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Abstract: We formulate and study a nonlinear game of n symmetric countries that produce, pollute,
and spend part of their revenue on pollution mitigation and environmental adaptation. The optimal
emission, adaptation, and mitigation investments are analyzed in both Nash equilibrium and
cooperative cases. Modeling assumptions and outcomes are compared to other publications in
this fast-developing area of environmental economics. In particular, our analysis implies that:
(a) mitigation is more effective than adaptation in a crowded multi-country world; (b) mitigation
increases the effectiveness of adaptation; (c) the optimal ratio between mitigation and adaptation
investments in the competitive case is larger for more productive countries and is smaller when more
countries are involved in the game.

Keywords: economic-environmental model; environmental adaptation; pollution mitigation;
Nash equilibrium

1. Introduction

Pollution mitigation and adaptation are two major policies commonly used by governments to
reduce the environmental damage. Spending on mitigation and adaptation is enormous. Indeed,
the total global economic cost of mitigating climate change is estimated to be €200–350 billion per
year by 2030 [1]. Accurate assessment of effective environmental policies and actions has been a
subject of intensive research for the last forty years. It includes analytic models [2–5] and computer
simulation methods, known as the integrated assessment models [6–8]. This paper contributes to
analytic modeling of adaptation and mitigation activities in the competitive world. Analytic models
lead to better understanding of observed environmental changes and predicting consequences of
human impact on the environment. They also stimulate the improvement of computer simulation
models. However, a systematic analytic theory of adaptation and mitigation is to be developed.

A short survey below demonstrates a growing number of related analytic models with scattered
underlying assumptions and fragile links among various models and their outcomes. The modeling
tools often reflect the analytic expertise of their authors. The adaptation–mitigation models can
be deterministic or stochastic, static, or dynamic, in continuous or discrete time (including two- or
three-stage versions). Because of analytic complexity, all models make simplifying assumptions about
production, pollution, mitigation, and adaptation [5,6,9–12]. Corresponding optimization problems can
involve one or several objectives, and one or many players [13]. Some adaptation–mitigation models
consider one country and neglect the international dimension of environmental protection [5,12,14–17].
The optimization models with several players reflect the international context of the environmental
protection and lead to static or dynamic games. Multi-country models usually restrict their analysis to
a symmetric case of identical countries [18–24].
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Here, we focus on a rigorous analysis of optimal adaptation and mitigation. To reduce modeling
complexity, some analytic games with adaptation do not involve a separate mitigation variable and use
the emission reduction caused by environmental damage as a proxy for mitigation effort [10,12,16,22,25].
Such concept of mitigation is costless, so, the related models cannot compare adaptation and mitigation
investments. Two-stage dynamic game [9] analyzes both adaptation and mitigation but ignores
endogenous production. A two-country static game of [10] considers endogenous production,
pollution, and adaptation, but oversimplifies mitigation as a reduced emission. The multi-country
model of [22] significantly generalizes the game [10] by adding cross-country differences in adaptation
costs but it also does not include a separate mitigation cost. Papers [12,16] consider dynamic
optimization with uncertain damage, though over-simply mitigation. The models [5,12,15,16,26]
rigorously analyze mitigation and adaptation actions in one country ignoring international aspect of
the problem. A static game of [27] and a dynamic game of [28] include separate endogenous mitigation
variable, nevertheless, do not consider adaptation. Paper [11] analyzes a static game of n countries
with pollution and adaptation but does not explicitly include mitigation.

A separate group of studies focuses on the formation and stability of possible coalitions in
environmental protection, see [11,18,23,24] and the references therein. The impact of strategic
commitment in a model with n symmetric countries, including adaptation and mitigation, is evaluated
in [11,18]. Two-stage coalition formation model of [23] employs a general static game of n identical
countries with separate endogenous mitigation and adaptation variables. The authors show that
adaption can lead to larger stable coalitions and higher global welfare (compared to the only mitigation
case), but they do not estimate related adaptation and mitigation investments.

Different modeling assumptions about payoff functions, pollution disutility/damage, and mitigation
and adaptation effectiveness are used in [29–38] to explore economic, agricultural, welfare, political,
and regional aspects of strategic interactions among pollution, mitigation, and adaptation.

The novelty of the present paper relative to the existing literature is to analyze and compare a
country’s strategic investments in mitigation and adaptation in the competitive world. Estimating the
optimal mix of adaptation and mitigation efforts has tremendous policy implications [5,20].
We introduce a multi–country model with separate mitigation and adaptation investment controls
and systematically analyze its competitive and cooperative cases, focusing on analytic solutions for
the optimal emission, adaptation, and mitigation. The constructed nonlinear model follows natural
economic assumptions and is not restricted to linear-quadratic cases. In general, it is not easy to
find analytic solutions to non-quadratic games. For clarity, we employ the static game framework to
obtain closed-form solutions, useful for policy analysis. Dynamic models of [20,39] with endogenous
production, emission, mitigation, and adaptation are conceptually close to the present paper though
they differ in modeling assumptions and are restricted to two regions.

