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Abstract: Multi-Agent Systems (MAS) have been used to solve several optimization problems in
control systems. MAS allow understanding the interactions between agents and the complexity of
the system, thus generating functional models that are closer to reality. However, these approaches
assume that information between agents is always available, which means the employment of a
full-information model. Some tendencies have been growing in importance to tackle scenarios
where information constraints are relevant issues. In this sense, game theory approaches appear as a
useful technique that use a strategy concept to analyze the interactions of the agents and achieve the
maximization of agent outcomes. In this paper, we propose a distributed control method of learning
that allows analyzing the effect of the exploration concept in MAS. The dynamics obtained use
Q-learning from reinforcement learning as a way to include the concept of exploration into the classic
exploration-less Replicator Dynamics equation. Then, the Boltzmann distribution is used to introduce
the Boltzmann-Based Distributed Replicator Dynamics as a tool for controlling agents behaviors.
This distributed approach can be used in several engineering applications, where communications
constraints between agents are considered. The behavior of the proposed method is analyzed using a
smart grid application for validation purposes. Results show that despite the lack of full information
of the system, by controlling some parameters of the method, it has similar behavior to the traditional
centralized approaches.

Keywords: Boltzmann distribution; economic dispatch problem; Multi-Agent Systems; population
dynamics; revision protocol

1. Introduction

The study of large-scale control distributed systems has been the focus of scientists in
recent decades. Several models and techniques are used to deal with challenges related to
this area such as the high cost in terms of computational requirements, the communication
structure, and the estimation of the data needed to perform a task in large-scale systems.
Multi-Agent Systems (MAS) is a tool for addressing this kind of problems and is usually
employed in the framework of game theory. In this context, the study of interactions
of agents have received special attention due to the use of strategies that allow agents
maximizing their outcomes. In this regard, the work in [1] provides connections among
games, learning, and optimization in networks. Other works are focused on games and
learning [2] or studied algorithms for distributed computation in dynamic networks topolo-
gies [3]. In [4], authors analyzed applications of power control using both distributed and
centralized game theory frameworks. Applications of smart grid control are found in [5].
Other works focused on cases in which coordination and negotiation problems lead to
the analysis of agents interactions [6]. Other approaches related to applications in power
control based on game theory are found in [7].
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The literature of game theory differentiates between three kinds of games. Continuous
games where the concept of pure strategy is stated for agents and one agent can have many
of it. Matrix games where agents are individually treated and allowed to take only one shot
play simultaneously. The last case is related to dynamic games, which assume players can
learn somehow about the actions and the states of the environment. This feature implies
an agent can learn about the taken decision to adjust its behavior [8]. This kind of games
has to respond to the following challenges: the modeling of the environment where the
interaction between players takes place, the modeling of players’ goals, and finally, how to
prioritize players actions and how to estimate the amount of information a player has [9].

Evolutionary game theory (EGT) introduces an approach that belongs to dynamic
games related to the study of dynamics of agents that change over time [10]. The evo-
lutionary stable strategy was the concept that made EGT popular due to its relationship
with biology and the way it supports the understanding of natural behaviors [11]. For this
reason, the use of EGT is traditionally assumed to be positive (descriptive), rather than nor-
mative (prescriptive). Nonetheless, when EGT is used in the study of particular empirical
phenomena to predict some behavior, sometimes it appears to be more on the normative
side [12]. In this regard, the replicator dynamics (RD) approach is based on the understand-
ing of EGT, which has been used in several real life control applications. The combination
of revision protocols (which gives a description on how agents select and change strategies),
and population games (which specifies interactions among agents) leads to the concept of
evolutionary game dynamics [11]. The process of modeling large-scale systems is usually
developed using this evolution perspective, since its mathematical background allows
describing this process by using differential equations [10].

Applications of EGT can be found in many fields of Engineering, some of them focused
on the economic dispatch problem (EDP) of microgrids for electric generators, control of
systems of communications access, optimization problems, among others [8]. Some of the
advantages of modeling engineering problems using the EGT approach are the easiness to
associate a game with a problem of the engineering field, where the objective function and
the strategies can be stated as payoff functions, and the relationship between the concepts of
optimization and Nash Equilibrium, which is possible under specific conditions that allow
satisfying the first order optimization conditions of the Karush–Kuhn–Tucker. Finally, it is
worth noting that EGT obtains games solutions using local information. In this sense, when
addressing engineering problems, distributed approaches emerge, which is relevant due to
the cost of implementation of centralized schemes and its high complexity [8]. Distributed
population dynamics has some advantages in comparison with some techniques such as
the dual decomposition method, which needs a centralized coordinator [13]. This property
minimizes costs related to communication structure. Moreover, compared with distributed
algorithms for learning in normal-form-games, distributed population dynamics have no
fails in applications that use constraints over all the variables immersed in the decision
process [14]. This feature fits properly for dealing with problems related to resource
allocation cases such as the smart city design [15]. In this kind of applications, there is
an increasing need for integration between the digital technologies and the distributed
power generation to make electric networks robust, flexible, reliable and efficient. However,
the actual model of a centralized grid must be changed to a distributed model based on
microgrids [16]. In this regard, microgrids consider control operations individually, as they
separate the economic dispatch, the power generation and the secondary frequency [17].
The economic dispatch action is managed with static optimization concepts [18] or even
methods such as the direct search operating off-line [19]. When the analysis includes the
generator, loads or power line losses into the distributed model, it is more difficult to
analyze the problem. Other approaches are unable to analyze the dynamic conditions such
as the time dependence of the economic dispatch [20]. Several approaches have proposed
to deal with these challenges. For example, in [21] is proposed a microgrid centralized
energy management system with an operation in stand-alone mode that analyzes the static
behavior. Other approaches work with a distributed control strategy based on power line
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signaling used for energy storage systems [22]. Some applications of the MAS technique
for distributed economic problems are found in [23], whose contribution was to consider
the delays of the communication system. Other authors propose microgrid architectures
based on distributed systems such as the microgrid hierarchical control [24].

