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Abstract: A model of production funds acquisition, which includes two differential links of
the zero order and two series-connected inertial links, is considered in a one-sector economy.
Zero-order differential links correspond to the equations of the Ramsey model. These equations
contain scalar bounded control, which determines the distribution of the available funds into two
parts: investment and consumption. Two series-connected inertial links describe the dynamics
of the changes in the volume of the actual production at the current production capacity. For the
considered control system, the problem is posed to maximize the average consumption value over
a given time interval. The properties of optimal control are analytically established using the Pon-
tryagin maximum principle. The cases are highlighted when such control is a bang-bang, as well as
the cases when, along with bang-bang (non-singular) portions, control can contain a singular arc.
At the same time, concatenation of singular and non-singular portions is carried out using chattering.
A bang-bang suboptimal control is presented, which is close to the optimal one according to the
given quality criterion. A positional terminal control is proposed for the first approximation when
a suboptimal control with a given deviation of the objective function from the optimal value is
numerically found. The obtained results are confirmed by the corresponding numerical calculations.

Keywords: ramsey model; nonlinear control system; Pontryagin maximum principle;
switching function; bang-bang control; singular arc of the third order; positional control

1. Introduction
The elements of the zero order (multiplier, accelerator), first order (inertial links),

and second order are often found in nonlinear models of economic dynamics [1].
The link of the second order can be represented by an oscillatory link or by two con-
nected inertial links. An example of a mathematical model containing inertial links is a
model that takes into account the delay in the introduction of funds in the problem of
optimizing the accumulation rate for the Ramsey model [1].

In this article, the following model for the development of the introduced production
capacities is considered





k̇(t) = u(t) f (v(t))− µk(t), t ∈ [0, T],
v̈(t) + 4τ−1v̇(t) + 4τ−2v(t) = 4τ−2k(t),
ẏ(t) = e−δt(1− u(t)) f (v(t)),
k(0) = k0 > 0, k(T) ≥ kT > 0,
v(0) = v0 ≥ 0, v̇(0) = v̇0 ≥ 0,
y(0) = 0,

(1)

where k(t) is the volume of the entire production capacity at time t, v(t) represents the
volume of actual production at production capacity k(t) (v(t) ≤ k(t)). Here, y(t) is the
total consumption at time t, u(t) defines a control function, f (v) represents a production
function [1], and τ, δ are positive parameters.
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The first and third equations of system (6) refer to dynamic links. The first equation
describes the dynamics of changes in the volume of the introduced production capacities,
the third equation sets the dynamics of the consumption process. The second equation
refers to the oscillatory link characterizing the dynamics of the development of the intro-
duced production capacities [1].

The equations of the dynamical change in the introduced production capacities of the
Ramsey model [1–5] are used as dynamic links. They contain a scalar bounded control
u(t), which defines the distribution of the available funds into two parts: investment
and consumption.

The optimization problem consists of finding a control u(t) that transfers system (6)
from a given initial position to a position k(T) = kT at the maximum value of y(T), which is
an indicator of the average consumption value over a given time interval [0, T].

The solution of the optimal control problem for this version of the model provides
important information about the extreme value of the objective function and the type of
optimal control. This control can contain singular controls of the third order, the direct
implementation of which in economic practice can be complicated by the presence of chat-
tering regimes. Consideration of suboptimal controls overcomes this difficulty. However,
the question arises of finding a suboptimal control for which the deviation in the objec-
tive function satisfies the given constraint. The search for such a control can be realized
numerically and the initial approximation is chosen in the form of a positional terminal
control. The obtained properties of the optimal, suboptimal, and terminal controls for the
considered model are confirmed by corresponding numerical calculations.

