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Abstract: This paper focuses on the design and analysis of short-term control intervention
measures seeking to suppress local populations of Aedes aegypti mosquitoes, the major transmitters of
dengue and other vector-borne infections. Besides traditional measures involving the spraying of
larvicides and/or insecticides, we include biological control based on the deliberate introduction of
predacious species feeding on the aquatic stages of mosquitoes. From the methodological standpoint,
our study relies on application of the optimal control modeling framework in combination with
the cost-effectiveness analysis. This approach not only enables the design of optimal strategies for
external control intervention but also allows for assessment of their performance in terms of the
cost-benefit relationship. By examining numerous scenarios derived from combinations of chemical
and biological control measures, we try to find out whether the presence of predacious species at
the mosquito breeding sites may (partially) replace the common practices of larvicide/insecticide
spraying and thus reduce their negative impact on non-target organisms. As a result, we identify two
strategies exhibiting the best metrics of cost-effectiveness and provide some useful insights for their
possible implementation in practical settings.

Keywords: mosquito population dynamics; predator-prey system; chemical and biological control;
optimal control; cost-effectiveness analysis

MSC: 92D25; 49N90

1. Introduction

With the ongoing COVID-19 epidemics on the current agenda, both ordinary people and
healthcare entities tend to neglect the prevention of other infectious diseases that are widely spread
and persistent in the tropical and subtropical regions around the globe. Dengue fever, caused by four
serotypes of the dengue virus (DENV1-4) is one of them, and more than 100 million symptomatic
dengue infections occur every year with an average fatality rate of 0.5–1% [1]. Dengue virus is
transmitted to human individuals through the bites of female mosquitoes that need to ingest human
blood for maturing their eggs. One of the principal transmitters of dengue and other vector-borne
infections is the invasive peridomestic species Aedes aegypti Diptera: (Culicidae) that has colonized all
tropical and subtropical regions worldwide [2].

In the absence of an efficient vaccine or curative treatment [3], the most widely used approach
to reduce human arboviral infections is the suppression of the vector population through the use
of insecticides and larvicides. This method has been routinely applied in many tropical countries
for decades, and the mosquitoes have developed a high degree of resistance to various chemical
substances [4].
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On the other hand, there are environmental concerns about the potential toxicity of larvicides and
insecticides to non-target organisms, including the human population [5]. For this reason, the World
Health Organization (WHO) and the Pan American Health Organization (PAHO) jointly promote and
encourage the use of non-chemical strategies to control vector populations, highlighting the prominent
role of biological control. In general terms, biological control is based on the use of “biological
agents” (living organisms) that interact with mosquito populations through predation, competition,
or parasitism [6,7].

In particular, natural enemies feeding on mosquito immature stages (principally, the younger
larvae instars) can play an important role in suppression of local mosquito populations [8–10].
Indeed, mosquito larvae are preyed upon by different aquatic organisms including fish [11–13],
amphibians [14–16], cyclopoid copepods [13,17,18], and even some aquatic insects [19]. Therefore,
deliberate introduction of some predacious species in the known mosquito breeding sites may
complement other vector control actions and contribute to suppression of local mosquito population.
Therefore, the deliberate introduction of some predacious species in the acknowledged mosquito
breeding sites may complement other vector control actions thus contributing to the suppression of the
local mosquito populations. By naming the “acknowledged mosquito breeding sites”, we principally
refer to the ornamental concrete and tiled bowls, basins, pools and other cavities filled with stagnant
water that are surrounded by rich vegetation and form an essential part of the architectonic design of
various tropical cities. Such ornamental basins can be found in various public places (e.g., shopping
and recreational centers, parklands and clubs, residential complexes, open-air restaurants, school and
university campuses, etc.) that account for people gatherings and congregations.

The primary goal of this paper is to design and analyze different short-term measures for
the suppression of local mosquito populations based on various combinations of the traditional
chemical control actions with the deliberate introduction of two possible types of predacious species
bearing distinct features and to suggest the most cost-effective strategies for practical implementation.
The secondary goal of this paper consists in finding out whether the biological control measures
(namely, the presence of predacious species at the mosquito breeding sites) may replace the common
practices of using chemical substances for suppression of local mosquito population and to what extent.

To achieve the goals stated above, we design a variant of the model developed in Reference [20]
that accounts for two external control measures—application of larvicide and insecticide. These two
substances induce additional mortality of the aquatic (immature) and aerial (adult) stages of A. aegypti
mosquitoes and thus contribute to the suppression of their local populations. This model has a “local
nature” meaning that it describes the population dynamics of A. aegypti mosquitoes in the surroundings
of some breeding place represented by a single ornamental basin or an architectonic complex composed
of several basins located nearby in some public areas with constant people flow or congregation. Here,
it is worthwhile to recall that A. aegypti mosquitoes usually remain within a mean dispersal distance of
30 meters from their birthplace [21], which gives reasonable grounds to the model’s formulation.

Further, we employ the dynamic optimization approach in order to provide the formulation of
our model in terms of the optimal control theory. To do so, we introduce the objective functional that
synthesizes different purposes of the control intervention. On the one hand, the control actions seek
to minimize the density of the adult mosquito population during the whole period of intervention,
as well as the density of aquatic (immature) stages by the end of the intervention. On the other hand,
it is also pursued to minimize the total quantity of chemical substances (larvicide and insecticide)
during the control intervention.

In this context, it is worth highlighting that the optimal control technique provides powerful
tools for design and comparative assessments of control strategies under diverse scenarios. For that
reason, it has been widely used for the design and further analysis of intervention strategies
based on mechanical, chemical, and biological control actions seeking the suppression of mosquito
populations [22–29]. However, none of the published works explicitly address the optimal control
applied to the dynamics of the mosquito population in the presence of natural predators feeding
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on mosquito immature stages. The present study intends to contribute to this strand of research by
assessing the effect of predacious species on mosquito control under different scenarios.

A thorough description of the model fitting the optimal control modeling framework, as well as
its core properties are presented in Section 2 of this paper, while Section 3 is devoted to the formal
analysis of the formulated optimal control problem. In this section, we formally prove the existence
of optimal controls, derive their characterizations by applying the Pontryagin maximum principle,
and obtain the so-called optimality system consisting of six nonlinear ordinary differential equations
(ODEs) with two-point boundary conditions.

Due to nonlinearity and the high dimension of the optimality system, its solutions can be found
only numerically. Section 4 exhibits the outcomes of numerical solutions obtained by an advanced
solver (GPOPS-II: Next-Generation Optimal Control Software, [30]) under diverse scenarios defined by
different combinations of larvicides, insecticides, and predacious species. This section also contains the
cost-effectiveness analysis of all designed strategies which is carried out using two different approaches
for quantification of the effects (or benefits) of each strategy. Under the first approach, we only measure
the capacity of each strategy for the suppression of local mosquito populations regardless of its
environmental impact. Under the second approach, both the suppression potentials and eco-effects of
all strategies are quantified. It is interesting to note that two different quantifications actually render
dissimilar strategies as a result of the cost-effectiveness analysis. This issue is also discussed in Section 4
and some practical recommendations derived from the cost-effectiveness analysis are provided.

Finally, Section 5 resumes the highlights of this work and provides some useful insights for
possible applications of our findings in practical settings.

2. Model Description

To describe the population growth of A. aegypti mosquitoes in the presence of natural predators
of their immature stages, we employ the modeling framework proposed in Reference [20] and amend
that model with two exogenous or control variables. Let mq(t) denote the density of immature stages
(eggs, larvae, pupae) effectively present at the moment t in some (ornamental) basin that contains
stagnant water and can be viewed as a generic breeding site, and let ma(t) define the density of female
mosquitoes inhabiting the basin surroundings at the moment t. It is worthwhile to recall that urban
domestic mosquitoes (such as A. aegypti) are weak flyers and they usually remain within a mean
dispersal distance of 30 meters from their birthplace [21]. Therefore, the population size of male
mosquitos (which is omitted in the model) is assumed similar to ma(t) in order to guarantee that all
females are able to mate successfully.