This paper proposes an approximation to tackle some of the challenges found in
the revised literature. Our main objective is to introduce a more realistic control method
of learning that allows analyzing the effect of the exploration concept in MAS, i.e., com-
munication between agents. Since the RD has proven to emerge from simple learning
models [25], this work uses the Q-learning dynamics from the reinforcement learning
theory as a way to include the concept of exploration into the classic exploration-less RD
equation. Therefore, by merging these frameworks, it is feasible to find a way to deal with
dynamics immersed in the environment where the feedback of each agent depends not only
on itself but also on other agents, and where communications constraints between them are
part of the system. To make the analysis, the Boltzmann distribution is used to introduce a
distributed version of the RD as a tool for controlling the behavior of agents under specific
conditions. In this regard, the obtained method uses a temperature parameter and an
extra term after the derivation process, which allow adjusting the behavior of the learning
agents and to give a connection between the selection-mutation mechanism from EGT and
the exploitation-exploration scheme from RL. Although this feature meets the traditional
positive condition of EGT techniques (i.e., models what happens when agents interact), its
applications to the control area should be considered normative rather than positive, since
the tuning factor can be used to meet the desired behavior beforehand. To understand these
features, this approach attempts to explain agents decision-making using experimental data
to deal with the economic dispatch problem, which is one of the common issues in a smart
grid. The results of this solution are compared with the classic centralized approach of RD.

The rest of this paper is organized as follows. In Section 2, a brief summary of game
theory and Q-learning is introduced, and the replicator dynamics equations are presented
from the perspective of EGT. Section 3 describes a distributed neighboring approach for the
Boltzmann control method, based on the replicator dynamics behavior. Section 4 discusses
some relevant concepts obtained in Section 3 regarding the domains of reinforcement
learning and the evolutionary game theory. Section 5 introduces a smart grid application
based on an economic dispatch problem, where the distributed approach of the Boltzmann
control method is applied. Finally, some conclusions are outlined in Section 6.

2. Theoretical Framework

Game theory presents a set of mathematical equations to analyze the background in
decentralized control issues. A game is usually formed by a set of agents (players) with the
same population behavior that select a strategy to perform an action. The strategy of an
agent allows it to maximize rewards in cases where the action selected was appropriate
or may result in punishment if it was not [26]. This behavior is analyzed using theory of
learning. In this context, the reinforcement learning (RL) scheme gives the main features to
understand the direct relationship between signals, actions, states, and the environment.
At each step of their interaction, each player receives a notification of the present envi-
ronment state and a reinforcement signal, and consequently, it selects a strategy. Each
player of the game has the purpose of finding a policy that provides him the best profits
after mapping states to actions [27]. Figure 1 shows the RL framework, where an agent at
time t takes an action at, depending on the information perceived in the environment state
St. Then, the environment changes to state st+1 and, consequently, the agent perceives a
consequence of its taken actions rt+1, e.g., reward or punishment.
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Figure 1. RL framework. Adapted from [25].

Traditional RL methods are characterized by a structure of estimated value func-
tions [27]. A value of a state or a pair state-action is the total amount of reward an agent
can achieve, starting from that state. This implies that the optimal value function has to be
found to know the policy that best satisfies payoffs. This process can be done with the value
iteration algorithm and the Markov decision process [28] in cases where the environment
is well-known. In other cases, Q-learning positions itself as an adaptive value iteration
method, which needs no specific model of the environment. Equation (1) describes how
the Q-learning interaction is done [29]:

Qt+1(s, a)← (1− α)Qt(s, a) + α(R + γmaxa′Qt(s′, a′)) (1)

The estimation starts in Qt+1(s, a) taking t + 1 as time value, and reaches the Qt(s′, a′),
where s′ is the most recent value of a player state s after executing action a. maxa′ receives
the highest Q Value from s′ by choosing the action that maximizes the Q Value. The term
α describes the common step size parameter, R represents the immediate reinforcement,
and γ represents a discount factor.

