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Abstract: CAR T-cell immunotherapy is a new development in the treatment of leukemia, promising
a new era in oncology. Although so far, this procedure only helps 50–90% of patients and, like other
cancer treatments, has serious side effects. In this work, we have proposed a controlled model for
leukemia treatment to explore possible ways to improve immunotherapy methodology. Our model is
described by four nonlinear differential equations with two bounded controls, which are responsible
for the rate of injection of chimeric cells, as well as for the dosage of the drug that suppresses the
so-called “cytokine storm”. The optimal control problem of minimizing the cancer cells and the
activity of the cytokine is stated and solved using the Pontryagin maximum principle. The five
possible optimal control scenarios are predicted analytically using investigation of the behavior of the
switching functions. The optimal solutions, obtained numerically using BOCOP-2.2.0, confirmed our
analytical findings. Interesting results, explaining, why therapies with rest intervals (for example,
stopping injections in the middle of the treatment interval) are more effective (within the model),
rather than with continuous injections, are presented. Possible improvements to the mathematical
model and method of immunotherapy are discussed.

Keywords: leukemia; nonlinear control system; optimal control; Pontryagin maximum principle;
switching function; Generalized Rolle’s Theorem

1. Introduction

Immunotherapy is a method of cancer treatment, in which the immune system is used to fight the
tumor. The immune system protects the body from infections and diseases. It attacks pathogens such
as bacteria and viruses. The immune system also helps to get rid of the body’s diseased or damaged
cells. The basic idea of immunotherapy is simple: to help the body protect itself from malicious
“invaders”. However, cancer cells can be insidious. Often, they find a way to “hide” from the immune
system or to disable its response. In general, immunotherapy aims to counteract some of these ways of
evading immune system attacks: helps the immune system find cancer cells and to kill them. There are
different types of immunotherapy, each of which has its own mechanism to strengthen the immune
system’s response.

One of the encouraging ways to use the body’s capabilities in the fight against cancer is therapy
with so-called T-lymphocytes with chimeric antigen (antigens—substances foreign to the body that
cause its immune response) receptors, abbreviated CAR-T, (Chimeric Antigen Receptor T-cell) appeared
relatively recently, at the beginning of the 21th century. In numerous publications this therapy is called
“a breakthrough in the treatment of oncology”, “a new era in medicine” [1,2].
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What is the idea behind such a molecule? One of its parts recognizes markers on the surface of
the tumor cell, while other parts transmit an activating signal to the cell of the immune system to
destroy the tumor cell. CAR T-cells are produced in the following way: T-lymphocytes are extracted
from the patient’s blood, that is, cells that should normally protect us from cancer and virus-infected
cells. This is done through apheresis, a technology that separates blood into components and produces
a certain number of lymphocytes. Then, DNA encoding CAR is inserted into the chromosomes of
T-lymphocytes, and the cell begins to produce on its surface those very chimeric, that is, artificially
created receptors that do not exist in nature. They are designed so that T-lymphocytes find markers
on the surface of cancer cells and receive a signal to attack them. The thus obtained CAR T-cells are
expanded and injected back into the patient’s blood.

What happens next? If CAR T-cells in a patient’s body collide with a normal cell, they are supposed
to simply float past each other; if they find a cancer cell, the chimeric antigen receptor recognizes a
specific marker on it, to which it was tuned during creation. The T-lymphocyte kills the cancer cell
and starts dividing very actively. One cell, equipped with a CAR T-receptor, produces hundreds and
even thousands. Such a self-replicating medicine. It was a believe that as long as there are cancer
cells in some corners of the body, CAR T-lymphocytes will destroy them. When all cancer cells are
destroyed, most of the CAR T-cells will die, some will remain in the bone marrow to reappear, multiply
and destroy the cancer if they recur. Why, then, even in the best case, the effectiveness of treatment
is only 50–90%, not 100%? ([2], table 2) It was found that 90% of cancer cells can carry the target
that CAR T-lymphocytes are targeting, but 10% cannot. And these 10% remain intact in the body
and multiply. In addition, some cancer cells can “escape” from CAR T-lymphocytes if it “removes”
or modifies targets on the surface of its cells. There are other problems that complicate treatment with
chimeric antigen receptors. For example, despite the fact that CAR T-cells by themselves can live a
long time, in an organism depleted by multiple chemotherapy they will multiply rather sluggishly
and ineffectively fight cancer cells. This is partly why this approach does not work in all cases.

At the same time, these antigens are not strictly cancer specific. When immunotherapy emerged
as an alternative to radio and chemotherapy, many people thought that this method of treatment
was not as harmful for the patients. However, CAR, although the most expensive, is still in
the process of developing because modified lymphocytes also kill healthy cells [3]. For example,
in the immune therapy used in treating blood cancers, CAR T-cells target CD19 antigen that is also
found on normal B-lymphocytes [4]. So, anti-CD19 CAR therapy leads to a decrease in blood of
B-lymphocytes (B-cell aplasia), which should be justified by the clinical anticancer effect in each
particular case [5,6]. Thus, the current chimeric T-cell receptors are not strictly specific to cancer cells.
In this regard, there may be a toxic effect on the principle of “organ-transplant against the host” [7–9].
In some cases, as is the case with B-cell aplasia in the treatment of anti-CD19 CAR T-lymphocytes of
lympho-proliferative diseases, this is not too severe a complication and is stopped by the introduction
of immunoglobulin [2]. However, sometimes the toxic effect of CAR T-lymphocytes is an obstacle to
their clinical use. Everything is determined by the correctness of the chosen target and the acceptable
level of observed complications [10].

The world has already conducted clinical trials on several thousand patients with blood cancers.
The FDA (Food and Drug Administration) approved the first application of CD19 CAR immunotherapy
for USA patients in 2007. Now this therapy shows the effectiveness of 50–90% in the treatment of
patients even with terminal stage lymphoblastic leukemia, lymphoma and myeloma [2]. Side effects
are associated with the fact that CAR T-cells are too powerful. By attacking cancer cells, they also affect
other cells of the immune system, forcing them to release massively biologically active substances,
cytokines. This leads to another major problem in the usage of CAR lymphocytes, the so-called
“cytokine storm”.

The symptom of “a cytokine storm” is primarily an increase in temperature and hypotension,
which can lead to multiple organ failure. The prevention of it consists of the use of steroids,
vasopressors and supportive therapy in the conditions of the intensive care unit. Recently, the use of
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antibodies against TNF-α (infliximab) and antibodies against the interleukin-6 receptor (tocilizumab) or
monotherapy with the use of tocilizumab showed good results (see, for example, [11]). Unlike many
conventional drug-induced side effects, this toxicity cannot be managed by simply reducing the
dosage of the drug, as the number of proliferating T-cells will increase in number and may eventually
reach critical level. Prevention of the “cytokine storm” is seems to be manageable by the fractional
introduction of T-lymphocytes or by the use of short-lived populations of lymphocytes [10]. It is
gratifying that many doctors have already learned to predict and control the development of
“a cytokine storm” in most patients.

Thus, besides the purely biomedical task of making immunotherapy more specific to certain types
of cancer, there are two main questions with CAR T-cell immunotherapy:

1. With what frequency and at what intervals should chimeric leukocytes be injected and in
what concentrations?

2. How to take a medicine that suppresses the “surge” of the immune system? If between
injections the patient seems to be resting, is it necessary to simultaneously stop giving the
immunosuppressant, or are these two independent procedures?

In order not to go through all the possible options in the treatment of cancer patients, one can try to
formulate the situation in immunotherapy mathematically and create a mathematical model to answer
these and other questions. Currently, many models have been created that help to understand and
predict both the dynamics of tumor growth itself and those works whose authors propose controlled
models and, together with optimization ideas, simultaneously try to find the optimal treatment
protocol. In this sense, the survey of mathematical models for leukemia and lymphoma given in [12] is
very useful. It shows that deterministic ODE models can serve as good approximations of the average
behavior of a system when the populations are large and so such models can be suitable for describing
the late stages of cancer.

The main goal of mathematical modeling of cancer is to improve treatment, either by
optimizing the way existing therapies are being administered or by motivating novel therapies [12].
After consideration of many papers, we find especially interesting the works of [13], in which the
authors present a competition model of cancer tumor growth that includes the immune system response
and drug therapy, as well as a recent article [14], in which the authors model chimeric anti-gene
receptor T-cell therapy (CAR therapy) with presence of interleukin-6, the cytokine responsible for
“cytokine storm”. In both papers the authors use the optimal control theory to numerically find the
optimal treatment schedule.

