levels of cost advantages: low
ε < 7

19 and high ε > 7
19 . First, let ε = 1

4 < 7
19 . The four firms divide the total profit

25
64 among themselves.7 Firm 1 requires at least 16

64 because firm 1 can attain this profit
by deviating from the grand coalition and forming its one-firm coalition. Similarly, firm
2 requires at least 4

64 . Firms 3 and 4 also require the same amount as firm 2. However,
we have

25
64

<
16
64

+
4
64

+
4

64
+

4
64

.

Hence, for any feasible allocation, at least one firm has an incentive to deviate, which
means the grand coalition is also a transient step of the sequence. Now, let ε = 1

2 > 7
19 .

The four firms divide the total profit 36
64 among themselves.8 The grand coalition now has a

core allocation. For example, allocation 1
64 (30, 2, 2, 2) becomes a core element. Therefore,

no coalition deviates from this allocation.

Figure 3. Cost advantage, stability, and cartel formation among four firms.

In view of the first and second points of the three implications listed above, one might
consider that “reaching the grand coalition” and “reaching a core element of the grand
coalition” can be different. Although they are different in general, we can straightforwardly

7 For easy reference, we provide the list of profits for ε = 1
4 . Below, S1 means the coalition that contains firm 1, and S means a coalition without firm 1:

vε(N,P1) =
25
64 ; vε(S1,P2C) =

1
4 , vε(S,P2C) =

1
16 ; vε(S1,P3B) =

49
256 , vε(S,P3B) =

9
256 ; vε(S1,P4) =

4
25 , vε(S,P4) =

9
400 .

8 Below is the list of profits for ε = 1
2 : vε(N,P1) = 9

16 ; vε(S1,P2C) = 4
9 , vε(S,P2C) = 1

36 ; vε(S1,P3B) = 25
64 , vε(S,P3B) = 1

64 ; vε(S1,P4) = 9
25 ,

vε(S,P4) =
1

100 .
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remove this gap in our model. To see this, we construct a sequence of allocations that
reaches a core element of the grand coalition. We demonstrate this below. Let ε = 1

2 .
We consider the sequence of partitions P4,P3B,P2C,P1 and the sequence of allocations

as follows:9

P1 : 1
14400 ( 6897, 401, 401, 401 ),

P2C : 1
14400 ( 6028, 146, 226, 400 ),

P3B : 1
14400 ( 5480, 145, 225, 225 ),

P4 : 1
14400 ( 5184, 144, 144, 144 ).

This sequence meets the following three requirements: (i) allocations are monotoni-
cally increasing; (ii) allocations are feasible in each step; and (iii) the final allocation lies in
the core. The first requirement is known as population monotonicity, which guarantees all
firms an incentive to form a larger coalition.10

5. The Spread of Technology

In the previous sections, we assumed that the cost advantage and the technology
belonged solely to firm 1 and that any firm could not copy the technology. In this section,
we assume that if a firm forms a coalition with firm 1, then the firm can make use of the
technology, even after the firm becomes independent from the coalition.

To describe the situation, we use the four-firm example again. We consider partition
P4 to be the first step. In this step, firm 1 is still the only firm that has the technology.
Now, firm 1 and firm 2 form their coalition and move to the partition P3B. In this step,
firm 2 learns the technology from firm 1. Firm 2 does not have to use the technology in
partition P3B because firm 2 can enjoy the full technology, as long as it keeps a coalition
with firm 1. However, firm 2 can use the technology to some degree even after it splits off
from the coalition. We use r to denote the degree of availability of the technology. In other
words, if firm 2 splits off from the coalition, firm 2 can produce goods at a new unit cost
c2 := c− rε, where 0 ≤ r ≤ 1. It holds that c1 ≤ c2 ≤ c. If r = 1, firm 2 can make full use of
the technology, c2 = c1. If r = 0, the technology is completely protected by firm 1, and firm
2 cannot use it at all, c2 = c. Note that no firm can use the technology until it goes through
the coalition with firm 1.

Since we have already analyzed the case with r = 0 in the previous sections, we now
observe the other extreme case r = 1. Suppose firm 2 splits off from the coalition and moves
from P3B to P4. Firms 1 and 2 are symmetric in P4 with the lower cost c1 = c2 = c− ε.
Firms 3 and 4 are also symmetric in P4 with the higher cost c. Therefore, each firm obtains
the following profits in P4:

v′ε(S,P4, 1) =
{ 1

25 (1 + 3ε)2 if S = {1} or {2},
1

25 (1− 2ε)2 if S = {3} or {4},

where the third input 1 means r = 1. We use v′ε(S,P4, 1) to denote the profits in the
“second” P4, in which firm 2 also has the cost advantage, and vε(S,P4) to write those in
the “first” P4, in which firm 2 did not have the cost advantage.