The paper is organized as follows. Section 2 formulates optimization problems for competitive and
cooperative scenarios. Section 3 provides a comparative analysis of the competitive (Nash equilibrium)
and cooperative solutions, focusing on their dependence on the number of countries and country’s
productivity. Section 4 discusses obtained outcomes and their policy implications and concludes.

2. Models and Methods: Games with Mitigation and Adaptation

This section provides formal statements and interpretation of mathematical problems under study.

2.1. Modeling Framework

Let us consider n countries, each of which produces an economic output qi, emits pollution xi
and reduces it using a mitigation investment yi. Following other environmental games [18,25,27,28],
we express the output qi in terms of the pollution xi as

qi = Aixiyi
k, i = 1, . . . , n, (1)
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where the parameter Ai describes the country’s productivity (more exactly, environmental cleanness
of production), while k, 0 < k < 1, represents the marginal efficiency of the mitigation investment yi.
The variables qi, xi, and yi are per capita. The mitigation actions are less effective at a smaller k and
completely useless at k = 0.

The total pollution X =
n∑

i=1
xi from all countries causes the environmental damage Ωi = BiX2 to the

country i [2,6,40], which can be reduced by the country’s adaptation spending zi as

Ωi = Bi

(
1

1 + aizi
+ Di

) n∑
i=1

xi

2

, i = 1, . . . , n. (2)

The parameter Bi > 0 describes the country vulnerability to environmental damage (in monetary
units), ai > 0 is the efficiency of adaptation, and Di > 0 is the residual non-avoidable damage in the
country. The adaptation is not possible at ai = 0. Concave effectiveness of mitigation yi in Equation (1)
and adaptation zi in Equation (2) is in line with the majority of related studies [3–6,19,20,25,41].

The individual consumption is the difference ci = qi − yi − zi between the output and mitigation
and adaptation investments. The objective of a country i is to maximize the individual welfare,
measured by the difference between the consumption utility Ci

1−η and the monetarized disutility (2) of
environmental damages:

F(qi, xi, yi, zi) = (qi − yi − zi)
1−η
− Bi

(
1

1 + aizi
+ Di

) n∑
j=1

x j


2

, 0 < η < 1. (3)

The objective function (3) uses the standard isoelastic (also known as CRRA) utility function Ci
1−η

with the risk aversion parameter 0 < η < 1 [2,24] rather than a quadratic payoff. In doing so, we keep
our model in line with the mainstream economic theory. The choice of the benefit function should be
theoretically and empirically grounded. Quadratic payoff functions are favorite in the game theory
because they allow for finding analytic solutions in many cases [11,18,27,36]. However, the quadratic
utility leads to increasing absolute risk aversion (which never happens in reality) and has never been
seriously considered by economists. The isoelastic utility possess a tremendous potential to increase
the quality of many economic-environmental models, including games. An empiric justification of
the isoelastic utility for the multi-country world was recently provided in [24] on a dataset about
264 countries, where Ci

1−η with η ≈ 0.875 appears to be statistically significant. Because 0 < η < 1,
we use Ci

1−η in Equation (3) rather than its more general version Ci
1−η/(1 − η).

The model (1)–(3) provides a simple framework for the current policy debate about environmental
policies. Its three control variables describe output/pollution intensity, mitigation effort, and adaptation
effort. For convenience, Table 1 contains descriptions of all variables and parameters of the model.

2.2. Competitive and Cooperative Games

We will analyze two cases, competitive and cooperative. In the competitive case, all countries
compete and each country i, 1 ≤ i ≤ n, maximizes its own payoff by taking strategies of other countries
as given. The competitive game with payoff (3) is described as

max
xi, yi,zi

FN(xi,yi,zi) =
(
Aixiyi

k
− yi − zi

)1−η
− Bi

(
1

1 + aizi
+ Di

) n∑
j=1

x j


2

, i = 1, . . . , n. (4)

A solution (xi, yi, zi), xi ≥ 0, yi ≥ 0, and zi ≥ 0, i = 1, . . . , n, of the nonlinear static game (4), if it
exists, represents the Nash equilibrium [13,19,20,25,27].
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Table 1. The list of used parameters and variables.

