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Abstract: The success of Bitcoin has spurred emergence of countless alternative coins with some
of them shutting down only few weeks after their inception, thus disappearing with millions of
dollars collected from enthusiast investors through initial coin offering (ICO) process. This has led
investors from the general population to the institutional ones, to become skeptical in venturing in
the cryptocurrency market, adding to its highly volatile characteristic. It is then of vital interest to
investigate the life span of available coins and tokens, and to evaluate their level of survivability.
This will make investors more knowledgeable and hence build their confidence in hazarding in the
cryptocurrency market. Survival analysis approach is well suited to provide the needed information.
In this study, we discuss the survival outcomes of coins and tokens from the first release of a
cryptocurrency in 2009. Non-parametric methods of time-to-event analysis namely Aalen Additive
Hazards Model (AAHM) trough counting and martingale processes, Cox Proportional Hazard Model
(CPHM) are based on six covariates of interest. Proportional hazards assumption (PHA) is checked by
assessing the Kaplan-Meier estimates of survival functions at the levels of each covariate. The results
in different regression models display significant and non-significant covariates, relative risks and
standard errors.Among the results, it was found that cryptocurrencies under standalone blockchain
were at a relatively higher risk of collapsing. It was also found that the 2013–2017 cryptocurrencies
release was at a high risk as compared to 2009–2013 release and that cryptocurrencies for which
headquarters are known had the relatively better survival outcomes. This provides clear indicators to
watch out for while selecting the coins or tokens in which to invest.

Keywords: cryptocurrency; blockchain; survival function; risk; weight; hazard ratio

1. Introduction

Cryptocurrencies are digital currencies in which transactions are verified and records
maintained by decentralized systems known as blockchains. Blockchains use cryptography
or a third-free peer-to-peer electronic system, rather than a centralized trade in which
transactions are made by the banks (Angela 2016). Transacting a cryptocurrency is mobile,
non-taxable and does not require bank intermediary. Blundell-Wignall (2014) points that
digital cash cannot have multiple copies. Hence, a cryptocurrency cannot be used more
than once, unlike the bank services where multiple transfers are common.
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Cryptocurrecies operate either as coins or tokens. Crypto-coins are native from their
own blockchain whilst tokens are built on top of another existing blockchain (Wu et al.
2018). An important number of cryptocurrencies use Euthereum network as an alternative
to standalone. Many other known networks include Waves, Stellar, Nem, Couterparty,
Bitshares, Achain, Omni, Neo, Ardor, Qtum, Icon and Ubiq. The discretion in cryptocur-
rency transaction makes a more secure and reliable modern mode of payment as suggest
manuscripts such as Blundell-Wignall (2014), Hendrickson et al. (2016) or Urquhart (2016).

The cryptocurrencies release started with the Bitcoin in 2009 Blundell-Wignall (2014).
The other popular cryptocurrencies that followed include Litecoin (2011), Peercoin (2012),
Ripple (2012), Alphacoin (2013–2014) and Aircoin (2014–2016). As for the year 2021, the
new cryptocurrencies include Bogged Finance (2021) and Recharge Finance (2020). The
total number of cryptocurrencies in 2021 exceeds 6000 in which around 2000 are inactive
(or dead) (Best 2022). The high rate of death of cryptocurrencies has been a barrier of many
investors. The risk of collapsing of a number of cryptocurrencies has persuaded some
governments to ban such digital financial markets with argument that cryptocurrency trade
could facilitate illegal transactions and disrupting the government activities (Hendrickson
et al. 2016). However, El Salvador officially adopted Bitcoin as legal tender on 9 June
2021, making it the first country to do so (Thul 2021). In some other countries such as
Panama, Brasil, Paraguay, Mexico and Argentina, the governments are hand in hand with
the researchers on sustainability of Bitcoin for a future adoption (Thul 2021).

In 2020, the globe was under a relatively rising situation of the outbreak of COVID-19
and at the same time, the relatively high degree spillover of Bitcoin was observed (Xiao et al.
2021). The trade of cryptocurrencies was then globally affected (Youssef et al. 2021). Azimli
(2020) suggests that COVID-19 pandemic impacts the financial market through the high
level of economic policy uncertainty. The unknown future situation of COVID-19 leads to
low cash flow expectations, resulting in possible stock market depreciation (Azimli 2020).