The model also includes a predator-prey interaction between the immature stages (prey) and a
predacious aquatic species x(t) which is deliberately placed in the basin (breeding site). Moreover,
in contrast to the original formulation given in Reference [20], the model we propose in this paper
accounts for additional mortality for both mosquito states, mq(t) and ma(t), which is attributed to
spraying of larvicide and insecticide as an external measure of vector control. This control intervention
is modeled by two control functions, uq(t) and ua(t), denoting the spray rates of larvicide and
insecticide spraying, respectively.

The mathematical formulation of the model involving control intervention results in the following
dynamical system 

dmq

dt
= εkma

(
1−

mq

Kq

)
−
(
ν + δq + ηquq(t) + ϕx

)
mq

dma

dt
= f νmq −

(
δa + ηaua(t)

)
ma

dx
dt

= (ρ + ψmq)x
(

1− x
Kx

)
− ηxuq(t)x

(1a)

(1b)

(1c)
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with initial conditions

mq(0) = mq0 > 0, ma(0) = ma0 > 0, x(0) = x0 ≥ 0. (2)

The flow diagram of the model (1) is presented in Figure 1 while the entries of the dynamical
system are described in Table 1.

mq
fν //

(ηquq+δq)

OO

ϕ

��

OO

��

ma

(ηaua+δa)

OO
εk

(
1−mq

Kq

)

��

x

(ρ+ψmq)
(
1− x

Kd

)
��

ηxuq

��

Figure 1. Flow diagram of the dynamical system (1).

Table 1. Entries of the controlled model (1).

Notation Description Role

mq(t) density of aquatic stages (eggs, larvae, pupae) state variable
ma(t) density of adult female mosquito state variable
x(t) density of predators state variable
uq(t) larvicide spraying rate control variable
ua(t) insecticide spraying rate control variable
ε oviposition rate constant
ν transition rate from immature to the adult stage constant
δq natural mortality rate of immature stages constant
ηq effect of larvicide over immature stages constant
ηx effect of larvicide over predators constant
δa natural mortality rate of adult mosquitoes constant
ηa effect of insecticide over adult mosquitoes constant
k fraction of viable eggs that hatched into larvae constant
f fraction of female mosquitoes constant
Kq carrying capacity of aquatic stages constant
Kx carrying capacity of predators constant
ρ intrinsic growth rate of the predators constant
ϕ predation rate constant
ψ predator’s extra growth rate due to predation constant

Equation (1a) states that immature stages mq(t) (eggs, larvae, and pupae) are recruited due to
the oviposition of adult female mosquitoes (ε), the fraction of viable hatching eggs (k), the current
density of female adult mosquitoes (ma) capable to laying eggs, and the remaining carrying capacity(
1−mq/Kq

)
of the breeding site. The density of immature stages decays proportionally to their

transition into adult stage (ν), by natural mortality (δq) and by the larvicide application (ηquq(t)), and
due to predation (ϕx). Here, the predation rate is expressed using the “law of mass action” which is
also known as Holling Type I functional response. Apart from trying to keep our model as simple as



Games 2020, 11, 62 5 of 25

possible, this type of functional response assumes a linear increase in intake rate with prey density
meaning that the time needed for chasing the prey is negligible. Such an assumption seems reasonable
when a limited breeding site is considered and when the mosquito larvae (preys) rest on the water
surface and constitute an easy target for predation.

It is also supposed that the predation of immature stages is carried out regardless of the prey
gender; in other words, both male and female immature insects are apt for intake. Therefore, a fraction
f of adult female mosquitoes is considered for the dynamics of ma(t) and not for mq(t), in contrast to
the model developed in Reference [31].

Equation (1b) expresses that the density of adult female mosquitoes ma(t) increases by the
transition of immature stages into adults (ν) that further become females ( f ). The population of ma(t)
decreases by natural mortality (δa) and by the insecticide application (ηaua(t)).

Finally, Equation (1c) states that the predacious species x(t), deliberately introduced to the
breeding site, exhibits logistic growth while its diet is not limited to the mosquito immature stages.
The latter implies that x(t) has alternative food sources available in the basin (such as algae, ciliates,
other insects and their immature stages, etc.). Therefore, the presence of mq(t) (constituting an easy
target) induces an additional increase (ψmq(t)) in the predator’s intrinsic growth while the effect of
the larvicide application (ηxuq(t)) induces an additional decay of the predator density. This way of
modeling is different from the standard application of the predator-prey models of Lotka-Volterra type
where the predator species goes to extinction if there is no prey.

It was proved in Reference [20] that, in the absence of control intervention (uq(t) = ua(t) = 0, t ≥
0), the trajectories of the system (1) belong to the invariant set

Ω :=
{(

mq, ma, x
)
∈ R3

+ : 0 ≤ mq ≤ Kq, 0 ≤ ma ≤
f ν

δa
Kq, 0 ≤ x ≤ Kx

}
, (3)

whenever
(
mq0, ma0, x0

)
∈ Ω. Furthermore, Ω defined by (3) is an absorbing set of the system (1)

with uq(t) = ua(t) = 0 for all t ≥ 0 in the sense that all the trajectories of this system engendered by(
mq0, ma0, x0

)
∈ R3

+ \Ω are attracted by Ω.
It was also shown in Reference [20] that the basic offspring numbers of mosquitoes corresponding

to the model (1) without control (uq(t) = ua(t) = 0, t ≥ 0) have the following forms:

Q =
εk f ν

δa(ν + δq)
(absence of the predator, x0 = 0),

Q0 =
εk f ν

δa(ν + δq + ϕKx)
(presence of the predator, x0 > 0).

(4a)

(4b)

The above quantities Q and Q0 express the mean number of female mosquitoes produced on average
by one female mosquito during her lifespan either in the absence or presence of the predacious species,
respectively. It also holds that Q0 < Q, which is in line with common sense.

Using the values of parameters of the model (1) without predacious species (x(t) = 0, t ≥ 0,
see also Table 2 ahead) estimated for the climatic conditions of the city of Cali, Colombia [32], it had
been shown that Q > 1 for all temperature ranges. This explains durable persistence of the mosquito
population in Cali, Colombia all the year around. On the other hand, from the expressions (4) one can
relate the predatory efficiency (defined as ϕKx) with the entomological parameters of the mosquitoes
and thus ensure that Q0 < 1:

ϕKx > (ν + δq)(Q− 1). (5)

The inequality (5) states that the presence in the generic breeding site of a predacious species possessing
a sufficiently high predatory efficiency may ensure local extinction of mosquito population at the long
run. In other words, with (5) in force, it is guaranteed that one female mosquito produced on average
less than one female mosquito as a result of predatory efficiency of x(t).
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Table 2. Numerical values of constant parameters related to the mosquito life traits.

Parameter k f ε ν δq δa Kq

Value 0.9 0.5 5.49 0.08 0.068 0.035 1
Reference [31] [33] [32] [32] [32] [32] [34]

However, it seems very demanding to find a particular species of predators bearing the biological
characteristics ϕ and Kx that fulfill the relationship (5). Therefore, the introduction of x(t) in a generic
breeding site should be combined with other vector control measures in order to render the desired
outcome of either drastic reduction of the mosquito population in the surroundings of the basin or its
local extinction.

The traditional method for reduction of local mosquito populations relies upon application of
chemical control measures, such as spraying of larvicides and insecticides. From the mathematical
standpoint, these control measures induce an increase in the parameters δq and δa denoting natural
mortality rates of immature and adult insects. The effect of the chemical control measures on the
basic offspring numbers Q and Q0 can be assessed using the so-called normalized forward sensitivity
indexes of Q and Q0 with respect to δq and δa. According to the definition given in Reference [35],
the normalized forward sensitivity indexes admit the following values:

ΥQ
δq

:=
∂Q
∂δq
×

δq

Q
= −

δq

ν + δq
∈ (−1, 0), ΥQ

δa
:=

∂Q
∂δa
× δa

Q
= −1,

ΥQ0
δq

:=
∂Q0

∂δq
×

δq

Q0
= −

δq

ν + δq + ϕKx
∈ (−1, 0), ΥQ0

δa
:=

∂Q0

∂δa
× δa

Q0
= −1.