2. Statement of the Dynamic Model and Maximization Problem
Let us transform system (6) by introducing new phase variables: v1(t) is the volume

of the actual production at production capacity k(t), and v2(t) is the volume of the actual
production at production capacity v1(t). In addition, we assume that the increase in
production is proportional to the under-utilized capacity. All this makes it possible to
rewrite the second-order differential equation in system (6) in the form of two first-order
differential equations. As a result, on a given time interval [0, T], we have the following
system of differential equations:





k̇(t) = u(t) f (v2(t))− µk(t),
v̇1(t) = 2τ−1(k(t)− v1(t)),
v̇2(t) = 2τ−1(v1(t)− v2(t)),
ẏ(t) = e−δt(1− u(t)) f (v2(t))

(2)

with the initial and final phase constraints:

k(0) = k0 > 0, k(T) ≥ kT > 0, v1(0) = v01 ≥ 0, v2(0) = v02 ≥ 0, y(0) = 0, (3)

where k(t), v1(t), v2(t), y(t) are the phase variables; k0, v01, v02 are the corresponding
initial conditions; δ, µ, τ, T, kT are the positive parameters.

Here, f (x) is a neoclassical production function [3,5], that is, a linearly homogeneous
production function satisfying the conditions:

f (0) = 0, ḟ (x) > 0, f̈ (x) < 0,
lim

x→+∞
f (x) = +∞, lim

x→+0
ḟ (x) = +∞, lim

x→+∞
ḟ (x) = 0.

Next, u(t) is a control function that obeys the following constraints:

0 ≤ u(t) ≤ 1. (4)

We consider that the set of all admissible controls Ω(T) is formed by all possible of
Lebesgue measurable functions u(t), which for almost all t ∈ [0, T] satisfy inequalities (4).
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Model (2) of the dynamics of the economic quantities includes four phase variables,
the first of which is the volume of the entire production capacity, the fourth is specific con-
sumption, and the third is the amount of funds available for use at the current time t [1,5,6].

Now, let us consider for system (2) on the set of admissible controls Ω(T) the following
maximization problem:

J(u(·)) = y(T)→ max
u(·)∈Ω(T)

. (5)

The objective function in (5) means maximization of the average amount of funds
allocated for consumption over a given time interval [0, T].

3. Properties of Solution of System (2)
Note that the system of Equation (2) satisfies the conditions of the Cauchy–Peano

existence theorem [7], and hence, the solution (k(t), v1(t), v2(t), y(t)) of this system corre-
sponding to the control u(·) ∈ Ω(T) exists (at least locally) in the neighborhood of initial
point (k0, v01, v02, 0).

Now, the lower bounds for the components of the solution to system (2) are established
using the following lemma.

Lemma 1. Let u(t) be an arbitrary admissible control and

z(t) = (z1(t), z2(t), z3(t), z4(t)) = (k(t), v1(t), v2(t), y(t))

be the corresponding solution of system (2) defined for t ≥ 0. Then the following relationships
are true:

z1(t) > e−µTk0 > 0 for k0 > 0;

z2(t) > e−2τ−1Tv10 > 0 for v10 > 0;

z3(t) > e−2τ−1Tv20 > 0 for v20 > 0;
z4(t) ≥ 0 for y0 = 0.

Proof. According to the first equation of system (2), due to the conditions for the function
f (v2) and the restrictions on the control u(t), we have the following relationship:

ż1(t) = u(t) f (z3(t))− µz1(t) ≥ −µz1(t).

Integrating it, we obtain the required inequality: z1(t) ≥ e−µTz1(0) > 0.
Due to this inequality, we have similar expression for the second equation of

this system:
ż2(t) = 2τ−1(z1(t)− z2(t)) > −2τ−1z2(t).

Hence, we find that z2(t) ≥ e−2τ−1Tz2(0) > 0.
Similarly, from the last inequality and the third equation of the system, we obtain:

ż3(t) = 2τ−1(z2(t)− z3(t)) > −2τ−1z3(t).

Then it implies that z3(t) ≥ e−2τ−1Tz3(0) > 0.
Finally, due to the nonclassical conditions on the function f (v2) and the restrictions

on the control u(t), we easily conclude that z4(t) ≥ 0.

Now, let us introduce the following positive values:

z̄1(T) = e−µTk0, z̄2(T) = e−2τ−1Tv10, z̄3(T) = e−2τ−1Tv20.

