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Abstract: We derive an extremum principle. It can be treated as an intermediate result between
the celebrated smooth-convex extremum principle due to Ioffe and Tikhomirov and the
Dubovitskii–Milyutin theorem. The proof of this principle is based on a simple generalization of the
Fermat’s theorem, the smooth-convex extremum principle and the local implicit function theorem.
An integro-differential example illustrating the new principle is presented.
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1. Introduction

Let us consider the following problem:
(P) minimize locally in both variables the function

f0 : X×Y → R (1)

under constraints
f (x, u) = 0, (2)

u ∈ U, (3)

where f : X×Y → Z, X, Y, Z are real Banach spaces, U ⊂ Y is a fixed set. By a local in (x, u) solution
to this problem we mean a pair (x∗, u∗) ∈ X×Y satisfying the constraints (2), (3) and such that

f0(x∗, u∗) ≤ f0(x, u) (4)

for any pair (x, u) ∈ Vx∗ ×Vu∗ satisfying the constraints, where Vx∗ is a neighborhood of x∗ in X and
Uu∗ is a neighborhood of u∗ in Y.

The aim of the paper is to derive an extremum principle for the problem (P), giving necessary
conditions for its solution. Such conditions allow one to find pairs (x, u) suspected of being the
solutions of the problem under consideration. More precisely, points that do not satisfy the necessary
conditions cannot be the solutions.

There are two known main powerful tools giving the necessary conditions for problems of such a
type. The first of them—the smooth-convex extremum principle due to Ioffe and Tikhomirov (see [1]
(Part 1.1.2, Theorem 3) and also Theorem 2 below)—can be used to study local in x solutions to (P).
Besides the standard smoothness and regularity assumptions in x imposed on f0 and f , it contains
a “convexity” assumption imposed on these functions with respect to u. In this theorem, one does
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not require the closedness of U nor non-emptiness of the interior of U. The second tool is the
Dubovitskii–Milyutin theorem (see [2–4] for a systematic exposition). From this theorem, one can
deduce necessary conditions for local in (x, u) solution to (P). In the formulation of this theorem,
some cones and the corresponding conjugate cones appear. To use the useful characterizations of the
cones, it must be assumed that f0 and f are smooth with respect to (x, u) and the set U is closed and
has a non-empty interior.

Let us point out that the paper [5] gives the most recent discussion of the smooth-convex
extremum principle. In particular, an extension of this principle—Lagrange’s principle for smoothly
approximately convex problems—has been derived for a problem containing some additional
“membership” constraint of type G(x) ∈ Q. The main novelty of this theorem lies in replacing the
smoothness and convexity assumptions by a smoothly approximate convexity assumption. The paper
also includes a very interesting historical commentary with relevant references.

Our principle (Theorem 3) gives necessary conditions for local in (x, u) solution to (P) under
smoothness of f0 and f in (x, u), without convexity and approximate convexity assumptions imposed
on f and f0 (we assume only the convexity of the set U) and without any assumptions on the closedness
of U as well as on the interior of U. Proof of this result is short and based on a very simple generalization
of the Fermat’s theorem, the smooth-convex principle applied to the linear problem (P) and the local
implicit function theorem. An example illustrating the obtained result is presented. It shows that
using the new principle one can improve the maximum principle derived in [6] with the aid of the
Dubovitskii–Milyutin theorem.

2. Preliminaries

In this section, we recall a generalization of the Fermat’s theorem, implicit function theorem and a
particular case of the smooth-convex extremum principle.

We say that a function g : U → R where U is a subset of a real Banach space Y, has a directional
derivative at u ∈ U in a direction h ∈ Y, if there exists t0 > 0 such that u + th ∈ U for t ∈ (0, t0) and
the limit

lim
t→0+

g(u + th)− g(u)
t

exists. In such a case, this limit is denoted as g′h(u) and called the directional derivative of g at u in
the direction h. We have the following lemma generalizing Fermat’s theorem (proof of this lemma
is immediate).

Lemma 1. Let U be a subset of a real Banach space Y. If a function g : U → R has the directional derivative at
u∗ ∈ U in the direction h ∈ Y and u∗ is a local minimum point of g on U, then

0 ≤ g′h(u∗). (5)

The classical local implicit function theorem in Banach spaces is the following theorem (see [1]).