Notation Description

n, n ≥ 1 the number of countries

xi, I = 1, 2, . . . , n pollution intensity of the country i

ci the consumption in the country i

qi the production output of the country i

Ai a productivity factor

yi, I = 1, 2, . . . , n mitigation investment in the country i

k, 0 < k < 1 the efficiency of mitigation investment

zi, I = 1, 2, . . . , n adaptation investment in the country i

ai, ai > 0 the efficiency of adaptation investment

η, 0 < η < 1 the risk aversion parameter of utility function

F the payoff function

Bi, Bi > 0 vulnerability to environmental damage

Di, Di > 0 the non-avoidable damage in the country

(xN, yN, zN) the Nash equilibrium solution of the game (4)

(xC, yC, zC) the solution of the cooperative problem (5)

σ an auxiliary parameter defined by Equation (27)

v an auxiliary variable (in Theorems 3 and 5)

The cooperative case maximizes the total payoff of all countries in the ideal case of a global
environmental agreement and is described by the following optimization problem:

max
xi, yi,zi,i=1,...n

Fc =
n∑

i=1
Fi(xi,yi,zi)

=
n∑

i=1

(Aixiyi
k
− yi − zi

)1−η
− Bi

(
1

1+aizi
+ Di

) n∑
j=1

x j

2 (5)

This problem has 3n unknown variables: xi ≥ 0, yi ≥ 0, and zi ≥ 0, i = 1, . . . , n.
Following standard assumptions of environmental games [18–24,27,28], we restrict ourselves to

the symmetric case of n identical countries:

Ai = A, ai = a, Di = D, Bi = B, i = 1, . . . , n. (6)

Similar models with several asymmetric countries have been analyzed in [25].
Under condition (6), the optimal pollution xi, mitigation yi, and adaptation zi in problems (4) and

(5) are the same for all countries. We denote the solution of the competitive game (4) as (xN, yN, zN)
and the solution of the cooperative problem (5) as (xC, yC, zC). A simple link between those solutions is
presented below.

Theorem 1. Let the nonlinear game (4) have a solution xN(n, B), yN(n, B), zN(n, B) for any n = 1,2,3, . . . and
any B > 0. Then, the solution of the cooperative problem (5) is:

xC = xN(1, Bw), yC = yN(1, Bw), zC = zN(1, Bw), (7)

where Bw = Bn2.
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Proof. Let us consider the cooperative optimization problem (5). Substituting Equation (6) and xi = xC,
yi = yC, zi = zC, i = 1, . . . , n to Equation (5), we obtain

max
xi, yi,zi,i=1,...n

Fc = n· max
xC, yC,zC

[(
AxCyC

k
− yC − zC

)1−η
− Bn2x2

c

( 1
1 + azc

+ D
)]

i.e., the solution (xC, yC, zC) coincides with the solution of the one-country model

max
x1, y1,z1

F1 = max
x1, y1,z1

[(
Ax1y1

k
− y1 − z1

)1−η
− Bn2x2

1

(
1

1 + az1
+ D

)]
(8)

with the modified parameter B = Bw = Bn2. On the other side, the one-country model (8) is a special
case of the game (4) at n = 1. Therefore, the solution (xN, yN, zN) to Equation (4) coincides with the
solution (x1, y1, z1) to Equation (8). It justifies the formulas (7).

The Theorem is proven. �

Theorem 1 reduces a technical complexity of the forthcoming analysis and allows us to compare
competitive and cooperative strategies with less effort.

3. Results: Comparative Analysis

In this section, we investigate and compare analytic properties of the competitive game (4) and
cooperative problem (5). In our analysis, we emphasize the dynamics of competitive and cooperative
strategies when the number of countries is large. To demonstrate our technique, let us start with the
simplest case.

Special case k = 0, a = 0 (no adaptation and no mitigation). Then, the game (4) becomes

max
xi

FN(xi) = (Axi)
1−η
− B(1 + D)

 n∑
i=1

xi

2

for all i = 1, . . . , n, . . . (9)

and does not include mitigation and adaptation controls yi and zi. The only control in Equation (9) is
the pollution level xi that also defines the economic output (1). Differentiating (9) in xi, setting the
derivative to zero, and using the symmetry assumption (6), we obtain the Nash equilibrium solution
of the game (4) as

xN =

[
(1− η)A1−η

2B(1 + D)n

]1/(1+η)

, (10)

FN =
(
1−

n
2
(1− η)

)
A1−ηx1−η

N =
(
1−

n
2
(1− η)

)[ (1− η)A2

2Bn(1 + D)

](1−η)/(1+η)
(11)

By Theorem 1, the cooperative solution is

xC =

[
(1− η)A1−η

2B(1 + D)n2

]1/(1+η)

, (12)

Fc =
1− η

2
A1−ηxC

(1−η) =
1− η

2

 (1− η)A2/(1−η)

2B(1 + D)n2

(1−η)/(1+η) (13)

It is easy to see that the pollution is higher: xN = n1/(1+η)
·xC, and the payoff is smaller in the

competitive game (4) than in the cooperative case:

FN =
2− n(1− η)

1 + η
n(1−η)/(1+η)FC. (14)
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By Equations (11) and (14), the cooperative payoff FC is always positive, but the competitive payoff

FN > 0 only when n(1 − η) < 2. Thus, the concave utility η > 0 is required for a positive Nash payoff

at n > 1. A similar condition on model parameters appears in [18] to guarantee that each player’s
decision is interior in equilibrium.