The next lemma shows that an arbitrary solution of system (2) exists on the entire time
interval [0, T].

Lemma 2. The solution

z(t) = (z1(t), z2(t), z3(t), z4(t)) = (k(t), v1(t), v2(t), y(t))
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of system (2) corresponding to the control u(·) ∈ Ω(T) is defined for all t ∈ [0, T].

Proof. Let us show that for any admissible control u(t), the corresponding solution of
system (2) cannot go into infinity over a finite time interval. We assume that this solution is
defined on a certain interval ∆. It follows from neoclassical conditions that the function
f (x)/x is monotonically decreasing from +∞ to 0. Actually, the L’Hôpital’s rule for
calculating limits implies that

lim
x→+0

f (x)
x

= lim
x→+0

ḟ (x) = +∞,

lim
x→+∞

f (x)
x

= lim
x→+∞

ḟ (x) = 0.

Now, let us verify directly the monotone decrease of the function f (x)/x. Since

d
dt

(
f (x)

x

)
=

ḟ (x)x− f (x)
x2 ,

then it suffices to establish the validity of the inequality ḟ (x)x < f (x) for all x > 0. For this,

we use the Newton–Leibniz formula f (x) =
x∫

0
ḟ (y)dy. Function ḟ (x) is decreasing (see

the inequality f̈ (x) < 0 in the neoclassical conditions), then we obtain the inequality
ḟ (y) > ḟ (x) for all y ∈ [0, x]. In such case,

f (x) =
x∫

0

ḟ (y)dy >

x∫

0

ḟ (x)dy = ḟ (x)x.

Thus, the monotonic decrease of the function f (x)/x from +∞ to 0 is established.
Due to the proven property of function f (x)/x, we have the inequality:

f (z3)

z3
≤ f (z̄3(T))

z̄3(T)
, z3 ∈ [z̄3(T),+∞),

and

u f (v2)− µk < u f (z3) ≤
f (z̄3(T))

z̄3(T)
z3.

Thus, for all t ∈ ∆ the following inequality holds:

ż1(t) ≤ C(z̄3(T))z3(t),

where C(·) is a positive constant.
Since

ż2 = 2τ−1(z1 − z2) ≤ 2τ−1z1,

ż3 = 2τ−1(z2 − z3) ≤ 2τ−1z2,

ż4 = e−δt(1− u) f (z3) ≤
f (z̄3(T))

z̄3(T)
z3,

then there is a positive constant C1 such that for all zi > 0, i = 1, 2, 3 and z4 ≥ 0, u ∈ [0, 1]
the following estimate is valid:

(z, F(z, u)) ≤ C1

(
1 + (z, z)2

)
.

Here, F(z, u) is the right-hand side of the system (2), and (z, F(z, u)), (z, z) are the
corresponding scalar products of the vectors z, F(z, u) and vector z by itself. Therefore,
according to the theorem on the continuation of solutions for differential equations [7] the
solution (k(t), v1(t), v2(t), y(t)) for system (2) exists on the entire time interval [0, T].
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The last lemma justifies the uniqueness of the solution to the system (2).

Lemma 3. The solution to system (2) is unique.

Proof. Let us introduce the set Γ = {(z1, z2, z3) : zi > 0, i = 1, 2, 3}. Then, when the initial
conditions (z1(0), z2(0), z3(0)) ∈ Γ, the first three components of the solution to system (2)
satisfy the estimates from Lemma 1, that is, (z1(t), z2(t), z3(t) ∈ Γ for all t ∈ (0, T]. Due to
the neoclassical conditions on the function f (x), the functions f (x), ḟ (x) are defined and
continuous for all x ≥ 0. Thus, for the first three components of the right-hand side of
system (2) the conditions of the uniqueness theorem [7] are satisfied. The right-hand side
of the fourth equation of the system also satisfies the conditions of this uniqueness theorem,
and therefore the solution to system (2) is unique.

