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Abstract: The paper presents a survey on selected models of opinion dynamics. Both discrete
(more precisely, binary) opinion models as well as continuous opinion models are discussed. We focus
on frameworks that assume non-Bayesian updating of opinions. In the survey, a special attention is
paid to modeling nonconformity (in particular, anticonformity) behavior. For the case of opinions
represented by a binary variable, we recall the threshold model, the voter and q-voter models,
the majority rule model, and the aggregation framework. For the case of continuous opinions,
we present the DeGroot model and some of its variations, time-varying models, and bounded
confidence models.

Keywords: opinion dynamics; binary opinion; continuous opinion; non-Bayesian updating;
nonconformity

1. Introduction

Although for some issues and specific topics, opinions can be formed immediately and do not
change over time despite possible interactions between individuals, in most real-life situations, opinion
formation is a rich, complex, and dynamic process. For example, in any society individuals’ views on
numerous economic, societal, and political issues are usually formed via a process of opinion dynamics,
caused by interactions among the individuals. The central question is: How can the opinion of a society
evolve, due to various influence phenomena?

Opinion dynamics has gained a lot of attention for over 60 years and in various scientific fields:
sociology, psychology, economics, mathematics, physics, computer science, statistics, control theory, etc.
Sociologists and psychologists have already addressed this problem in the 60s and 70s. One of the best
known seminal work comes from DeGroot [1], a statistician who proposed a consensus reaching model
of opinion formation where opinions are continuous and individuals take weighted averages of their
neighbors’ opinions when updating their own views. However, several related models introduced
even earlier are due to sociologists: one of them is French Jr [2], whose model coincides with the
DeGroot model (and for this reason is also called the French-DeGroot model), while Abelson [3] and
Taylor [4] proposed continuous-time versions. We mention also a discrete version of Taylor’s model
proposed by two other sociologists, Friedkin and Johnsen [5].

One of the ideas behind variations of the French-DeGroot model lies in the assumption that
the opinion updating can vary with time and circumstances. Important examples of time-varying
frameworks are bounded confidence models, assuming that an individual pays attention only to other
individuals whose beliefs do not differ much from his own belief. Important models in this stream of
literature are those of Hegselmann-Krause [6,7] and of Deffuant et al. [8]. The Bayesian literature offers
also many models where opinion updating is context-dependent (Bayesian persuasion (Bergemann
and Morris [9], Kamenica and Gentzkow [10]) and motivated belief models (Bénabou and Tirole [11])).
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Assuming that an opinion is represented by a binary variable, another seminal framework of
opinion formation is the threshold model coming from another sociologist, namely Granovetter [12];
see also Schelling [13].

Economists, who consider individuals as rational economic agents, have proposed various
models, often incorporating utilities and strategic considerations; see e.g., Jackson [14], Acemoglu and
Ozdaglar [15], Bramoullé et al. [16] for surveys. Apart from the standard questions of convergence and
consensus reaching, additional related questions in the context of the DeGroot model are, e.g., those on
the speed of convergence (How quickly beliefs reach their limit?) or on the “correctness” of consensus
beliefs (Do beliefs converge to the right answer?). Some examples of extensions of the DeGroot
model and time-varying models are presented by DeMarzo et al. [17], Golub and Jackson [18] and
Büchel et al. [19,20], the latter focusing on the inheritance of cultural traits along generations. Another
related literature is the one on social learning in the context of social networks, where individuals
observe choices over time and update their beliefs accordingly (Banerjee [21], Ellison [22],
Ellison and Fudenberg [23], Ellison and Fudenberg [24], Bala and Goyal [25], Bala and Goyal [26],
Banerjee and Fudenberg [27]). Note that this type of modeling is different from the framework in
which the choices depend on the influence of others. The seminal works are those on the “herd
behavior” (Banerjee [21], Scharfstein and Stein [28]) and the “informational cascades” (Bikhchandani
et al. [29], Anderson and Holt [30]), where individuals are assumed to get information by observing
others’ actions and are inclined to imitate those who are supposed to be better informed; see, e.g., Celen
and Kariv [31]. Opinion dynamics is also related to diffusion of rumours and innovation (see,
e.g., Banerjee [32], Chatterjee and Dutta [33], Bloch et al. [34]), and to contagion phenomena (see, e.g.,
Morris [35], and also Grabisch et al. [36] for an overview of the related works).

Physicists, who consider agents as particles, have used techniques from statistical physics
(in particular, mean-field approximation) and coined the terms “sociophysics” (Galam [37]) and
“econophysics”. The related literature in physics is very vast; see, e.g., Deffuant et al. [8], Weisbuch
et al. [38], Weisbuch [39], Galam [40], Galam [41], Jȩdrzejewski and Sznajd-Weron [42], Nowak and
Sznajd-Weron [43], Nyczka and Sznajd-Weron [44], Nyczka et al. [45]. An impressive survey is given
by Castellano et al. [46], containing a huge bibliography.

On the other hand, computer scientists, mathematicians and statisticians have studied
(probabilistic) automata models and processes that can model opinion dynamics on (infinite)
lattices (Gravner and Griffeath [47], Holley and Liggett [48], Mossel and Tamuz [49]). Also control
theorists have brought their contribution by introducing techniques from system theory; see,
e.g., Altafini [50,51], Shi et al. [52], as well as Proskurnikov and Tempo [53,54] for very comprehensive
surveys, and Breer et al. [55], Fagnani and Frasca [56], Bullo [57] for monographs.

In what follows, we try to classify the vast literature on opinion dynamics and present in
more details some selected contributions. We focus in this brief survey on nonstrategic models,
i.e., models which do not use game-theoretic considerations nor utility functions that agents try to
maximize, nor are we considering models where opinion is about some unknown state of nature
which has to be determined (Bayesian models). In short, we do not consider models usually studied
by economists and rather concentrate on those studied by physicists, computer scientists and control
theorists. We hope that this survey will bring, in particular to economists, a convenient overview of
models they are not necessarily familiar with. We have tried to gather for each model the essential
theoretical results on convergence, usually scattered in the literature, presented here in a unified way,
and showing from which domain these results come from, at the risk of being dense and a bit concise,
but providing a quick and handy reference. We do not pretend in these few pages to be exhaustive nor
to give all technical details. We have given as far as as possible all useful references for full details.
Our original touch compared to other surveys is to put some emphasis on less developed aspects
which are nonconformist models and time-varying models. The interested reader can further consult
other surveys on the topic, among which we recommend Castellano et al. [46], Proskurnikov and
Tempo [53,54], Anderson and Ye [58], Flache et al. [59].



Games 2020, 11, 65 3 of 29

2. A Tentative Classification

The great variety of models studied in the literature obliges to start this survey by an attempt
to classify the models, and at the same time to introduce relevant features of these models and the
corresponding terminology.

We start with describing the type of society of agents (which are also called, depending on the
context, individuals, players, voters, etc.) which underlies the model. Denoting by N the set of agents,
it can be

(i) finite, with |N| =: n. Most studies consider N to be finite, having in mind a society of relatively
small size, a committee, etc.

(ii) countably infinite, and in more rare cases, uncountable. The typical example of a countably
infinite society is Zd with d ≥ 1. The case d = 1 corresponds to the case where the society is
arranged on a line, i.e., each agent has a left and a right neighbor. The case d = 2 is called the
infinite grid, i.e., a surface where each agent has neighbors at least on south, north, west and
east directions. It is useful for modeling a large society of individuals having many connections.
Some studies take N = [0, 1] for mathematical convenience.

Supposing N to be fixed, it can be with or without structure. In the latter case, it is understood
that every individual is in contact with every other individual. Otherwise, one can define a set of
links (directed or undirected) between agents, which in turn defines a graph or network. A directed
link (also called an arc) is an ordered pair (i, j), with i, j ∈ N, and represents the fact that agent i
has a connection with j (but not necessarily the converse) in some sense (e.g., i listens to j’s opinion).
An undirected link (also called an edge) is denoted by {i, j} or simply ij, and represents a connection
without direction (i.e., it is symmetric). A directed graph or digraph is a graph with directed links.
Otherwise, the graph is said to be undirected. The neighborhood of an agent i is the set of agents j such
that there is a link from i to j (directed or undirected). The degree of i is the size of its neighborhood
(number of neighbors). A graph is complete if any agent i has a link with any other agent j. Clearly,
the unstructured case corresponds to the case of a complete graph.