Several studies on cryptocurrencies emerged in many domains such as Mathematical
Sciences, Financial Economics and Engineering. Mathematical and statistical modeling
on cryptocurrency is found for example in (Gatabazi et al. 2019a, 2019b, 2019c, 2019d)
and Chan et al. (2017). Mba and Wang (2019) used copula in describing cryptocurrencies
in financial economics framework, a field in which many other manuscripts including
Urquhart (2016) and Angela (2016) analyse cryptocurrencies. However, the scientific
analysis on the lifetime of cryptocurrencies is not yet popular. To understand the event
history analysis of cryptocurrencies and the associated factors may adopt another insight
by which the researcher may predict accurately the future of these digital currencies.

The present study uses the time-to-event data analysis for estimating the life-time and
the factors of death for cryptocurrencies during the study time ranging from 2009 to 2021.

In addition to the introductory section, the study is subdivided as follows: Section 2
presents the methodology of the study. Section 3 presents the main results and interpreta-
tion and Section 4 gives a conclusion.

2. Methodology

This part introduces the time-to-event analysis, discusses the time-to-event regression
analysis and then presents the dataset of interest. Preliminary analysis will be displayed by
the graphs and the useful statistical tests.

2.1. Concept of the Time-to-Event Data Analysis

The time-to-event analysis or survival analysis aims at making the inference of the time
elapsed between the onset of observations until the occurrence of some event of interest.
The related regression model expresses the dependence of time-to-event on predictor
variables. Methods used in general statistical analysis, in particular in regression analysis,
are not directly applicable to survival data due to censoring and truncation. Hosmer et al.
(2008) describe three types of censoring: right censoring arising when an individual is not
subject to the event until the end of study due to either loss to follow up, or the event
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has not occurred at the end of the study, or the event has occurred from another cause
not related to the cause of interest. Left censoring arises when an individual experienced
an event before the onset of the study. Interval censoring refers to when the event occurs
within some interval in the study time, or the individual dropped out or observed the event
at an unknown time before study termination for reasons unrelated to the study, or the
individual was lost to follow-up in an interval between two specified time points. Two
types of truncation described in Klein and Moeschberger (2003) are the left truncation and
the right truncation. Left truncation occurs when subjects under a survival study have been
at risk before the study time. Right truncation arises when interest is only on individuals
who have experienced the event by a specified future time before study termination. In this
study, interest will be only on right censoring.

In time-to-event analysis, a non-negative random variable representing the time-to-
event is generally characterized by three fundamental functions: the probability density
function (for continuous random variables) or probability mass function (for discrete
random variables), the survival function and the hazard function as detailed in Hosmer
et al. (2008). The hazard function is also known as risk function or intensity rate (Hosmer
et al. 2008). Any of these three functions can be uniquely determined from at least one of
the other two functions (Collet 2003; Hosmer et al. 2008).

2.2. Comparison of Two or More Groups of Survival Data

Two or more groups survival time may be compared by using the plots of the survival
functions in one system of axes. Log-rank and Wilcoxon tests are popular tests for compar-
ing survival functions (Collet 2003; Klein and Moeschberger 2003). The tests are based on
the following hypotheses:

H0: No difference in survival experiences of the individuals in the groups,

H1: There is difference in survival experiences of the individuals in the groups.

In several studies, statistical significance is based on comparing p-values to a specified
level of significance, α Generally α = 0.05 or α = 0.01. In this study, we prefer using
the interpretation described in Collet (2003) that is summarised in Table 1. The same
interpretation was used in Gatabazi and Kabera (2015), and Gatabazi et al. (2018, 2019e,
2020a).

Table 1. Evidence for or against H0 based on comparing the p-value with the level of significance
α = 0.05.

p-Value (P) Interpretation

P > 0.1 No evidence to reject the null hypothesis

0.05 < P ≤ 0.1 Slight evidence against the null hypothesis

0.01 < P ≤ 0.05 Moderate evidence against the null hypothesis

0.001 ≤ P ≤ 0.01 Strong evidence against the null hypothesis

P < 0.001 Overwhelming evidence against the null hypothesis

The log-rank test is better if proportional hazards can be assumed (Collet 2003). In such
situation, the plots of survival functions do not cross one another. The Wilcoxon test is
suitable when there is no proportional hazards assumption. Here, the survival curves of
some groups cross one another (Collet 2003).

2.3. Cox Proportional Hazards Model (CPHM)

Assume p fixed covariates with values xi = (xi1, xi2, . . . , xip)
′ for i = 1, . . . , n where n is

the number of observations.
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The CPHM is given by

h(t | xi) = h0(t) exp(βββ′xi) (1)

where βββ = (β1, β2, . . . , βp)′ is a p-dimensional vector of model parameters and and h0(t)
is the baseline hazard function, that the hazard function when all the covariates are set to
zero. The quantity

ψk = eβk (2)

is called “hazard ratio”, and is reported in applied studies as it is easier to interpret than the
model parameters or log-hazard ratio βk = ln ψk for k = 1, . . . , p (Collet 2003).