Lemmas 1–3 imply that for a neoclassical function f (x) and for any control
u(·) ∈ Ω(T), a solution to system (2) exists, is unique and is determined for all t ∈ [0, T].

Below we give a solution to the Problem (2) and (5) which was found on the basis
of the Pontryagin maximum principle [8,9] in the class of Lebesgue measurable functions
satisfying inequalities (4) for almost all t ∈ [0, T].

4. Pontryagin Maximum Principle
For the Problem (2) and (5), the Hamiltonian and Lagrangian of the phase con-

straints (3) have the form:

H(t, k, v1, v2, y, u, ψ1, ψ2, ψ3, ψ4) = (u f (v2)− µk)ψ1

+ 2τ−1(k− v1)ψ2 + 2τ−1(v1 − v2)ψ3 + e−δt(1− u) f (v2)ψ4

= u f (v2)
(

ψ1 − e−δtψ4

)
− µkψ1 + 2τ−1(k− v1)ψ2

+ 2τ−1(v1 − v2)ψ3 + e−δt f (v2)ψ4,
l(k(0), v1(0), v2(0), y(0), k(T), v1(T), v2(T), a0, a1, a2, a3, a4, a5) = −a0y(T)

+ a1(k(0)− k0) + a2(k(T)− kT) + a3(v1(0)− v01)

+ a4(v2(0)− v02) + a5(y(0)− 0).

(6)

Here, ψi, i = 1, . . . , 4 are adjoint variables, and ai, i = 0, . . . , 5 are Lagrange multipliers
(see [9]).

The extremal control u∗(t) is defined by the relationship:

u∗(t) =





1, η(t) > 0,
using ∈ [0, 1], η(t) ≡ 0,

0, η(t) < 0,
(7)

where η(t) = ψ1(t)− e−δtψ4(t) is the switching function.
The adjoint system is given by the following system of differential equations:





ψ̇1(t) = −H′k(t, k(t), v1(t), v2(t), y(t), u(t), ψ1(t), ψ2(t), ψ3(t), ψ4(t))
= µψ1(t)− 2τ−1ψ2(t),

ψ̇2(t) = −H′v1
(t, k(t), v1(t), v2(t), y(t), u(t), ψ1(t), ψ2(t), ψ3(t), ψ4(t))

= 2τ−1(ψ2(t)− ψ3(t)),
ψ̇3(t) = −H′v2

(t, k(t), v1(t), v2(t), y(t), u(t), ψ1(t), ψ2(t), ψ3(t), ψ4(t))
= −u(t) ḟ (v2(t))(ψ1(t)− e−δtψ4(t)) + 2τ−1ψ3(t)− e−δt ḟ (v2(t))ψ4(t),

ψ̇4(t) = −H′y(t, k(t), v1(t), v2(t), y(t), u(t), ψ1(t), ψ2(t), ψ3(t), ψ4(t)) = 0,

(8)

which satisfy the boundary conditions:

ψ1(0) = l′k(0) = a1, ψ1(T) = −l′k(T) = −a2,
ψ2(0) = l′v1(0)

= a3, ψ2(T) = −l′v1(T)
= 0,

ψ3(0) = l′v2(0)
= a4, ψ3(T) = −l′v2(T)

= 0,
ψ4(0) = l′y(0) = a5, ψ4(T) = −l′y(T) = a0 ≥ 0.

(9)
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We note that relationships (8) and (9) are written in terms of the corresponding partial
derivatives of the Hamiltonian and the Lagrangian defined in (6).

The equation for ψ4(t) in system (8) and the corresponding transversality condi-
tions in (9) imply that ψ4(t) = a0 = a4 ≥ 0. Moreover, an abnormal case occurs when
a0 = 0, and a normal case corresponds to equality a0 = 1. In the abnormal case, we have
ψ4(t) = a0 = 0. It is proven by contradiction that then, in accordance with the maximum
principle [8,9], the switching function η(t) cannot take a zero value on a set of nonzero
measure, which leads to a correction of the relationship (7). As a result, Formula (7) of the
extremal control u∗(t) takes the form:

u∗(t) =
{

1, η(t) ≥ 0,
0, η(t) < 0.