Next, we explore the properties of competitive and cooperative strategies in models with mitigation,
adaptation, and both controls. We compare competitive and cooperation strategies in the terms of
pollution, adaptation, and mitigation. We also analyze how those strategies depend on the key model
parameters, the number n of countries and their stage of development, represented by the production
cleanness factor A.

3.1. Model with Mitigation

The competitive game (4) with mitigation is presented as follows:

max
xi, yi

FN(xi,yi) =
(
Axiyi

k
− yi

)1−η
− B(1 + D)

 n∑
i=1

xi

2

, . . . for all i = 1, . . . , n. (15)

Differentiating Equation (15) in yi and xi and setting derivatives to zero, we obtain the explicit
formulas for Nash equilibrium solution:

yN =

(
A2(1− η)k1+η

2B(1 + D)n(1− k)η

)1/(1+η−2k)

, (16)

xN =
yN

1−k

kA
(17)

and the related payoff

FN = yN
1−k kη−1

2(1− k)η
(2− 2k− n(1− η)). (18)

By Theorem 1, the solution of the related cooperative problem (5) is

yC =

(
A2(1–η)k1+η

2B(1 + D)n2(1 + k)η

)1/(1+η–2k)

, (19)

xC =
yC

1–k

kA
, (20)

FC = yC
1−η kη−1

2(1− k)η
(1 + η− 2k). (21)

Here and thereafter, the notation z(v) ~ f (v) describes asymptotic behavior of the function z(v)

when v is large and means that lim
v→∞

z(v)
f (v) = const , 0.

Theorem 2. Let k < (η + 1)/2. Then, in both competitive game (15) and its cooperative case, the optimal
emission x, mitigation y, and payoff F increase when A and/or η increase, but decrease when n and/or B increase.
The mitigation /pollution ratio increases and is convex when A increases:

y
x
∼ A

1+η
1+η−2k . (22)

The global emission in the competitive case X = nx ~n(η−k)/(1+η) decreases in n at k < ηand increases at
η < k < (η + 1)/2. At k→ (η + 1)/2, the optimal x→∞ and y→∞.

Proof. Follows from formulas (16)–(21). �
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The game (13) and related cooperative problem have no finite solution at k ≥ (η + 1)/2.
By Equations (16) and (19), the optimal mitigation y is positive in both competitive and cooperative

scenarios, but it is small and much smaller than emission, x << y, for weak economies with A << 1.
The optimal emission (17) of an individual country is always larger in the presence of mitigation
than with no mitigation in both competitive and social optimum scenarios. However, it is not so for
the competitive optimal payoff (18). By Theorem 2, the relation between the mitigation effectiveness
parameter k and risk aversion η essentially affects both optimal competitive and cooperative strategies.
The sign of k − η determines whether the global pollution increases or decreases when the number n of
countries becomes larger. The optimal emission, mitigation, and payoffs are finite at 0 < k < (η + 1)/2,
but they increase indefinitely when k→ (η + 1)/2. At k ≥ (η + 1)/2, mitigation is so effective that the
optimal output Axiyi

k in Equation (1) grows faster than the mitigation cost yi, which leads to the infinite
output and pollution.

3.2. Model with Adaptation

With adaptation, the competitive and cooperative strategies become richer, but the analytic
complexity increases. For clarity, let us first consider the problems (4) and (5), with adaptation but
without mitigation. Then, the competitive game (4) becomes

max
xi,zi

FN(xi,zi) = (Axi − zi)
1−η
− B

(
1

1 + azi
+ D

) n∑
i=1

xi

2

, . . . for all i = 1, . . . , n. (23)

Theorem 3. Let

a > acr =

22+η(1 + D)2+η

(1− η)A2Nη

1/(1+η)

, (24)

then the Nash equilibrium solution of the competitive game (23) is:

xN =
2
(
v + Dv2

)
Aan

> 0, zN =
v− 1

a
> 0, (25)

where v, 1 ≤ v <∞, is the unique solution of the nonlinear equation(2D
n

v2
− v

(
1−

2
n

)
+ 1

)η
(1 + Dv)2 = σ, (26)

with

σ =
(1− η)A2a1+η

4B
. (27)