(6a)

(6b)

From the above relationships, we can clearly see that Q and Q0 exhibit higher sensitivity to the
insecticide control (acting upon δa) than larvicide control (acting upon δq). For example, using the
definition given in [33], if the natural mortality of adult mosquitoes is increased by 20% due to the

insecticide spraying, the values of Q and Q0 will be reduced by
(

1− 1
1.2

)
≈ 16.67%. On the other

hand, if the natural mortality of immature insects is increased by 20% due to the larvicide spraying, the

values of Q and Q0 can be reduced only by
δq × 16.67%

ν + δq
and

δq × 16.67%
ν + δq + ϕKx

, that is, less than by 16.67%.

Remark 1. Since
∣∣∣ΥQ

δq

∣∣∣ > ∣∣∣ΥQ0
δq

∣∣∣, the action of larvicide may seem more noticeable in the absence of predacious
species than in their presence. Bearing in mind that Q0 < Q, it is worthwhile to recall that a function of the
form

a
b + z

with a > 0, b > 0 has a steeper descent for smaller (positive) values of z = δq than for larger values

z = δq + ϕKx > δq where b = ν remains unchanged.

Note that the right-hand sides of the system (1) are decreasing with respect to the control variables
δq and δa. Therefore, the trajectories of the system (1) with uq(t) ≥ 0, ua(t) ≥ 0 engendered by any
initial condition

(
mq0, ma0, x0

)
∈ Ω remain in Ω for all t > 0. In other words, the dynamical system (1)

remains well-posed for all non-negative and bounded piecewise continuous control functions uq(t) and
ua(t). Moreover, in the presence of chemical control actions uq(t) ≥ 0, ua(t) ≥ 0 one may expect the
reduction of the basic offspring numbers (4) determined for the system (1) without control intervention.

Let [0, T], T < ∞ be the finite period of time corresponding to control intervention which is
modeled by two piecewise-continuous control functions

0 ≤ uq(t) ≤ βq and 0 ≤ ua(t) ≤ βa ∀ t ∈ [0, T], (7)

where the positive constants βq and βa define the maximum rates for daily application of larvicide and
insecticide, respectively.
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The purpose of the control intervention is multi-objective and can be determined by the following
objective functional

J(uq, ua) = c1mq(T) +
T∫

0

(
c2ma(t) +

1
2

cqu2
q(t) +

1
2

cau2
a(t)

)
dt, (8)

to be minimized with respect to uq(t) and ua(t) satisfying the condition (7) under dynamical constraints
imposed by the system (1) with given initial conditions (2). In the above expression, the non-negative
constants c1, c2, cq, and ca stand for the weight coefficients and define the priorities of decision-making
associated with each single objective. Namely, the terminal term of (8) expresses the minimization
of the density of immature stages by the end of control intervention (at t = T). The first term in the
integrand of J(uq, ua) seeks to minimize the total number of adult females (capable of transmitting
arboviral infections) during the whole period of control intervention, while the last two terms in the
integrand of (8) are related to the minimization of the control effort. Here, we assume that there is no
linear relationship between the coverage of control interventions and their underlying costs; therefore,
the integrand function is quadratic with respect to both control functions. This assumption is wildly
used in dynamic optimization dealing with chemical measures of vector control [27–29], and this issue
is also addressed in Remark 2 (see Section 3 ahead).

Thus, we seek to find a pair of admissible control functions u∗q(t), u∗a(t) and the corresponding
trajectories m∗q(t), m∗a(t) of (1)–(2) in which the objective functional (8) attains its minimal value.

3. Existence of Optimal Controls and Their Characterizations

The model described in the previous section can be formulated as a standard problem of optimal
control with fixed time T > 0 of control intervention. Let

U :=
{

uq(·), ua(·) ∈ PC[0, T] :
(
uq(t), ua(t)

)
∈ [0, βq]× [0, βa], t ∈ [0, T]

}
(9)

be the set of admissible controls, where PC[0, T] represents the set of piecewise continuos functions
on [0, T]. Then the optimal control problem can be posed as follows. Find a pair of control functions
(u∗q , u∗a) ∈ U such that

J(u∗q , u∗a) = min
(uq ,ua)∈U

J(uq, ua) (10)

subject to the dynamic constraint defined by the system (1) with initial conditions (2).
The optimal control problem formulated above can be directly solved by applying the Pontryagin

maximum principle (see Reference [36] or similar textbooks for more details) which constitutes the
necessary condition of optimality. However, the existence of optimal controls (u∗q , u∗a) ∈ U satisfying
(10) should be formally established prior to the application of this necessary condition. For this
purpose, we formulate the following statement.

Proposition 1 (Existence of optimal controls). There exists a pair of admissible controls (u∗q , u∗a) ∈ U
and the corresponding solutions

(
m∗q(t), m∗a(t), x∗(t)

)
of the initial-value problem (1)–(2) that minimizes the

objective functional (8), and fulfills the relationship (10).

Proof. To prove the existence of (u∗q , u∗a) ∈ U satisfying (10), we employ the classical approach based
in the Filippov-Cesari existence theorem thoroughly described in References [37,38]. To apply this
theorem, we have to show that our optimal control problem (10) subject to (1), (2), and (9) fulfills a
series of conditions that are sufficient for the existence of an optimal solution:
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(i) Solution Z(t) :=
(
mq(t), ma(t), x(t)

)
of the initial-value problem (1)–(2) is well-defined and

unique for every admissible (uq, ua) ∈ U and for all t ≥ 0, while the set of all Z(t) is non-empty
and bounded for any every admissible (uq, ua) ∈ U and for all t ≥ 0.

(ii) The sets of all initial and terminal states Z(0) =
(
mq0, ma0, x0

)
and Z(T) =

(
mq(T), ma(T), x(T)

)
are closed and bounded in R3

+.
(iii) For each t ∈ [0, T], the control functions

(
uq(t), ua(t)

)
take values from the closed, bounded, and

convex set [0, βq]× [0, βa].
(iv) The right-hand sides of the dynamical system (1) are linear with respect to the control functions

(uq, ua) ∈ U.
(v) The termuinal-state function Φ(mq, ma, x) := c1mq in the objective functional (8) is continuous in

its arguments.
(vi) The integrand of (8) is convex in u := (uq, ua) and satisfies the coercivity condition

c2ma(t) +
1
2

cqu2
q(t) +

1
2

cau2
a(t) ≥ K1‖u‖α −K2

with some constants K1 > 0, α > 1, and K2.

Items (i)–(ii) have been already corroborated in Section 2. Namely, it was established that dynamical
system (1) has a unique solution Z(t) =

(
mq(t), ma(t), x(t)

)
∈ R3

+ that exists for all t ≥ 0 and for
any (uq, ua) ∈ U. Moreover, if this solution Z(t) is engendered by the initial condition Z(0) =(
mq0, ma0, x0

)
∈ Ω then Z(t) ∈ Ω for all t ≥ 0. Furthermore, if Z(t) is engendered by the initial

condition Z(0) =
(
mq0, ma0, x0

)
∈ R3

+ \Ω then we have that

mq(t) ≤ max
{

mq0, Kq
}

, ma(t) ≤ max
{

ma0,
f ν

δa
Kq

}
, x(t) ≤ max

{
x0, Kx

}
, t ≥ 0

since Ω (defined by (3)) is an absorbing set of the dynamical system (1) when uq(t) = ua(t) = 0 and
the right-hand sides of (1) are decreasing with respect to the control variables uq and ua.

The credibility of items (iii)–(v) is beyond doubt, while item (vi) is fulfilled with K1 =
1
2

min{cq, ca}, α = 2, and K2 = 0. This completes the proof.