Taking an agent i ∈ N, its opinion is a variable xi, which can be

(i) discrete, taking only finitely many values. By far the most common case is that the variable is
binary, taking values 0 and 1, or −1 and +1, representing for instance the opinions ‘yes’ and ‘no’
on some issue (political, ethical, fashion, adoption of a new technology, etc.). When the variable
is not necessarily binary, it could be about the choice of a candidate at some election, choice of a
school, restaurant, etc.

(ii) continuous, taking value in a closed real interval like [0, 1], [−1,+1], or in R. Here the variable
indicates either a degree of approval on some issue, the guess of an unknown value (see the
famous example of guessing the weight of an ox cited by Surowiecki [60] in his book The Wisdom
of Crowds) a percentage (e.g., of a total amount of money for allotting a budget), etc.

The type of opinion being defined, it remains to define its mechanism of updating. Here several
further distinctions have to be made. The first one is to distinguish between Bayesian updating and
non-Bayesian updating. In the former case, the opinion (which is more appropriately called a belief) is
about an unknown state of nature θ, called the ground truth (think for example of a group of people
trying to guess the weight of an ox, or the result of a horse race, or the coming of a financial crisis, etc.).
Then, updating of belief is done on the basis of the knowledge of the prior probabilities on the different
states of nature and the Bayes rule with conditional probabilities (we refer the reader to, e.g., Acemoglu
and Ozdaglar [15] for a survey of Bayesian updating models). By contrast, in what we mean by
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non-Bayesian models1, there is no ground truth (no unknown state of nature) to guess, and therefore
no probabilistic mechanism transforming prior probabilities into a posteriori probabilities. This is the
case, for example, when opinion is on a new technology, on some social/ethical issue, on the amount
of budget that should be alloted to some activity, etc. Rather, the agent updates his/her opinion on
the basis of the opinions held by the other agents. We should mention here at the frontier between
these two types of model the interesting work of Jadbabaie et al. [64], where the updating is done
by combining the Bayesian rule and averaging of the opinion of the neighors à la DeGroot (see a
generalization of this framework and axiomatization in (Molavi et al. [65])).

Another important distinction is whether the updating mechanism is in continuous time or
discrete time. A model in continuous time has the form ẋ(t) = F(x(t)), while in discrete time it reads
x(t + 1) = A(x(t)). Furthermore, the transition functions F and A can be fixed, i.e., invariant with
time (this is often called homogeneous), or time-varying (also called inhomogeneous).

The updating rule can also be

(i) synchronous, which means that at a given time, all agents simultaneously update their opinion;
(ii) asynchronous, in which case at a given time step, only one randomly chosen agent (or a small

subset of agents) updates its opinion.

Lastly, the updating rule can represent different types of behavior of the agent w.r.t. the opinion
of the other agents. Mainly, one distinguishes between conformity behavior, where the agent has the
tendency to follow the trend, to conform to the opinion of the others, and nonconformity behavior,
which is the opposite. In nonconformity we further distinguish between anticonformity, which means
that the agent, knowing the trend of the society, tends to go in the opposite direction, and independence
or stubbornness, which means that the agent simply ignores the opinion of the rest of the society and
has a fixed opinion.

It is important to note that the distinction conformity/nonconformity underlies a large domain
of research in economics, as well as in sociology. In the latter domain, there is a distinction between
models of assimilative social influence (conformist behavior) and models with repulsive influence
(anticonformist behavior), and we refer the reader to the survey of Flache et al. [59] on social
influence, built on this distinction. In the economic and financial domains, conformity is referred to
as trend-following or herd behavior, while nonconformity is known as contrarian behavior. Among the
first works mentioning herding behavior, we shoud cite Banerjee [21] and Bikhchandani et al. [29],
where people acquire information in sequence by observing the actions of other individuals who
precede them in the sequence, which necessarily leads to informational cascades (examples of such
situations are: choice of stores, restaurants, schools, medical practices, etc.). Another famous work is
Asch’s experiment [66], showing that individuals may express judgments with which they disagree
in order to conform to the majority judgment (see a discussion of these works in [67]). In financial
markets, the herding behavior, informational cascades and contrarian behaviors have been widely
studied (see, e.g., [68–71]).

In the behavioral aspects of the updating mechanism, we could have also introduced strategic
considerations, where agents have utility functions depending on the reaction of the other agents,
and their aim is to maximize their utility2. A simple canonical example is the guessing game of the

1 It is important to note that there exists a whole bunch of literature on belief updating in a non-Bayesian way, in the sense that
a mechanism different from the Bayes rule is used, e.g., in the Dempster-Shafer framework or with imprecise probabilities,
multiple prior, etc. See, e.g., [61–63].

2 It is interesting to note that in strategic games, one distinguishes between strategies which are complements and strategies
which are substitutes. In the former case, agents have an incentive to match the strategies of other player (this is herding
behavior), while in the latter case, agents have an incentive to do the opposite of the other agents, i.e., they have a contrarian
behavior (see, e.g., Camerer and Fehr [72], Fehr and Tyran [73]). Hence, the behavior of an agent (conformist/anticonformist,
herding/contrarian) may be dependent of the situation and is not a feature of the individual. Most models we present
below, as strategic considerations are not taken into account in this survey, exhibit a fixed, exogenous type for each agent,
except in Section 3.2, where the type is randomly chosen.
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p-beauty contest due to Moulin [74] (see Nagel [75]). Although this gives rise to a quite interesting and
well developed branch of opinion dynamics (let us mention here, among many others [19,20,76,77]),
we limit the scope of this survey to the (already vast) case on nonstrategic models and non-Bayesian
models, in the above sense.

As we said in the introduction, in order to distinguish this paper from existing surveys in the
literature, we would like to make an emphasis on time-varying models and models of anticonformity,
for which the literature is less generous.

We divide our survey in two sections: binary opinion models, and continuous opinion models,
for which the techniques are completely different.

3. Binary Opinion Models

3.1. The Threshold Model

The threshold model is one of the simplest and most natural ones. It has been rediscovered
many times and studied in depth. The seminal papers are due to Granovetter [12] and Schelling [13].
The main idea is that agents display inertia in switching states, but once their personal threshold has
been reached, the action of even a single neighbor can tip them from one state to another.

Consider N to be finite, with an underlying network. Each agent i ∈ N has a neighborhood Γi,
with Γi 3 i, and the opinion of agent i at time t is denoted by xi(t) ∈ {0, 1}. In addition, each agent i
has a threshold µi ∈ [0, 1]. We define the state of the society at time t to be the set of agents with opinion
equal to 1 at time t. The opinion of agent i at next time step is given by

xi(t + 1) =





1, if 1
|Γi | ∑j∈Γi

xj(t) ≥ µi

0, otherwise.

The updating is synchronous since every agent updates at the same time. Agent i adopts opinion 1
if the proportion of its neighbors with opinion 1 is at least equal to the threshold µi, otherwise its
opinion is 0. Note that unless µi = 0.5, the updating process is not symmetric w.r.t. 0 and 1. Indeed,
if µi > 0.5 it is “easier” for agent i to adopt opinion 0.

A folklore result3 says that the threshold model either converges to a constant vector x(∞) or
enters a cycle of period 2. The most general form of this result is:

Theorem 1 (Goles and Olivos [80]). Let W = [wij] be a n× n symmetric matrix with wij = wji ∈ R for all
i, j, and threshold values θi ∈ R, i ∈ N. Consider that

xi(t + 1) =

{
1, if ∑n

j=1 wijxj(t) ≥ θi

0, otherwise.

Then, for every x(0) ∈ {0, 1}n, there exists s ∈ N such that

x(s + 2) = x(s).

In his seminal paper, Granovetter considers a complete graph so that Γi = N for every agent i,
and takes as example a riot (1 = participate to the riot, 0 = do not participate). A threshold equal to 0
corresponds to an agent called the instigator as he starts rioting alone. Then a domino effect happens
if there is one agent with threshold 1/n, one with 2/n, etc., till one with (n− 1)/n. Indeed, once the
instigator has started to riot, the agent with threshold 1/n is triggered and starts to riot also. Then the

3 See, e.g., [78,79]. More references can be found in [80].



Games 2020, 11, 65 6 of 29

threshold 2/n is reached and another agent starts to riot, etc. Finally, the whole society participates to
the riot.