Now, we focus on the difference between r = 0 and r = 1. If r = 0, as we have seen in
the previous sections, the deviation from P3B to P4 is not necessarily profitable for firm 2
because as long as ε satisfies 7

47 < ε < 1, it holds that

9 The denominator 14,400 is the LCM of 16, 9, 36, 64, 25, and 100.
10 For a detailed discussion of population monotonicity, see the following papers. A sequence of population monotonic allocations is called a

population monotonic allocation scheme (PMAS). This concept was formally introduced by [16], and Ref. [17] studied conditions for a partition
function form game to have a PMAS. Ref. [18] weakens some restrictions of PMAS and propose a monotonic core allocation path (MCAP).
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vε({1, 2},P3B) =
1

16
(1 + 3ε)2 >

1
25

(1 + 4ε)2 +
1

25
(1− ε)2 = vε({1},P4) + vε({2},P4)

= v′ε({1},P4, 0) + v′ε({2},P4, 0)

as described in Figure 2. However, if r = 1, for any ε, we have

vε({1, 2},P3B) =
1
16

(1 + 3ε)2 <
2
25

(1 + 3ε)2 = v′ε({1},P4, 1) + v′ε({2},P4, 1). (1)

This observation means that each firm’s incentive to form and dissolve a coalition
depends on the level of r.

The natural question should be what r facilitates the splits and mergers of coalitions.
To answer this question, we introduce some notations below. They are a formal version of
the observation provided above. Let r ∈ [0, 1]. Consider a coalition S1 ⊆ N with 1 ∈ S1
and |S1| ≥ 2. Fix a partition P∗ ∈ Π(N) with S1 ∈ P∗. Let T1 and T2 satisfy T1 ∪ T2 = S1,
T1 ∩ T2 = ∅, and 1 ∈ T1. Let P = {T1, T2} ∪ (P∗ \ {S1}) be the partition that results after
either T1 or T2 splits off from S1 ∈ P∗. Therefore, coalition T2 can produce goods at unit
cost c− rε in partition P . Let v′1(ε, ρ, r) denote the profit of T1 in partition P , and v′2(ε, ρ, r)
be that of T2. In the same manner as Proposition 1, we have

v′1(ε, ρ, r) = v′ε(T1,P , r) = (1+ερ−rε)2

(ρ+1)2 ,

v′2(ε, ρ, r) = v′ε(T2,P , r) = (1+rερ−ε)2

(ρ+1)2 .
(2)

We use v′(ε, ρ, r) to denote the profit of coalition T for each T in P \ {T1, T2}. Note
that |P∗| = ρ− 1 since |P| = ρ.

Proposition 5. Let ρ ≥ 3 and ε ≥ 0. The following two statements are equivalent:

(i) There is r ∈ [0, 1] such that v1(ε, ρ− 1) ≥ v′1(ε, ρ, r) + v′2(ε, ρ, r)
(ii) It holds that ε ≥ η−1(ρ).

If ρ = 2, statement (i) holds for any ε ≥ 0.

Note that statement (ii) means that pair (ρ, ε) lies in either α or β in Figure 1. Therefore,
the existence of r as mentioned in statement (i) distinguishes the areas α and γ, in which
firms tend to split. If (ρ, ε) is in α, some r prevents splits, while if it is in γ, no r prevents
splits. To see this, we use the four-firm example and consider the partitions P4 and P3B.
We focus on firm 1 and firm 2. In view of (2) and (1), their profits are given as follows:

vε({1, 2},P3B) =
1
16

(1 + 3ε)2,

v′ε({1},P4, r) = v′1(ε, 4, r) =
(1 + (4− r)ε)2

25
,

v′ε({2},P4, r) = v′2(ε, 4, r) =
(1 + (4r− 1)ε)2

25
.

First, we consider a high cost advantage ε = 3
2 , so (ρ, ε) = (4, 3

2 ) is in α. We set, for
example, r = 1

2 . We have

vε({1, 2},P3B) =
121
64

>
25
16

+
1
4
= v′ε({1},P4,

1
2
) + v′ε({2},P4,

1
2
).