In cases where agents have full access to information of the game and no communica-
tion constraints, classical theory of games together with theory of learning are useful tools
to model centralized control applications. However, these cases are a close representation
of ideal situations, which have some limitations when representing real life conditions,
interactions, and rationality of individuals. In this sense, Evolutionary Game Theory (EGT)
intends to relax the concept of rationality, by replacing it with biological concepts and
behaviors such as natural selection and mutation [30]. The fundamental notions of EGT
came from the evolutionary biology field [31,32]. In this scope, the strategies of the players
are genetically encoded and called genotypes, which refer to the behavior of each player
used to compute its payoff. Each player genotype outcome is conditioned by the number
of other types of players in the environment.

EGT makes that the population strategies start to evolve through the construction
of a dynamic process, where the Replicator Dynamics equation represent the expected
value of this procedure. The context of an evolutionary system usually refers to two
concepts: mutation and selection. Mutation gives variety to the population, while selection
is related to prioritize some varieties in which each genotype represents a pure strategy
Qj(n). All the replicator dynamics offspring inherits this behavior. Equation (2) shows the
general equation of the RD [25]:

dxi
dt

= [(Ax)i − x · Ax]xi (2)

where xi represents the amount of density of a specific population playing strategy i,
and the payoff matrix is represented by A. This matrix has different payoff values that
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each replicator gets from the other players. The population state (x) is usually described by
the vector of probability x = (x1, x2, ..., xJ), which shows the different amount of densities
of each type of replicator in the population. Therefore, (Ax)i represents the payoff that
the player i obtains in a population with x state. In this case, the average payoff will
be represented as x · Ax. The growth rate dxi

dt of the whole population using strategy i
equals the difference between the current strategy payoff and the average payoff in the
population [31].

Relating EGT and Q-Learning

The authors in [33] considered a way to associate the schemes of Q-learning and
RD in the context of a two-players game, in which agents play different strategies. This
association is possible considering that players are Q-learners. To model this scenario, two
systems of differential equations are stated: one for player Q (columns) and another for player
P (rows). In case A = Bt, the general Equation (2) for RD is used, in which xi is replaced by pi
or qi. The payoff matrix is stated by A or B, and the population state (x) is represented by p or
q, based on the behavior of the player to be modeled. Thus, (Ax)i changes to (Aq)i or (Bp)i
and represents the payoff that the player i obtains in a population with p or q state. Similarly,
the growth rate dxi

dt changes to dpi
dt or dqi

dt for player Q and player P, respectively. The foregoing
can be described by the following differential equations system [25]:

dpi
dt

= [(Aq)i − p · Aq]pi (3)

dqi
dt

= [(Bp)i − q · Bp]qi (4)

Equations (3) and (4) represent the RD equations for two populations. The growth
rate of each population depends on the other populations, where A and B represent two
necessary payoff matrices to calculate the rate of change from these differential equation
systems for the two different current players in the problem.

To see the relationship of the RD equations with the Q-learning approach, first, it is
necessary to introduce Equation (5), which describes the Boltzmann distribution:

xi(δ) =
eτQai (δ)

∑n
j=1 eτQai (δ)

(5)

where the probability of playing the i strategy at δ step time is represented by xi(δ), and τ
represents the temperature. The authors in [33] used Equation (5) to derive the Q-Learning
continuous time model for a two-players game, where dxi

dt is taken as ẋi. This result is
shown in Equation (6).

ẋi
xi

= τ
[dQai

dt
−

n

∑
j=1

dQai

dt
xj

]
(6)

In order to solve the expression
dQai(t)

dt in Equation (6), the Equation (1) is used
to model the update rule for the first Q-learner player, which yields an expression that
describes the difference equation for the Q-function as shown in Equation (7):

∆Qai (δ) = α
[

Rai (δ + 1) + γ max Q−Qai (δ)
]

(7)

The time amount spent between two repetitions of the Q-values updates is stated
by σ with 0 < σ ≤ 1, and Qai (δσ) represents the Q-values at time kσ. Therefore, if this
equation takes an infinitesimal scheme, after taking the limit σ→ 0, Equation (7) gets to
Equation (8).
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ẋi
xi

= τα
[

Rai −
n

∑
j=1

xjRaj +
n

∑
j=1

xj(Qaj −Qai )
]

(8)

Since
xj
xi

equals
eτ∆Qaj
eτ∆Qai

, the second part of Equation (8) can be expressed in loga-
rithm terms:

α
[
τ ∑

j
xj(Qaj −Qai)

]
= α

[ n

∑
j=1

xj ln
( xj

xi

)]
(9)

After reorganizing and substituting the last expression in Equation (8), it takes the
form of Equation (10).

ẋi
xi

= ατ
[

Rai −
n

∑
j=1

xjRaj

]
+ α
[ n

∑
j=1

xj ln
( xj

xi

)]
(10)

To introduce the use of the payoff matrices in a two player games, it is possible to
write Rai as ∑j aijqj, where the expression for the first player is:

ẋi = xiατ
[
(Aq)i − x · Aq

]
+ xiα

[ n

∑
j=1

xj ln
( xj

xi

)]
(11)

Equation (11) is the representation of the derivation of the continuous time model for
Q-learning developed by [33], which uses the Boltzmann concept. This expression can be
understood as a centralized approach, very similar to the original form of Equation (3),
which is the classic RD form to model the behavior of player P, in the context of a two-player
game. The main differences are influenced by the Boltzmann model with the introduction
of α and τ constants, and the appearance of the second term. Applications of this approach
have been developed in the context of 2 × 2 games, multiple state, and multiple player
games [25]. However, its application to solve real life problems is still an open issue.