The classical threshold model is clearly conformist. There exist recent studies on an anticonformist
version of the threshold model, see, e.g., Nowak and Sznajd-Weron [43], Vanelli et al. [81], Grabisch
and Li [82]. We give some excerpts of the latter reference.

The society N = Na ∪Nc is now divided into the sets of conformist agents (Nc) and anticonformist
agents (Na). Conformist agents update their opinion exactly as in the classical threshold model.
An anticonformist agent i updates its opinion as follows:

xi(t + 1) =





0, if 1
|Γi | ∑j∈Γi

xj(t) ≥ µi

1, otherwise,

that is, when too many agents have opinion 1, agent i takes the opposite opinion 0. Here also,
the updating is synchronous and asymmetric in 0 and 1. The key function in the study of this model is
the transition function G:

c(t + 1) = G(c(t)) =
1
n

(
∑

i∈Nc
1µi≤c(t) + ∑

i∈Na
1µi>c(t)

)
,

with c(t) ∈ [0, 1] the proportion of agents with opinion 1 at time t. An important fact, generalizing the
result found by Granovetter, is that fixed points of G correspond to the absorbing states of the process.
The study of convergence becomes fairly complicated, as cycles of various length may occur, as well as
various absorbing states. Let us study more in detail the situation in the case of a complete network
and a Gaussian distribution of the thresholds (i.i.d.) with mean m and variance σ2. Then the transition
function becomes

G(x) =
(

q− 1
2

)
erf
(

x−m
σ
√

2

)
+

1
2

,

with q the proportion of conformists. When q > 1/2, there always exists a stable fixed point, no cycle,
but possibly two unstable fixed points which appear for low values of σ, in which case the stable
fixed point tends to q, i.e., all conformists have opinion 1, and all anticonformists have opinion 0
(see Figure 1). If q < 1/2, i.e., anticonformists are predominant, there exists a unique fixed point x∗. It is
stable if |G′(x∗)| ≤ 1 (this happens if σ is not too small), otherwise there exists a limit cycle of length 2,
where the two points of the cycle tend to q and 1− q respectively when σ tends to 0 (see Figure 2).

We suppose now that at each time, agents meet randomly other agents, i.e., their neighborhood is
a random set of size either fixed or drawn from a distribution. The consequence is that the mechanism
of updating is no more deterministic but obeys a Markov chain. A complete analysis has been done
when the size of the neighborhood is fixed and under the assumption that all conformist agents have
the same known threshold, and similarly for the anticonformist agents. The exhaustive list of all
possible absorbing classes has been obtained, among which one finds absorbing states, but also cycles
and more complex absorbing classes. Such a complete anaysis does not seem possible in more general
situations, however, a general simple result can be obtained in the fully general case, with arbitrary
distributions of the size of the neighborhood and thresholds.
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Figure 1. Gaussian distribution with a small proportion of anti-conformist agents (q = 0.95), m = 0.3.

Figure 2. Gaussian distribution with a large proportion of anti-conformist agents (q = 0.1), m = 0.2.
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Theorem 2. [82] Assume an arbitrary distribution of the thresholds with lowest value µ > 0 and highest value
µ, and an arbitrary degree (size of the neighborhood) distribution, with lowest value d.

Under the condition that nc, na, the numbers of conformist and anti-conformist agents, satisfy

µd ≤ na, nc < n− d(1− µ)

2N is the only absorbing class, i.e., the transition matrix of the Markov chain is irreducible.

To interpret this result, one must recall that the state of the society is defined as the set of agents
with opinion 1. When 2N is an absorbing class, it means that at each time step, there is a positive
probability to be in any state S ⊆ N, and that this state changes every time step. Therefore, the behavior
in the long run is totally erratic. The theorem says that this happens under very mild conditions on the
distributions. Indeed, as µ ∈ [0, 1], it is enough that the numbers of conformists and anticonformists
exceed the smallest value of the size of the neighborhood.

We end this section by mentioning a related model proposed by Gardini et al. [83] where
conformist and anticonformist agents are considered, both in continuous time and in discrete time
versions. In the discrete time version, a fraction δ of agents updates their opinion at each time step,
based on a threshold mechanism, and conformist agents copy the opinion of the agent they match
with, while anticonformist agents take the opposite opinion. The threshold for conformist (resp.,
anticonformist) agents depends on the relative frequency of accross-type matching for conformist
(resp., anticonformist) agents. It is found that under some conditions, limit cycles of length 2 arise,
which according to the authors, explain fashion cycles. A thorough analysis in terms of chaos theory
is undertaken.

3.2. The Voter and q-Voter Models

The voter model is another classical model with a very simple mechanism, proposed around
the same time as the threshold model by Clifford and Sudbury [84], who studies spatial conflict with
animals fighting for territory. It was further analyzed by Holley and Liggett [48]. Among various
generalizations proposed in the literature, Castellano et al. [85] introduces the (nonlinear) q-voter
model, which we detail below. A good survey of the q-voter model can be found in Jȩdrzejewski and
Sznajd-Weron [42].

We consider that the opinion (state) of an agent i is either si = −1 or si = +1. We denote the
update of the state by si → a, where a ∈ {−1,+1}. We give below a brief presentation of the voter
model and its main variants.

• The voter model. At each time step, an agent i is selected together with one of its neighbors,
say j. Then si → sj.

• The Sznajd model [86]. The agents are on a line. Two consecutive agents i, i + 1 influence their
neighbors i− 1, i + 2 as follows:

if si = si+1, then si−1 → si and si+2 → si+1.

If they disagree, nothing happens. In the original version of the model, when si 6= si+1,
then si−1 → si+1 and si+2 → si.

• The q-voter model. At each time step, an agent i is selected as well as q of its neighbors. If all
q neighbors agree, then si becomes the opinion of the q neighbors. Otherwise, si → −si with
probability ε, and there is no change with probability 1− ε.

The probability f (x) that an agent changes its opinion given that x is the proportion of disagreeing
neighbors is

f (x) = xq + ε[1− xq − (1− x)q].
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Note that if q = 1 (voter model), then f (x) = x. The following variant exists: instead of unanimity
of the q neighbors, only 1 6 r 6 q neighbors in the same state suffice for updating opinion (see,
e.g., [44]).

• The q-voter model with nonconformity (Nyczka et al. [45]). Two types of nonconformity are
considered: independence, where the decision about opinion change is made independently of the
group norm (Note: such agents are commonly called “stubborn”); anticonformity, which means
disagreement with the group norm.

There exist various versions of this model (see Jȩdrzejewski and Sznajd-Weron [42]). The general
frame is as follows. Agents are either conformist (in which case they follow the original q-voter
model) or nonconformist, with proportion 1− p and p, respectively. In the latter case for agent i,
with a probability zi, agent i acts as an independent player, that is, it takes the opposite opinion
with probability fi, otherwise keeps its opinion, regardless of the neighborhood. Otherwise, agent i
acts as an anticonformist: picking at random qi neighbors, if all4 agents agree, the opposite opinion
is adopted, otherwise the agent is not influenced. Figure 3 represents the general mechanism.
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We provide now an analysis of convergence of the q-voter model with non-conformity
(see Jȩdrzejewski and Sznajd-Weron [42]).

3.2.1. Mean-Field Approximation

In physics, when describing the evolution of states of particles, the mean-field approximation
consists in replacing fluctuating values of variables describing the state of neighboring particles by
their expectation. In the context of opinion dynamics, for every agent, the conditional probability that
a neighbor has opinion α, given the opinion of the agent, is approximated by the proportion of agents
in the network having opinion α (in some sense, the population is “well-mixed”; this is also equivalent
to have a complete network, as the neighborhood of an agent is the whole network).

4 As for conformist agents, “all” can be replaced by “wi among qi”.
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Let us explain how this approach can be used to derive φ, the average opinion in the society of
agents (or, equivalently, the concentration c of agents with opinion +1), and how to obtain the steady
state of φ and to study its stability. Let P(x, τ) be the probability to have a proportion x of agents
with opinion +1 at time τ. The concentration c(τ) is the expected value of x, i.e., c(τ) = ∑x xP(x, τ).
The evolution of P(x, τ) is supposed to have the following (Markovian) form:

P(x, τ + 1) = ∑
x′

γ(x | x′)P(x′, τ) (1)

where γ(x | x′) is the probability of transition from x′ to x. In the q-voter models, as only one agent
may change its opinion at each time step, the variation in x is either 1/n, 0 or −1/n, for which we use
respectively the notation γ+(x′), γ0(x′), γ−(x′). This yields

c(τ + 1) = c(τ) +
1
n ∑

x′
P(x′, τ)(γ+(x′)− γ−(x′)).