Let us consider further the normal case of the optimal control problem (2) and (5),
when a0 = 1. In this case, we have ψ4(t) = 1.

Singular Regime
System (2) is such that, on the one hand, it is linear in control u(t), and on the

other hand, it clearly depends on time t due to the presence of the factor e−δt (it is non-
autonomous). In addition, the problem under study (5) is a nonstandard, because it is a
problem of finding the maximum, not for the traditional minimum. However, all these
differences do not prevent us from applying the well-known theory of singular arcs [10,11].
This is due to the fact that:
(i) performing a standard change of variables χ̇ = 0, χ(0) = 0, where χ is a new auxiliary

variable, leads, on the one hand, to an increase by one in the order of the original
system (2), and, on the other hand, makes such a system autonomous (see [8]);

(ii) introducing a new objective function J̃(u(·)) = −J(u(·)) leads the considered prob-
lem (5) to the problem on minimum:

J̃(u(·)) = −y(T)→ min
u(·)∈Ω(T)

.

Thus, the original maximization problem (5) is easily transformed to the one for which
the indicated theory is applicable. Therefore, further we will not explicitly follow the steps
described above, but will imply them.

A singular regime takes place if for the switching function η(t) the equality
ψ1(t)− e−δt = 0 holds identically for all t ∈ [t1, t2]. This regime is of order 3 (see [10,11])
and is characterized by the following relationships:





ψ1(t) = e−δt,
ψ2(t) = 0.5τ(µ + δ)e−δt,
ψ3(t) = 0.5τ (µ + δ)(1 + 0.5τδ) e−δt,

ḟ (vsing
2 ) = (µ + δ)(1 + 0.5τδ)2,
vsing

1 = vsing
2 ,

ksing = 2vsing
1 − vsing

2 ,

using = µksing
(

f
(

vsing
2

))−1
,

(10)

which imply that the five consecutive derivatives of the switching function η(t) vanish on
the segment t ∈ [t1, t2] and only the sixth derivative has a nonzero term depending on the
control u(t).

Let us denote by v̂2 the solution of the equation f (v̂2) = µv̂2. Due to the concavity of
the function f (v2), we have: ḟ (ξ1) > ḟ (ξ2), if ξ1 < ξ2. Thus, the chain of the inequalities

ḟ
(

vsing
2

)
= (µ + δ)(1 + 0.5τδ)2 > µ > ḟ (v̂2)



Games 2021, 12, 11 7 of 12

implies vsing
2 < v̂2, which means that the control of a singular regime using ∈ [0, 1] is

admissible. For the control using, the necessary optimality conditions for the singular
control are satisfied (the Copp–Moyer conditions) [12]. Due to the neoclassical conditions
f (v2) > 0 and f̈ (v2) < 0, we obtain the relationship:

∂

∂u
d6

dt6
∂H
∂u

= −2τ−1e−δt f̈
(

vsing
2

)(
f
(

vsing
2

))2
> 0. (11)

Thus, singular regime can be part of an extremal control. Moreover, the singular
set consists of phase and conjugate variables (k, v1, v2, ψ1, ψ2, ψ3) satisfying equalities (10).
Since the singular control has order 3 and the strengthened Copp–Moyer condition (11)
is satisfied for the corresponding singular portion, the concatenation of non-singular and
singular portions is carried out by chattering. This means that there is an infinite number
of switchings between the values 0 and 1, accumulating to the point of concatenation of
such portions [11,12].

Lemma 4. In problems (2) and (5), the optimal control u∗(t) has the form (7). It may have
a singular regime of order 3, its explicit form is given by the corresponding formula in (10).
The concatenation of non-singular and singular portions is performed using chattering.