Hence, this r prevents the coalition {1, 2} from splitting. However, if ε is so small that
it is in the area γ, no r prevents the split. For example, consider (ρ, ε) = (4, 1

10 ) ∈ γ. Then,
the opposite inequality holds for every r. Why does such r exist only in α? The area α
means that firm 1’s cost advantage ε is very high. Therefore, if r is zero, then firm 1 has an
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incentive to form its one-firm coalition, as discussed in Proposition 3. Even if r is positive,
as long as r is small, the result is the same as r = 0.11 However, if r is high enough, such
r also gives firm 2 an incentive to deviate together with the “partial” cost advantage rε,
which discounts the original advantage ε of firm 1. To prevent firm 2 from splitting off,
firm 1 assigns more shares to firm 2. As long as firm 1 serves firm 2 satisfactory share, their
coalition does not split. If r is very high or one, then firm 2 can expect even higher profit
after the deviation. In this case, firm 1 is no longer able to offer enough share for firm 2,
and their coalition splits.

If it is in the area γ, ε is very slight, and rε is even slighter. Such a small advantage no
longer influences any firm’s incentive. Therefore, the behavior of firms is the same as in
the case with r = 0.

6. Concluding Remarks

In this paper, we have employed a partition function form game to formulate cartel
formation among firms in Cournot competition. We have shown that the result of cartel
formation depends on the level of the cost advantage a firm attains. If the level of the cost
advantage lies in a certain interval, the firm that has the cost advantage obtains an incentive
to lead cartel formation and reach the grand coalition. Moreover, if the cost advantage
level is in a more restrictive interval, that is, a subinterval of the above interval for coalition
formation, then the grand coalition that has been achieved can also be stable in the sense of
the core. In addition, we have shown that if the technology for the cost advantage can be
copied, then such technology may prevent cartels from splitting.

Throughout this paper, we have assumed that the level of the cost advantage, ε, is
constant. However, the technology can develop as mergers proceed. For example, in view
of Figure 1, starting from a certain level of ε in the area β, ε may increase as mergers proceed
and exceed 1 at some point. According to the area α, such a high level of technology now
facilitates splits. If the technology can be copied, the developed technology spreads in the
market as firms split up. As a result, the developed technology spreads over many firms
in the market, which may result in symmetric costs with the new technology. If a firm
obtains another technology in the state and the costs become asymmetric again, then a new
sequence of mergers and splits may start. Further research is required to extend the model
to incorporate such a dynamic change in ε.
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Appendix A

Appendix A.1. Proof of Proposition 1

Proof. We fix a partition P ∈ Π(N). Let q = (qS)S∈P ∈ RP be a profile of quantities
produced by the coalitions in P . We use S1 to denote the coalition that contains firm 1. By
S, we denote a coalition that does not contain firm 1. We first consider the best response

11 To be more precise, as elaborated in (A7) in the Appendix A, r is “small” if it is less than ε−1
ερ , and “high enough” if it lies between ε−1

ερ and
(3ε−1)ρ2+2ρ+(1−ε)

ερ(ρ2+1) , and “very high” if it exceeds (3ε−1)ρ2+2ρ+(1−ε)
ερ(ρ2+1) .
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function of coalition S ∈ P . Coalition S’s profit is πS(q) = (a−∑S′∈P qS′)qS − cqS. Hence,
the best response function of coalition S is

q∗S(q) =
1
2
(1− qS1 − ∑

S′∈P\{S,S1}
qS′).

In the same manner, since coalition S1’s profit is given as πS1(q) = (a−∑S′∈P qS′)qS1 −
c1qS1 , we have

q∗S1
(q) =

1
2
(1 + ε− ∑

S′∈P\{S1}
qS′).

Given the coalitions except S1 are symmetric, we solve these equations and obtain the
following equilibrium quantities:

q∗S =
1

|P|+ 1
(1− ε), q∗S1

=
1

|P|+ 1
(1 + ε|P|).

Hence, the equilibrium profits are

vε(S1,P) := π∗S1
=

1
(|P|+ 1)2 (1 + ε|P|)2,

vε(S,P) := π∗S =
1

(|P|+ 1)2 (1− ε)2 for every S ∈ P \ {S1}.

Appendix A.2. Proof of Proposition 2

Proof. For any ε ≥ 0, we have

v(ε, ρ− 1)− 2v(ε, ρ) =
1
ρ2 (1− ε)2 − 2

1
(ρ + 1)2 (1− ε)2

=
(1− ε)2

ρ2(ρ + 1)2 (−ρ2 + 2ρ + 1)

< 0, for every ρ ≥ 3.