Theorem 1 (local implicit function theorem). Let X, Y, Z be real Banach spaces, V—a neighborhood of
a point (x0, y0) in X × Y and F : V → Z—a mapping of class C1. Assume that F(x0, y0) = 0 and the
partial differential Fx(x0, y0) : X → Z is bijective. Then, there exist balls B(x0, ε), B(y0, δ) and a mapping
λ : B(y0, δ)→ B(x0, ε) such that

- equalities F(x, y) = 0 and x = λ(y) are equivalent in the set B(x0, ε)× B(y0, δ)

- λ is of class C1 and
λ′(y) = −[Fx(λ(y), y))]−1 ◦ Fy(λ(y), y)

for any y ∈ B(y0, δ).
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Now, let us consider the following problem:

(S) minimize locally in x the function

g0 : X×U → R

under constraints
g(x, u) = 0, (6)

where g : X×U → Z, X, Z are real Banach spaces, U is any fixed set. By a local in x solution to this
problem we mean a pair (x∗, u∗) ∈ X×U satisfying the constraints (6) and such that

g0(x∗, u∗) ≤ g0(x, u) (7)

for any pair (x, u) ∈ Vx∗ ×U satisfying (6), where Vx∗ is a neighborhood of x∗.
A particular case of the smooth-convex extremum principle (see [1]) is the following theorem.

Theorem 2. Let (x∗, u∗) be a local in x solution to the problem (S).

• for any u ∈ U, the mappings
X 3 x 7→ g0(x, u) ∈ R,

X 3 x 7→ g(x, u) ∈ Y,

are of class C1 at x∗,
• for any x ∈ Vx∗ where Vx∗ is a neighborhood of x∗ the mappings

U 3 u 7→ g0(x, u) ∈ R,

U 3 u 7→ g(x, u) ∈ Y,

satisfy the following „convexity” assumption: for any u1, u2 ∈ U, α ∈ (0, 1) there exists u ∈ U such that

g0(x, u) ≤ αg0(x, u1) + (1− α)g0(x, u2),

g(x, u) = αg(x, u1) + (1− α)g(x, u2),

• the differential
gx(x∗, u∗) : X → Y

is onto,

then there exists µ ∈ Y∗ (conjugate space (1)) such that

(g0)x(x∗, u∗)x + 〈µ, (gx(x∗, u∗)x)〉 = 0

for any x ∈ X and

g0(x∗, u∗) + 〈µ, g(x∗, u∗)〉 = min
u∈U

(g0(x∗, u) + 〈µ, g(x∗, u)〉).

1 By conjugate space (dual space) Y∗ to a real Banach space Y we mean the space of all linear continuous functionals µ : Y → R.
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3. An Extremum Principle

Assume that a point (x∗, u∗) ∈ X×Y is a local in (x, u) minimum point for the problem (P) with
a set U ⊂ Y. Moreover, assume that

1. f0 : X×Y → R is Frechet differentiable at (x∗, u∗)
2. f : X×Y → Z is of class C1 on some neighborhood of (x∗, u∗)
3. fx(x∗, u∗) : X → Z is bijective.

From the local implicit function theorem applied to f , it follows that there exist balls B(u∗, δ) and
B(x∗, ε) and a mapping λ : B(u∗, δ)→ B(x∗, ε) of class C1 with differential

λ′(u) = −[ fx(λ(u), u)]−1 ◦ fu(λ(u), u),

such that
f (λ(u), u) = 0

for u ∈ B(u∗, δ) (λ(u) is the unique point in B(x∗, ε) such that the last equality holds true).
Consider the mapping

g̃ : B(u∗, δ) 3 u 7−→ (λ(u), u) 7−→ f0(λ(u), u) ∈ R

Of course, this mapping is differentiable in u∗ and the differential g̃′(u∗) : Y → R at u∗ is of
the form

g̃′(u∗)u = ( f0)x(x∗, u∗)λ′(u∗)u + ( f0)u(x∗, u∗)u

= −( f0)x(x∗, u∗)([ fx(x∗, u∗)]−1( fu(x∗, u∗)u)) + ( f0)u(x∗, u∗)u

for u ∈ Y.
Now, let us assume that the set U ⊂ Y is convex and consider the mapping g = g̃ |B(u∗ ,δ)∩U .

Since U is convex and g̃ is differentiable at u∗, g has the directional derivative at u∗ in any direction
h = u− u∗ with u ∈ U. Clearly,

g′u−u∗(u∗) = g̃′(u∗)(u− u∗) = g̃′(u∗)u− g̃′(u∗)u∗.