The next Section introduces our proposal, which can be understood as a distributed
control method of learning. This novel approach uses part of the bases proposed in [33].
Our main contribution is the introduction of a Boltzmann distributed perspective, in which
the concept of population dynamics from EGT is considered and where players can only
play neighboring strategies. This control method considers communications constraints
among agents, i.e., a context where agents have incomplete information of the system.

3. The Proposed Boltzmann Distributed Control Method

In this section, the proposed Boltzmann distributed replicator dynamics method is
presented. From the perspective of the classic replicator dynamics, we use Equation (11)
as the depart point. This expression can be used not only in a two-players game, but in
multi-players games. Consequently, Equation (11) can be stated as shown in Equation (12):

ẋi = αxiτ
[

fi(x)− f (x)
]
+ αxi

[ n

∑
j=1

xj ln
( xj

xi

)]
, (12)

where a portion of a particular type of population will increase or decrease if its in-
dividuals have a higher/lower fitness than the population average. The state vector
x = (x1, x2, ..., xn)n with 0 ≤ xi ≤ 1, ∀i and ∑n

i=1 xi = 1 is used to describe the population
and represents the fractions belonging to each of n types. Consider the fitness function
fi(x), where i represents the fitness type. Then, the population fitness average is described
by f (x) = ∑j xj f j(x). By applying the last assumptions, this expression changes to

ẋi = αxiτ
[

fi(x)−
n

∑
j=1

xj f j(x)
]
+ αxi

[ n

∑
j=1

xj ln
( xj

xi

)]
. (13)
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Considering that the first term of Equation (14) takes the form of the centralized
equation for the RD, this work proposes its adaptation to a decentralized form, looking
forward to computing the agents local information to deal with communications constraints.
Equation (14) shows the decentralized form of this stage as follows:

ẋi = αxiτ
[

fi(x)−
n

∑
j=1

xj f j(x)
]

︸ ︷︷ ︸
Centralized

= αxiτ
[

fi(x)
n

∑
j=1

xj −
n

∑
j=1

xj f j(x)
]

︸ ︷︷ ︸
Decentralized

(14)

where the expression ∑n
j=1 xj is equal to the unit. This is explained because the term xj

within the sum represents the probabilities of playing the jth strategy. Similarly, for the
second term in Equation (13), after doing some Algebra and applying logarithms rules, this
expression takes the following form:

αxi

[ n

∑
j=1

xj ln
( xj

xi

)]
︸ ︷︷ ︸

centralized

= −αxi

[
lnxi −

n

∑
j=1

xjlnxj

]
︸ ︷︷ ︸

Decentralized

(15)

Finally, by replacing Equations (14) and (15) in Equation (13), it gets to the form of
Equation (16), which represents the Decentralized Replicator Dynamics rule in terms of
Boltzmann probabilities.

ẋi = αxiτ
[

fi(x)
n

∑
j=1

xj −
n

∑
j=1

xj f j(x)
]
− αxi

[
lnxi −

n

∑
j=1

xjlnxj

]
(16)

This expression is further analyzed in Section 4 from the perspective of EGT and its
relationship with the selection-mutation concept. It is also analyzed from the perspective
of the exploration-exploitation approaches, and their effect in MAS. Meanwhile, the first
parenthesis in Equation (16) refers to changes in the individuals proportion playing the i-th
strategy that needs full information of all the payoff functions and the entire population
state. Therefore, population dynamics need full-information to evolve. Nonetheless, as one
of the main objectives of this work is finding a way to control applications in which agents
have no access to the entire information of the system, dependency on full-information
must be avoided in some scenarios, where for instance, communication infrastructure
limitations, size of systems and privacy issues hinder the availability of this information.
Consequently, the analysis of the population structure defines the dynamics that describes
the agent behavior. In this sense, the classic assumption for the population structure
is that the population has a full and well-mixed structure, i.e., the population structure
allows agents to select a specific strategy with the same probability of selecting any other.
Figure 2a clarifies this concept by illustrating some agents playing a game. In this case,
each agent is represented by an element and the strategies selected are denoted by the
element shape, for example paper, stone, or scissors.

(a) (b)

Figure 2. (a) Classic population structure approach; (b) More realistic population approach.
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In EGT, each agent has the same probability of receiving a revision opportunity. At the
moment of receiving it, agents randomly select one of their neighbors and, according to the
revision protocol selected, they may change their own strategy to the one of their neighbors.
Since players have been considered full-well-mixed in the population, the probability
that any opponent chooses and plays any of the strategies of the structure is the same
Figure 2a. In contrast, Figure 2b illustrates a non-full-well-mixed population, i.e., a more
realistic approach. In this case, the probability of receiving an opportunity to make a
revision is the same for all agents, but the probability that a neighbor chooses and plays a
particular strategy is not the same. For example, if one agent receives a revision opportunity
when playing a scissors strategy, the probability of selecting an opponent playing a paper
strategy is null, because no scissors are near to any paper. However, for this same agent,
the probability of selecting an opponent playing a scissors or stone strategy is more balanced
and higher than in the paper case.