For various reasons, as well as depending on the individual characteristics of the patient
undergoing immunotherapy treatment, chimeric cells can behave ambiguously or differently:
they either become too active and divide uncontrollably, or vice versa, behave sluggishly, inactive,
sometimes killing healthy cells. It seems logical to model the case of super-active CAR T-cells
either with a predator-one prey model plus additional competition between healthy and cancer
cells (this would be a case of ideal immunotherapy) or with a model with one predator and two preys
(this is when active chimeras are nonspecific and might kill healthy cells as well). In turn, for an
organism weakened by radio- or chemotherapy, CAR T-cells are not very active or specific and the
competition model for all three types of cells seems more suitable. The model of the latter type is
considered in this work, which is the continuation of our studies presented in [15–17].

We propose and investigate controlled model of CAR T-cell immunotherapy that employs and
combines the best ideas presented in [13,14]. In our controlled model, the dynamics of CAR T-cells,
normal or healthy B-cells, cancer cells, and the cytokines is described by four ordinary differential
equations of Lotka-Volterra competition type with two bounded controls. The first control represents
the concentration of the injected CAR immune T-cells and its influence on the variables of system.
The second control reflects the effect of the immunosuppressant drug, such as tocilizumab and its role
on preventing “cytokine storm”.
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The paper is organized as follows. In Section 2 we define the model and state the optimal control
problem of minimizing the tumor’s cells and concentration of the cytokines. In Section 3, we apply the
Pontryagin maximum principle and find the type of optimal controls that depend on the switching
functions. Here we find that the second optimal control reflecting the suppressive effect of possible
“cytokine storm” is constant, taking the maximum value on the entire time interval of treatment period.
In Section 4, we study the properties of the first switching function analytically and find that the
corresponding optimal control takes its maximum value in the end of the time interval. In Sections 5–7,
we reduce the matrix to an upper triangular form, split the system and analyze quadratic subsystems.
In Section 8, we find the type of the switching function that determines the behavior of the first optimal
control responsible for the CAR injection schedule. We prove that the switching function has not
more than two zeros. In Section 9 we find analytically that the first optimal control has at most two
switchings and that depending on model parameters, it can take one of the five optimal treatment
scenarios. Section 10 shows computer simulation of the model at different model parameters and
demonstrate the optimal solutions. Section 11 contains our conclusions.

2. Model and Optimal Control Problem

At a given time interval [0, T], which is the treatment time, let us consider a controlled model
for the spread and immunotherapy of leukemia. The model is described by the following nonlinear
system of differential equations:

x′(t) = rx(t)− α1x(t)y(t)− β1x(t)z(t) + mu(t)x(t),

y′(t) = py(t)− ηy2(t)− α2y(t)x(t)− β2y(t)z(t),

z′(t) = qz(t)− γz2(t)− α3z(t)x(t)− β3z(t)y(t),

w′(t) = λ− νw(t) + n(1− v(t))w(t)x(t)

(1)

with given initial values:

x(0) = x0, y(0) = y0, z(0) = z0, w(0) = w0;
x0 > 0, y0 > 0, z0 > 0, w0 > 0.

(2)

In this model, x(t) denotes the population of CAR modified T-lymphocytes at time t, y(t) the
population of B-leukemic or cancer cells, z(t) the population of healthy B-cells, and w(t)—inflammatory
cytokines, such as Il-6, the population of which is elevated by the immune therapy.

Firstly, let us consider the second and the third equations of the control system. The first two
terms of the both equations:

py(t)− ηy2(t) = py(t)
(

1− p−1ηy(t)
)

, qz(t)− γz2(t) = qz(t)
(

1− q−1γz(t)
)

reflect a logistic growth law for the cancer and healthy B-cells. The parameters p, q and p−1η,
q−1γ represent the corresponding per capita growth rates and reciprocal carrying capacities of
these types of cells. The last terms in the both equations −β2y(t)z(t) and −β3z(t)y(t) represent
decrease in the populations of the cancer and healthy cells because of their competition; β2 and β3

are the corresponding competition coefficients. The third terms in the both equations −α2y(t)x(t)
and −α3z(t)x(t) show a decrease in the populations of cancer and healthy cells as a result of their
interaction with the immune modified T-cells, x(t). Here, α2 and α3 are the corresponding relative
compatibility coefficients.

Secondly, let us explain the first and the fourth equations of the model. In the first equation,
the first term rx(t) involves proliferation of CAR T-cells due to stimulation by encounters with their
target cells that contain CD19 antigen, and r is the per capita growth rate of this type of cells. We do
not consider here their natural death since they do not undergo apoptosis after killing the target
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cells [3]. While the x(t) cells population does decrease after killing the target cells, y(t), z(t) that
is displayed by the corresponding second and third terms −α1x(t)y(t) and −β1x(t)z(t) of the
first differential equation, this interaction with target cells somewhere how stimulates CAR cells
proliferation. Here α1 and β1 are the corresponding killing efficiency of CAR T-cells in relation to
cancer and healthy cells. The last term mu(t)x(t) of the first equation reflects an increase in the
population of x(t) cells due to the controlled injection of the modified chimeric T-cells. Here u(t) is the
first bounded control. This control represents a kind of intensity of CAR immunotherapy. The control
itself changes from zero to the maximum value. If the control is equal to zero, then the injection of
chimeric cells is not performed, and if it is maximum, then this corresponds to the injection with the
maximum concentration of chimeric cells. The mathematical properties of control u(t) are explained
below. Finally, m reflects the efficiency of the CAR T-cell therapy.

The fourth differential equation describes the dynamics of the Il-6 cytokines. The first term λ of it
is the influx rate (secreting rate) of the cytokines. The second term−νw(t) indicates a negative feedback
mechanism mentioned in [14], and ν is the cytokine decay rate. An elevating increase in the cytokine
level caused by the CAR T-cell immunotherapy that appears as the “cytokine storm”, manifested
as a systemic inflammatory process in all vital organs of patients receiving CAR immunotherapy,
is reflected by the last term n(1− v(t))w(t)x(t) of the differential equation. This last term of the
controlled model contains the second bounded control v(t) that plays the role of the intensity of
the dosage of immunosuppressant drug intake. The second bounded control takes values from 0
(no medication is given) to 1 (the maximum dosage of anti-inflammatory drag is taken), and n reflects
the efficiency of this dosage. Our goal is by using two controls, find such optimal treatment protocol
that minimizes the cancer cells and prevent over activity of the cytokines.

All the parameters of the model are positive constants, the value of which depends on each
specific case. We consider that the following assumption is true.

Assumption 1. Let in system (1) the parameters: r, p, q, m, n, η, γ, λ, ν, α1, α2, α3, β1, β2, β3 be positive,
and for them the following inequalities hold:

p− q ≥ 0, α3 − α2 ≥ 0, (3)

β3 − η ≥ 0, β2β3 − γη ≥ 0, (4)

α2β3 − α3η ≥ 0, α2γ− α3β2 ≥ 0, (5)

α1(α2γ− α3β2)− β1(α2β3 − α3η) ≥ 0, (6)

and one of the inequalities in (3) and in (5) be strict.

It is easy to see that the fulfillment of inequalities (3)–(5) implies the validity of the
following relationships:

α2(β2β3 − γη) + (β3 − η)(α2γ− α3β2) ≥ 0,

α3(β2β3 − γη) + (γ− β2)(α2β3 − α3η) ≥ 0.
(7)

Next, in system (1), two control functions u(t) and v(t) are introduced. They subject to
the restrictions:

0 ≤ u(t) ≤ umax, 0 ≤ v(t) ≤ 1. (8)

We consider that the set of all admissible controls Ω(T) is formed by all possible pairs of Lebesgue
measurable functions (u(t), v(t)), which for almost all t ∈ [0, T] satisfy inequalities (8).

The positiveness, boundedness and continuation of the solutions for system (1) and (2) is
established by the following lemma.
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Lemma 1. For any pair of admissible controls (u(t), v(t)) the corresponding absolutely continuous solutions
x(t), y(t), z(t), w(t) for system (1) and (2) are defined on the entire interval [0, T] and satisfy the inequalities:

0 < x(t) ≤ xmax, 0 < y(t) ≤ ymax, 0 < z(t) ≤ zmax, 0 < w(t) ≤ wmax, t ∈ [0, T], (9)

where
xmax = x0e(r+mumax)T , ymax = y0epT , zmax = z0eqT ,

wmax = w0enxmaxT + λ(nxmax)
−1
(

enxmaxT − 1
)

.

The proof of Lemma 1 is fairly straightforward and we omit it.
Now, let us consider for system (1) and (2) on the set of admissible controls Ω(T) the following

minimization problem:

J(u(·), v(·)) = (y(T)− µz(T) + δw(T)) +
T∫

0

(y(t)− µz(t) + δw(t))dt→ min
(u(·),v(·))∈Ω(T)

, (10)

where µ and δ are positive weighting factors. The objective function in (10) is a sum of terminal
and integral parts. The terminal part reflects the patient’s state (the weighted combination of the
populations of leukemia cells, healthy B-cells and cytokines) at the end of the treatment period, and the
integral term sets this state throughout the entire treatment period. For convenience of notation, in the
objective function we denote the terminal part by I.