If a < acr, then the optimal adaptation ZN = 0 and xN is determined by Equation (10).
The payoff is

FN = (AxN − zN)
−η

[
AxN

(
1−

n(1− η)
2

)
− xN

]
(28)

Proof. Setting the partial derivatives of FN(xi, zi) in Equation (23) with respect to xi and zi to zero,
we obtain the following system of two nonlinear equations in xi and zi:

∂FN(xi, zi)

∂ei
= A(1− η)(Axi − zi)

−η
− 2B

(
1

1 + azi
+ D

) n∑
i=1

ei

 = 0, (29)
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∂FN(xi, zi)

∂ei
= −(1− η)(Axi − zi)

−η +
aB

(1 + azi)
2

 n∑
i=1

xi

2

= 0 (30)

Since the countries are identical, their competitive strategy is the same: xi = x, zi = z, I = 1, . . . , n,
and the system of Equations (29) and (30) becomes

A(1− η)(Ax− z)−η = 2Bnx
( 1

1 + az
+ D

)
, (31)

(1− η)(Ax− z)−η =
aB

(1 + azi)
2
(nx)2. (32)

Formulas (25) follow from Equations (31) and (32) after expressing them via the new auxiliary
variable v = 1 + az. Excluding x from the system of Equations (31) and (32), we obtain one nonlinear
Equation (26) in v. To analyze the existence and uniqueness of its solution, let us rewrite Equation (26) as

f (v) = σ, (33)

where f (v) =
(
2Dv2/n− v

(
1− 2

n

)
+ 1

)η
(1 + Dv)2 and σ is defined by (27).

A typical shape of the function f (v) is shown with the solid line in Figure 1. Because of the
constraint zi ≥ 0 in Equation (23), we are interested in the solution v of the Equation (33) only in the
interval [1,∞). It is easy to see that there is no solution v ≥ 1 if the right-hand side σ of Equation (33) is
small. Let acr denote the smallest critical value of the parameter a when a solution v ≥ 1 exists.
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To find acr, let z = v−1
a = 0, then v = 1 and xN =

2(1+D)
Aan in Equation (25). Therefore, acr is

determined from Equations (26) and (27) as Equation (24).
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The payoff (28) is obtained combining Equations (23) and (29). Next, we find the derivative f′(v)
and obtain that f′(v) > 0 at v ≥ 1 at natural conditions. Therefore, the solution v to the nonlinear
Equation (33) is unique in the interval [1,∞).

If 0 < a < acrN, then the optimal zN = 0 is a corner solution in [0, ∞), while xN coincides with
Equation (10). As expected, the resulting payoff (28) in this case is the same as (11).

The Theorem is proven. �

By Theorem 3, the economy must be productive enough to engage into adaptation activities.
The critical value acr positively depends on the climate vulnerability B and residual damage D. Thus,
the larger B and D are, the more economically powerful a country should be to profitably engage
in adaptation.

Using Theorems 1 and 3, the cooperative solution is

xC =
2
(
vC + DvC

2
)

Aa
> 0, zC =

vC − 1
a

, (34)

At

a > aC =

22+η(1 + D)2+ηBn2

(1− η)A2

1/(1+η)

. (35)

where vc is the unique solution of the nonlinear equation over [1,∞):(
2DvC

2 + vC + 1
)η
(1 + DvC)

2 = σ/n2 (36)

while zC = 0 and xc is given by Equation (12) at 0 < a ≤ aC. The cooperative payoff is:

FC = (AxC − zC)
−η

[
AxC

1 + η

2
− zC

]
. (37)

The adaptation threshold aC is larger in the cooperative scenario: aC > acr.
The behavior of optimal solutions (25)–(27) and (34)–(37) at large values of parameters n and A is

summarized in the below statement.

Corollary 1. Let(1− η)A2a1+η
� B in the competitive game (23). Then, the following relations hold for

optimal adaptation and emission controls:

zN ∼ a
1
2

(
nη(1− η)A2

2η+2BDη+2

) 1
2(1+η)

and xN ∼

(
(1− η)A1−η

BDn

) 1
1+η

. (38)

In the cooperative case, if (1 + η)A2a1+η
� Bn2, then:

zC ∼ a
1
2

(
(1− η)A2

2η+2BDη+2n2

) 1
2(1+η)

and xC ∼

(
(1− η)A1−η

BDn2

) 1
1+η

. (39)

Proof. The proof is based on the analysis of the nonlinear Equation (33). The condition (1 + η)A2a1+η
�

B means σ >> 1. In Equation (33), if f (v) is large, then v is also large: v >> 1, because of specific form of
the function f. Next,

f (v) = v2(1+η)(D + 1/v)2
(
2D/n− (1− 2/n)/v + 1/v2

)η
≈ v2(1+η)D2+η2ηn−η

when v >> 1.
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Therefore,

v ≈
(

σ

D2+η2ηn−η

)1/2(1+η)
=

(
(1− η)A2a1+ηnη

B22+ηD2+η

)1/2(1+η)

(40)

Substituting Equation (40) to the formulas (25), we obtain (38). The asymptotic estimate (39) for
the cooperative case is obtained analogously. The Corollary is proven. �

Corollary 1 implies that the optimal adaptation in a competitive case is asymptotically greater for
a larger n >> 1. Theorem 4 extends this result for any number n > 1.

Theorem 4. Let σ > 1 in the competitive game (23). Then, the adaptation zN increases and pollution xN
decreases when n increases. For n >> 1,

zN ∼ n
η

2(1+η) , xN ∼ n
−1

1+η , and E ∼ n
η

1+η . (41)

Both emission xN and adaptation zN increase when A increases, in both competitive and cooperative cases.
For A >> 1,

zN ∼ zC ∼ A
1

1+η and xN ∼ xC ∼ E ∼ A
1−η
1+η . (42)

Proof. We consider the case of an increasing n first. Let us assume that f (v) in the Equation (33) is a
function of two variables v and n:

f (v, n) = σ, where f (v, n) =
(
2Dv2/n− v(1− 2/n) + 1

)η
(1 + Dv)2. (43)

Let us give some increments ∆v and ∆n to v and n. Then, by the Implicit Function theorem,

∆v
∆n
≈

dv
dn

= −

∂ f (v,n)
∂n / f (v, n)

∂v
, (44)

and by Equation (43),
∂ f (v, n)
∂n

= −2
(
Dv2 + v

)3
/n2 < 0.

Next, as shown in the proof of Theorem 3, f (v,n)
∂v > 0 because σ > 1 and v >1. So, ∆v > 0 at ∆n > 0

by Equation (44), and, therefore, both v and zN = v−1
a are larger when n is larger.

At σ >> 1, the solution v of Equation (43) is also large: v >> 1. Next, the asymptotic estimates (41)
and (42) for zN, xN, and E follow directly from Equations (38) and (39).

The proof of the case of increasing A is analogous. The Theorem is proven. �

By Theorem 4, the presence of adaptation does not affect the asymptotic growth of pollution.
In particular, the global pollution E always increases when the number of competing countries becomes
larger (in the absence of mitigation).

3.3. Model with Mitigation and Adaptation

Now, we explore the games (4) and (5) with both adaptation and mitigation controls and analyze
how the number of countries affects environmental policies, in particular, the optimal ratio between
mitigation and adaptation. In the case of two countries, this issue is studied in [20].

Theorem 5. Let k < (η + 1)/2. If a > acr,

acr =

22+η−2k(1 + D)2+η−2k(1− k)ηB
nη−2k(1− η)A2k2k

1/(1+η−2k)

, (45)
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then the Nash equilibrium solution of the competitive game (4) is:

xN =
yN

1−k

kA
, yN =

2k
(
v + Dv2

)
an

> 0, zN =
v− 1

a
> 0, (46)

where v, 1 ≤ v <∞, is the unique solution to the nonlinear equation

v−2k
(

2(1− k)
n

Dv2
− v

(
1−

2(1− k)
n

)
+ 1

)η
(1 + Dv)2(1−k) = σ

(
2k
na

)2k

, (47)

and σ is given by Equation (27).
At k→ (η + 1)/2, the optimal emission xN → ∞ and yN → ∞. The game (4) has no finite solution at

k ≥ (η + 1)/2.
If 0 < a < acr, then the optimal adaptation zN = 0, while pollution xN and mitigation yN are given by

Equations (16) and (17). The payoff is

FN =

(
1− k

k
yN − zN

)−η[ yN

k

(
1− k−

n(1− η)
2

)
− zN

]
(48)

Proof. Setting the partial derivatives of FN(xi,yi,zi) in Equation (4) with respect to xi, yi, and zi equal to
zero and taking the symmetry condition (6) into consideration, we obtain the following system of three
nonlinear equations

(1− η)
(
kAxyk−1

− 1
)(

Axyk
− y− z

)−η
= 0, (49)

Ayk(1− η)
(
Axyk

− y− z
)−η
− 2Bne

( 1
1 + az

+ D
)
= 0, (50)