Based on the obtained characteristics of the extremal control, we numerically con-
struct a control containing chattering, and then, based on its structure, we construct an
approximation in the form of a suboptimal control. For this control, the boundary con-
ditions for the phase trajectory are satisfied, it contains a finite number of switchings
between the boundary values 0 and 1, as well as intermediate constant values. Finally,
the corresponding value of the objective function differs from its optimal value by some
acceptable value.

5. Numerical Results
Here, for the problem (2) and (5), we present the results of numerical calculations

using BOCOP [13] for the following values of its parameters:

f (v2) =
√

v2, τ = 1.0, µ = 0.2, δ = 0.01, T = 100.

For these parameter values, it is easy to calculate that

ksing = 25.0, vsing
2 = 5.3947.

In Figure 1, the graphs k∗(t), v∗1(t), v∗2(t), u∗(t) of the corresponding optimal solution
are given for the following boundary conditions:

k0 = 0.1, kT = 21.0, v01 = 0.1, v02 = 0.1.

The optimal value of the objective function is y∗(T) = 58.6602.
Figure 1 shows the behavior of the optimal phase variables k∗(t), v∗1(t), v∗2(t), and

optimal control u∗(t) as functions of time, as well as the qualitative features of the behavior
of the trajectory v∗2(k

∗) as a whole and when it is found on a singular set.
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Figure 1. Upper row: graphs of the optimal solutions k∗(t), v∗1(t) and v∗2(t); lower row: the graph of the optimal control
u∗(t), the phase portrait v∗2(k

∗), and the phase portrait v∗2(k
∗) in the neighborhood of the singular arc.

6. Suboptimal Control
The value of the objective function, which is close to the optimal value, can be achieved

using a simpler control structure in the form:

ũ(t) = ũ(t; t1, t2, t3, û) =





1 t ∈ [0, t1],
0 t ∈ [t1, t2],
û t ∈ [t2, t3],
0 t ∈ [t3, t4],
1 t ∈ [t4, T],

(12)

where t1, t2, t3, t4, û are variable parameters.
Let us consider the following extremal problem:

J = J(ũ(t; t1, t2, t3, t4, û))→ max
t1,t2,t3,t4,û: 0≤t1≤t2≤t3≤t4≤T, û∈[0,1]

(13)

subject to the following restrictions:




J =
T∫

0

e−δt(1− ũ(t; t1, t2, t3, t4, û)) f (v2(t))dt,

˙̃k(t) = ũ(t; t1, t2, t3, t4, û) f (v2(t))− µk̃(t),

v̇1(t) = 2τ−1
(

k̃(t)− v1(t)
)

,

v̇2(t) = 2τ−1(v1(t)− v2(t)),

k̃(0) = k(0) = k0, k̃(T) = k(T),
v1(0) = v01, v2(0) = v02.

Due to numerical calculations in BOCOP [13], the solution to the extremal problem (13)
with parametrically specified control (12) has the form:

t1 = 16.3129, t2 = 27.9977, t3 = 87.06082, t4 = 87.147, û = 0.621105.
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Figure 2 shows the graphs of approximate suboptimal control ũ(t) defined by (12)
and of the corresponding solution k̃(t) for the same boundary conditions, as functions of
time. The value of the objective function for such control is y(T) = 56.9703. 

3 

 

  

 
 
 
 
 
 

Figure 2. Graph of the approximating control ũ(t) (left) and graph of the corresponding solution k̃(t) (right).

7. Position Controller for the Terminal Control Problem
The numerical solution of a suboptimal control problem (a control that does not

contain chattering and guarantees the value of the objective function close to optimal),
for example, using the method of local variations [9], requires a control of the first approxi-
mation. As such an approximation, one can use a positional controller (i.e., depending on
the phase variables) for the terminal control problem for system (2), found by the method
of analytical construction of aggregated controllers described in [14]. We note that the
terminal control problem is the problem of transferring the phase state of the considered
system from a given initial position to the required final position at some time interval.