Then, the mean-field approximation implies that x is assumed to be equal to c(τ), yielding

c(τ + 1) = c(τ) +
1
n
(
γ+(c(τ))− γ−(c(τ))

)
.

Taking time step equal to 1/n and n→ ∞ gives the continuous time version

dc(t)
dt

= γ+(c(t))− γ−(c(t)) (2)

(rate equation). Doing the same with (1) gives the evolution of P(x, t) with time, which has the form of
a Fokker-Planck equation5:

∂P(x, t)
∂t

= − ∂

∂x
(F(x)P(x, t)) +

1
2

∂2

∂x2 (D(x)P(x, t)), (3)

where F(x) = γ+(x) − γ−(x), D(x) = 1
n (γ

+(x) − γ−(x)) are the drift and diffusion coefficients,
respectively. The stationary solution of (3), giving P(x) when t tends to infinity, is:

P(x) =
Z

D(x)
exp

(∫ F(x)
D(x)

dx
)

,

where Z is a normalizing constant.
A current practice in physics is to use a phase transition diagram, i.e., a diagram which depicts the

evolution of the state variable of interest (here the concentration c, or the average opinion φ = 2c− 1)
w.r.t. control parameters, which in the case of the nonconformist q-voter model are the values q
(assumed to be continuous) and p, the proportion of nonconformists.

By (2), the system reaches a steady state cs if F(cs) = 0. As it is typical in dynamical and chaotic
systems (see, e.g., Strogatz [88]), the steady state cs is stable (i.e., after a small perturbation the system
reaches again the steady state) if the derivative F′(cs) < 0, and unstable if it is positive. Equivalently,
the potential V(c) := −

∫
F(c)dc has its minima corresponding to the stable values, and its maxima to

the unstable values. When the stable values evolve in a discontinuous way with the control parameters,
we speak of a discontinuous phase transition, otherwise the phase transition is continuous. On Figure 4,

5 The Fokker-Planck equation is used in statistical mechanics for describing the time evolution of the probability density
function of the velocity of a particle, under the influence of random forces (diffusion term in ∂2

∂x2 , like in the Brownian motion)
and drag forces (drift term in ∂

∂x ). It has been applied in economics with stochastic games (see, e.g., Anderson et al. [87]).
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one can see the phase diagram of φ w.r.t p, q. Solid lines indicate stable values of φ while dashed lines
indicate unstable values. For high values of q, the phase transition becomes discontinuous. The critical
point corresponds to the frontier between continuous and discontinuous phase transitions. In the
discontinuous case, there is a zone (in grey) where three stable values coexist: φ = 0 (called “disordered
phase”), and φ close to 1 or to −1 (ordered phase). Actually, the global minimum of V(φ) is for φ = 0
in this zone, and the two other minima are metastable (i.e., a perturbation may make the system to jump
in another (more) stable state).

Figure 4. Phase transition diagram of φ (borrowed from [42]).

3.2.2. Pair Approximation

The pair approximation is a commonly used method in physics, also used for the study of
random graphs (see, e.g., Newman [89]). It provides a more precise modeling than the mean-field
approximation, which works moderately well on sparse networks, structures with a small average node
degree, etc. We consider that the network is directed and introduce E++, E+−, E−+, E−−, where E+−
indicates the number of links from an agent with opinion +1 to an agent with opinion −1, etc.
Links with different opinions at extremities are said to be active. We have E++ + E+− + E−+ + E−− =

〈k〉n, where 〈k〉 is the average degree of an agent. We define θ+ to be the probability of selecting an
active link with opinion +1 at the head of the link (and similarly for θ−):

θ+ =
E+−

E++ + E+−
, θ− =

E−+
E−− + E−+

.

Supposing the network to be undirected (and therefore E+− = E−+), we can write

θ+ =
b

1 + m
, θ− =

b
1−m

with b = 2E−+/〈k〉n and m = (E++ − E−−)/〈k〉n. Then it is possible to write differential equations
in c, b, m (see Jȩdrzejewski and Sznajd-Weron [42] for details).

3.3. The Majority Rule Model

This model has been proposed by Galam [40]. We suppose that the network is complete and that
the opinion is +1 or −1 (e.g., +1 means the adoption of a new reform). At each iteration, a group of r
agents is selected at random. Usually, r is not fixed but drawn from a distribution. Then all agents
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inside that group take the majority opinion. In case of a tie, one of the opinions (usually −1) arbitrarily
prevails (principle of social inertia, preference of the status quo, etc.).

Let us fix the largest size of a group to be L, and consider a probability distribution of the size
of a group (ak)k=1,...,L. Let P+(t) be the probability that an individual at time t has opinion +1. Then,
applying the above rule, assuming that ties are broken with −1, we find

P+(t + 1) =
L

∑
k=1

ak

k

∑
j=b k

2+1c

(
k
j

)
P+(t)j(1− P+(t))k−j. (4)

Interpreting P+(t) as the proportion of agents with opinion +1 at time t, the analysis of the
behavior of the system amounts to analyzing the transition function G (exactly as it is done in the
threshold model, see Section 3.1):

P+(t + 1) = G(P+(t))

We have G(0) = 0 and G(1) = 1. Observe that the slope of G at 0 is smaller than 1. Indeed,
suppose P+(t) = 1

n (one individual with opinion +1). Then, if ties are broken with +1, there is
at most one additional individual with opinion +1 (obtained in groups of size 2), so on average,
strictly less than one, and if ties are broken with −1, there cannot be an increase. In the latter case,
taking P+(t) = 2

n , there is at most one additional individual with opinion +1 (obtained in groups
of size 3), so on average, strictly less. Therefore, there exists an intermediate fixed point PF ∈ ]0, 1[,
which is unstable: if P+(0) < PF, then the society tends to the consensus −1, and if P+(0) > PF,
the society tends to the consensus +1.

Let us take for the size of the group r = 3 to be fixed. Then (4) becomes

P+(t + 1) = 3P2
+(t)(1− P+(t)) + P3

+(t) = −2P3
+(t) + 3P2

+(t).

Hence, the transition function is G(x) = −2x3 + 3x2. Its inflexion point is given by G′′(x) = 0,
which yields PF = 1

2 .

Galam [41] introduces contrarians, i.e., anticonformist agents who update in the opposite way
of conformist agents. Again, as with the threshold model, this yields radically different dynamics.
Indeed, supposing that a is the proportion of anticonformist agents in the society, and for simplicity
that r is fixed and odd, (4) becomes

P+(t + 1) = (1− a)
r

∑
j= r+1

2

(
r
j

)
Pj
+(t)(1− P+(t))r−j + a

r−1
2

∑
j=0

(
r
j

)
Pj
+(t)(1− P+(t))r−j

= (1− a)
r

∑
j= r+1

2

(
r
j

)
Pj
+(t)(1− P+(t))r−j + a

[
1−

r

∑
j= r+1

2

(
r
j

)
Pj
+(t)(1− P+(t))r−j

]

= (1− 2a)
r

∑
j= r+1

2

(
r
j

)
Pj
+(t)(1− P+(t))r−j + a.

One obtains G(0) = a and G(1) = 1− a. Then G has still an intermediate fixed point PF, which is
stable, and 0,1 are no more stable fixed points.

See a similar study in the presence of stubborn (independent) agents by Galam and Jacobs [90].

3.4. The Aggregation Model

This model has been initiated by Grabisch and Rusinowska [91], and further developed and
studied in [36,92,93]. It can be seen as a generalization of the threshold model.
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Let us rewrite the threshold model as follows, supposing a complete network:

xi(t + 1) = 1 1
n ∑j∈N xj(t)≥µi

,

where 1p = 1 if the logical proposition p is true, and 0 otherwise. The aggregation model is a
generalization of the threshold model in 2 directions:

• The arithmetic mean for computing the average opinion in the society is replaced by any
aggregation function Ai, i.e., a real-valued function on [0, 1]n satisfying Ai(0, . . . , 0) = 0 and
Ai(1, . . . , 1) = 1, and being nondecreasing in each argument;

• The deterministic threshold mechanism is replaced by a probabilistic mechanism: the probability
that xi(t + 1) = 1 is the output of the aggregation function:

Pr(xi(t + 1) = 1|x(t)) = Ai(x1(t), . . . , xn(t)).