It is easy to observe that u∗ is the local minimum point of g. So, from Lemma 1, it follows that

g̃′(u∗)u∗ ≤ g̃′(u∗)u

for any u ∈ U, i.e.,

− ( f0)x(x∗, u∗)([ fx(x∗, u∗)]−1( fu(x∗, u∗)u∗)) + ( f0)u(x∗, u∗)u∗
≤ −( f0)x(x∗, u∗)([ fx(x∗, u∗)]−1( fu(x∗, u∗)u)) + ( f0)u(x∗, u∗)u

for u ∈ U. Denoting
w = [ fx(x∗, u∗)]−1( fu(x∗, u∗)u),

w∗ = [ fx(x∗, u∗)]−1( fu(x∗, u∗)u∗)

we see that

( f0)x(x∗, u∗)(−w∗) + ( f0)u(x∗, u∗)u∗ ≤ ( f0)x(x∗, u∗)(−w) + ( f0)u(x∗, u∗)u

for any u ∈ U. Clearly,
fx(x∗, u∗)(−w) + fu(x∗, u∗)u = 0,
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fx(x∗, u∗)(−w∗) + fu(x∗, u∗)u∗ = 0.

In other words, the pair (z∗, u∗) ∈ X×U with z∗ = −w∗ is a solution to problem:

(LIN) minimize globally in (z, u) the function

h0 : X×U → R

given by
h0(z, u) = ( f0)x(x∗, u∗)z + ( f0)u(x∗, u∗)u

under constraints
h(z, u) = 0

where
h(z, u) = fx(x∗, u∗)z + fu(x∗, u∗)u.

Linearity of the mappings h0, h and regularity of the differential fx(x∗, u∗) imply that all
assumptions of Theorem 2 are satisfied for the problem (LIN). Consequently, there exists µ ∈ Y∗

such that
( f0)x(x∗, u∗)x + 〈µ, fx(x∗, u∗)x〉 = 0 (8)

for any x ∈ X and

( f0)u(x∗, u∗)u∗ + 〈µ, fu(x∗, u∗)u∗〉 = min
u∈U

(( f0)u(x∗, u∗)u + 〈µ, fu(x∗, u∗)u〉). (9)

Thus, we have proven the following extremum principle.

Theorem 3. If (x∗, u∗) ∈ X × Y is a local in (x, u) minimum point for the problem (P) with a convex set
U ⊂ Y and assumptions (1.)–(3.) are satisfied, then there exists µ ∈ Y∗ such that (8) and (9) hold true.

4. An Application

In paper [6], we consider the following optimal control problem described by the nonlinear
integro-differential equation of Volterra type{

x′(t) +
∫ t

a Φ(t, τ, x(τ), u(τ))dτ = Ψ(t, x(t), v(t)), t ∈ J := [a, b] a.e.,
x(a) = 0

(10)

with constraints
u ∈ M, v ∈ N (11)

and the nonlinear performance index of Bolza type

f0(x, u) =
∫ b

a
F0(t, x(t), u(t), v(t))dt + G0(x(b)) (12)

where Φ : P∆ ×Rn ×Rm → Rn, Ψ : J ×Rn ×Rr → Rn, F0 : J ×Rn ×Rm ×Rr → R, G0 : Rn → R,
M ⊂ Rm, N ⊂ Rr and

P∆ = {(t, τ) ∈ J × J; τ ≤ t}.

Consider the problem:
(ID) minimize locally in both variables (x and (u, v)) the function

f0(x, (u, v))
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under constraints
f (x, (u, v)) = 0,

(u, v) ∈ U = U1 ×U2,

where

f0 : AC2
0 × L∞

m+r 3 (x, (u, v)) 7−→
∫ b

a
F0(t, x(t), u(t), v(t))dt + G0(x(b)) ∈ R,

f : AC2
0 × L∞

m+r 3 (x, (u, v)) 7−→ x′(t) +
∫ t

a
Φ(t, τ, x(τ), u(τ))dτ −Ψ(t, x(t), v(t)) ∈ L2,

with the set of solutions AC2
0 = AC2

0(J,Rn) (set of absolutely continuous functions possessing
squared integrable derivatives, vanishing at t = 0) and the set of functional parameters (controls)
U = U1 ×U2 with

U1 = L∞
m (J, M) ⊂ L∞

m = L∞
m (J,Rm),

U2 = L∞
r (J, N) ⊂ L∞

r = L∞
r (J,Rr)

consisting of essentially bounded functions taking their values in the sets M ⊂ Rm, N ⊂ Rr,
respectively. On the sets M, N, we assume that they are convex.

Checking differentiability of f0, f and regularity of f just as in [6], we can obtain the maximum
principle given in [6] (Theorem 4.1) not assuming that the sets M, N are closed with nonempty interiors
(it is sufficient to assume only convexity of these sets).

5. Conclusions

In the paper, we derive a new extremum principle. In this principle, we do not impose any
convexity nor approximate convexity assumption on the functions f0, f describing the problem
(P)—such assumptions appear in the smooth-convex extremum principle and in the Lagrange’s
principle for smoothly approximately convex problems. We also do not assume that the set U
is closed and has nonempty interior—such an assumption usually appears when we apply the
Dubovitskii–Milyutin theorem to the problem (P) (see [6]).
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