The optimal solution (u∗q , u∗a) ∈ U of the problem (10) (that exists in virtue of Proposition 1)
and the corresponding solutions Z∗(t) =

(
m∗q(t), m∗a(t), x∗(t)

)
of the dynamical system (1) with

assigned initial conditions (2) must satisfy the necessary condition of optimality expressed by the
Pontryagin maximum principle [36]. Generally speaking, the maximum principle allows to convert
the minimization (resp. maximization) of the objective functional J(uq, ua) with respect to (u∗q , u∗a) ∈ U
on the functional set (9) into the point-wise minimization (resp. maximization) of a scalar function
(known as Hamiltonian) with respect to variables u = (uq, ua) and almost for all t ∈ [0, T] along the
optimal trajectory Z∗(t). For our optimal control problem, the Hamiltonian is defined as

H(Z, u, λ) =c2ma +
1
2

cqu2
q +

1
2

cau2
a + λ1

[
εkma

(
1−

mq

Kq

)
− (ν + δq + ηquq + ϕx)mq

]
+ λ2

[
f νmq − (δa + ηaua)ma

]
+ λ3

[
(ρ + ψmq)x

(
1− x

Kx

)
− ηxuqx

]
, (11)

where λ :=
(
λ1, λ2, λ3

)
∈ R3 can be viewed as a vector of Lagrange multipliers linked to the

differential constraint expressed by the system (1). On the other hand, λi = λi(t), i = 1, 2, 3 are
time-varying real adjoint functions that express the marginal variations in the value of objective
functional J(uq, ua) induced by changes in the current values of state variables

(
mq(t), ma(t), x(t)

)
(in the “component-by-component” sense). In other words, the current values of λi = λi(t), i = 1, 2, 3
reflect additional benefits or costs associates with changes in

(
mq(t), ma(t), x(t)

)
and they are necessary
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elements of the Pontryagin maximum principle [36]. Namely, they are solutions to the following adjoint
ODE system

dλ1

dt
= − ∂H

∂mq
=

(
εk
Kq

ma + ν + δq + ηquq + ϕx
)

λ1 − f νλ2 − ψx
(

1− x
Kx

)
λ3,

dλ2

dt
= − ∂H

∂ma
= −εk

(
1−

mq

Kq

)
λ1 + (δa + ηaua)λ2 − c2,

dλ3

dt
= − ∂H

∂x
= ϕmqλ1 +

(
ηxuq − (ρ + ψmq)

(
1− 2x

Kx

))
λ3,

(12a)

(12b)

(12c)

with transversality conditions

λ1(T) = c1, λ2(T) = 0, λ3(T) = 0. (13)

Proposition 2 (Characterizations of optimal controls). Let u∗ =
(
u∗q , u∗a

)
∈ U be a pair of optimal control

that fulfills (10) and let Z∗(t) =
(
m∗q , m∗a , x∗

)
denote the corresponding solutions of the dynamical system

(1)–(2) defined for t ∈ [0, T]. Then there exists a piecewise differentiable adjoint function λ : [0, T] 7→ R3

satisfying (12)–(13) such that

H
(
Z∗, u∗, λ

)
≤ H

(
Z∗, u, λ

)
for all u ∈ U (14)

and almost for all t ∈ [0, T]. Furthermore, the optimal controls u∗q(t) and u∗a(t) admit the following
characterizations: 

u∗q(t) = min

{
βq, max

{
ηqm∗q(t)λ1(t) + ηxx∗(t)λ3(t)

cq
, 0

}}
,

u∗a(t) = min
{

βa, max
{

ηam∗a(t)λ2(t)
ca

, 0
}}

.

(15a)

(15b)

Proof. If the optimal pair u∗ =
(
u∗q , u∗a

)
∈ U fulfills the condition (10) then this pair of controls

must also comply with the necessary condition of the Pontryagin maximum principle which is
∇uH

(
Z∗, u∗, λ

)
= 0, that is,

∂H
∂uq

∣∣∣∣
uq=u∗q

= cqu∗q − ηqm∗q λ1 − ηxx∗λ3 = 0,

∂H
∂ua

∣∣∣∣
ua=u∗a

= cau∗a − ηam∗a λ2 = 0.

(16a)

(16b)

In other words, the Hamiltonian (11) must have a critical point in u∗ =
(
u∗q , u∗a

)
. Furthermore, it is

easy to check that

∇2
u H
(
Z∗, u∗, λ

)
:=


∂2H
∂u2

q

∂2H
∂uq∂ua

∂2H
∂ua∂uq

∂2H
∂u2

a

 =

[
cq 0
0 ca

]

is positive definite; therefore, the Hamiltonian attains its minimum with respect to u at
(
u∗q , u∗a

)
and

the relationship (14) takes place.
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Taking into account the upper and lower bounds of admissible controls determined by (9) and
solving Equation (16) for u∗q and u∗a , respectively, we obtain

u∗q(t) = 0 if
∂H
∂uq

> 0,

0 < u∗q(t) =
ηqm∗q(t)λ1(t) + ηxx∗(t)λ3(t)

cq
< βq if

∂H
∂uq

= 0,

u∗q(t) = βq if
∂H
∂uq

< 0,


(17)

and

u∗a(t) = 0 if
∂H
∂ua

> 0,

0 < u∗a(t) =
ηam∗a(t)λ2(t)

ca
< βa if

∂H
∂ua

= 0,

u∗a(t) = βa if
∂H
∂ua

< 0,


. (18)

Finally, relationships (17) and (18) can be written in the closed forms (15).

Remark 2. It is worthwhile to recall that the necessary conditions (16) have conceptual interpretations from
the economics standpoint. Namely, they imply that, under optimal control strategies

(
u∗q(t), u∗a(t)

)
and at

each t ∈ [0, T], the marginal costs of control actions (expressed by the terms cquq(t) and caua(t), respectively)
must be equal to their marginal benefits (given by the terms ηqm∗q(t)λ1(t) + ηxx∗(t)λ3(t) and ηam∗a(t)λ2(t),
respectively). This is exactly what is displayed in the middle rows of (17) and (18).

Furthermore, if the marginal cost of either u∗q(t) or u∗a(t) is higher than its corresponding benefit (that is,

either
∂H
∂uq

> 0 in (17) or
∂H
∂ua

> 0 in (18)) then it is optimal not to employ such a strategy, and we set either

u∗q(t) = 0 or u∗a(t) = 0 (cf. upper rows of (17) or (18)).
On the other hand, if the marginal cost of either u∗q(t) or u∗a(t) is smaller than its corresponding benefit

(that is, either
∂H
∂uq

< 0 in (17) or
∂H
∂ua

< 0 in (18)), then it is optimal to use all available resources, and we set

either u∗q(t) = βq or u∗a(t) = βa (cf. lower rows of (17) or (18)).

In view of Proposition 2, the optimal control problem, that consists in minimization of the objective
functional (8) on the set of admissible controls (9) and subject to the dynamical system (1) with initial
conditions (2), can be reduced to the solution of two-point boundary value problem which is usually
referred to as optimality system [36]. The latter is composed of six ODEs given by (1) and (12) where
the control functions uq(t) and ua(t) are replaced by their characterizations (15), plus two sets of
boundary conditions: three initial conditions (2) specified at t = 0 and three transversality conditions
(13) defined at t = T.

In this context, it is worthwhile to note that the existence of the optimal controls u∗q , u∗a (proved
in Proposition 1) implies solvability of the optimality system. Moreover, using some conventional
techniques [39,40], the uniqueness of the solution of the optimality system can also be established
for sufficiently short intervals of time when the right-hand sides of the optimality system are
Lipschitz-continuous with respect to all state and adjoint variables. This condition is fulfilled for
the right-hand sides of (1) and (12) where the control functions uq(t) and ua(t) are replaced by their
characterizations (15). Therefore, it is plausible to suppose that the optimality system is well-posed for
sufficiently short periods of time, and has a unique solution.
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It is also understood that, due to the high dimension and nonlinearity of the optimality system,
its solution can only be found numerically, and in the next section we present and analyze numerical
solutions corresponding to different scenarios.

4. Numerical Solutions under Different Scenarios

4.1. Preliminary Settings

In accordance with estimations performed in Reference [32] for average daily temperature
(23.9 ◦C) in the city of Cali, Colombia, and other data found in scientific literature, Table 2 displays
numerical values assigned to all constant parameters of the dynamical system (1) which will be kept
unaltered during the computational experiments involving numerical solutions of the optimal control
problem (10).

It is worth noting that, for parameter values from Table 2, the basic offspring number defined by
(4a) is Q = 38.15 meaning that one female mosquito produces on average 38 female mosquitoes in
the absence of predacious species. This value matches the estimations of the basic offspring number
obtained in other studies [41].