Typical aggregation functions are the weighted arithmetic mean ∑i wixi, particular case of the

family of generalized means f−1
(

∑i wi f (xi)
)

, with f increasing or decreasing and ∑i wi = 1 with
wi ≥ 0 for all i, the minimum, maximum, median and more generally the ordered weighted average

OWA(x1, . . . , xn) =
n

∑
i=1

wix(i)

where the input vector x has been reordered in increasing values x(1) ≤ x(2) ≤ · · · ≤ x(n). Note that
the weight wi is not associated to the opinion of agent i but to the ith smallest opinion. This makes
the aggregation anonymous, i.e., the result is invariant to a permutation of the agents. It is very
useful in contexts where the identity of agents does not matter or cannot be known, and only the
number of agents with a given opinion matters, like in voting contexts and applications on the internet
(see Förster et al. [92]). Note that if Ai is 0-1-valued, the classical threshold model is recovered.

It is straightforward to apply the model on arbitrary networks. It suffices to replace the aggregation
of x on the whole society by the aggregation limited to the neighborhood of the agent: Ai((xi)i∈Γi ).
The case of countably infinite networks has been investigated by Grabisch et al. [36].

As defined above, the updating process is synchronous and obeys a Markov chain, where the
state of the society is defined as the set of agents with opinion 1 (2n possible states). The study of
convergence has been addressed for complete networks in [91]. Generally speaking, there are three
types of absorbing classes (i.e., in which the process must end), and conditions for their existence have
been identified:

(i) absorbing states {S}. This means that the society is polarized: agents in S stick to opinion 1 and
the other agents stick to opinion 0 for ever. Observe that by definition of an aggregation function,
N and ∅ are always absorbing states, but others may exist.

(ii) cycles S1 → S2 → · · · → Sk, with the condition that all sets are pairwise incomparable in the
sense of inclusion. Here, the state of the society endlessly goes through this sequence of sets,
hence there is no convergence.

(iii) intervals and union of intervals of sets, e.g., [S1, T1], [S1, T1]∪ [S2, T2], etc., with ∅ 6= Si ⊆ Ti 6= N,
where by interval of sets we mean [S, T] = {K : S ⊆ K ⊆ T}. This case can be interpreted as
follows: when the absorbing class is [S, T], agents in S will have opinion 1 for ever, while those
outside T will have opinion 0 for ever. The rest of the agents in T \ S oscillates from 0 to 1 and
vice versa in an erratic way. This can be seen as a “fuzzy polarization”.

The aggregation model in the presence of anticonformists has been studied by Grabisch et al. [93].
The society is supposed to be divided into the set of conformist agents Nc and the set of anticonformist
agents Na. It is assumed here that the aggregation is anonymous: only the number of agents with a
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given opinion matters, not their identity. This amounts to saying that the aggregation function reduces
to a function p(s) of the number s of agents with opinion 1. If the agent is conformist, then p(s) is a
nondecreasing function, while for an anticonformist agent, p(s) is nonincreasing. Figure 5 below gives
an illustration of both types, and also shows some key parameters.
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Note that p(0) = 0 and p(1) = 1 for a conformist agent, while p(0) = 1 and p(1) = 0 for an
anticonformist agent. The numbers of additional values where p is 0 or 1 are denoted by lc, rc for
conformists, and la, ra for anticonformists (see Figure 5). These are key parameters which can be
interpreted as follows (let us replace for the rest of this section opinion 1 by ‘yes’ and opinion 0 by ‘no’).
lc is the maximum number of ‘yes’ for which no effect on the probability of saying ‘yes’ arises (this
is called the firing threshold). n− rc is the saturation threshold beyond which there is no more change
in the opinion of the agent (and similarly for la, ra). A simplifying assumption is that all conformist
agents have the same values lc, rc, although their aggregation function may differ (and similarly
for anticonformists).

The analysis of convergence reveals to be very complex, and 20 types of absorbing classes have
been identified, which can be classified into several categories: polarization, cycles, fuzzy cycles
(precisely, cycles of intervals of states, like [S1, T1]→ [S2, T2]→ [S1, T1]), fuzzy polarization (as defined
above), and disorder (the class 2N). In order to get more insight into convergence, we consider
n → ∞ and use phase diagrams like in physics to see the transition between the different types of
absorbing classes, with the control parameters lc, rc, la, ra and na, the number of anticonformists. Now,
these parameters are the relative version of the previous ones (i.e., lc/n, rc/n, etc.) and are therefore
numbers in [0, 1].

We present in Figure 6 phase diagrams for the situation lc = la =: l, rc = ra =: r, introducing also
the parameter γ = 1

1−r−l , interpreted as the reactiveness of agents once they have started to change

their opinion (γ ∈
[

1
1−l , ∞

[
).

The general observation is that when na increases from 0 to 1, we start from consensus, next go to
polarization, next to disorder (2N), and finally to cycles. It shows that the “degree of non-convergence”
of the opinion of the society is increasing with the proportion of anticonformists, if we consider cycles
as the ultimate state of non-convergence. A notable phenomenon is visible on Figure 6c,e. When the
firing threshold l is very low (Figure 6c), there is a “cascade” effect leading to polarization where
all conformist agents say ‘yes’, which becomes more salient with reactiveness. “Cascade” means
that whatever the initial situation of the opinion in the society is, the final situation is inescapably
driven to this polarization situation. Similarly, when the firing threshold is high (Figure 6e), a cascade
effect leads to a polarization where all conformist say ‘no’, at the condition that the proportion of
anticonformist is not too small but below l. This shows how important is the effect of the presence of
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anticonformist agents in a society, as it could lead in some sense to manipulation. We mention also
Figure 6b, where the point at the intersection of the two diagonals is very special: it is a triple point in
the sense of physics, as all “states” coexist (i.e., cycles, Nc and Na).
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A more general framework for binary opinion models, based on the notion of groups and their
interrelationship (like in [50,51]), and enabling the representation of various behaviors (conformist,
anticonformist, communitarian, with leaders, etc.) has been recently proposed by Poindron [94].

3.5. A Final Remark on Binary Opinion Models

The discrete nature of the range of the opinion makes the mechanism of updating to be
discontinuous by essence: this can be seen in the definition of the threshold model, the various
q-voter models, and the majority model. In each of them, the shift of opinion of one agent may possibly
reverse the opinion of the whole society, while at the same time, important variations in the opinion
of agents may have no effect at all on the society, if the threshold is not reached. This mechanism,
if it makes the process apparently simpler to analyze, is too crude to be realistic. Let us observe
that the aggregation model, a direct generalization of the threshold model obtained by introducing
a probabilistic device, does not exhibit this drawback, as there is no discontinuity any more in the
updating: the deterministic change of opinion is replaced by a random draw.

4. Continuous Opinion Models

4.1. The DeGroot Model and Its Variants

As for the classical models in binary opinion dynamics, the most classical models in continuous
opinions are from the 60s and 70s. The well-known DeGroot [1] model was already proposed by
French in 1956 [2], with continuous-time versions proposed as soon as 1964 by Abelson [3] and
then by Taylor [4]. Its success is due to its simplicity, and the fact that everything is known about
its convergence.
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The DeGroot model is a discrete time model, in which every agent i ∈ N puts a confidence weight
wij on the opinion of agent j. This yields a n× n row-stochastic matrix W = [wij]. The updating is
synchronous and consists in averaging the opinions of all other agents:

x(t) = Wx(t− 1) = Wtx(0).

The analysis of convergence amounts therefore to the study of Wt when t tends to infinity. This is a
classical topic in the theory of nonnegative matrices, and fully treated, e.g., in (Seneta [95]). We restrict
here the exposition to the minimum.

Let us associate with W the corresponding directed graph G with set of nodes N, where an arc (i, j)
exists if and only if wij > 0. There is a direct correspondence between the properties of connectedness

of G and the power matrices Wk =: [w(k)
ij ]. There is a walk of length k from agent i to agent j if there is

a sequence i = i0, i1, . . . , ik = j of nodes such that (i`−1, i`) is an arc in G for ` = 1, . . . , k. Note that the
existence of such a walk is equivalent to w(k)

ij > 0. We write i→ j if there is a walk from i to j. We use
the notation i↔ j if there is also a walk from j to i.