To obtain a mathematical representation of this behavior, the graph G = (T, L, M)
represents the dynamics among agents. The group T is linked with the strategies the agent
can select. Set L represents the meeting probability among strategies. It is very likely that L
is higher than zero if there is a link between two strategies. In order to contextualize the
forecast in the adjacency matrix M = [aij], aij = 1 means strategy j and i can meet each
other, while aij = 0 means strategy j and i cannot, in this way we define the neighborhood
of agent i as Ni. In this regard, full-well-mixed and non-full-well-mixed populations may
be specified with two types of graphs. Figure 3a shows a representation using a complete
graph for the full-well-mixed populations and Figure 3b for the case of non-full-well-mixed
populations. The topology of the graph depends on the specific structure of the population.
In the specific case of this work, undirected graphs are assumed, i.e., strategies j and i have
the same probability as strategies i and j to meet each other.

(a) (b)

Figure 3. Example of graphs for (a) full-well-mixed population and (b) non-full-well-mixed population.

Up to this point, in order to control agents interactions is needed to meet the popula-
tion structure constraint of non-full-information dependency despite the distributed control
model stated in Equation (16) as depicted in Figures 2b and 3b. To achieve this condition,
the approach of [34] is considered. The authors used the pairwise proportional-imitation
protocol to introduce the neighboring concept, as shown in the following expression:

pij = pj[ f j(pNi)− fi(pNi)]+ (17)

where the computation of pi just needs the knowledge of the portions of the population
playing neighboring strategies, which leads us to make the following assumption:

Assumption 1. Operations using the pairwise proportional-imitation protocol and its update are
neighboring-based, i.e., the payoff function as well as the iterations in the sums depend on the
neighbors that have effective communication with the i-th player.
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Under this assumption, the resulting distributed replicator dynamics that meet the
population structure constraints and allow agents to control the computation of non-full-
information are stated in Equation (18):

ẋi = αxiτ
[

fi(xNi)
n

∑
j∈Ni

xj −
n

∑
j∈Ni

xj f j(xNj)
]

(18)

where fi/j(xNi/j) represents the payoff function for player i/j evaluated in the proportion
of its effective communication neighbors, and the term ∑n

j∈Ni xj represents a sum only with
the effective communication neighbors. Since our assumption of the neighboring concept
has been only applied to the first part of Equation (16), the introduction of this concept to
the second part of the equation (second parenthesis) takes the following form:

− αxi

[
lnxi −

n

∑
k∈Ni

xklnxk

]
(19)

where the term k must be understood as the i-th neighbor with an active communication
link using strategy j. The last couple of expressions represent the behavior of the i-th player
in terms of Boltzmann probabilities for the Distributed Replicator Dynamics or BBDRD.
Equation (20) shows the complete form of the control method grouping both approaches,
i.e., the distributed and the neighboring concepts.

ẋi = αxiτ
[

fi(xNi)
n

∑
j∈Ni

xj −
n

∑
j∈Ni

xj f j(xNj)
]

︸ ︷︷ ︸
Exploitation

−αxi

[
lnxi −

n

∑
k∈Ni

xklnxk

]
︸ ︷︷ ︸

Exploration

(20)

As mentioned before, the BBDRD equation also demonstrates the use of the exploita-
tion and exploration concepts from RL, and the selection-mutation perspective from EGT,
which are discussed in the next Section. The use of this approach and an illustration of its
application to control in a smart grid context is presented in Section 5 of this document.

4. Evolutionary Game Theory Approach

In this Section, the BBDRD shown in Equation (20) is analyzed from the point of
view of the RL and also in an evolutionary perspective. This analysis takes relevance to
understand the incorporation of the exploration concept in the RD equation and its analogy
to the EGT domain.

4.1. Selection-Mutation Perspective

The first part of the dynamics of Equation (20) has the classic structure of the RD,
which allows bearing in mind the Q-learner dynamics from the perspective of EGT, since
the selection mechanism is implicit in it. Consequently, the second part of the expression
represents the mutation behavior for Q-learning, i.e.,

xiα

(
n

∑
k∈Ni

xk ln(xk)− ln(xi)

)
(21)

Two entropy values can be recognized from Equation (21): the value of the strategy xi
and the whole probability distribution x. The entropy terms can be described as:

Ei = −xi ln(xi) (22)

and

En = −
n

∑
k∈Ni

xk ln(xk) (23)
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where Ei describes the available information related to strategy i and En describes the infor-
mation of the whole distribution. As a result, the mutation expression can be rewritten as:

− (αxiEn − αEi) (24)

The next expression represents the mutation equation derived, taking into account the
distinction between old and new states of xi.

n

∑
k∈Ni

εikxk − xi (25)

The term εik in Equation (25) describes the mutation rate of players using strategy i
that change it to the strategy of the k neighbors with an active communication link, e.g., the
strategy j. For values of k higher or equal to 1, εik is grater than or equal to zero.