A shallow basin we consider here has the volume of about 100 liters, and a maximal larval density
is 8-10 individuals per liter [34] what gives us the carrying capacity Kq = 1 (measured in thousands of
individuals). We also assume the following stylized values related to the predacious species

ρ = 0.2, ψ = 0.1, Kx = 10,

where Kx (measured by the maximal number of individuals to be sustained by the environment) is
defined to match the predator-prey ratio 1÷ 100 in accordance with [42]. To assume an abundance
of immature and adult mosquitoes before the control intervention, we define mq(0) = mq0 = 0.8 and
ma(0) = ma0 = 0.8 and also consider two options for x(0) = x0 with x0 = 0 expressing the absence of
predacious species during the control intervention, and x0 = 3 mimicking the introduction of three
individuals (one male and two females) into the basin before the control intervention.

For all numerical experiments, we set T = 30 meaning that the control intervention will remain in
force during 30 days.

To perform numerical simulations we have employed the next-generation optimal control software
package GPOPS-II1 designed for MATLAB platform [30] that implements an adaptive combination of
direct and orthogonal collocation techniques known as Radau pseudospectral method [43].

Our goal is to analyze different scenarios, whose determination results from the following
considerations. First, there are scenarios where the biological control is either absent (x(0) = x0 = 0)
or present (x(0) = x0 > 0). For the latter, we perform testings with two predacious species—one that
is relatively cheap but does not fulfill the condition (5) of predatory efficiency (to be referred further as
inefficient or inert predator), and another that fulfills the condition (5) but comes at a higher cost (to be
called efficient or aggressive predator in the sequel). The unit cost (i.e., per individual) for both types
of predacious species is denoted by C0. As stated in Reference [13], different larvivorous fish species
constitute an example of inefficient or inert predators, while cyclopoid copepods are usually regarded
as aggressive and efficient ones.

Second, there are scenarios either accounting or not for the chemical controls actions applied
to adult insects only (insecticide spraying) or their immature stages only (larvicide spraying), or to
both mosquito populations (combined use of insecticides and larvicides). Additionally, we consider
two types of each chemical substance: one bearing high lethality and costs, and another bearing low
lethality with moderate underlying costs.

1 For more information regarding GPOPS-II solver please visit http://gpops2.com/.

http://gpops2.com/
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In this context, it is worth recalling that the lethality of existent insecticides and larvicides
admits variation between 20% and 80% [44–46]; therefore, we suppose 30% efficiency for low-lethality
substances and 70% efficiency for high-lethality substances. Such efficiencies are modeled by the
parameters ηa (for insecticides) and ηq (for larvicides) in the dynamical system (1), while the underlying
(unit) costs of larvicide and insecticide are expressed, respectively, by cq and ca in the objective
functional (8). Furthermore, we assume that the upper bound of both control functions uq(t), ua(t)
are normalized to unity: βq = βa = 1. The latter implies that the daily use of each chemical substance
cannot exceed certain quantities Pq and Pa determined externally by the environmental regulations,
that is,

n∫
n−1

Pquq(t)dt ≤
n∫

n−1

Pqdt,
n∫

n−1

Paua(t)dt ≤
n∫

n−1

Padt, n = 1, 2, . . . , T.

Thus, uq(t) and ua(t), t ∈ [n− 1, n] are the fractions of Pq and Pa to be used at each day n = 1, 2, . . . T
of the chemical control intervention, and therefore βq = 1

Pq
, βa =

1
Pa

. Note that the quantities Pq and
Pa may have different values for larvicides and insecticides bearing lower or higher lethality; this is
another reason why we have introduced normalization for βq and βa.

We also assume that the negative effect of larvicides on the predacious species (expressed in (1)
by the parameter ηx) increases with the larvicide’s lethality.

Finally, since our primary goal is to suppress the total mosquito population (and thus reduce
the local incidence of dengue and other vector-borne diseases), in the integrand of the objective
functional (8), we assign the highest value to the weight coefficient c2 = 10. Thus, c2 doubles the unit
cost of the most expensive chemical control. As for the weight coefficient accompanying the terminal
part of (8), we set c1 = 2c2T to make it the largest and also offset the T days of intervention.

4.2. Description of Considered Scenarios

In the previous subsection, we assigned numerical values to the majority of the constant
parameters of the optimal control problem (10) which will be kept unaltered during the computational
experiments. However, numerical values for several parameters (namely, for ηq, ηa, ηx, ϕ, cq, ca, and
C0) have not been determined yet. These are exactly the parameters whose values will be varied
in order to express different scenarios and to obtain the optimal strategies corresponding to each
particular scenario.

Altogether, we intend to explore 27 scenarios and to establish 27 corresponding strategies
(schematically displayed in Figure 2) which are further codified using three digits (0, 1, and 2) referring
to the use of predacious species (first digit) for biological control, use of insecticide (second digit) on
the adult population, and application of larvicide (third digit) on immature stages. Thus, the strategy
denoted by 012 implies no use of predacious species and application of low-lethality insecticide in
combination with high-lethality larvicide, while the strategy 000 corresponds to the absence of control
intervention and will be referred to as “baseline case” in the sequel. Figure 3 presents the profiles mq(t)
and ma(t), t ∈ [0, 30] corresponding to the baseline case (Strategy 000).

It is worthwhile to point out that we do not have any reliable information regarding the unit costs
of insecticides and larvicides bearing different lethalities. Therefore, in view of the rationale given
in References [28,29], the values assigned to the weight coefficients cq and ca (as displayed in the chart
of Figure 2) are taken only for the purpose of theoretical analysis; for practical purposes, these values
should be adjusted to more realistic ones.
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Biological control (use of predacious species):

Presence of predators =⇒

 0. None C0 = 0 and ϕ = 0
1. Inefficient and cheap(Q0 > 1) C0 = 6 and ϕ = 0.3
2. Efficient and expensive(Q0 < 1 < Q) C0 = 20 and ϕ = 0.8

Chemical control:

Use of insecticide =⇒

 0. None ca = 0 and ηa = 0
1. Low-lethality and cheap ca = 1 and ηa = 0.3
2. High-lethality and expensive ca = 5 and ηa = 0.7

Use of larvicide =⇒

 0. None cq = 0, ηq = 0, and ηx = 0
1. Low-lethality and cheap cq = 1, ηq = 0.3 and ηx = 0.1
2. High-lethality and expensive cq = 5, ηq = 0.7 and ηx = 0.4

Figure 2. Description of scenarios with parameter values corresponding to different strategies of
biological and chemical control actions.
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Figure 3. Mosquito population dynamics mq(t) (left chart) and ma(t) (right chart) without control
intervention (Strategy 000, baseline case).

To characterize performance of each strategy, we evaluate the following important quantities
for each run of GPOPS-II solver feeded diverse combinations of values x0, C0, ϕ, ca, ηa, cq, ηq, ηx as
indicated in Figure 2:

• The density of immature stages at the end of the intervention: m∗q(T).

• The cumulative density of adult females during the whole period of intervention:
T∫

0

m∗a(t)dt.

• Cumulative fraction of larvicide used:
T∫

0

u∗q(t)dt.

• Cumulative fraction of insecticide used:
T∫

0

u∗a(t)dt.

• The total cost of the strategy that combines expenses related to the initial introduction of a
predacious species and the costs of chemical control measures, that is,

Jc := C0x0 +

T∫
0

[
cqu∗q(t) + cau∗a(t)

]
dt. (19)

In the above expressions, m∗q(t), m∗a(t) denote the optimal states of the system (1) corresponding to
the optimal controls u∗q(t), u∗a(t) delivered by the GPOPS-II solver under different scenarios described
in Figure 2. It is worthwhile to point out that the baseline case (Strategy 000) and two scenarios not
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relying upon the use of chemical substances (Strategies 100 and 200) do not require for numerical
solutions of the optimal control problem (10). Therefore, to obtain m∗q(t) and m∗a(t) corresponding to
Strategies 100 and 200 it suffices to solve numerically the system (1) with uq(t) = ua(t) = 0, t ∈ [0, T]
and x(0) = x0 > 0.

The outcomes displayed in Table 3 plainly indicate that Strategy 001 is the cheapest, while
Strategies 220, 221, 222 guarantee the best results for suppression of the total mosquito population by
the end of the control intervention. Among them, Strategy 220 does not require the use of larvicide and
thus bears a lower total cost, while Strategy 221 appears a bit cheaper than Strategy 222 and requires a
lesser amount of insecticide.

Table 3. Outcomes of numerical solutions of the optimal control problem for each strategy.