A class or strongly connected component of G is a set of nodes C such that either C is a singleton
or i ↔ j for every distinct i, j ∈ C, and any C′ ⊃ C does not fulfill the latter property. A class can be
essential or absorbing if no arc is going out of it, otherwise it is inessential. The period τ(i) of i ∈ N is the
greatest common divisor of the length of all walks from i to i. A class is aperiodic if τ(i) = 1 for some i
in the class (note that it suffices that some i in the class has a self-loop (i, i)).

A matrix W is primitive if Wk > 0 for some integer k, i.e., each entry is positive. It is irreducible if for
every i, j ∈ N there exists an integer m(i, j) such that w(m(i,j))

ij > 0. An irreducible matrix corresponds
to a single class. W is primitive iff W is irreducible and aperiodic. In the latter case, 1 is the greatest
eigenvalue, while if G is periodic, there exist other eigenvalues of modulus 1 and Wt does not converge.

If W is primitive, then Wt converges to a matrix with identical rows:

lim
t→∞

Wt = 1 · vT

where v is the left eigenvector associated to eigenvalue 1, such that 1T · v = 1. As a consequence

lim
t→∞

xi(t) = x(0)T · v for all i ∈ N. (5)

As xi(∞) is the same for every i, this shows that the society has reached a consensus. The form of
xi(∞) suggests to interpret the left eigenvector v as the vector of social influence weights of the agents.

The speed of convergence is governed by the second largest eigenvalue λ2:

|xi(t)− xi| ≤ C|λ2|t

When W is not irreducible, there exist several strongly connected components in G, then consensus
is reached only within each strongly connected component. The computation of the limit limt→∞ xi(t)
for i in an absorbing class is similar to (5), taking instead of v the left eigenvector associated to 1 for the
submatrix corresponding to the absorbing class.

We now review some variants of the DeGroot model. Our exposition follows Proskurnikov and
Tempo [53]. Other variants can be found in [58].

4.1.1. The Abelson Model

It is a continuous version of the DeGroot model, proposed by Abelson [3]. Using the fact that
1− wii = ∑j 6=i wij, one can rewrite the DeGroot model as

xi(k + 1)− xi(k) = ∑
j 6=i

wij(xj(k)− xi(k)) (i ∈ N).
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Letting the time interval tends to 0, one obtains the continuous time version, known as
Abelson’s model:

ẋi(t) = ∑
j 6=i

aij(xj(t)− xi(t)) (i = 1, . . . , n)

where A is a nonnegative matrix of weights. We can write it in a more compact form:

ẋ(t) = −L[A]x(t), (6)

where L[A] is called the Laplacian matrix, defined by

L[A] = (lij)i,j∈N , where lij =

{
−aij, if i 6= j

∑j 6=i aij, if i = j.

We give some facts about convergence.

(i) For any matrix A, the limit P∞ = limt→∞ e−L[A]t exists, and the vector of opinion converges to
x∞ = P∞x(0), where eA := ∑∞

k=0
1
k! Ak.

(ii) Consensus is reached in the Abelson’s model if and only if the corresponding graph G is
quasi-strongly connected (i.e., it has a directed spanning tree), and in this case the consensus
vector is

x∞
1 = · · · = x∞

n = pT
∞x(0)

with p∞ uniquely given by pT
∞L[A] = 0 and pT

∞1 = 1. Similarly to the French-DeGroot model,
p∞ can be interpreted as the vector of social influence weights.

4.1.2. The Taylor Model

It is an extension of the Abelson’s model proposed by Taylor [4]. There are n agents with opinions
x1, . . . , xn and m ≥ 1 communication sources providing static opinions s1, . . . , sm. The model reads:

ẋi(t) =
n

∑
j=1

aij(xj(t)− xi(t)) +
m

∑
k=1

bik(sk − xi(t)),

with B the matrix of persuability constants. The model can be seen as an Abelson’s model with k
additional stubborn agents, i.e., who do not change their opinion (independent agents). Also, it can be
put under this form:

ẋi(t) =
n

∑
j=1

aij(xj(t)− xi(t)) + γi(ui − xi(t)),

with γi = ∑k bik and ui =
1
γi

∑k biksk. The quantity ui is called the prejudice of agent i; it represents
the internal agent’s opinion (i.e., without influence), and is often taken as the initial opinion xi(0),
and agent i is prejudiced if γi > 0. In matrix form:

ẋ = −(L[A] + Γ)x(t) + Γu (7)

with Γ = diag(γ1, . . . , γn), the matrix whose diagonal is formed by γ1, . . . , γn, other elements being
0. Agent i is P-dependent (prejudice-dependent) if it is prejudiced or there exists a path from a
prejudiced agent to i. Writing x =

[
x1 x2

]
with x1, x2 the vectors pertaining to the P-dependent and

P-independent agents respectively, (7) can be rewritten as (note that L21 = Γ22 = 0)

ẋ1(t) = −(L11 + Γ11)x1(t)− L12x2(t) + Γ11u1 (8)

ẋ2(t) = −L22x2(t) (9)
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Note that (9) is the Abelson’s model.
It can be proved that x1(t) converges to

x1(∞) = M

[
u1

x2(∞)

]
, with M = (L11 + Γ11)−1

[
Γ11 −L12

]
.

M is a row-stochastic matrix, and x2(∞) is obtained as for the Abelson’s model.

4.1.3. The Friedkin-Johnsen Model

This is a discrete version of Taylor’s model proposed by Friedkin and Johnsen [5].
The model reads:

x(k + 1) = ΛWx(k) + (I −Λ)u (10)

where W is as in the French-DeGroot model, Λ = diag(λ1, . . . , λn) with λi ∈ [0, 1] the susceptibility of
agent i to social influence, and u is a constant vector of agents’ prejudices (e.g.: ui = xi(0)). If Λ = I,
the French-DeGroot model is recovered.

As for the Taylor’s model, we distinguish between P-dependent and P-independent agents.
With similar notation, the model is rewritten as

x1(k + 1) = Λ11[W11x1(k) + W12x2(k)] + (I −Λ11)u1 (11)

x2(k + 1) = W22x2(k). (12)

Note that (12) is a French-DeGroot model.
It can be shown that the model (10) is convergent if and only if all agents are P-dependent or (12)

is convergent (i.e., all essential classes of W22 are aperiodic). Then,

x1(∞) = V

[
u1

x2(∞)

]
(13)

with V = (I − Λ11W11)−1
[

I −Λ11 Λ11W12
]
, which is row-stochastic. Equivalently, (10) is

convergent if and only if ΛW is regular (i.e., there is a single essential class which is aperiodic,
but possibly other inessential classes).

Thanks to the above result, it is possible to define a social influence power index as in the DeGroot
model. We suppose here u = x(0) and that all agents are P-dependent, hence by the above result,
x(∞) = Vx(0) with V = (I −ΛW)−1(I −Λ). Then

x :=
1
n

n

∑
i=1

xi(∞) =
1
n

1TV
︸ ︷︷ ︸

cT

x(0).

Then the vector c is defined as Friedkin’s influence centrality vector, and satisfies cT1 = 1.
This notion can be applied as a centrality measure in graphs. Let W be a stochastic matrix

representing a graph. Putting Λ = αI with 0 < α < 1, one can use cα as a centrality measure, with the
property that cα tends to the French-DeGroot social power when α→ 1.

4.1.4. The Altafini Model

Altafini [50,51] proposes a generalization of the DeGroot model where agents may put negative
weights on other’s opinions, thus exhibiting anticonformity or anti-trend behavior. The fundamental
difference with other models of anticonformity presented so far is that a given agent may weigh
positively some agents while weighing negatively some other ones (recall that in all models we have
seen so far, an anticonformist agent reacts negatively to all agents). Hence, Altafini’s model is the
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Abelson model where the matrix A has real coefficients. The corresponding graph is therefore a signed
graph, where a link has a weight which is either positive or negative. The model reads:

ẋi(t) =
n

∑
j=1
|aij|(xj(t)sgn(aij)− xi(t))

=
n

∑
j=1

(aijxj(t)− |aij|xi(t)) (i ∈ N) (14)

where sgn is the sign function, taking respectively values +1,−1 or 0 when the entry is positive,
negative or null. In matrix form we obtain exactly (6), but where the Laplacian is defined differently:

L[A] = (lij)i,j∈N , where lij =

{
−aij, if i 6= j

∑n
j=1 |aij|, if i = j.