Appendix A.3. Proof of Proposition 3

Proof. For any ρ ≥ 2 and any ε ≥ 0, we have

m(ε, ρ) =
1

ρ2(ρ + 1)2 (ε− 1)[(1− 3ε)ρ2 − 2ρ + (ε− 1)]

=
1

ρ2(ρ + 1)2 (ε− 1)

(
ρ− −1 +

√
3ε2 − 4ε + 2

3ε− 1

)(
ρ− −1−

√
3ε2 − 4ε + 2

3ε− 1

)
.

Let ε > 1. It holds that m(ε, ρ) < 0 for any ρ > −1+
√

3ε2−4ε+2
3ε−1 . Since this is increasing

with respect to ε, and we have

−1 +
√

3ε2 − 4ε + 2
3ε− 1

< lim
ε→∞

−1 +
√

3ε2 − 4ε + 2
3ε− 1

=
1√
3
< 1,

we obtain m(ε, ρ) < 0 for every ρ ≥ 2. If ε = 1, then clearly m(ε, ρ) = 0 for every ρ ≥ 2.
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Let 0 ≤ ε < 1. If ε ≥ 1/3, then it follows that [(1− 3ε)ρ2− 2ρ + (ε− 1)] < 0 for every
ρ ≥ 2. Since (ε− 1) is also negative, we have m(ε, ρ) > 0 for any ρ ≥ 2. Now let ε < 1/3.
For any ε with 0 ≤ ε < 1/3, we have

−1 +
√

3ε2 − 4ε + 2
3ε− 1

<
−1−

√
3ε2 − 4ε + 2

3ε− 1
.

Set η(ε) := −1−
√

3ε2−4ε+2
3ε−1 . For 0 ≤ ε < 1/3, η(ε) is increasing. Moreover, we have

η(0) = 1 +
√

2 > 2 and lim
ε→1/3

η(ε) = ∞.

Hence, for any ε with 0 ≤ ε < 1/3, we have:

m(ε, ρ) > 0 for ρ ∈ [2, η(ε)); m(ε, ρ) = 0 for ρ = η(ε); and m(ε, ρ) < 0 for ρ ∈ (η(ε), ∞).

This completes the proof.

Appendix A.4. Proof of Proposition 4

Proof. Let η−1(n) < ε < 1. We first show that for every P ∈ Π(N) \ {{N}} the core of
P becomes empty. We fix P ∈ Π(N) \ {{N}}. Assume that there exists x ∈ C(ε,P). Let
S1 be the coalition that satisfies 1 ∈ S1 ∈ P . Since P 6= {N}, there is a coalition in P that
is different from S1. We call it S2. Now we consider their union (S1 ∪ S2) and partition
Q∗ := Q(S1∪S2),P . Note that |Q∗| = |P| − 1 and 1 ∈ (S1 ∪ S2).

Moreover, since function η−1 is monotonically increasing, we have η−1(|P|) ≤ η−1(n).
Hence, in view of the first constraint η−1(n) < ε < 1, it holds that η−1(|P|) < ε < 1,
where the left inequality means |P| < η(ε) for ε ∈ [0, 1/3) since η is bijective on the
domain [0, 1/3). In addition, we have |P| ≥ 2 because P 6= {N}. Hence, it follows from
Proposition 3 that

m∗ := vε(S1 ∪ S2,Q∗)− (vε(S1,P) + vε(S2,P)) > 0. (A1)

We define y as follows: for every i ∈ S1 ∪ S2,

yi = xi +
m∗

|S1 ∪ S2|
(A2)

and, for the other players, set (yj)j∈N\(S1∪S2)
to satisfy

∑
j∈S

yj = vε(S,Q∗) for every S ∈ Q∗ \ {(S1 ∪ S2)}. (A3)

Below we show y ∈ F(ε,Q∗). First, x ∈ C(ε,P) implies x ∈ F(ε,P), which means

∑
j∈S

xj = vε(S,P) for every S ∈ P . (A4)

Now, for the coalition S1 ∪ S2 ∈ Q∗, we have

∑
j∈S1∪S2

yj
(A2)
= ∑

j∈S1∪S2

xj + m∗

(A1)
= ∑

j∈S1

xj + ∑
j∈S2

xj + vε(S1 ∪ S2,Q∗)− (vε(S1,P) + vε(S2,P))

(A4)
= vε(S1,P) + vε(S2,P) + vε(S1 ∪ S2,Q∗)− (vε(S1,P) + vε(S2,P))
= vε(S1 ∪ S2,Q∗).
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Moreover, for every S ∈ Q∗ \ {(S1 ∪ S2)}, we have

∑
j∈S

yj
(A3)
= vε(S,Q∗).