From the perspective of EGT, on the one hand, mutation in the context of Q-Learning
dynamics is directly related to entropy expressing the strategy state, but this connection
is not new, as it has been noticed that entropy is increased by mutation [35]. In [36], this
connection is explained from the point of view of the thermodynamics, considering that
the mutation has the tendency to increase entropy. On the other hand, the dynamics of the
Q-learners shows that the concept of selection is developed according to the RD, where a
strategy can be favored by or independent of the resulting payoff, which is closely related
to it is opponent behavior. The mutation mechanism is also present. This effect is calculated
by comparing the entropy strategy value with the entropy value of the entire population.

4.2. Exploration-Exploitation Perspective

Reinforcement learning has the challenge of compensating the exploration and ex-
ploitation mechanisms. To obtain the maximum profit, an agent has to take an action,
and normally it selects actions that returned a big reward previously. However, to recog-
nize these actions, the agent has to take actions it had not taken previously. By associating
exploitation and exploration with mutation and selection mechanisms, a biological inter-
pretation of the RL exploration-exploration concept can be obtained. To make it clearer,
the first term in the summation of Equation (20) selects the best strategies all the time,
which fits totally on the exploitation concept. Similarly, the importance of introducing the
exploration term into the RD equation is its direct relationship with the entropy terms of
Equation (21). It is worth noting that the higher the entropy value, the higher the uncer-
tainty level is for selecting one strategy. Thus, the exploration term increases entropy and
provides variety at the same time. In this sense, the concepts of exploration and mutation
are very close, since both of them provide variety, and give at the same time a feature of
heterogeneity to the environment.

Controlling specific situations such as the heterogeneity and the communication
constraints of a system is challenging when real life applications are addressed. In this
process, compensating the exploration-exploitation mechanisms is not an easy task, as it
commonly requires a fine adjustment of the immersed parameters in the process of learning.
This adjustment is necessary to control the agents actions at the moment of a decision-
making process. This problem is addressed with the BBDRD control method presented in
Equation (20) as demonstrated in the following Section.

5. Smart Grids Application

In this Section, the Boltzmann-based distributed replicator dynamics is used in a
smart grid problem. In this case, we try to maximize the global utility of the power
generators or to minimize the total cost of the power generation, in order to satisfy the
restrictions on generation capacity and power balance at the same time [37]. This work
uses the maximization utility functions to clarify this, while the approaches to EDP have
used the static optimization algorithms [18] or methods of offline direct-search [13,19].
The distribution systems management demands works with dynamic environments that
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in turn need alternative control techniques and tools [8]. A first solution to this problem
was made from the perspective of a changing resource allocation approach, as introduced
in [38]. The authors modified the population dynamics concept to work in the context of
microgrids, with the main purpose of controlling the devices that constitute it. This can be
achieved if the loads, generators and other devices share information and cooperate with
other elements of the grid. For the network, these elements are controllable devices.

This work presents now the study case, which consists in finding the place to execute
the dispatch algorithm at the microgrid. Then, the distributed population dynamics concept
is presented by using the BBDRD control approach.

5.1. Case Study

The authors in [39] proposed two control levels. In the lower levels a controllable
voltage source of distributed generators (DGs) is connected to loads with an inverter.
The output voltage frequency and magnitude are controlled by a droop-gain controller [17].
Figure 4 shows the general microgrid distribution composed of seven DGs.

l3

DG1 DG2 DG3 DG4

Main 
Grid

DG6

l4 l5

l1 l2

l6 l7

l9
l8 l10

l13

l11
l12

l14 l15

l16 l17

l20 l21 l22

l18 l19
l23

l24

DG5DG5

DG7

li: Loads

Figure 4. Microgrid distribution. Adapted from [8].

At the highest level, a strategy able to dynamically dispatch set points of power is
implemented. The economic constraints, such as the load demands and the power produc-
tion costs, are sent from the lower level of control and toward the central controller of the
microgrid; then, a classic RD is executed. The controller receives dynamical values for load
demands and costs, which implies the possibility of including renewable energy resources.
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In this case, the dispatch is executed, i.e., the highest level of control. The formulation of
the EDP is:

max J(ϕ) =
n

∑
i=i

Ji(ϕi),

subject to
n

∑
i=1

ϕi =
n

∑
i=1

ψi = ϕD (26)

where 0 ≤ ϕi ≤ ϕmax i, ∀i ∈ Z, n is the total number of DGs, ϕi represents the power
set-point for the ith DG, ψi represents the loads, ϕD is the total load required by the grid,
ϕmax sets the maximum capacity of generation for the ith DG, and Ji(ϕi) is the utility
function of each DG. The criterion of the economic dispatch sets the utility function [37],
which defines the operation of all generation units using the same marginal utilities as
stated in Equation (27)

dJ1

dϕ1
=

dJ2

dϕ2
= ... =

dJn

dϕn
= δ, (27)

For some δ > 0, such that ∑n
i=1 ϕi = ϕD. Based on the EDP criterion of Equation (27),

the EDP stated in Equation (26) can have a solution using utility functions with quadratic
form for each DG [38].

5.2. Population Games Approach

From population games point of view, this work uses RD to manage the EDP. Figure 5
shows the topology proposed to simulate communication constrains between DGs.

DG5

DG1

DG2

DG3 DG4

DG7

DG6

Figure 5. Communication network topology using a graph representation.