The existence in the minimization problem (10) of the optimal controls (u∗(t), v∗(t)) and the
corresponding optimal solutions x∗(t), y∗(t), z∗(t), w∗(t) for system (1) and (2) follows from Lemma 1
and Theorem 4 ([18], Chapter 4). Indeed, the key assumptions of this theorem are true. Namely,
inequalities (9) from Lemma 1 give a uniform estimate for the solution (x(t), y(t), z(t), w(t)) of
system (1) and (2) corresponding to any pair of admissible controls (u(t), v(t)) from Ω(T) for all
t ∈ [0, T]. This is the first key assumption. Next, system (1) is linear in controls u(t) and v(t), and the
integrand of the objective function in (10) does not depend on these controls. These facts ensure the
convexity of the set of generalized velocities, which is the second key assumption.

3. Pontryagin Maximum Principle

We apply the Pontryagin maximum principle [19], which is the necessary optimality condition,
in order to analyze the optimal controls u∗(t), v∗(t) and the corresponding optimal solutions x∗(t),
y∗(t), z∗(t), w∗(t). Firstly, let us define the Hamiltonian:

H(x, y, z,w, u, v, ψ1, ψ2, ψ3, ψ4) = (r− α1y− β1z + mu)xψ1 + (p− ηy− α2x− β2z)yψ2

+ (q− γz− α3x− β3y)zψ3 + (λ− νw + n(1− v)wx)ψ4 − (y− µz + δw),

where ψ1, ψ2, ψ3, ψ4 are the adjoint variables.
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Secondly, we calculate the required partial derivatives:

H′x(x, y, z, w, u, v, ψ1, ψ2, ψ3, ψ4) = (r− α1y− β1z + mu)ψ1 − α2yψ2

− α3zψ3 + n(1− v)wψ4,

H′y(x, y, z, w, u, v, ψ1, ψ2, ψ3, ψ4) = (p− ηy− α2x− β2z)ψ2 − α1xψ1

− ηyψ2 − β3zψ3 − 1,

H′z(x, y, z, w, u, v, ψ1, ψ2, ψ3, ψ4) = (q− γz− α3x− β3y)ψ3 − β1xψ1

− β2yψ2 − γzψ3 + µ,

H′w(x, y, z, w, u, v, ψ1, ψ2, ψ3, ψ4) = (−ν + n(1− v)x)ψ4 − δ,

H′u(x, y, z, w, u, v, ψ1, ψ2, ψ3, ψ4) = mxψ1,

H′v(x, y, z, w, u, v, ψ1, ψ2, ψ3, ψ4) = −nwxψ4.

Then, in accordance with the Pontryagin maximum principle, for the optimal controls u∗(t),
v∗(t) and the optimal solutions x∗(t), y∗(t), z∗(t), w∗(t) there exists a vector-function ψ∗(t) =

(ψ∗1 (t), ψ∗2 (t), ψ∗3 (t), ψ∗4 (t)) such that:

• ψ∗(t) is a nontrivial solution of the adjoint system:

ψ∗1
′(t) = −H′x(x∗(t), y∗(t), z∗(t), w∗(t), u∗(t), v∗(t), ψ∗1 (t), ψ∗2 (t), ψ∗3 (t), ψ∗4 (t))

= −(r− α1y∗(t)− β1z∗(t) + mu∗(t))ψ∗1 (t) + α2y∗(t)ψ∗2 (t)

+ α3z∗(t)ψ∗3 (t)− n(1− v∗(t))w∗(t)ψ∗4 (t),

ψ∗2
′(t) = −H′y(x∗(t), y∗(t), z∗(t), w∗(t), u∗(t), v∗(t), ψ∗1 (t), ψ∗2 (t), ψ∗3 (t), ψ∗4 (t))

= −(p− ηy∗(t)− α2x∗(t)− β2z∗(t))ψ∗2 (t) + α1x∗(t)ψ∗1 (t)

+ ηy∗(t)ψ∗2 (t) + β3z∗(t)ψ∗3 (t) + 1,

ψ∗3
′(t) = −H′z(x∗(t), y∗(t), z∗(t), w∗(t), u∗(t), v∗(t), ψ∗1 (t), ψ∗2 (t), ψ∗3 (t), ψ∗4 (t))

= −(q− γz∗(t)− α3x∗(t)− β3y∗(t))ψ∗3 (t) + β1x∗(t)ψ∗1 (t)

+ β2y∗(t)ψ∗2 (t) + γz∗(t)ψ∗3 (t)− µ,

ψ∗4
′(t) = −H′w(x∗(t), y∗(t), z∗(t), w∗(t), u∗(t), v∗(t), ψ∗1 (t), ψ∗2 (t), ψ∗3 (t), ψ∗4 (t))

= (ν− n(1− v∗(t))x∗(t))ψ∗4 (t) + δ,

ψ∗1 (T) = −I′x(T) = 0, ψ∗2 (T) = −I′y(T) = −1, ψ∗3 (T) = −I′z(T) = µ,

ψ∗4 (T) = −I′w(T) = −δ;

(11)

• the controls u∗(t) and v∗(t) maximize the Hamiltonian

H(x∗(t), y∗(t), z∗(t), w∗(t), u, v, ψ∗1 (t), ψ∗2 (t), ψ∗3 (t), ψ∗4 (t))

with respect to variables u ∈ [0, umax] and v ∈ [0, 1] for almost all t ∈ [0, T], and therefore they
satisfy the relationships:

u∗(t) =


umax , if mx∗(t)ψ∗1 (t) > 0,
any u ∈ [0, umax] , if mx∗(t)ψ∗1 (t) = 0,
0 , if mx∗(t)ψ∗1 (t) < 0,

(12)

v∗(t) =


1 , if − nw∗(t)x∗(t)ψ∗4 (t) > 0,
any v ∈ [0, 1] , if − nw∗(t)x∗(t)ψ∗4 (t) = 0,
0 , if − nw∗(t)x∗(t)ψ∗4 (t) < 0.

(13)
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4. Properties of the Switching Functions and Optimal Controls

We establish the validity of the following lemma.

Lemma 2. The adjoint variable ψ∗4 (t) is negative on the interval [0, T].

Proof of Lemma 2. Let us select from the adjoint system (11) the Cauchy problem for the adjoint
variable ψ∗4 (t) in the form{

ψ∗4
′(t) = (ν− n(1− v∗(t)x∗(t))ψ∗4 (t) + δ, t ∈ [0, T],

ψ∗4 (T) = −δ,

and then integrate it. As a result, we find the formula

ψ∗4 (t) = −δe
−ν(T−t)+n

T∫
t
(1−v∗(ξ))x∗(ξ)dξ

1 +
T∫

t

e
ν(T−s)−n

T∫
s
(1−v∗(ξ))x∗(ξ)dξ

ds

 ,

from which the statement of this lemma immediately follows.

The validity of the theorem below follows from Lemmas 1 and 2 and also Formula (13).

Theorem 1. Optimal control v∗(t) is a constant function of the type

v∗(t) = 1, t ∈ [0, T]. (14)

This fact means that the drug intake, which is given by the control function v(t), occurs with
maximum intensity of 1 over the entire treatment period [0, T].

Now we substitute the Formula (14) into the first equation of the adjoint system (11), and also
exclude the last equation from it together with the corresponding initial condition. As a result,
we obtain the simplified adjoint system:

ψ∗1
′(t) = −(r− α1y∗(t)− β1z∗(t) + mu∗(t))ψ∗1 (t) + α2y∗(t)ψ∗2 (t) + α3z∗(t)ψ∗3 (t),

ψ∗2
′(t) = −(p− ηy∗(t)− α2x∗(t)− β2z∗(t))ψ∗2 (t) + α1x∗(t)ψ∗1 (t) + ηy∗(t)ψ∗2 (t)

+ β3z∗(t)ψ∗3 (t) + 1,

ψ∗3
′(t) = −(q− γz∗(t)− α3x∗(t)− β3y∗(t))ψ∗3 (t) + β1x∗(t)ψ∗1 (t) + β2y∗(t)ψ∗2 (t)

+ γz∗(t)ψ∗3 (t)− µ,

ψ∗1 (T) = 0, ψ∗2 (T) = −1, ψ∗3 (T) = µ.