Strategy m∗
q(T)

T∫
0

m∗
a(t)dt

T∫
0

u∗
q(t)dt

T∫
0

u∗
a(t)dt Total Cost Jc

001 0.9159 27.1518 10.1045 0 10.1045
002 0.8525 27.1102 5.3361 0 26.6804
010 0.7507 5.0255 0 30 30
011 0.3078 4.1806 25.5089 30 55.5089
012 0.0988 3.9818 17.2191 29.9128 116.0085
020 0.4957 2.6325 0 24.4197 122.0986
021 0.0516 1.7950 27.1569 23.0464 142.3888
022 0.0337 1.9954 14.1497 20.2192 171.8445
100 0.5263 22.9353 0 0 18
101 0.5094 22.9353 0 .2980 0 18.2980
102 0.4939 22.9353 0.2310 0 19.1551
110 0.0046 2.9674 0 21.9769 39.9769
111 0.046 2.9678 0.0760 21.9501 40.0261
112 0.0046 2.9677 0.0283 21.9533 40.0946
120 0.0036 1.5247 0 10.1480 68.7400
121 0.0035 1.5250 0.0589 10.1391 68.7545
122 0.0035 1.5250 0.0219 10.1402 68.8104
200 0.2374 19.7810 0 0 60
201 0.2333 19.7810 0.1431 0 60.1431
202 0.2298 19.7810 0.1036 0 60.5182
210 0.0020 2.7677 0 17.6513 77.6513
211 0.0020 2.7678 0.0131 17.6482 77.6613
212 0.0020 2.7678 0.0053 17.6486 77.6749
220 0.0015 1.4737 0 8.0596 100.2981
221 0.0015 1.4737 0.0106 8.0586 100.3038
222 0.0015 1.4737 0.0041 8.0588 100.3142

Note that for the baseline case (Strategy 000) we have

Mq := mq(T)
∣∣∣
000

= 0.9709, Ma :=
T∫

0

ma(t)dt
∣∣∣
000

= 27.4601, (20)

while its underlying cost is zero since no control action is applied.
Now, we are interested in determining which strategy or strategies may serve better the needs

of the decision-makers. In order to proceed, we have to assess and quantify the benefits rendered by
each strategy in order to employ the so-called cost-effectiveness approach to the result of numerical
solutions of the optimal control problem in the sense of References [28,47]. In the following subsection,
we perform the cost-effectiveness analysis of the strategies displayed in Table 3.
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4.3. Cost-Effectiveness Analysis

In economics, the cost-effectiveness analysis is the method that allows comparing the relative
costs and outcomes (effects or benefits) of different courses of action. Using this approach, one can
fairly assess an additional benefit that can be obtained by investing a unit of cost into a certain action
in comparison to either no action taken or implementing a different action.

To employ this approach, it is necessary to quantify the relative costs and benefits of each strategy
that models an external intervention. The relative costs of control strategies described by 27 scenarios
given in Figure 2 can be assessed by Jc (see Formula (19) and the last column of Table 3), while some
additional considerations will be needed to quantify the benefit of each strategy.

First, let us recall that the primary goal of the control intervention consists in minimizing the
density of immature stages by the end of the intervention (cf. terminal term in (8)) and reducing
the density of adult mosquitoes during the whole period of intervention (cf. first summand of the
integrand in (8)). Therefore, the effect of each strategy on the suppression of mosquito population can
be quantified as

Emosq :=

(
Mq −m∗q(T)

Mq

)
+

(
Ma −

∫ T
0 m∗a(t)dt
Ma

)
=

(
1−

m∗q(30)

0.9709

)
+

(
1−

∫ 30
0 m∗a(t)dt
27.4601

)
, (21)

where Mq and Ma are defined by (20) in regards to the baseline case (that is, without control
intervention, x0 = 0, uq(t) = ua(t) = 0, t ∈ [0, T]) while m∗q(t) and m∗a(t) correspond to the optimal
states of the dynamical system (1) for each optimal strategy (cf. first column of Table 3).

The secondary goal of the decision-making (expressed by the last two summands of the integrand
in (8)) consists of minimizing the use of larvicide and insecticide since these chemical substances may
have an adverse environmental effect besides generating additional costs. Therefore, we would also like
to identify a strategy (or strategies) capable of reducing the mosquito population with a relatively low
impact on the environment. To do so, it is plausible to assume that the negative environmental impact
of these chemical substances is proportional to their quantities used for the strategy’s implementation.
Let us recall that the maximal quantity of the larvicide (resp. insecticide) allowed to be used at each
day t ∈ [0, T] of control intervention is Pq (resp. to Pa). Therefore, the maximum amounts of both
chemicals allowed to be used during the period [0, T] of control intervention cannot exceed PqT and
PaT, respectively. By assuming that the quantities of larvicide and insecticide are directly related to
their adverse effects on the environment, one may consider as an additional ecological benefit of each
strategy the relative quantity of each chemical which is not spent during the period of intervention.
Under this setting, the eco-effect of each strategy can be quantified as

Eeco :=

(
PqT − Pq

∫ T
0 u∗q(t)dt

PqT

)
+

(
PaT − Pa

∫ T
0 u∗a(t)dt

PaT

)

=

(
1−

∫ 30
0 u∗q(t)dt

30

)
+

(
1−

∫ 30
0 u∗a(t)dt

30

)
.

(22)

It is worth noting that, according to the above formula, the highest possible eco-benefit Eeco = 2 is
assigned to two strategies (coded as 100 and 200) that do not require the use of chemical substances.
The combined effect Etotal of each particular strategy can be then defined as a sum of Emosq and Eeco

leading us to the following formula

Etotal :=

(
1−

m∗q(30)

0.9709

)
+

(
1−

∫ 30
0 m∗a(t)dt
27.4601

)
+

(
1−

∫ 30
0 u∗q(t)dt

30

)
+

(
1−

∫ 30
0 u∗a(t)dt

30

)
. (23)
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Once the relative costs and effects are defined for each strategy, the cost-effectiveness analysis
can be performed. One of the main indicators frequently used in this type of analysis is the so-called
“Average Cost-Effectiveness Ratio” (or ACER) that expresses the average cost related to obtaining one
unit of potential benefit by employing the underlying strategy [28,47]. In formal terms, ACER is the
ratio of the cost to benefit of a particular control action in comparison to no action (i.e., baseline case),
that is

ACER (Strategy X) =
Cost of Strategy X

Effect of Strategy X
, (24)

where “Strategy X” can be replaced by one of the coded strategies given in the first column of Table 3.
Note that the costs corresponding to all considered strategies 001-222 are already quantified as Jc by
means of the formula (19) and their underlying values are given in the last column of Table 3.

According to (24), smaller values of ACER indicate higher efficiency of the control action in the
sense that one unit of potential effect (or benefit) comes at a lower cost. Table 4 displays the effects
quantified by Formulas (21) and (23) together with underlying values of two ACER types evaluated for
all strategies 001-222. In particular, ACERmosq (column 4 in Table 4) gives the average cost-effectiveness
ratio that only encompasses the effect of each strategy on the suppression of mosquito population,
whereas ACERtotal (last column in Table 4) also accounts for the eco-effect of each strategy.

Table 4. Outcomes of ACER evaluation for 27 optimal strategies with two types of effects, Emosq

and Etotal.