For the distributed case, n is the total number of DGs in the system. Let the ith strategy
be defined as the act of selecting a DG in the network. In this sense, let ϕi be the amount of
power assigned to each DG, which is related to the number of individuals that select the ith
strategy in S. The term ϕD is defined as the sum of each power set-point, i.e., ∑n

i=1 ϕi = ϕD
to get a suitable steady state performance. Similarly, to achieve the power balance, the use
of f̄ = (1/ϕD) ∑n

i=1 ϕi fi allows the invariance of set ∆ = [ϕ εt ≥ 0 : ∑i ε S ϕi = m] [40].
This expression guarantees that if ϕ(0) ε ∆, then ϕ(t) ε ∆, ∀t ≥ 0, which means that the
control strategy should define set-points to ensure the appropriate balance between the
generated and the demanded power by the DGs. This behavior allows an appropriate
regulation of frequency.

When analyzing the inclusion of technical and economic criteria in the control strategy,
the cost and the capacity factors of power generation are very important to condition the
final power dispatched to each DG. RD appears to fit appropriately, as its stationary state is
reached when the average outcome is equal to all the outcome functions. This feature links
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RD and EDP, since it is equal to the economic dispatch criterion of Equation (27) when
selecting the outcome function as:

fi(ϕi) =
dJi
dϕi

, ∀i = 1, 2, ..., n, (28)

The economic dispatch approach of Equation (27) ensures an optimal solution of the
system if constrains are satisfied. The optimization issues may be tackled by marginal
utilities in the outcome functions. This is possible because the outcome functions are
equal to f̄ . The outcome selected can be modeled as a function that increases/decreases
depending on the distance of the power from/to the set-point desired. In this dynamic, RD
allots resources to those DGs that depend on the average outcome. This behavior can be
represented by the following function [41]:

f (v) = rv
(

1− v

k

)
(29)

where k represents the carrying capacity such that the independent variable v ε (0, K).
Here, parameters such as the carrying capacity and the cost factor of generation are used
by the outcome functions. Consequently, each DG has an outcome function that can be
stated as:

fi(ϕi) =
dJi
dϕi

=
2
ci

(
1− ϕi

ϕmax

)
, ∀i = 1, 2, ..., n, (30)

The use of marginal utilities for the outcome functions allows the population game to
become a potential game [42]. In Equation (30), the outcome functions lead to functions
of quadratic utility for each DG in the optimal EDP [38]. This outcome function has been
used in other works such as [38,39,43].

Ji(ϕi) =
1
ci

(
2ϕi −

ϕi2

ϕmaxi

)
, ∀i = 1, 2, ..., n, (31)

5.3. Boltzmann-Based Distributed Replicator Dynamics Approach

The previously described behavior implies the use of a centralized controller and
the availability of a high bandwidth infrastructure for communication purposes between
nodes. However, we analyze the dynamics immersed in the system, where these classic
approaches, e.g., centralized perspectives, could fall short. Therefore, distributed control
approximations receives significant attention in the context of a smart grid, because they
have proved to be more flexible and adaptable to network variations.

The classic RD approaches assume that the agents have the complete information
available to calculate ~f . However, sometimes this assumption is not possible due to
restrictions of the communication network. For that reason, if we want to analyze the
outcomes of the availability of information for the EDP, a Boltzmann-based distributed
version of the RD is proposed, as it assumes that the agents have incomplete available
information of the system. In this scenario, RD considers the neighbor concept to share
local information with other agents. To solve the optimization problem, the following
assumptions are needed:

Assumption 2. The generation units communicate each other using a connected and undi-
rected graph.

Assumption 3. The Nash Equilibrium ϕx belongs to the boundaries of a triangle to n-dimensions
known as simplex ∆.

The first assumption means that communication between all generators is guaranteed.
Assumption 2 is close in meaning to viability, i.e., if the generators capacity supports the
demand of power, then, it is possible to find a solution for the optimization problem,
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which also means that the power generation capacity belongs to the simplex. If we analyze
the concave feature of the utility functions, the problem has a unique solution and the
condition of balance is satisfied at steady-state. It is necessary to include the communication
graph between the generators to relax the information constraints for the average outcome.
To secure the power balance, the results obtained in [44] must be considered, and the
invariance of the constraint set ∆ is proven. Therefore, the BBDRD can be employed to
meet the constraints of the network, given by the graph topology.

5.4. Simulation Results

The proposed BBDRD control model is tested in a study case of a smart grid, with seven
distributed generators belonging to a low voltage network. The total power demand of the
system is ϕD = 9 kW; DG 3 is the cheapest and DG 7 is the most expensive. The behavior
of DGs 1, 4, 5, and 6 has no substantial cost differences, while DG 2 is the cheapest among
them. The system works using a frequency of 60 Hz, where the nominal capacity of all
generators is 3.6 kW, except for DG 6 that uses 2 KW.