(15)

In this system, let us perform the change of adjoint variables in accordance with the formulas:

φ∗1 (t) = x∗(t)ψ∗1 (t), φ∗2 (t) = y∗(t)ψ∗2 (t), φ∗3 (t) = z∗(t)ψ∗3 (t). (16)

Due to the corresponding equations of systems (1) and (15), we obtain appropriate equations for
the new adjoint variables (16) as

φ∗1
′(t) = α2x∗(t)φ∗2 (t) + α3x∗(t)φ∗3 (t),

φ∗2
′(t) = α1y∗(t)φ∗1 (t) + ηy∗(t)φ∗2 (t) + β3y∗(t)φ∗3 (t) + y∗(t),

φ∗3
′(t) = β1z∗(t)φ∗1 (t) + β2z∗(t)φ∗2 (t) + γz∗(t)φ∗3 (t)− µz∗(t).
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Adding to them following from (15) and (16) new initial conditions, we find the corresponding
adjoint system: 

φ∗1
′(t) = α2x∗(t)φ∗2 (t) + α3x∗(t)φ∗3 (t), t ∈ [0, T],

φ∗2
′(t) = α1y∗(t)φ∗1 (t) + ηy∗(t)φ∗2 (t) + β3y∗(t)φ∗3 (t) + y∗(t),

φ∗3
′(t) = β1z∗(t)φ∗1 (t) + β2z∗(t)φ∗2 (t) + γz∗(t)φ∗3 (t)− µz∗(t),

φ∗1 (T) = 0, φ∗2 (T) = −y∗(T), φ∗3 (T) = µz∗(T).

(17)

Now, analyzing relationship (12) and the first formula in (16), we rewrite this relationship
as follows

u∗(t) =


umax , if L(t) > 0,
any u ∈ [0, umax] , if L(t) = 0,
0 , if L(t) < 0,

(18)

where L(t) = φ∗1 (t) is a switching function, the behavior of which defines the form of the optimal
control u∗(t).

Let us obtain the system of differential equations for the function L(t). We introduce the first
function corresponding to the switching function as

G(t) = α2φ∗2 (t) + α3φ∗3 (t).

Then, the first differential equation in (17) can be rewritten as

L′(t) = b1(t)G(t), (19)

where b1(t) = x∗(t).
By the inequalities (5) from Assumption 1, we introduce the second function corresponding to the

switching function as

P(t) = φ∗3 (t) +
α2(α2y∗(t)− α3µz∗(t))

α2(α2β3 − α3η)y∗(t) + α3(α2γ− α3β2)z∗(t)
. (20)

Then, using the second and third equations of system (17), we find the equation:

G′(t) = a2(t)L(t) + b2(t)G(t) + c2(t)P(t), (21)

where the functions a2(t), b2(t), c2(t) are defined as

a2(t) = α1α2y∗(t) + α3β1z∗(t),

b2(t) = α−1
2 (α2ηy∗(t) + α3β2z∗(t)),

c2(t) = α−1
2 (α2(α2β3 − α3η)y∗(t) + α3(α2γ− α3β2)z∗(t)).

Again using the third equation of system (17) and also the second and third equations of system (1),
we obtain the equation:

P′(t) = a3(t)L(t) + b3(t)G(t) + c3(t)P(t) + F(t), (22)

where the functions a3(t), b3(t), c3(t) are defined by the formulas:

a3(t) = β1z∗(t), b3(t) = α−1
2 β2z∗(t), c3(t) = α−1

2 (α2γ− α3β2)z∗(t),
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and the function F(t) is given by the relationship

F(t) = α2((α2γ− α3β2) + µ(α2β3 − α3η))y∗(t)z∗(t)

× α2α3(p− q) + (α3 − α2)(x∗(t) + α2β3y∗(t) + α3β2z∗(t))
(α2(α2β3 − α3η)y∗(t) + α3(α2γ− α3β2)z∗(t))2 .

(23)

By inequalities (3) and (5), it is easy to see that this function takes positive values on [0, T].

Remark 1. An important property of the function F(t) is its sign-definiteness on the interval [0, T]. From the
analysis of the formula (23), we can conclude that this property is preserved if, instead of inequalities (3),
the inequalities:

p− q ≤ 0, α3 − α2 ≤ 0 (24)

hold, and only one of them is strict. Then, the function F(t) takes negative values on [0, T].

Now, gathering Equations (19), (21) and (22) for functions L(t), G(t), P(t) in one system and
then adding the appropriate initial conditions due to the definitions of these functions and the initial
conditions from (17), we find the required system of differential equations for the switching function
L(t) and the functions G(t) and P(t) that correspond to it:

L′(t) = b1(t)G(t), t ∈ [0, T],

G′(t) = a2(t)L(t) + b2(t)G(t) + c2(t)P(t),

P′(t) = a3(t)L(t) + b3(t)G(t) + c3(t)P(t) + F(t)

(25)

with the initial conditions for the first two functions:

L(T) = 0, G(T) = −(α2y∗(T)− α3µz∗(T)). (26)

Here the function F(t) is defined by Formula (23).
Finally, let us analyze the behavior of the switching function L(t) in a neighborhood of t = T.

The following lemma is true.

Lemma 3. In the neighborhood adjacent to t = T, the switching function L(t) takes only positive values if
α2y∗(T)− α3µz∗(T) ≥ 0, and only negative values if α2y∗(T)− α3µz∗(T) < 0.

Proof of Lemma 3. First, let us consider the case, when

α2y∗(T)− α3µz∗(T) 6= 0. (27)

The definition of the function G(t) implies its continuity on the interval [0, T]. Then,
the neighborhood of t = T is defined, in which due to (27) and the second initial condition from (26),
this function is negative if α2y∗(T)− α3µz∗(T) > 0, and positive if α2y∗(T)− α3µz∗(T) < 0. Then,
integrating in this neighborhood the first equation of system (25) with the appropriate initial condition
from (26), we find the formula

L(t) = −
T∫

t

b1(ξ)G(ξ)dξ, (28)

from which the positivity or negativity of the switching function L(t) immediately follows.
Now, we consider the case, when

α2y∗(T)− α3µz∗(T) = 0.
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It is easy to see that then the Formula (20) implies the equality

P(T) = µz∗(T), (29)

and the initial condition from (26) for the function G(t) is rewritten as G(T) = 0. Let us integrate the
second equation of system (25) with this initial condition. As a result, we have the formula

G(t) = −
T∫

t

e
−

s∫
t

b2(ξ)dξ

(a2(s)L(s) + c2(s)P(s)) ds. (30)

The definitions of the functions a2(t), c2(t), L(t), P(t) ensure their continuity on the interval
[0, T]. Then, the first initial condition from (26) and (29) imply the existence of the neighborhood of
t = T in which the function (a2(t)L(t) + c2(t)P(t)) takes positive values. Considering the values of
t in Formula (30) only from this neighborhood, we conclude that in it the function G(t) is negative.
Due to (28), we see that in this neighborhood the switching function L(t) takes positive values.

The validity of the theorem below follows from Lemma 3 and Formula (18).

Theorem 2. A neighborhood is defined adjacent to t = T, at which the optimal control u∗(t) takes the maximum
value umax if α2y∗(T)− α3µz∗(T) ≥ 0, and the minimum value 0 if α2y∗(T)− α3µz∗(T) < 0.

This fact means that the CAR T-cell therapy, which is expressed by the control function u(t),
at the end of the treatment period [0, T] can occur with both maximum intensity umax and minimum
intensity 0.

5. Reducing the Matrix of System to the Upper Triangular Form

We see that the system (25) is linear non-autonomous system of differential equations. Its matrix
has the form:  0 b1(t) 0

a2(t) b2(t) c2(t)
a3(t) b3(t) c3(t)

 .

For the convenience of analysis of such a system, we reduce this matrix to a special upper
triangular form ∗ ∗ 0

0 ∗ ∗
0 0 ∗

 , (31)

using a change of variables:

L̃(t) = L(t), G̃(t) = G(t)− h1(t)L(t), P̃(t) = P(t)− h2(t)L(t)− h3(t)G(t),

where the functions hi(t), i = 1, 2, 3 will be determined later in a special way. In matrix (31), the symbol
∗ denotes its nonzero elements.

Now, let us obtain the corresponding differential equations for the functions L̃(t), G̃(t) and P̃(t)
using the equations of system (25). Performing direct calculations, for the function L̃(t) we have
the equation:

L̃′(t) = b1(t)h1(t)L̃(t) + b1(t)G̃(t). (32)
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Using similar calculations for the function G̃(t), the following expression can be found

G̃′(t) =
[
−h′1(t)− b1(t)h2

1(t) + c2(t)h1(t)h3(t) + b2(t)h1(t) + c2(t)h2(t) + a2(t)
]

L̃(t)

+ (b2(t) + c2(t)h3(t)− b1(t)h1(t))G̃(t) + c2(t)P̃(t).
(33)

Let us choose the functions hi(t), i = 1, 2, 3 in such a way that the expression for L̃(t) vanishes
identically. This implies that the function h1(t) satisfies the differential equation:

h′1(t) = −b1(t)h2
1(t) + c2(t)h1(t)h3(t) + b2(t)h1(t) + c2(t)h2(t) + a2(t). (34)

Then, expression (33) is transformed to the differential equation:

G̃′(t) = (b2(t) + c2(t)h3(t)− b1(t)h1(t))G̃(t) + c2(t)P̃(t). (35)

Finally, we carry out similar direct calculations for the function P̃(t). As a result, the following
expression can be obtained

P̃′(t) =
[
(−h′2(t)− c2(t)h2(t)h3(t) + c3(t)h2(t)− a2(t)h3(t) + a3(t))

+ h1(t)(−h′3(t)− c2(t)h2
3(t)− b1(t)h2(t)− (b2(t)− c3(t))h3(t) + b3(t))

]
L̃(t)

+
[
−h′3(t)− c2(t)h2

3(t)− b1(t)h2(t)− (b2(t)− c3(t))h3(t) + b3(t)
]

G̃(t)

+ (c3(t)− c2(t)h3(t))P̃(t) + F(t).