Strategy Total Cost Jc Emosq ACERmosq Etotal ACERtotal

001 10.1045 0.0679 148.8144 1.7311 5.8370
002 26.6804 0.1347 198.0728 1.9568 13.6347
010 30 1.0438 28.7411 2.0438 14.6785
011 55.5089 1.5307 36.2637 1.6804 33.0331
012 116.0085 1.7532 66.1696 2,1822 53.1613
020 122.0986 1.3936 87.6138 2.5796 47.3324
021 142.3888 1.8815 75.6783 2.2080 64.4877
022 171.8445 1.8926 90.7981 2.7470 62.5572
100 18 0.6227 28.9064 2.6227 6.8632
101 18.2980 0.6401 28.5862 2.6302 6.9569
102 19.1551 0.6561 29.1954 2.6484 7.2327
110 39.9769 1.8872 21.1832 3.1546 12.6726
111 40.0261 1.8872 21.2093 3.1530 12.6946
112 40.0946 1.8872 21.2455 3.1545 12.7103
120 68.7400 1.9408 35.4184 3.6025 19.0812
121 68.7545 1.9409 35.4240 3.6009 19.0937
122 68.8104 1.9409 35.4528 3.6021 19.1029
200 60 1.0351 57.9654 3.0351 19.7687
201 60.1431 1.0394 57.8633 3.0346 19.8191
202 60.5182 1.0430 58.0232 3.0395 19.9106
210 77.6513 1.8972 40.9294 3.3088 23.4681
211 77.6613 1.8971 40.9369 3.3084 23.4740
212 77.6749 1.8971 40.9440 3.3087 23.4760
220 100.2981 1.9448 51.5724 3.6761 27.2838
221 100.3038 1.9448 51.5754 3.6758 27.2876
222 100.3142 1.9448 51.5807 3.6760 27.2890

According to the total costs invested in the control intervention (see the first column of Table 4),
the cheapest strategy is the one coded as 001 (application of low-lethality larvicide in the absence of
the predacious species, see Figure 4); however, its effect on suppression of the mosquito population,
Emosq, is also the lowest comparing to other strategies. As shown on the left upper chart of Figure 4,
this strategy requires a moderate use of low-lethality larvicide (that is relatively cheap) during the
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major part of the control intervention (t ∈ [0, 28]) and the application of the maximum quantity of the
larvicide during the last two days (uq(t) = 1, t ∈ [29, 30]).
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Figure 4. State and control profiles of the system (1) under Strategy 001: application of low-lethality
larvicide in the absence of the predacious species.

From the practical standpoint, this modus operandi evokes some doubts since the profiles of both
mosquito populations mq(t) and ma(t) corresponding to Strategy 001 bear little difference from the
uncontrolled case (baseline strategy, cf. Figure 3), except for the last two days where a “strong action”
is put in place. The latter is done as an attempt to minimize the terminal term of the functional (8)
to compensate for a rather weak effect of this strategy on the reduction of mosquito population. It is
also worth noting that Strategy 001 requires for a relatively small amount of larvicide and does not
require the use of insecticide. Due to this and the lowest cost, the average cost-effectiveness ratio
of this strategy accounting for its eco-effect, ACERtotal, also exhibits the best result in comparison to
other strategies.

The last three rows in Table 4 display three strategies (Strategies 220, 221, and 222) that
demonstrate the highest effect on suppression of the mosquito population and also exhibit a notable
eco-effect. Among them, Strategy 220 (consisting in the use of high-lethality insecticide in the presence
of efficient predacious species, see Figure 5) possesses a slightly higher of ACERtotal since this strategy
does not require the larvicide spraying unlike the other two strategies. As shown in Figure 5,
the presence of some efficient predacious specie combined with a moderate spraying of high-lethality
insecticide guarantees steady decline of both mosquito population. The results for Strategies 221 and
222 are very similar to those presented in Figure 5, and they are omitted here. The only difference is
exhibited by the nonzero control profile uq(t) according to which the larvicide spraying should by
employed (at a moderate mode) during the last couple of days in order to ensure the minimization of
the terminal term in the objective functional (8).
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It should be pointed out that, besides rendering the best effects, Strategies 220, 221, and 222 also
involve significant costs (10-times higher than the cost of Strategy 001), and for that reason, their ACER
values are considerably larger than for other strategies.
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Figure 5. State and control profiles of the system (1) under Strategy 220: presence of efficient predator
combined with application of high-lethality insecticide.

In this context, one can easily detect in Table 4 that Strategy 110 (consisting of spraying of
low-lethality and cheap insecticide in the presence of inefficient or inert predacious species, see Figure 6)
exhibits the best value of ACERmosq related to the suppression of the mosquito population. As shown
in Figure 6, Strategy 110 requires to use a considerable amount of low-lethality insecticide that should
be sprayed at the maximum daily rate during the first 12 days of control intervention, with a gradual
reduction for the consequent 17 days, followed by total suspension at the end of intervention period.
For that reason, the value of ACERtotal corresponding to the Strategy 110 is greater than for other
strategies that require a smaller total amount of chemical substances.

We have already mentioned that the cheapest strategy (Strategy 001, see Figure 4) is the one
rendering the smallest benefit with regards to the suppression of the mosquito population. By revising
the second column of Table 4, we can identify that Strategy 100 (see Figure 7 is also relatively cheap but
its corresponding effect Emosq is almost 10 times greater that that of Strategy 001. Moreover, Strategy 100
is eco-friendly because it does not require the use of chemical substances (uq(t) = ua(t) = 0, t ∈ [0, T]
and x0 > 0). For that reason, its average cost-effectiveness ratio ACERtotal that accounts for the
eco-effect is the lowest besides the ACERtotal for Strategy 001.

Using the values of ACER (see the fourth and last columns in Table 4) one can fairly assess the
cost to be invested in each intervention strategy for obtaining one unit of the corresponding effect
or benefit in comparison to the baseline case (i.e., no intervention and zero cost). On the other hand,
it seems also useful to compare mutually exclusive strategies with each other.
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Figure 6. State and control profiles of the system (1) under Strategy 110: presence of inefficient or inert
predator combined with application of low-lethality insecticide.
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Figure 7. State profiles of the system (1) under Strategy 100: presence of inefficient or inert predator
and absence of chemical control actions.

For this purpose, there is another standard indicator which is known as Incremental
Cost-Effectiveness Ratio (or ICER). This indicator is defined by the difference in cost between two
possible interventions, divided by the difference in their effect [28,47]. The value of ICER represents
the average incremental cost associated with one additional unit of the measure of effect when two
mutually exclusive strategies are compared. The value of ICER can be estimated as

ICER (Strategy Y versus Strategy X) =
Cost of Strategy Y−Cost of Strategy X

Effect of Strategy Y− Effect of Strategy X
:=

∆Cost
∆Effect

(25)
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and its calculation starts with the cheapest strategy. Thus, the value of ICER measures an additional
cost per unit of additional outcome (effect or benefit) when the current Strategy X (bearing lower costs)
is replaced by a new Strategy Y which is more expensive but renders a more notable effect.

In the first instance, let us calculate ICER for Strategies 001-222 taking into account only their
effects on the suppression of mosquito population, Emosq. The initial step is to arrange all strategies in
ascending order regarding their costs and effects (given in the second and third columns in Table 4).
Strategies that do not comply with this order should be removed. The results are given in Table 5 where
Strategies 002, 011-022, 111-112, and 200-212 have been tossed out as non-abiding to the above-stated
rule. Note that the cheapest strategy (in our case, Strategy 001) is compared with the baseline case
(Strategy 000 without control intervention) and, therefore, its ICER coincides with its ACER.

Table 5. Incremental Cost-Effectiveness Ratio (ICER) calculation for strategies fulfilling the ascendant
order for the costs Jc and corresponding effects Emosq on suppression of the mosquito population.

Strategy m∗
q(T)

∫ T
0 m∗

a(t)dt Jc Emosq ∆Cost ∆Effect ICERmosq

001 0.9159 27.1518 10.1045 0.0679 148.8144
100 0.5263 22.9353 18 0.6227 7.8955 0.5548 14.2313
101 0.5094 22.9353 18.2980 0.6401 0.298 0.0174 17.1264
102 0.4939 22.9353 19.1551 0.6561 0.8571 0.0160 53.5688
010 0.7505 5.0255 30 1.0438 10.8449 0.3877 27.9724
110 0.0046 2.9674 39.9769 1.8872 9.9769 0.8434 11.8294
120 0.0036 1.5247 68.7400 1.9408 28.7361 0.0536 536.6250
121 0.0035 1.5250 68.7545 1.9409 0.0145 0.0001 145.0
122 0.0035 1.5250 68.8104 1.9409 0.0559 0 indefinite
220 0.0015 1.4737 100.2981 1.9448 31.4877 0.0039 8073.7692
221 0.0015 1.4737 100.3038 1.9448 0.0057 0 indefinite
222 0.0015 1.4737 100.3142 1.9448 0.0104 0 indefinite

The next step consists of eliminating all strategies whose ICERmosq-values do not comply with
ascending order, as well as those with indefinite ICERmosq (i.e., strategies having ∆Effect = 0). For the
set of remaining strategies, the values of ICERmosq are calculated again according to (25) until there are
no more strategies to be removed. Note that the lowest ICERmosq-value in the last column of Table 5
corresponds to Strategy 110. Therefore, all strategies that standing above Strategy 110 in Table 5 should
be removed. As a result, we obtain the list of potentially cost-effective strategies (see Table 6) where
the last column indicates the estimated cost of one unit of outcome Emosq when the current strategy is
replaced by the consequent one. In particular, if Strategy 110 is replaced by Strategy 121, each unit of
additional benefit will come at an additional (relative) cost of 535.8957 units, which seems very high
keeping in mind that the original (relative) cost per unit of benefit (that is, under Strategy 110) is just
21.1832 units.