− (1− η)
(
Axyk

− y− z
)−η

+
aB

(1 + az)2
(nx)2 = 0, (51)

with respect to three unknowns xi = x, yi = y, zi = z, I = 1, . . . , n. In the new variable v = 1 + az,
this system is reduced to one nonlinear Equation (47) in v. Let us rewrite Equation (47) as

f (v) = σ

(
2k
na

)2k

, (52)

where

f (v) = v−2k
(

2(1− k)
n

Dv2
− v

(
1−

2(1− k)
n

)
+ 1

)η
(1 + Dk)2(1−k). (53)

The nonlinear function f (v) is shown in Figure 1 with a dashed line. Its behavior differs from the
function (33) from Theorem 1 at small v but is qualitatively similar over the interval v∈[1,∞). As before,
we are interested in solutions v > 1 because of the constraint z ≥ 0. Again, it is easy to see that no
solution v > 1 exists if the RHS of Equation (52) is small enough. Let acr denote the smallest critical
value of the parameter of a when the solution v ≥ 1 exists. To find acr, let ZN = 0, then v = 1, ZN = 0 by

Equation (46), and yN =
2k(1+D)

an . Substituting those values to (47), we obtain the formula (45) for acr.
Next, let us analyze the asymptotic of f (v) at large v. By Equation (53), f(v)~v1−2k+η, so lim

v→∞
f (v) = ∞

at k < (η + 1)/2, and lim
v→∞

f (v) = 0 at k > (η + 1)/2. Therefore, the Equation (52) is guaranteed to have a

solution 1 ≤ v <∞ only at k < (η + 1)/2. Similarly to Equation (33), the first derivative f′(v) is positive at
v ≥ 1 at natural conditions. Hence, the solution to the Equation (52) is unique if it exists. The payoff

(48) is obtained from Equations (3) and (46).
If 0 < a < acr, then the optimal zN = 0 is a corner solution in [0,∞), while the optimal xN and yN

coincide with (19) and (20). The payoff (48) is the same as (18).
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The theorem is proven. �

Again, a solution to the cooperative problem (5) is obtained using Theorem 1. Namely, if a > acr, where

acr =

22+η−2k(1 + D)2+η−2k(1− k)η

(1− η)A2k2k

1/(1+η−2k)

Then

xC =
yC

1−k

kA
, yC =

2k
(
vC + DvC

2
)

a
> 0, zC =

vC − 1
a

> 0, (54)

where vC, 1 ≤ vC <∞, is a unique solution of the nonlinear equation

vC
−2k

(
2(1− k)DvC

2 + (1− 2k)vC + 1
)η
(1 + DvC)

2(1−k) =
σ

n2

(
2k
a

)2k

. (55)

If a < acr, then zC = 0, while xC and yC are found in Equations (19) and (20).
The cooperative payoff is

FC =

(
1− k

k
yC − zC

)−η[1 + η− 2k
2

yC

k
− zC

]
. (56)

The solutions (46) and (47) and (54) and (55) depend on six given model parameters: risk aversion
η, mitigation efficiency k, adaptation efficiency a, productivity A, climate change vulnerability B, and the
number of countries n. Analysis of these dependencies leads to interesting outcomes with relevant
policy implications. Analogously to Theorem 4 and Corollary 1, we establish the following result.

Corollary 2. Let k < (η + 1)/2 in the competitive game (4). Then, the optimal emission xN is smaller and
mitigation yN is larger for a larger n. For n >> 1,

xN ∼ n
1−k

1+η−2k , yN ∼ n
1

1+η−2k , and zN ∼ n
η−2k

2(1+η−2k) . (57)

i.e., the adaptation zN increases in n at k < η/2 and decreases otherwise. The optimal ratio between adaptation
and mitigation

zN

yN
∼ n

1
2+

1
2(1+η−2k) . (58)

The global emission E = NxN n
η−k

1+η−2k is smaller for larger n at k > η and larger at k < η.
The optimal emission, adaptation, and mitigation efforts are larger in both competitive (4) and cooperative

(5) games for a larger A. At A >> 1,

xN ∼ xC ∼ A
1−η

1+η−2k , yN ∼ yC ∼ A
2

1+η−2k , and zN ∼ zC ∼ A
1

1+η−2k , (59)

and the optimal ratio between adaptation and mitigation decreases with A as

zN

yN
∼

zC
yC
∼ A

−1
1+η−2k . (60)

Proof. The first step is to obtain an asymptotic estimate (for large n) for the solution v of nonlinear
Equation (47). Using the same technique as in Corollary 1, we obtain the estimate

v ≈

 (1− η)k2kA2a1−2k+ηn−η

24−2k−η(1− k)kBD2−2k+η

1/2(1−2k+η)

� 1 (61)
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for the solution v of Equation (47) when f (v) is large. The formula (61) is similar to (52) but includes the
additional parameter k. Nevertheless, fixing all parameters in Equation (61) except for n, we obtain the
asymptotic estimate v ~ n−η/2(1−2k+η). Next, substituting this estimate to Equation (46), we obtain the
asymptotic estimates (57) for xN, yN, zN and, subsequently, (58).