(36)

Let us choose the functions hi(t), i = 2, 3 in such a way that the expressions for L̃(t) and G̃(t)
vanish identically. This implies that the functions h2(t) and h3(t) satisfy the differential equations:

h′2(t) = −c2(t)h2(t)h3(t) + c3(t)h2(t)− a2(t)h3(t) + a3(t),

h′3(t) = −c2(t)h2
3(t)− b1(t)h2(t)− (b2(t)− c3(t))h3(t) + b3(t).

(37)

Then, expression (36) is transformed to the differential equation:

P̃′(t) = (c3(t)− c2(t)h3(t))P̃(t) + F(t). (38)

Gathering the Equations (32), (35) and (38) into one system, for the functions L̃(t), G̃(t) and P̃(t)
we obtain the linear non-autonomous system of differential equations:

L̃′(t) = b1(t)h1(t)L̃(t) + b1(t)G̃(t),

G̃′(t) = (b2(t) + c2(t)h3(t)− b1(t)h1(t))G̃(t) + c2(t)P̃(t),

P̃′(t) = (c3(t)− c2(t)h3(t))P̃(t) + F(t),

(39)

the matrix of which has the required upper triangular form (31).
Gathering the Equations (34) and (37) also in one system, for the functions hi(t), i = 1, 2, 3

realizing representation (39), we have the quadratic non-autonomous system of differential equations:
h′1(t) = −b1(t)h2

1(t) + c2(t)h1(t)h3(t) + b2(t)h1(t) + c2(t)h2(t) + a2(t),

h′2(t) = −c2(t)h2(t)h3(t) + c3(t)h2(t)− a2(t)h3(t) + a3(t),

h′3(t) = −c2(t)h2
3(t)− b1(t)h2(t)− (b2(t)− c3(t))h3(t) + b3(t).

(40)

Initial conditions
h1(0) = h0

1, h2(0) = h0
2, h3(0) = h0

3 (41)



Games 2020, 11, 53 13 of 26

can be added to system (40), where h0
1, h0

2 and h0
3 are constants. As a result, we have the Cauchy

problem (40) and (41). Then, as a consequence of the Existence and Uniqueness of Solution
Theorem [20], solutions h1(t), h2(t), h3(t) to this problem can be defined only locally, in a neighborhood
of t = 0. However, for this problem it is important to have solutions of the Cauchy problem (40) and (41)
defined on the entire interval [0, T] (see [21–23]). That is we have to find the restrictions on the functions
ai(t), ci(t), i = 2, 3 and bi(t), i = 1, 2, 3, or what is the same, on the parameters of system (1) such that
under these restrictions solutions of the Cauchy problem (40) and (41) are defined on the entire
interval [0, T]. Then system (39) would be also defined on the entire interval, and hence, it would be
possible to use the Generalized Rolle’s Theorem [24] to estimate the number of zeros of the switching
function L(t) = L̃(t).

6. Splitting Quadratic System

The analysis of the three-dimensional quadratic system (40) is quite complex, but it can
be significantly simplified by splitting this system into two simpler two-dimensional quadratic
subsystems. Specifically, it is easy to see that equations for h2(t) and h3(t) do not contain the variable
h1(t), and hence, can be considered separately. These two equations form the first of these quadratic
subsystems: 

h′2(t) = −c2(t)h2(t)h3(t) + c3(t)h2(t)− a2(t)h3(t) + a3(t),

h′3(t) = −c2(t)h2
3(t)− b1(t)h2(t)− (b2(t)− c3(t))h3(t) + b3(t),

h2(0) = h0
2, h3(0) = h0

3.

(42)

To formulate the second two-dimensional subsystem, we introduce variable

h0(t) = h1(t)h3(t) + h2(t). (43)

Substituting (43) into the fist equation of system (40), we obtain equation

h′1(t) = −b1(t)h2
1(t) + c2(t)h0(t) + b2(t)h1(t) + a2(t). (44)

Besides, function h0(t) satisfies the following differential equation:

h′0(t) = −b1(t)h0(t)h1(t) + c3(t)h0(t) + b3(t)h1(t) + a3(t). (45)

Initial condition h0(0) = h0
0 for variable h0(t) immediately follows from (43):

h0
0 = h0

1h0
3 + h0

2. (46)

Combining (44)–(46) and adding the initial condition for function h1(t) from (41), we find the
second two-dimensional quadratic subsystem

h′0(t) = Φ0(t, h0(t), h1(t)) = −b1(t)h0(t)h1(t) + c3(t)h0(t) + b3(t)h1(t) + a3(t),

h′1(t) = Φ1(t, h0(t), h1(t)) = −b1(t)h2
1(t) + c2(t)h0(t) + b2(t)h1(t) + a2(t),

h0(0) = h0
0 = h0

1h0
3 + h0

2, h1(0) = h0
1.

(47)

We note that the three-dimensional quadratic system (40) is equivalent to two two-dimensional
quadratic subsystems (42) and (47). As analysis of two-dimensional systems is usually simpler,
further we will deal with the later. In particularly, we have to analyze these quadratic subsystems
to find the restrictions on the functions ai(t), ci(t), i = 2, 3 and bi(t), i = 1, 2, 3, which guarantee that
there exist solutions of subsystems (42) and (47) defined on the entire interval [0, T].

Previously, such an approach to facilitate the analysis of solutions to quadratic systems was
applied in [25–27].
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7. Analysis of Quadratic Subsystems

Let us analyze the quadratic subsystems (42) and (47). For this, we will assume that the solutions
h0(t), h1(t) of system (47) and the solutions h2(t), h3(t) of system (42) are determined on the maximal
intervals of existence of such solutions [18,20]: specifically, we assume that functions h0(t) and h1(t)
are determined on the interval ∆01 = [0, t01] ⊆ [0, T], and functions h2(t) and h3(t) are determined on
the interval ∆23 = [0, t23] ⊆ [0, T]. Without loss of generality, we suppose that t01 ≤ T and t23 ≤ T.

First, we consider system (47) with nonnegative initial conditions

h0
0 ≥ 0, h0

1 ≥ 0.

Let us apply to it the necessary and sufficient condition for solutions h0(t), h1(t) to be nonnegative
for all t ∈ [0, t01) [28]. It consists in satisfying the quasi-positivity condition{

Φ0(t, 0, h1) ≥ 0, for all h1 ≥ 0,

Φ1(t, h0, 0) ≥ 0, for all h0 ≥ 0.

As a result, we obtain the inequalities:{
a2(t) ≥ 0, c2(t) ≥ 0,

a3(t) ≥ 0, b3(t) ≥ 0,

which hold for all t ∈ [0, T] due to inequalities (5) from Assumption 1 and Lemma 1.
Secondly, we consider system (42). Performing in this system the change of variables

h̃2(t) = −c2(t)h2(t), h̃3(t) = c2(t)h3(t)− c3(t),

and introducing values
h̃0

2 = −c2(0)h0
2, h̃0

3 = c2(0)h0
3 − c3(0),

we obtain the following system of equations:

h̃′2(t) = Φ2

(
t, h̃2(t), h̃3(t)

)
= −h̃2(t)h̃3(t) + c−1

2 (t)c′2(t)h̃2(t) + a2(t)h̃3(t) + (a2(t)c3(t)− a3(t)c2(t)),

h̃′3(t) = Φ3

(
t, h̃2(t), h̃3(t)

)
= −h̃2

3(t) + b1(t)h̃2(t) +
(

c−1
2 (t)c′2(t)− (b2(t) + c3(t))

)
h̃3(t)

+ c−1
2 (t)

(
c2(t)(b3(t)c2(t)− b2(t)c3(t)) + (c′2(t)c3(t)− c2(t)c′3(t))

)
,

h̃2(0) = h̃0
2, h̃3(0) = h̃0

3.

(48)

Let the initial conditions of this system be nonnegative:

h̃0
2 ≥ 0, h̃0

3 ≥ 0.