An important notion here is the notion of structural balancedness, originally introduced by
Cartwright and Harary [78]. An undirected signed graph on N is structurally balanced if one can make a
partition N = N1 ∪ N2 in two groups such that every edge ij with i, j in the same group has a positive
weight, while if i, j belong to different groups its weight is negative. Under the assumption that the
graph is structurally balanced, it is possible to transform it by a gauge transform into a graph where
all weights are positive, transforming then the model into the Abelson’s model and thus obtaining
immediately convergence results. The gauge transform maps the opinion vector x to the opinion vector
y defined by

yi = δixi, δi =

{
+1, i ∈ N1

−1, i ∈ N2 (i ∈ N)

Noticing that δiδjaij = |aij|, (14) becomes

ẏi(t) =
n

∑
j=1
|aij|(yj(t)− yi(t)) (i ∈ N)

which is the Abelson’s model with matrix A′ := [|aij|]. A direct application of previous results shows
that the model converges, and if the graph is quasi-strongly connected, then

lim
t→∞

xi(t) =

{
pT

∞x(0), i ∈ N1

−pT
∞x(0), i ∈ N2

with p∞ the left eigenvector of L[A′] associated to the eigenvalue 0 and such that pT
∞1 = 1. The system

converges anyway, even if the graph is not quasi-strongly connected. When the graph is not structurally
balanced, it can be shown that all opinions converge to 0 if the graph is strongly connected.

4.1.5. The EPO Model

There exists a vast literature in social psychology and sociology showing that individuals may
express public opinions which do not reflect their privately held opinion (we refer the reader to [58] for
references in this domain), because of social norm pressure, group pressure, etc. In this respect, the Asch
experiment is famous [66]6, and it has inspired a number of models trying to reproduce this kind of

6 The Asch experiment consists in the following: a naive participant is in a room with 7 other participants (called confederates),
who have agreed in advance about their answers. Each person has to state aloud which of 3 lines A, B, C the length of a
target line is most similar. In each trial, the answer is obvious, the naive participant speaks the last and the confederates
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behavior (see, again, [58] for references), but in a static manner. The EPO (Expressed-Private-Opinion)
model, proposed by Anderson and Ye [58], is a dynamic model distinguishing private and public
opinions, in the vein of the DeGroot model.

Let x(k) and x̂(k) represent the private and the expressed vectors of opinion, respectively.
The updating mechanism is as follows:

xi(k + 1) = λi

(
wiixi(k) + ∑

j 6=i
wij x̂(k)

)
+ (1− λi)xi(0)

x̂i(k) = φixi(k) + (1− φi)x̂ave(k− 1)

where λi, W are as in the Friedkin-Johnsen model, φi ∈ [0, 1] is the resilience of agent i, i.e., its ability to
withstand group pressure, and x̂ave(k− 1) is the average of the publicly expressed opinions at time
k− 1. Note the similarity with the Friedkin-Johnsen model, with the difference that an individual can
only know the publicly expressed opinions of its neighbors.

Supposing that the matrix W is primitive, and all λi, φi 6= 0, 1, it is found in [58] that a steady
state for x and x̂ is reached exponentially fast, and that xi(∞) 6= x̂i(∞) in general for any i. Moreover,
there is no consensus for x(∞), x̂(∞), and the diameters V(k) := maxi xi(k)−mini xi(k) and V̂(k) :=
maxi x̂i(k)−mini x̂i(k) are such that V(∞) > V̂(∞). This shows that agents, under the pressure of
social norm, exhibit more consensus than they really feel. In addition, the steady state for x and x̂ does
not depend on x̂(0), the initial public opinion, but only on x(0), the initial private opinion.

4.2. Time-Varying Models

The general form of a time-varying model (in discrete time form) is

x(k + 1) = A(k)x(k) = A(k)A(k− 1) · · · A(0)x(0),

where A(k) is (usually) a row-stochastic matrix. We denote by G(k) the graph corresponding to A(k).
Generally speaking, the study of such systems relies on results on backwards inhomogeneous

matrices products. Most of the results assume the following property, called Condition (C) in [95]:

For all k ≥ 0,
+

min
i,j

a(k)ij ≥ γ > 0

γ being independent of k, and min+ denoting the minimum taken over positive elements. As a
consequence, nothing can be said in general when some elements of A(k) tend to 0 when k→ ∞.

The backwards product is said to be ergodic if the product tends to a matrix with identical rows
(like the kth power of a primitive matrix). In this case, the analysis amounts to the classical DeGroot
model with a primitive matrix. We give two essential results for ergodicity (see Seneta [95]):

(i) If the product Ap,r := A(p + r) · · · A(p + 1)A(p) is regular (single aperiodic essential class) for
p, r ≥ 0 and condition C is satisfied, then ergodicity obtains.

(ii) If limk→∞ A(k) = A and A is regular, the ergodicity obtains, and the limit vector v is the unique
stationary distribution of P.

The following results are given in (Bullo [57]).

Theorem 3. Suppose that the A(k)’s are symmetric doubly-stochastic satisfying condition (C) and being
primitive. Then the process is ergodic (i.e., x(k) converges to the consensus 1

n ∑i xi(0)).

obviously gives a wrong answer. It is observed that about one third of people placed in the situation of the naive participant
always conformed to the wrong opinion of the group, while 75% conformed at least once over 12 trials.
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Theorem 4. (Moreau [96]) Suppose that the A(k)’s are row-stochastic matrices satisfying condition (C),
with each diagonal entry being nonzero, and there exists an integer δ s.t. for all k > 0 the graph G(k) ∪ · · · ∪
G(k + δ− 1) has a single essential class. Then the process is ergodic.

Theorem 5. Suppose that the A(k)’s are symmetric doubly-stochastic satisfying condition (C), with each
diagonal entry being nonzero, and for all k > 0 the graph

⋃
τ>k G(τ) is connected. Then the process is ergodic.

The next results are given in (Proskurnikov and Tempo [54]).

Lemma 1. (Blondel et al. [97], Lorenz [98]) Suppose the A(k)’s are row-stochastic, satisfy condition (C) with
the constant γ, aii(k) > γ for all i, k, and aij(k) > 0 iff aji(k) > 0. Then x = limk→∞ x(k) exists for any
x(0), and satisfy A(k)x = x for sufficiently large k. If agents i, j interact persistently (i.e., ∑∞

k=0 aij(k) = ∞),
then xi = xj.

As a consequence:

Theorem 6. (Lorenz [98]) Under the assumptions of the above Lemma, the product A(k) · · · A(0) tends to a
limit A, which is block-diagonal

A =




A11 · · · 0
...

. . .
...

0 · · · Arr




with each block being a “consensus matrix”, i.e., Aii = 1 · pT
i with pi ∈ Rni satisfying pT

i 1 = 1.

The DeMarzo-Vayanos-Zwiebel Model

This model is proposed by DeMarzo et al. [17], and is an example of time-varying model,
where typically the above results do not apply. The model reads

x(t + 1) = [(1− λt)I + λtT]x(t)

with λt ∈ ]0, 1] and T being row-stochastic. Supposing that T is irreducible and ∑∞
t=0 λt = ∞, there is

convergence to consensus:
lim
t→∞

x(t) = wTx(0)1

where w is the left eigenvector of T associated to 1. Observe that if λt tends to 0 when t tends to infinity,
then condition (C) does not hold.

4.3. Bounded Confidence Models

These models are a nice example of time-varying models and have initiated an important
literature. The basic idea is simple: agents listen preferably to agents whose opinion is not too
far from their opinion.

Let d > 0 be the range of confidence. For a given opinion profile x ∈ RN , we define for each
agent i the set of “trusted” individuals Ii(x) = {j : |xj − xi| ≤ d} 3 i, i.e., whose opinions lie in its
confidence interval [xi − d, xi + d]. Agent i updates its opinion by taking the average of the opinions
of the trusted individuals:

xi(k + 1) =
1

|Ii(x(k))| ∑
j∈Ii(x(k))

xj(k) (i ∈ N)
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This is known in the literature as the Hegselmann-Krause (HK) model [6,7,99] (a closely related
model has been proposed by Deffuant et al. [8]). It can be seen as a French-DeGroot model with
time-varying matrix W. The HK model is a simple model of homophily: people tend to locomote into
groups that share their attitudes and out of groups that do not agree with them (Abelson). Note that the HK
model supposes that every agent is aware of the opinion of every other agent, implying the existence
of an underlying complete network.