The asymptotic estimates (59) and (60) for the case of large and increasing A are
obtained analogously.

The Corollary is proven. �

Theorem 5 and Corollary 2 generalizes outcomes of Sections 3.1 and 3.2. First of all, the global
emission E in the competitive case is smaller for a larger number n of countries when the mitigation
technology is efficient (at k > η) and is larger at k < η. Second, the adaptation in both competitive (4) and
cooperative games (5) is positive only above a certain adaptation efficiency threshold. This threshold
depends on the country’s ratio between its vulnerability B, non-avoided damage D, and the productivity
A of the economy. A similar result was obtained for one country case in [5,26] and for a dynamic
two-country model in [20]. Theorem 5 extends this result to the multi-country case. Now, one can
see how this result depends on the number n of symmetric countries. In particular, by Equations (58)
and (60), the optimal ratio yN/zN between mitigation and adaptation in the competitive strategy is
smaller when more countries are involved in the game, and is larger when the country’s productivity
becomes larger.

A new outcome is that the adaptation investment zN in competitive strategy is larger in absolute
units for a larger number n if the mitigation effectiveness k is weak: k < η/2. At more effective mitigation:
η
2 < k < 1+η

2 , the adaptation becomes less relevant and decreases with n. If mitigation becomes even
more effective: k ≥ (η + 1)/2, then the optimal output grows faster than the mitigation cost and leads to
infinite output (as it was in the model (13) with mitigation only).

4. Discussion and Conclusions

Many recent publications [29–38,42–46] explore various economic, political, financial, welfare,
and regional aspects of strategic interplay between mitigation and adaptation. The majority of related
papers tend to favor mitigation versus adaptation for various relevant (and not-so-relevant) reasons.
The most convincing pitch of [38] states that adaptation always represents a significant loss of global
welfare and, as such, should be zero. The present paper adds a new argument to this discussion.
Namely, as opposed to the mitigation efficiency parameter k, the adaptation efficiency a does not appear
in the growth rates for the optimal emission and output in both competitive and cooperative strategies.
This implies that mitigation leads to a higher payoff than adaptation and, therefore, adaptation plays a
secondary role compared to mitigation in a crowded (large n) and/or highly efficient (large A) symmetric
world. Indeed, mitigation addresses the causes of environmental contamination, while adaptation
reduces related damages, but does not decrease the contamination itself.

At the same time, our analysis reveals that the presence of mitigation increases the effectiveness of
adaptation. Indeed, the output, emission, adaptation, and mitigation efforts (in both competition and
cooperation) increase with the country’s productivity, and this increase is faster with a more effective
mitigation. This outcome analytically confirms the recent simulation result of the integrated assessment
model AD-MERGE [8] that using both adaptation and mitigation is more effective than using just one.
In other words, there is a synergy between adaptation and mitigation, even in the one-country case.

The optimal pollution and output of an individual country are always larger in the presence
of mitigation than with no mitigation in both competitive and social optimum scenarios. However,
the competitive optimal welfare (payoff) evolution depends on the efficiency of mitigation. All of those
levels can only increase further when the adaptation is added.

As the primary strategy, the mitigation determines whether the collective action dilemma worsen
when the number n of players (countries) increases. Namely, the answer depends on the relation between
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mitigation efficiency k and the utility function parameter η (consumer risk aversion). The global emission
in the competitive world is larger for a larger number of countries when k < η and smaller at k > η.

Despite being a public good, mitigation is the only strategy that can alleviate the environmental
pollution problem. The optimal adaptation activity is also subjected to the mitigation efficiency. If the
mitigation is effective, then the adaptation effort decreases with n. When the mitigation is weak,
then adaptation investment in competition is larger in absolute units for a bigger n. The optimal ratio
between mitigation and adaptation investments in the competitive case decreases when the country’s
productivity is larger and increases when more countries are involved in the game.

In both competitive and cooperative cases, the adaptation is positive starting at a certain critical
level of a country’s productivity/harmfulness ratio. Adaptation in the cooperative case starts later
and is smaller than in competition. As shown above, the optimal environmental policy for weak
economies (with small productivity A) involves a minimal mitigation effort and no adaptation. In reality,
poorer countries are more affected by global environmental problems, but they simply cannot pay
for those efforts. A nonlinear game of two asymmetric regions, north and south, developed in [22],
addresses this inequality issue. Incorporating such asymmetries in a multi-country environmental
game is an important direction for further research.
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