Then, we apply to system (48) the necessary and sufficient condition for solutions h̃2(t), h̃3(t) to
be nonnegative for all t ∈ [0, t23) as well. It consists in satisfying the quasi-positivity condition

Φ2

(
t, 0, h̃3

)
≥ 0, for all h̃3 ≥ 0,

Φ3

(
t, h̃2, 0

)
≥ 0, for all h̃2 ≥ 0.
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As a result, we obtain the inequalities:{
a2(t) ≥ 0, a2(t)c3(t)− a3(t)c2(t) ≥ 0, b1(t) ≥ 0,

c2(t)(b3(t)c2(t)− b2(t)c3(t)) + (c′2(t)c3(t)− c2(t)c′3(t)) ≥ 0,

which hold for all t ∈ [0, T] due to direct calculations using inequalities (3), (5)–(7) and Lemma 1.
Next, we have to verify the continuation of the nonnegative solutions h0(t), h1(t), h̃2(t) and h̃3(t)

of systems (47) and (48) to the entire interval [0, T] (see Theorem 1.6 in [28]). To do this, we define
Lyapunov functions:

V01(h0, h1) = 0.5
(

h2
0 + h2

1

)
, V23

(
h̃2, h̃3

)
= 0.5

(
h̃2

2 + h̃2
3

)
,

and estimate the derivatives dV01/dt and dV23/dt of these functions along the trajectories of the
systems of differential Equations (47) and (48), respectively. (The derivatives are the scalar products of
the gradients of these functions and the right-hand sides of the corresponding systems.) The Lyapunov
functions satisfy the relationships:

dV01

dt
(h0(t), h1(t)) = −b1(t)(h2

0(t) + h2
1(t))h1(t) + c3(t)h2

0(t) + b2(t)h2
1(t)

+ (b3(t) + c2(t))h0(t)h1(t) + (a3(t)h0(t) + a2(t)h1(t))

<
(
(b2(t) + c3(t)) + 0.5(b3(t) + c2(t))

)
(h2

0(t) + h2
1(t))

+
√

a2
2(t) + a2

3(t)
√

h2
0(t) + h2

1(t) ≤ K01V01(h0(t), h1(t)),

dV23

dt

(
h̃2(t), h̃3(t)

)
= −

(
h̃2

2(t) + h̃2
3(t)

)
h̃3(t) + c−1

2 (t)c′2(t)h̃
2
2(t)

+
(

c−1
2 (t)c′2(t)− (b2(t) + c3(t))

)
h̃2

3(t) + (a2(t) + b1(t))h̃2(t)h̃3(t)

+
(
(a2(t)c3(t)− a3(t)c2(t))h̃2(t)

+ c−1
2 (t)

(
c2(t)(b3(t)c2(t)− b2(t)c3(t)) + (c′2(t)c3(t)− c2(t)c′3(t))

)
h̃3(t)

)
<
(

c−1
2 (t)|c′2(t)|+ 0.5(a2(t) + b1(t))

) (
h̃2

2(t) + h̃2
3(t)

)
+
(
(a2(t)c3(t)− a3(t)c2(t))2

+ c−2
2 (t)(c2(t)(b3(t)c2(t)− b2(t)c3(t)) + (c′2(t)c3(t)− c2(t)c′3(t)))

2
)1/2

×
√

h̃2
2(t) + h̃2

3(t) ≤ K23V23

(
h̃2(t), h̃3(t)

)
.

Here, K01 and K23 are constants defined as following:

K01 = 2 max
t∈[0,T]

(
(b2(t) + c3(t)) + 0.5(b3(t) + c2(t)) +

√
a2

2(t) + a2
3(t)

)
,

K23 = 2 max
t∈[0,T]

(
c−1

2 (t)|c′2(t)|+ 0.5(a2(t) + b1(t)) +
(
(a2(t)c3(t)− a3(t)c2(t))2

+ c−2
2 (t)(c2(t)(b3(t)c2(t)− b2(t)c3(t)) + (c′2(t)c3(t)− c2(t)c′3(t)))

2
)1/2)

,

We have to note that these inequalities are obtained under constraints

h2
0(t) + h2

1(t) ≥ 1, h̃2
2(t) + h̃2

3(t) ≥ 1,
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which follow from the relationships

lim
t→t01−0

(
h2

0(t) + h2
1(t)

)
= +∞, lim

t→t23−0

(
h̃2

2(t) + h̃2
3(t)

)
= +∞

(see Lemma in Section 14, Chapter 4 in [29]). That is, the estimates

dV01

dt
(h0(t), h1(t)) ≤ K01V01(h0(t), h1(t)),

dV23

dt

(
h̃2(t), h̃3(t)

)
≤ K23V23

(
h̃2(t), h̃3(t)

)
imply the required continuation of the nonnegative solutions h0(t) and h1(t) of system (47) and
the nonnegative solutions h̃2(t) and h̃3(t) of system (48) to the entire interval [0, T]. Then the
functions h2(t) and h3(t) are also defined on this interval. Taking into consideration that the functions
h0(t), h1(t), h2(t) and h3(t) satisfying systems (42) and (47) are defined on the entire interval [0, T],
we conclude that system (39) is defined on this interval as well.

We note that such an approach for analyzing the continuation of solutions to quadratic systems
was previously presented in [27].

8. Estimating the Number of Zeros of Switching Function L(t)

Let us estimate the number of zeros of the switching function L(t) = L̃(t). We will recall that
the function F(t) (see system (39)) takes positive values on the entire interval [0, T]. Taking into
consideration that L(T) = 0 (see (26)), we will show that this function has at most two distinct zeros
on the interval [0, T).

Suppose the contrary, that is, the function L(t) = L̃(t) has at least three distinct zeroes on this
interval. Without loss of generality, we assume that these zeros are closest to t = T, which is also
the zero of the function L̃(t). Then, by virtue of the Generalized Rolle’s Theorem [24] applied to the
first equation of system (39), the function G̃(t) has at least three distinct zeros on the interval (0, T).
Indeed, denoting these three zeros by τ∗1 , τ∗2 , τ∗3 , we integrate the first equation of system (39) on each
of the intervals [τ∗i , τ∗i+1], i = 1, 2 and [τ∗3 , T]. Then, due to the equalities L̃(τ∗i ) = 0, i = 1, 2, 3 and
L̃(T) = 0, we have the formulas:

τ∗i+1∫
τ∗i

e
−

s∫
τ∗i

b1(ξ)h1(ξ)dξ

b1(s)G̃(s)ds = 0, i = 1, 2,

T∫
τ∗3

e
−

s∫
τ∗3

b1(ξ)h1(ξ)dξ

b1(s)G̃(s)ds = 0.

(49)

The continuity of all three integrand factors and the positiveness of the first two of them in (49)
imply the existence of at least one zero for the third factor, the function G̃(t), on each of the intervals
(τ∗i , τ∗i+1), i = 1, 2 and (τ∗3 , T). Otherwise, the function G̃(t) is sign-definite at least on one of
the indicated intervals. Therefore, the integral over such an interval in (49) is not zero, which is
contradictory. Thus, the above arguments confirm the earlier conclusion about the number of zeros of
the function G̃(t).

Applying in a similar way this theorem to the second equation of system (39), we have to conclude
that the function P̃(t) has at least two distinct zeros on the interval (0, T). Finally, using the theorem
in the third equation of this system, we conclude that the function F(t) has at least one zero on the
interval (0, T), which is contradictory. Hence, the assumption is incorrect. Thus, the required estimate
for the number of zeros of the switching function L(t) = L̃(t) is established.

Taking into consideration Lemma 3, we can see that depending on the value of (α2y∗(T) −
α3µz∗(T)), the switching function L(t) is described by one of the following two relationships, namely:
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• if α2y∗(T)− α3µz∗(T) ≥ 0, then

L(t)



> 0, if 0 ≤ t < τ∗1 ,
= 0, if t = τ∗1 ,
< 0, if τ∗1 < t < τ∗2 ,
= 0, if t = τ∗2 ,
> 0, if τ∗2 < t < T,
= 0, if t = T;

(50)

• if α2y∗(T)− α3µz∗(T) < 0, then

L(t)



< 0, if 0 ≤ t < τ∗1 ,
= 0, if t = τ∗1 ,
> 0, if τ∗1 < t < τ∗2 ,
= 0, if t = τ∗2 ,
< 0, if τ∗2 < t < T,
= 0, if t = T,

(51)

where τ∗1 , τ∗2 ∈ [0, T) are zeros of L(t).

9. Types of Optimal Control u∗(t)

The relationships (50) and (51) for the switching functions L(t) combined with the Formula (18)
for the optimal control u∗(t) enable us to immediately find its possible types. Specifically, depending on
the value of (α2y∗(T)− α3µz∗(T)), the optimal control u∗(t) is of one of the following types:

• if α2y∗(T)− α3µz∗(T) ≥ 0, then

u∗(t) =


umax, if 0 ≤ t ≤ τ∗1 ,
0, if τ∗1 < t ≤ τ∗2 ,
umax, if τ∗2 < t ≤ T;

(52)

• if α2y∗(T)− α3µz∗(T) < 0, then

u∗(t) =


0, if 0 ≤ t ≤ τ∗1 ,
umax, if τ∗1 < t ≤ τ∗2 ,
0, if τ∗2 < t ≤ T,

(53)

where τ∗1 , τ∗2 ∈ [0, T) are moments of switching.