To construct it, we introduce an additional phase variable ξ and transform the sys-
tem (2) to a form that does not contain constraints (4) on the control function:





k̇(t) =
(
0.5 + π−1 arctan(bξ(t))

)
f (v2(t))− µk(t),

ξ̇(t) = z(t), ξ(0) = ξ0,
k(0) = k0 > 0, |k(T)− kT | ≤ ε,

v̇1(t) = 2τ−1(k(t)− v1(t)), v1(0) = v01 ≥ 0,
v̇2(t) = 2τ−1(v1(t)− v2(t)), v2(0) = v02 ≥ 0,
ẏ(t) = e−δt(1−

(
0.5 + π−1 arctan(bξ(t))

))
f (v2(t)), y(0) = 0,

(14)

where T is the non-fixed moment of the end of the process, and ε, b are positive constants.
Let us choose the value

ψ1 = 0.5 + π−1 arctan(bξ) + z1(k, v2) (15)

as the first macro-variable. Here, z1(k, v2) is the intermediate control.
Then we synthesize control z(k, v1, v2, ξ) using a functional equation:

θ1ψ̇1 + ψ1 = 0. (16)

Then, substituting ψ1 from (15) into Formula (16), we obtain an equation containing z:

θ1

(
bz

π(1 + (bξ)2)
+

∂z1

∂k
k̇ +

∂z1

∂v2
v̇2

)
+ ψ1 = 0. (17)
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From (17), the control z can be found as

z = z(ξ, v1, v2, k) =− π(1 + (bξ)2)

b

[
∂z1

∂k

((
0.5 + π−1 arctan(bξ)

)
f (v2)− µk

)

+
∂z1

∂v2

(
2τ−1(v1 − v2)

)
+ θ−1

1 ψ1

]
.

(18)

Control (18) transfers the phase vector to the neighborhood of the manifold ψ1 = 0 (15),
the motion along which is described by the differential equations:





k̇(t) = −z1(t) f (v2(t))− µk(t),
ξ̇(t) = z(t),

v̇1(t) = 2τ−1(k(t)− v1(t)),
v̇2(t) = 2τ−1(v1(t)− v2(t)),
ẏ(t) = e−δt(1 + z1(t)) f (v2(t)).

We will find the intermediate control z1 from the equation

θ2ψ̇2 + ψ2 = 0, (19)

by introducing the second macro-variable

ψ2 = k− kT .

Using ψ2 and Equation (19), we find the control

z1 =
1

f (v2)

(
k− kT

θ2
− µk

)
(20)

that transfers the phase vector to the manifold ψ2 = 0. The movement along it is described
by the equation:

k̇ = − k− kT
θ2

. (21)

The solution to such an equation has the following property:

k(t)→ kT for t→ +∞. (22)

Substituting z1 from (20) into the Formula (18), we find the desired control law

z = z(ξ, v1, v2, k) =

− π(1 + (bξ)2)

b

[
1

f (v2)

(
θ−1

2 − µ
)((

0.5 + π−1 arctan(bξ)
)

f (v2)− µk
)

− ∂ f
∂v2

( f (v2))
−2
(

2τ−1(v1 − v2)
)
+ θ−1

1 ψ1

]
.

(23)

The behavior of the phase variable k(t) under control (23), starting from a certain
finite time moment T1 < T, is determined by the Equation (21) and, thus, we obtain the
limiting relationship (22).

Moreover, the phase variable v2(t) satisfies the equation

v̈2 + 4τ−1v̇2 + 4τ−2v2 = 4τ−2k.

Taking into account the limiting relationship (22) of the phase variable k(t),
starting from a certain time moment T2, T2 > T1, T2 < T, the variable v2(t) tends to
k(t). The choice of parameters ε, b, θ1, θ2 affects the values of the time moments T1 and T2.