An important property is the preservation of order: suppose xj1(k) ≤ xj2(k) ≤ · · · ≤ xjn(k),
then it holds xj1(k

′) ≤ xj2(k
′) ≤ · · · ≤ xjn(k

′) for every k′ > k. Therefore, we may assume from now
on that x1 ≤ x2 ≤ · · · ≤ xn at every time step. We say that (xi, . . . , xm) is a d-chain if all the distances
between two consecutive opinions are ≤ d. Then the opinion vector x is formed by a set of maximal
d-chains.

Proposition 1. Suppose x1(0) ≤ x2(0) ≤ · · · ≤ xn(0) and xi+1(0)− xi(0) > d. Then xi(k) ≤ xi(0) and
xi+1(k) ≥ xi+1(0) for all k > 0.

We list the main properties of maximal d-chains:

(i) Two maximal d-chains can never merge (consequence of Proposition 1).
(ii) The diameter xm(k) − xi(k) of a maximal d-chain (xi, . . . , xm) is nonincreasing (this is also

consequence of Proposition 1).
(iii) Maximal d-chains of length at least 5 can split. Others necessarily collapse into a consensus

(in one step for length 2, in 2 steps for length 3, and in 5 steps for length 4). Example with
5: let n = 7, d = 1 and x(0) = (0, 0, 1, 2, 3, 4, 4), forming one maximal d-chain.
Then x(1) = (1/3, 1/3, 3/4, 2, 13/4, 11/3, 11/3), which forms 3 maximal d-chains.

(iv) A maximal d-chain with diameter not greater than d converges in one shot to a consensus, as all
agents in the chain are connected.

More precisely, we have:

Proposition 2. During two consecutive steps k and k+ 1, any maximal d-chain either collapses into a singleton,
splits into several maximal d-chains or reduces in diameter by at least d/n2.

As a consequence:

Theorem 7. For any x(0), the HK model converges to a vector x̄ in a finite number of steps (not more than
O(n3) steps), with the property that for each distinct i, j, either x̄i = x̄j (consensus) or |x̄i − x̄j| > d (distrust).

Lastly, we borrow from Proskurnikov and Tempo [54] Figure 7, on which one can see the evolution
in time of the opinion of a society of 100 agents, with xi(0) uniformly distributed in [0,1]. One may
intuitively think that the number of clusters at convergence is monotonically decreasing with the value
of the confidence range d. But this is not true, as it can be seen from the figure: there is an increase of
the number of clusters when d goes from 0.05 to 0.06, and also from 0.11 to 0.12. Also, the convergence
time does not seem to depend monotonically on d.
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Figure 7. The HK model with n = 100 and various d (borrowed from Proskurnikov and Tempo (2018)).

4.4. A Final Remark on Continuous Opinion Models

Most of the presented models show a convergence of the opinion vector in the long run to
some steady state, and non-convergence (like cycles, oscillations) arises only in rare cases (we have
mentioned this for the Altafini model, but it can even happen with the simple DeGroot model, e.g., if the
matrix W is irreducible but not primitive, in which case the class is periodic).

It is useful to distinguish several types of convergence. The simplest case is the consensus, where all
agents converge to the same opinion. This happens with the DeGroot model when W is primitive,
and for its continuous-time version, the Abelson model. The second case of interest is polarization,
where the society is divided into two parts, each part reaching consensus, but different and often well
apart. This is typically the situation obtained with Altafini’s model under the condition that the graph
is structurally balanced. Going a step further, one speaks of clustering or segmentation. It means that
the society breaks into disjoint components (segments), each reaching a consensus. This is exactly the
result obtained in the Hegselmann-Krause model, as it can be seen from Figure 7.
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According to Flache et al. [59], this is typical of the three main classes of (continuous) opinion
dynamics models. In models of assimilative social influence (like the DeGroot model), individuals
influence each other towards reducing opinion difference, and provided that the network is strongly
connected, consensus is reached in the long run. In models with similarity biased influence (like bounded
confidence models), only individuals with sufficiently close opinions can influence each other, and as a
result, there is a fragmentation of the society into clusters, each of them reaching consensus. The third
type consists in models with repulsive influence, where individuals influence each other towards
increasing mutual opinion differences, where typically polarization with maximal distance between
opinions obtains.

Reaching a consensus value within each group is called weak diversity [58,100], which means that
there is no difference between opinions in the same cluster. There is a growing interest to study models
which are able to capture strong diversity, frequently observed in practice, i.e., where there is a range
of diverse opinion values within each cluster. The Friedkin-Johnsen model is able to represent this,
due to the presence of the (I −Λ)u term in (10), making some of the agents (precisely, those who are
prejudiced) stubborn to a certain degree, and therefore sticking more or less to their initial opinion.
Indeed, the matrix V in (13) does not have identical rows, making the components of x1(∞) to differ.
The same conclusion applies to the EPO model.

5. Conclusions

In the present paper we aimed at providing a short survey of selected works on opinion dynamics.
As the literature is extremely vast and comes from different scientific fields, we could focus only on
specific frameworks, and chose some contributions that assume non-Bayesian updating of opinions
and no strategic consideration. Another survey, focusing on Bayesian updating and recent works that
combine both approaches, would be useful in order to complete the present overview. Despite the
extremely broad literature on opinion dynamics, the phenomenon continues to attract a lot of attention
and interest.

In the paper we did not provide any survey of the literature that explores experimental and
behavioral approaches to opinion dynamics. While we focused in our presentation on theoretical works,
in the network literature there exist important experimental contributions to this issue. In particular,
lab and field experiments are used in order to test either Bayesian models of social learning in networks
or non-Bayesian (DeGroot) updating, or to compare both types of learning behavior. For instance,
the experimental data on networks of three nodes presented in Choi et al. [101] appear to be consistent
with Bayesian behavior. Choi et al. [102] conduct experimental study of learning in three-person
networks and use the so-called quantal response equilibrium for interpreting experimental data.
Corazzini et al. [103] show the empirical evidence of the DeGroot-like behavior in networks of four
nodes. Mueller-Frank and Neri [104] investigate a model of non-Bayesian learning in networks
in an environment with a finite set of alternatives and run experiments whose outcomes appear
to be consistent with their model. Mobius et al. [105] use a field experiment on social learning to
analyze both information diffusion and aggregation. They compare two mechanisms of information
aggregation, a naïve learning model and a sophisticated model. They can distinguish between the
two models after incorporating imperfect information diffusion, and find more evidence for the
sophisticated one. Mengel and Grimm [106] conduct lab experiments and compare the DeGroot-like
learning with Bayesian learning. Also, Grimm and Mengel [107] study belief formation in social
networks using lab experiments, and examine both naive (DeGroot) and Bayesian models. Similarly,
Chandrasekhar et al. [108] investigate a model of social learning with agents being potentially Bayesian
or DeGroot-like. The authors conduct lab experiments in Indian villages and with university students in
Mexico City, to study if learning behavior is consistent with DeGroot, Bayesian, or a mixed population.

We conclude this survey by giving a summary of the main properties of all models we studied in
Table 1.
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Table 1. Summary of the main properties of the various models. disc. = discrete, cont. = continuous,
sync. = synchronous, async. = asynchronous, conf. = conformist, anticonf. = anticonformist. Only most
typical convergence results are indicated.

Model Opinion Time Updating Behavior Convergence Other

Threshold disc. disc. sync. conf/anticonf stable/unstable steady
state/cycle

q-voter disc. disc. async. conf/anticonf stable/unstable steady
state

majority rule disc. disc. async. conf/anticonf stable/unstable steady
state

aggregation dis. disc. sync. conf/anticonf polarization, cycles,
fuzzy polar., fuzzy cycles

DeGroot cont. disc. sync. conf. consensus

Abelson cont. cont. sync. conf. consensus

Friedkin-Johnsen cont disc. sync. conf. strong diversity

Taylor cont. cont. sync. conf. strong diversity

Altafini cont. disc. sync. conf/anticonf
links polarization

EPO cont. disc. sybc. conf. strong diversity private/public
opinion

DeMarzo et al. cont. disc. sync. conf. consensus time-varying

Hegselmann- Krause cont. disc. sync. conf. clustering time-varying;
bounded confidence
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