Analysis of the Formulas (52) and (53) shows that depending on the relationship between the
populations of cancer cells and healthy B-cells at the end (T) of the treatment period [0, T], the optimal
control u∗(t) either takes the maximum value umax on the entire interval [0, T] that corresponds to the
carrying out of the CAR T-cell therapy with the greatest intensity throughout a given time interval
(emergency CAR T-cell therapy); or it has one switching from the minimum value 0 to the maximum
value umax that describes the situation when, first there is the period of no therapy, and then, at the time
t = τ∗ the switching occurs to the period of this therapy with the greatest intensity (CAR T-cell therapy
delayed at the beginning); or has one switching from the maximum value umax to the minimum value
0 that reflects the situation when, first there is the period of the therapy with the greatest intensity,
and then, at the time t = τ∗ the switching occurs to the period of no therapy (CAR T-cell therapy
stopped at the end). Finally, the optimal control u∗(t) might have two switchings: first there is the
switching from the maximum value umax to the minimum value 0, and then the switching is carried
out again to the maximum value umax. This corresponds to the situation when, first the CAR T-cell
therapy is provided with the greatest intensity, then, at the time t = τ∗1 the switching occurs, and this
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therapy is stopped (rest period), then, at the time t = τ∗2 the therapy is returned to the greatest
intensity (CAR T-cell therapy with rest period). Also, another type of the optimal control u∗(t) with
two switchings is possible: first there is the switching from the minimum value 0 to the maximum
value umax, and then the switching occurs again to the minimum value 0. This describes the situation
when, first, the CAR T-cell therapy is absent, it is delayed until time t = τ∗1 , at which the switching
is carrying out, and this therapy is provided with the greatest intensity, until another time t = τ∗2 ,
after which the therapy is stopped again (CAR T-cell therapy delayed at the beginning, maximal in the
middle and stopped at the end of the treatment period). In this case, at the beginning of the treatment
interval, no injection of the chimeric cells is given, while the immunosuppressant is taken throughout
the treatment interval at the maximal dosage. Then the injections with maximum intensity are carried
out on the interval [τ∗1 , τ∗2 ], and from the moment τ∗2 injections are stopped.

Therefore, five types of optimal strategies of the CAR T-cell therapy can be distinguished:
the emergency CAR T-cell therapy, CAR T-cell therapy delayed at the beginning, CAR T-cell therapy
stopped at the end, CAR T-cell therapy delayed at the beginning, maximal in the middle and stopped
after that at the end, and the CAR T-cell therapy with rest period in the middle of the treatment.
These therapies are consistent both with the actual data of clinical studies [30,31] and the results of the
numerical calculations from [14,32].

10. Numerical Results

First, we will show that the set of parameters values given by inequalities (3)–(6) is not-empty.
To do this, we will transform these inequalities by introducing new variables:

A =
α2

α3
, B =

β2

γ
, C =

β3

η
, D =

η

γ
.

Due to them, the second inequality in (3), as well as inequalities (4) and (5) are rewritten as

A ≤ 1, C ≥ 1, A ≥ B, AC ≥ 1, BC ≥ 1. (54)

We note that the inequality (6) is rewritten as

α1

β1
≥ (AC− 1)D

A− B
, (55)

and therefore it can be considered separately, like the first inequality in (3).
Then, in the positive octant of the coordinate system (A, B, C), inequalities (54) define the

not-empty set, which is shown in Figure 1.
Figure 2 demonstrates a similar set, but for the case when, instead of inequalities (3),

the inequalities (24) hold. Such a set is given by the inequalities:

A ≥ 1, C ≥ 1, A ≥ B, AC ≥ 1, BC ≥ 1. (56)

Therefore, further we will choose such values of the model parameters p, q, η, γ, α1, α2, α3, β1,
β2, β3 so that they satisfy the following two cases.

Case 1. The inequalities (3)–(6), or, what is the same, the inequalities (54) and (55) are satisfied.

Case 2. The inequalities (4)–(6),(24) or equivalent inequalities (55) and (56) are valid.
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Figure 1. The orange area is the set of parameters that satisfy inequalities (54).

Figure 2. The orange area is the set of parameters that satisfy inequalities (56).

Now, we will demonstrate the results of a numerical solution of the minimization problem (10).
The values of the corresponding parameters were adopted from [13,14,32] and chosen so as to show
the numerical solutions for both of the above cases. Thus, Figures 3–5 presented below correspond to
Case 1, and Figures 6 and 7 relate to Case 2.

These numerical calculations were conducted using “BOCOP–2.2.0” [33]. It is an optimal control
interface, implemented in MATLAB, for solving optimal control problems with general path and
boundary constraints and free or fixed final time. By a time discretization, such problems are
approximated by finite-dimensional optimization problems, which are then solved by well-known
software IPOPT, using sparse exact derivatives computed by ADOL-C. IPOPT is the open-source
software package for large-scale nonlinear optimization. In the computations, we set the number
of time steps to 3000 and the tolerance to 10−14 and use the sixth-order Lobatto III C discretization
rule [33]. In Figures 3–7 the blue lines represent the optimal solutions, whereas the green dashed
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lines represent the solutions in the absence of the control. The red lines show the continuations of
the optimal solutions of the population of B-leukemic or cancer cells y(t) for a longer time interval
(in Figures 3–5 for [T, T + 5], and in Figures 6 and 7 for [T, T + 10]). The vertical dashed lines represent
the switching moments. The end of the interval [0, T] is shown by the vertical dot-dashed lines.

In Figure 3, the case of so-called emergency CAR T-cell therapy over 30 days treatment period
is shown. Optimal control takes the maximum value umax on the entire interval of the therapy,
which helps to slow down the rate of proliferation of cancer cells, but still such therapy is not able to
completely suppress the cancer. Note that after the end of the therapy period, cancer cells begin to
grow rapidly in the first 5 days. This suggests that cancer is resistant to this scenario of CAR T-cell
immunotherapy. Such emergency CAR T-cell therapy can only slow down the development of the
cancer, and is a temporary solution for developing another course of treatment, but is not suitable for
the patient’s recovery strategy.
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Figure 3. The optimal solutions x∗(t), y∗(t), z∗(t) and optimal control u∗(t) for the values of the
parameters r = 0.6, p = 1.1, q = 1.0, η = 0.9, γ = 1.1, α1 = 1.0, α2 = 0.8, α3 = 0.9, β1 = 0.9, β2 = 0.9,
β3 = 1.1, m = 0.2, µ = 100, umax = 1, T = 30 and the initial conditions x0 = 0.55, y0 = 0.8, z0 = 0.6.
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Figure 4. The optimal solutions x∗(t), y∗(t), z∗(t) and optimal control u∗(t) for the values of the
parameters r = 0.6, p = 1.1, q = 1.0, η = 1.2, γ = 0.8, α1 = 1.2, α2 = 0.9, α3 = 0.9, β1 = 0.6, β2 = 0.75,
β3 = 1.3, m = 0.4, µ = 100, umax = 1, T = 30 and the initial conditions x0 = 0.6, y0 = 0.6, z0 = 0.6.
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The Figures 4 and 5 reflect more optimistic therapy schedules. In Figure 4 the case of CAR T-cell
therapy delayed at the beginning is considered. For the first 10 days the optimal control u∗(t) takes
the minimum value 0, and then the therapy is carried out with maximum intensity umax. In this case,
CAR T-cells begin to grow and suppress the development of cancer. After the end of such therapy,
cancer cells decrease to zero in the first 5 days. Such therapy leads to the destruction of cancer cells,
which is an indicator of the higher efficiency of this course of therapy for the treatment of this type
of cancer.

In Figure 5 CAR T-cell therapy that is delayed at the beginning, of its maximal intensity in the
middle and stopped at the end is shown. At the beginning of therapy, in the first 4 days, the injection
of the chimeric cells is not performed, and then it is carried out with the maximum intensity umax,
which contributes to the reduction of cancer cells. On 21st day the therapy is again stopped. After the
end of this therapy, cancer cells die out in the first 5 days. Here, as in the previous case, the treatment
leads to the complete destruction of cancer cells.
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Figure 5. The optimal solutions x∗(t), y∗(t), z∗(t) and optimal control u∗(t) for the values of the
parameters r = 0.6, p = 1.1, q = 1.0, η = 0.9, γ = 1.0, α1 = 1.0, α2 = 0.8, α3 = 0.8, β1 = 0.9, β2 = 0.9,
β3 = 1.0, m = 0.5, µ = 50, umax = 1, T = 30 and the initial conditions x0 = 0.6, y0 = 0.8, z0 = 0.8.