Lemma 5. For given positive parameters µ, ξ0, k0, kT , v10, v20, δ, τ, there exist parameters T1,
T2, T depending on ε, b, θ1, θ2 for which the control (23) solves the terminal control problem to
system (14).
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The use of control (23) as the first approximation in the numerical determination of
control by the method of local variations made it possible to obtain the final continuous
control u(t), for which the deviation of the objective function from the optimal value is 2%.
From the last equation of system (14), it is possible to obtain the value of y(T) under
control (23). Graphs of the solutions k(t) and v2(t) to system (14) and trajectory v2(k)
under control (23) for system parameters from Section 5 are shown in Figure 3.
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Substituting z1 from (7.7) into the formula (7.5), we find the desired control law

(7.10)

z = z(ξ, v1, v2, k) =

− π(1 + (bξ)2)

b

[
1

f(v2)

(
θ−1

2 − µ
) ((

0.5 + π−1 arctan(bξ)
)
f(v2)− µk

)

− ∂f

∂v2

(f(v2))−2
(
2τ−1(v1 − v2)

)
+ θ−1

1 ψ1

]
.

The behavior of the phase variable k(t) under control (7.10), starting from a certain
finite time moment T1 < T , is determined by the equation (7.8) and, thus, we obtain the
limiting relationship (7.9).

Moreover, the phase variable v2(t) satisfies the equation

v̈2 + 4τ−1v̇2 + 4τ−2v2 = 4τ−2k.

Taking into account the limiting relationship (7.9) of the phase variable k(t), starting
from a certain time moment T2, T2 > T1, T2 < T , the variable v2(t) tends to k(t). The
choice of parameters ε, b, θ1, θ2 affects the values of the time moments T1 and T2.

Lemma 5. For given positive parameters µ, ξ0, k0, kT , v10, v20, δ, τ , there exist param-
eters T1, T2, T depending on ε, b, θ1, θ2 for which the control (7.10) solves the terminal
control problem to system (7.1).

The use of control (7.10) as the first approximation in the numerical determination of
control by the method of local variations made it possible to obtain the final continuous
control u(t), for which the deviation of the objective function from the optimal value
is 2%. From the last equation of system (7.1), it is possible to obtain the value of y(T )
under control (7.10). Graphs of the solutions k(t) and v2(t) to system (7.1) and trajectory
v2(k) under control (7.10) for system parameters from Section 5 are shown in Figure 7.1.

Figure 7.1. Graphs of solutions k(t) and v2(t) to system (7.1) and trajec-
tory v2(k) under control (7.10).

8. Conclusions

In this article, at a given time interval, the Ramsey model was used to describe the
change in fixed assets of a one-sector economy. It included a bounded control function
that divided the available funds into investment and consumption. Also, differential equa-
tions have been added to this model to reflect the dynamics of the development of the
introduced production capacities. The optimal control problem was posed for such a
modified Ramsey model, which consisted in maximizing the average consumption over a
given period of time. For an analytical description of the properties of the corresponding
optimal control, the Pontryagin maximum principle was applied. Situations were found
where this control was a bang-bang function, as well as where it was capable of containing
a singular regime concatenating to non-singular bang-bang portions using chattering. It is

Figure 3. Graphs of solutions k(t) and v2(t) to system (14) and trajectory v2(k) under control (23).

8. Conclusions
In this article, at a given time interval, the Ramsey model was used to describe

the change in fixed assets of a one-sector economy. It included a bounded control func-
tion that divided the available funds into investment and consumption. In addition,
differential equations have been added to this model to reflect the dynamics of the de-
velopment of the introduced production capacities. The optimal control problem was
posed for such a modified Ramsey model, which consisted in maximizing the average
consumption over a given period of time. For an analytical description of the properties
of the corresponding optimal control, the Pontryagin maximum principle was applied.
Situations were found where this control was a bang-bang function, as well as where it
was capable of containing a singular regime concatenating to non-singular bang-bang
portions using chattering. It is clear that such a phenomenon as chattering cannot be
implemented in real economic processes, and therefore an approach was proposed in
the article to find suboptimal control, which would be close to the optimal in terms
of the considered objective function. This approach requires a good initial approxima-
tion. As such an approximation, the article proposed to use positional terminal control.
The corresponding numerical calculations were carried out, which showed the effectiveness
of the proposed approach.
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