Hence, y ∈ F(ε,Q∗). In view of (A1) and (A2), for every i ∈ S1 ∪ S2,

yi > xi.

Hence, coalition S1 ∪ S2 deviates from x, which contradicts x ∈ C(ε,P). Thus, C(ε,P)
is empty.

Now we focus on the partition {N}. We first let η−1(n) < ε < h(n). Assume that
there exists x ∈ C(ε, {N}). For every player i ∈ N, it holds that Q{i},{N} = {{i}, N \ {i}}.
Hence,

|Q{i},{N}| = 2. (A5)

For every player i ∈ N \ {1}, we have

vε({i},Q{i},{N})
Prop.1
=

1
(|Q{i},{N}|+ 1)2 (1− ε)2 (A5)

=
1
9
(1− ε)2.

In the same manner, for the player 1,

vε({1},Q{1},{N})
Prop.1,(A5)

=
1
9
(1 + 2ε)2.

Since x ∈ C(ε, {N}), any one-person coalition does not deviate from x, which implies

∑
j∈N

xj ≥ ∑
j∈N

vε({j},Q{j},{N})

=
1
9
(1 + 2ε)2 + (n− 1)

1
9
(1− ε)2. (A6)

Since x ∈ C(ε, {N}) ⊆ F(ε, {N}),

∑
j∈N

xj = vε(N, {N}) = 1
4
(1 + ε)2.

Hence, the inequality (A6) holds if

h(n) =
4n− 9
4n + 3

≤ ε < 1.

Hence, if ε violates this condition (namely, if η−1(n) < ε < h(n)), then at least one
player has an incentive to deviate from x, which means C(N, {N}) is empty. If h(n) ≤ ε < 1,
then there exists an allocation x∗ ∈ F(ε, {N}) such that no one-person coalition deviates
from x∗. In view of Proposition 1, for any S ⊆ N, vε(S,QS,{N}) is independent from the
cardinality of S. Hence, no coalition deviates from x∗, namely, x∗ ∈ C(ε, {N}).
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Appendix A.5. Proof of Proposition 5

Proof. The inequality of the first statement is equivalent to

(1 + ερ− ε)2

ρ2 − (1 + ερ− rε)2

(ρ + 1)2 − (1 + rερ− ε)2

(ρ + 1)2

=
1

ρ2(ρ + 1)2

[
(ρ + 1)2(1 + ερ− ε)2 − ρ2((1 + ερ− rε)2 + (1 + rερ− ε)2)

]
≥ 0.

The formula in the parenthesis [·] is equal to

−(1 + ρ2)ρ2ε2 · r2 + 2(1− ρ + 2ερ)ρ2ε · r + (1− ε)((3ε− 1)ρ2 + 2ρ + (1− ε))

= [ερ · r + (1− ε)] ·
[
−ερ(ρ2 + 1) · r + ((3ε− 1)ρ2 + 2ρ + (1− ε))

]
.

This is equal to or greater than zero if and only if

ε− 1
ερ
≤ r ≤ (3ε− 1)ρ2 + 2ρ + (1− ε)

ερ(ρ2 + 1)
, (A7)

where ε−1
ερ < (3ε−1)ρ2+2ρ+(1−ε)

ερ(ρ2+1) always holds for every ρ ≥ 2.
Let ρ ≥ 3. For every ε, it holds that

(3ε− 1)ρ2 + 2ρ + (1− ε)

ερ(ρ2 + 1)
< 1.

Hence, we consider the condition that establishes

0 ≤ (3ε− 1)ρ2 + 2ρ + (1− ε)

ερ(ρ2 + 1)
.

This inequality holds if and only if

0 ≤ (3ε− 1)ρ2 + 2ρ + (1− ε)

⇐⇒ ε ≥ ρ2 − 2ρ− 1
3ρ2 − 1

= η−1(ρ).

Hence, some r satisfying (A7) exists in [0, 1] if and only if ε ≥ η−1(ρ).
If ρ = 2, then we have

ε− 1
ερ

=
ε− 1

2ε
<

1
2
< 1 <

11ε + 1
10ε

=
(3ε− 1)ρ2 + 2ρ + (1− ε)

ερ(ρ2 + 1)

for any ε ≥ 0. Hence, for any ε ≥ 0, some r satisfying (A7) exists in [0, 1].
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