In Figures 6 and 7 the case of CAR T-cell therapy stopped at the end is considered. For the first
4–6 days the optimal control u∗(t) takes the maximum value umax, and then the therapy is carried
out with minimum intensity 0. In this case, CAR T-cells (chimeric cells) begin to grow and suppress
the development of cancer. Although both figures are characterized by the same type of the optimal
control, and both relate to Case 2, when α2 ≥ α3, they correspond to different situations. Thus, Figure 6
refers to a situation when chimeric cells are as active in recognizing CD19 markers on healthy cells as
on cancer cells, with α2 = 0.8 and α3 = 0.7.

Figure 6 demonstrates a therapy that helps to slow down the rate of proliferation of cancer cells,
but still cannot completely suppress the cancer. Note that after the end of the therapy period, for some
time healthy cells still continue to grow, however, cancer cells begin to grow slowly in the first 10 days
as well. This suggests that such treatment scenario can only slow down the development of the cancer,
and is a temporary solution for developing another course of treatment, but is not suitable for the
patient’s recovery strategy.

Figure 7 reflects the situation when α2 > α3 and so chimeric cells are more active in destroying
cancer cells than on healthy cells. It is like a case of complete recovery from cancer.
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Figure 6. The optimal solutions x∗(t), y∗(t), z∗(t) and optimal control u∗(t) for the values of the
parameters r = 0.6, p = 1.0, q = 1.1, η = 0.8, γ = 1.0, α1 = 1.1, α2 = 0.8, α3 = 0.7, β1 = 0.9, β2 = 0.8,
β3 = 1.0, m = 0.3, µ = 1, umax = 1, T = 30 and the initial conditions x0 = 0.6, y0 = 0.7, z0 = 0.7.
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Figure 7. The optimal solutions x∗(t), y∗(t), z∗(t) and optimal control u∗(t) for the values of the
parameters r = 0.6, p = 1.0, q = 1.1, η = 0.8, γ = 1.0, α1 = 1.1, α2 = 0.8, α3 = 0.1, β1 = 0.9, β2 = 0.8,
β3 = 1.0, m = 0.3, µ = 1, umax = 1, T = 30 and the initial conditions x0 = 0.7, y0 = 0.7, z0 = 0.1.

Finally, we note that in all numerical calculations, the behavior of the cytokine population is the
same regardless of its initial state w0. Due to the constant optimal control v∗(t), taking its maximum
value 1 over the entire treatment period, the size of this population quickly stabilizes to the value λ/ν.

11. Conclusions

Recently, optimal control problems have become unfairly considered routine, since many authors
use ready-made computer programs to solve them, without conducting any analytical investigation
at all or reducing the latter to a minimum. It should be noted right away that in our work we use
a Bolza-type objective function, the integral part of which does not contain square of the controls.
Usually, a purely numerical solution of optimal control problems with such objective functions, without
a preliminary analytical study of possible solutions, can be associated with certain computational
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difficulties. Anyway, it is difficult to look for a needle in a haystack. Therefore, we would like to
emphasize the most important results obtained by us analytically.

In this paper, we stated and solved the optimal control problem with two bounded controls using
the Pontryagin maximum principle. It should be noted that our analytical study of the controlled
model allowed finding the type of optimal controls using the behavior of the switching functions.
Thus, Theorem 1 states that the optimal control v∗(t) is constant taking its maximum value over the
entire time interval. This means that in order to prevent “a cytokine storm”, immunosuppressant
drug must be taken at its maximal dosage over the entire treatment period. Further, Lemma 3
together with Theorem 2 state that depending on the model parameters and the values of the state
variables at moment T, the optimal control u∗(t) can take either its maximum or minimum value.
Our methods of analytical investigating are well described in Section 5 (reducing the matrix of the
linear non-autonomous system in a upper triangular form and then applying the Generalized Rolle’s
Theorem to this system), in Section 6, where we split the three-dimensional quadratic system into two
simpler two-dimensional quadratic subsystems, in Section 7, in which we provide an analysis of the
quadratic subsystems, and finally, in Section 8, where we estimate the number of zeros of the switching
function L(t). Using this switching function properties, in Section 9 we established that the optimal
control u∗(t) has at most two switchings that was also demonstrated by independent numerical results
presented in Section 10.

In this work, creating a controlled model of CAR T-cell immunotherapy, and solving the problem
of an optimal control, we tried to explain some of the disadvantages of this procedure for treating
leukemia and wished to find possible ways to increase its effectiveness. Within the framework of
the proposed model and as a result of an analytical study of the switching function, five possible
optimal treatment scenarios were obtained. The numerical results of the optimal solutions using
BOCOP-2.2.0, as well as solutions without control, are shown in Figures 3–7. Note that the graphs
of the optimal controls are in an excellent agreement with the corresponding Formulas (52) and (53),
when fulfilled, they should be obtained. Thus, the optimal controls demonstrated in Figure 3
(no switching) and Figure 4 (one switching) end with their maximum value that is in an agreement
with the Formula (52) (α2y∗(T)− α3µz∗(T) = 0.8 > 0, and 0.1359, respectively), while for the graphs in
Figure 5 (two switchings), Figure 6 (one switching) and Figure 7 (also one switching), the Formula (53)
is satisfied (α2y∗(T)− α3µz∗(T) = −0.3112 < 0, −0.1745, and −0.1, respectively), and the optimal
controls end with their minimum value.

Despite the fact that the optimal strategies shown in Figures 4 and 5 lead to the destruction
of cancer cells, also on these graphs, a sharp increase in chimeric leukocytes is noted, while the
population of other cells is significantly reduced. Apparently, in an organism weakened by chemo-
and radiotherapy, chimeric cells, instead of killing only cancer cells, begin to compete with both types
of cells and continue to actively divide.

It should be noted that in all situations presented in Figures 3–5, the number of healthy
lymphocytes is steadily decreasing over the given treatment period. It follows from the clinical
experiences that the B-cell aplasia induced by CD19 CAR immunotherapy is rapidly reversed after
CAR T-cells are ablated [34]. In our model, Figure 6 also shows the same behavior, and one can see
that as soon as the therapy stops, an effect of B-cells aplasia is vanishing. (See the red piece of the z∗(t)
curve on the 5-day post treatment interval.) It is interesting that Figure 7 demonstrates a situation
where no aplasia occurs and shows that with the optimal control, healthy cells do not die at all.

In Figures 3–5, we indeed do not observe rapid increase in the healthy cells five days after the
treatment period. How can you explain such a “strange” manifestation of the model? This could
be explained by the fact that in the first three cases the body receives too many chimeric cells,
which themselves proliferate in the process of interaction with cancer and healthy cells and therefore
their influence remains after the end of treatment. Thus, they are not completely ablated, and their
nonzero presence continues influencing the model dynamics.
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After all, it was more logical to assume that in the first case (Figure 3), cancer cells would certainly
be destroyed more efficiently than in the other two cases. The reason is apparently in the properties
of the model itself. It is known that in the treatment of blood cancer, chimeric leukocytes with the
antigen to the CD19 marker, which is also found in healthy leukocytes, are used. In our model,
this manifests itself in the third terms of the first and third equations of the system. According to this
model, some of the chimeric cells spend their energy not on cancer cells, but on the destruction of
healthy cells. Moreover, if maximum injections of chimeric cells are made, then this will immediately
weaken healthy cells and will not launch a competitive mechanism between them and cancer cells,
expressed by the last terms of the second and third equations of the model (1).

Note that Figures 3–5 correspond to Case 1, when α2 ≤ α3 and so chimeric cells very actively
target healthy B-lymphocytes. Case 2, when α2 ≥ α3, presented by Figures 6 and 7 seems to be
more realistic. Thus, in Figure 6, the concentration of healthy cells does not decrease in the course
of treatment, even under initial conditions, when both cancerous and healthy cells have the same
concentration. It is like a situation of modeling immunotherapy of leukemia in its severe stage.
Moreover, it was found that if the initial concentration of cancer cells is significantly higher than the
concentration of healthy cells, then the treatment according to Figure 7 scenario becomes more effective.
Figure 7 demonstrates a case of recovery from leukemia, when cancer cells are completely destroyed,
and healthy B-lymphocytes grow, reaching their equilibrium state.

It should be noted that for our numerical results, we chose such values of the model parameters
in order to demonstrate all possible types of optimal control predicted analytically. It is possible that
some of the Formulas (52) or (53) are not implemented at all in practice, but this was impossible to
verify due to the unavailability of real data from clinical experiments.

Well, in principle, we need more specific chimeras that would recognize and kill only foreign
cancer cells. For example, the CAR T-cell therapy can be specifically modified to stimulate the
lymphocytes not too much, but not too weakly. In order not to stimulate the lymphocyte in the absence
of a cancer cell, to better find rare markers on the surface of cancer cells. Mathematically such a case
can be modeled by predator-prey model with further competition between cancer and healthy cells,
mentioned in Introduction. This model would be implemented in our future studies.
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