Table 6. ICER calculation for the remaining strategies with respect to their effects on suppression of the
mosquito population, Emosq.

Strategy m∗
q(T)

∫ T
0 m∗

a(t)dt Jc Emosq ∆Cost ∆Effect ICERmosq

110 0.0046 2.9674 39.9769 1.8872 21.1832
121 0.0035 1.5250 68.7545 1.9409 28.7776 0.0537 535.8957
220 0.0015 1.4737 100.2981 1.9448 31.5436 0.0039 8088.1026

From the results displayed in Table 6, we may conclude that Strategy 110 (use of the low-lethality
insecticide in the presence of inefficient or inert predacious species, see its overall performance in
Figure 6) is indeed the most cost-effective one (according to both ACER and ICER) when the effects
of all considered strategies are estimated only by their capacities for suppression of the mosquito
population without accounting for their eco-effects.
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A similar ICER-based analysis can be performed by encompassing the effects of Strategies 001-222
(quantified by Etotal, see the fifth column of Table 4) that also account for their eco-effects. For this
purpose, all Strategies 001-222 should be arranged in ascending order with regards to their cost and
effects (given in the second and fifth columns in Table 4), and the strategies not complying with such an
order must be removed. According to results presented in Table 7, there is only one strategy (namely,
Strategy 102) that does not comply with ascendant order for the ICERtotal-values (see the last column
of Table 7), and this strategy should be removed.

Table 7. ICER calculation for strategies fulfilling the ascendant order for costs Jc and combined effects
Etotal accounting for environmental impact and reduction of the mosquito population.

Strategy
∫ T

0 u∗
q(t)dt

∫ T
0 u∗

a(t)dt Jc Etotal ∆Cost ∆Effect ICERtotal

001 10.1045 0 10.1045 1.7311 5.8372
100 0 0 18 2.6227 7.8955 0.8916 8.8554
101 0.2980 0 18.2980 2.6302 0.2980 0.0075 39.7333
102 0.2310 0 19.1551 2.6484 0.8571 0.0182 47.0934
110 0 21.9769 39.9769 3.1546 20.8218 0.5062 41.1335
120 0 10.1480 68.74 3.6025 28.7631 0.4479 64.2177
220 0 8.0596 100.2981 3.6761 31.5581 0.0736 428.7785

The final results, presented in Table 8, indicate that five (out of six) potentially cost-effective
strategies rely upon the use of only one chemical substance (either insecticide or larvicide), while the
remaining one needs no chemical intervention (Strategy 100). This outcome plainly agrees with the
way the strategies’ effects are quantified. Here, one should recall that Etotal of each strategy accounts for
its environmental impact, besides measuring its capacity for suppression of the mosquito population.

Table 8. ICER calculation for the remaining strategies with respect to their combined effects Etotal.

Strategy
∫ T

0 u∗
q(t)dt

∫ T
0 u∗

a(t)dt Jc Etotal ∆Cost ∆Effect ICERtotal

001 10.1045 0 10.1045 1.7311 5.8372
100 0 0 18 2.6227 7.8955 0.8916 8.8554
101 0.2980 0 18.2980 2.6302 0.2980 0.0075 39.7333
110 0 21.9769 39.9769 3.1546 21.6789 0.5244 41.3404
120 0 10.1480 68.74 3.6025 28.7631 0.4479 64.2177
220 0 8.0596 100.2981 3.6761 31.5581 0.0736 428.7785

Let us recall that the best feature of Strategy 001 is its lowest cost Jc = 10.1045; however, this same
strategy has the lowest effect Emosq = 0.0679 on the suppression of mosquito population (see Figure 4).
Therefore, there is little sense for employing this strategy despite the fact that it bears the lowest
ACERtotal = ICERtotal = 5.8372. As shown in Table 8, if Strategy 001 is replaced by Strategy 100,
each additional unit of Etotal will require a moderate cost of 8.8554 units. In particular, if Strategy 100
is applied instead of Strategy 001, it yields 0.8916 additional units of Etotal at the additional cost of
7.8955 units.

Note that Strategy 100 is purely biological and only requires a one-time investment to acquire
the predacious species (C0x0) and does not involve operational expenses for spraying of chemical
substances. Nonetheless, this environmentally friendly strategy exhibits a noticeable effect on the
suppression of mosquito population (see Figure 7). Thus, it seems reasonable to qualify Strategy 100
as more cogent for the practical use than Strategy 001 (the cheapest option).

5. Conclusions

In this paper, our primary goal was to design and analyze different short-term measures for
the suppression of local mosquito populations using biological and chemical control actions in order
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to suggest the most cost-effective strategies for practical implementation. Our secondary goal was
to find out whether the biological control measures (namely, the presence of predacious species at
the mosquito breeding sites) may replace the common practices of using chemical substances for
suppression of local mosquito population and to what extent.

For that purpose, we have employed the optimal control modeling framework and thoroughly
analyzed the underlying optimal control strategies (obtained numerically with GPOPS-II solver) by
performing their cost-effectiveness analysis. For the latter, we have assumed relative costs of all
considered strategies (unfortunately, we do not possess reliable data regarding their realistic costs)
together with two definitions of the effects rendered by each strategy.

Under the first definition, we have quantified the effects (or benefits) of each strategy only by its
capacity to suppress the mosquito population in comparison to the baseline case (no action taken).
In this case, our analysis revealed that the most cost-effective way to suppress mosquito population
consists of spraying a cheap insecticide with low lethality in the presence of some cheap predacious
species, considered inefficient or inert for not fulfilling the condition (5). This method (expressed by
Strategy 110 and described in Figure 2) combines two mutually supportive actions—the insecticide
reduces the density of adult mosquitoes while the presence of some predacious species guarantees the
decline of the density of immature stages (see charts on Figure 6). In other words, the introduction of
predacious species in the mosquito breeding sites may be considered as a replacement to the common
practices of larvicide spraying. However, Strategy 110 is not environmentally friendly for it relies on
insecticide spraying that may have a negative impact on the non-target species, including the human
population [5].

On the other hand, using the second definition, we have quantified the outcomes of all strategies
by taking into account their eco-effects in addition to their capacities for suppression of the mosquito
population. Under this approach, we have come to the conclusion that the most cost-effective
and eco-friendly strategy relies on the sole use of predacious species. This method (expressed by
Strategy 100 and described in Figure 2) solely relies on the introduction of low-cost predacious species,
considered inefficient or inert for not fulfilling the condition (5). Note that for Strategy 100 we have
u∗q(t) = u∗a(t) = 0, t ∈ [0, T] and its design did not require to solve numerically the optimal control
problem. Thus, Strategy 100 needs only a one-time investment for acquiring the predacious species
(C0x0) and may operate sustainingly on its own.

In summary, and regardless of the quantification method used for evaluation of the strategies’
outcomes, our analysis has revealed the important role of predacious species for local control
of the mosquito populations. In addition, our findings send another important message to the
public healthcare entities responsible for implementation of vector control measures in tropical cities.
Namely, the deliberate introduction of predacious species in the acknowledged breeding sites (such as
ornamental basins and alike) clearly outperforms the traditional use of larvicides for the suppression
of local mosquito populations. Moreover, this type of biological control has no adverse impact on the
environment while exhibiting sustainability and resilience.

Finally, and even though our model is of “local type”, the strategies designed for this model can
be replicated and stretched out to numerous acknowledged breeding sites (widely spread across many
tropical cities) to implement the cost-effective mosquito control in practical settings.
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