To have a comparison parameter, we first made the simulation of the classic central-
ized case, which considers the availability of full-information. Results of this stage are
depicted in Figure 6a. In this case, an unanticipated increase in the load of 3 KW and
different costs for each generator are observed. The frequency behavior has no significant
variations, except in t = 0.8, where the load increment produces a variation of approximately
0.2 Hz, but stabilizes its behavior right after it. Figure 6a also shows the amount of power
dispatched to each DG. At the beginning, generator DG 7 dispatches a minimum power in
periods of low demand due to its expensive behavior. In contrast, DG 3 goes close to its
maximum capacity and stays around this value without being affected by load variations.
If the demand increases, DG 7 increases its capacity too, in order to compensate the demand.
In the case of DG 6, it almost reaches all its capacity right after the load variation. DGs 1, 4,
5, and 6 have similar behavior because they also have comparable specifications. Finally,
DG 2 goes towards its maximum performance due to its cheap behavior.

Once we had the results of the classic centralized case, we proceeded to use the BB-
DRD control method to compare its behavior. Results of this stage can be observed in
Figure 6b–d for different values of τ. The topology shown in Figure 5 was used for simu-
lating the communication constraints in the graphs. As the τ value increases, the system
replicates the behavior of the centralized approach. The major differences are observed
with low values of τ (Figure 6b), where DGs take more time to reach their working level.
In contrast, when using high values of τ (Figure 6d), DGs reach their working levels faster.
Regarding communication constraints, DG 5 has a different behavior compared with the
centralized approach, i.e., after the increase in demand, it dispatches more power due to
the communication constraints of the topology and the influence of the exploration concept
of the second term in Equation (20).
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(a)

(b)

(c)

(d)

Figure 6. Results for a microgrid test system. (a) Frequency response and active power response of DGs for the classic RD.
The evaluation of the behavior of the Boltzmann-based distributed replicator dynamics is shown for different values of τ as
follows: (b) τ = 0.5 (c) τ = 2, (d) τ = 5.
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6. Conclusions

The Boltzmann-based distributed replicator dynamics presented in Equation (20) can
be described as a distributed control method of learning, which incorporates the explo-
ration scheme from reinforcement learning into the replicator dynamics classic equation.
In this regard, the exploration is close in meaning to the mutation concept of EGT, and intro-
duces a way to measure variety in the system using the entropy approach. This distributed
control method also uses the scheme of the Boltzmann distribution aiming to introduce
the τ parameter for controlling purposes. The selection of a suitable temperature func-
tion involves a methodological search and can now be consistently addressed to meet
an expected convergence distribution. In this sense, the dynamics of the method have
shown properties of the time dependency of the system, which allows using a structured
framework in the design of parameters. In terms of stability, the derivation process in
Section 3 remains stable if multiple agents are allowed. This fact is evidenced with the
incorporation of the population concept into the control method. In this sense, the con-
tribution of the neighboring approach gives the key to avoid centralized schemes and
forces agents to take into account only the available information of other players before
executing an action. The method was evaluated in a smart grid problem and let us initialize
parameters previously. Despite the evolutionary interpretation, this fact states the control
method applications in the normative side, rather than in the positive side, which is the
common use of EGT.

Problems in Engineering are the representation of real situations where the complexity
of the systems can be analyzed using MAS, thanks to the study of the interactions between
the agents. EGT has some useful tools to manage these interactions to obtain the control
agents behavior. In this work, we show the benefits of using a distributed approach of the
EGT for controlling a real life smart grid application. This paper shows the BBDRD per-
formance in experiments where communications constraints are involved, thus becoming
a useful tool for the implementation of control strategies in a more realistic Engineering
with distributed schemes. This feature takes special relevance due to the possibility to
tackle complex systems using local information, allowing considering communications
constraints without using a centralized coordinator and avoiding high costs of implemen-
tation, which is the case of classic approaches, such as the dual decomposition method.
In this regard, the distributed control concept used to deal with the EDP can be extended
to other problems in the smart grid context, such as the lack of consistency of renewable
generation, physical restrictions of power-flow, and inclusion of power losses.

Results showed that despite the limited information, as the τ value increases and
reaches the value of τ = 5, the system replicates the behavior of the centralized approach.
In contrast, for τ = 0.5 the performance of the method was far away from results obtained
using ideal communication conditions (centralized scheme). Having the capacity to tune
behavior of the method beforehand seems to be successful with systems modeled using
graphs, where communications constraints between agents arise. This also naturally
generalizes to any number of agents or populations. Results also showed that performance
of the Boltzmann-based distributed method for solving the economic dispatch problem
in a smart grid is convenient from the economic perspective. This feature is explained
because the specificities of the DGs were consequent regarding their cost of operation and
use of their power capacity. This feature is shown because DG 7 dispatches a minimum
power in periods of low demand due to its expensive behavior. In contrast, DGs 2 and 3 are
close to their maximum capacity and stay around this value due to their cheap behavior.
If the demand increases, DG 7 increases its capacity too to compensate for the demand.
The behavior of the other DG also has the expected performance. Ranges of the dispatched
power were similar in DGs 1, 4, 5, and 6, which is explained by their similar cost features.
When comparing results between centralized and decentralized approaches, it can be noted
that both have almost the same performance, except in DG 5, which reaches its maximum
right after the demand increased. This feature can be explained from the point of view of
the communications constraints in the BBDRD control method.
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