Parameter estimation for model (1) with no tied events is conducted using partial
likelihood introduced by Cox (1972).

Three approaches of approximating the partial likelihood in presence of tied event
are suggested by Breslow (1974), Efron (1977) and Cox (1972). In practice, the three
approximations of the partial likelihood function lead to similar results (Collet 2003).
Many statistical packages, including STATA, provide options for using each of the above
approximations. In STATA, Beslow is taken as the default.

2.4. Aalen Additive Hazards Model (AAHM)

The AAHM at time t of the ith of n individuals is given by

h[t | xi(t)] = β0(t) + β1(t)xi1(t) + β2(t)xi2(t) + . . . + βp(t)xip(t) (3)

where βββ(t) =
(

β0(t), β1(t), . . . , βp(t)
)′ is the vector of parameter functions that may be

estimated and xi(t) =
(
xi1(t), xi2(t), . . . , xip(t)

)′ is the vector of covariates. The parameter
function β0(t) is the baseline hazard function, that is the hazard when all the covariate
functions are set to zero.

Aalen et al. (2008, p. 157) argue that, for computation stability, estimation in model (3)
should be based on the cumulative parameter functions

Bk(t) =
∫ t

0
βk(v)dv, (4)

k = 0, 1, 2, . . . , p. Clearly, if βk(t) is constant, say βk(t) = βk, then

Bk(t) =
∫ t

0
βkdv = βk t which is represented by a straight line.

Proposition 1. Let

Yi(t) =

{
1, if individual i is at risk at time t
0, otherwise.

Assume that dNi(t) and dMi(t) are respectively a response variable and a random error terms
of the ith individual. Model (3) leads to the form

dNi(t) =
p

∑
k=0

Yi(t)xik(t)dBk(t) + dMi(t) (5)

where xi0 = 1.

The proof of Proposition 1 can be found for example in Gatabazi et al. (2020b).
Thus, Model (5) has the form of a multiple linear regression model for the ith individual

with covariates Yi(t)xik and parameters dBk(t) for k = 0, 1, 2, . . . , p and i = 0, 1, 2, . . . , n.
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Model (5) can be written in matrix form as

dN(t) = X(t)dB(t) + dM(t) (6)

where

dN(t) is the n× 1 vector of observations dNi(t)

X(t) is the n× (p + 1) design matrix with ith row given by Yi(t), Yi(t)xi1(t), . . . , Yi(t)xip(t)

dB(t) =
(
dB0(t), dB1(t), . . . , dBp(t)

)′ is the (p + 1)× 1 vector of parameter functions

dM(t) is the n× 1 vector of martingales (error terms) each with mean zero.

It follows from (6) and from the theory of least square estimation that if X(t) is of full
rank, that is [X(t)]′X(t) is non singular, then the ordinary least squares estimator of dB(t) is

dB̂(t) =
[
(X(t))′X(t)

]−1
(X(t))′dN(t) (7)

If X(t) is not of full rank, then dB(t) is not estimable unless some constraint is imposed.
However, most of current statistical packages have built-in routines to deal with matrices
that are not of full rank and provide robust estimates of model parameters. The estimator
B̂(t) obtained by integrating both sides of Equation (7) with respect to t is

B̂(t) =
∫ t

0

[
(X(t))′X(t)

]−1
(X(t))′dN(t)

= ∑
tj≤t

[(
X(tj)

)′X(tj)
]−1(

X(tj)
)′yj (8)

where yj is n× 1 vector of zeros except the jth component equals to unit if the jth indi-
vidual observes an event at time tj (Aalen et al. 2008, p. 158; Hosmer and Royston 2002).
Furthermore, the variance-covariance matrix of B̂(t) is

Var
[
B̂(t)

]
= ∑

tj≤t

[(
X(tj)

)′X(tj)
]−1(

X(tj)
)′D(tj)X(tj)

[(
X(tj)

)′X(tj)
]−1

(9)

where D(tj) is an n× n diagonal matrix with elements yj on the main diagonal (Aalen et al.
2008, p. 158; Hosmer and Royston 2002). The derivation of results (9) from (8) is easy to
understand. In fact if two random vectors of variables X and Y are linked by Y = AX,
where A is a matrix, then

Var(Y) = A Var(X)A′

(Mulaik 2009).
As described in Hosmer and Royston (2002), if the vector of cumulative parameter

coefficients at time t is estimated by (8), and its variance-covariance matrix by (9), then the
estimator of the model vector of parameters at time tj is

β̂ββ(tj) =
[(

X(tj)
)′X(tj)

]−1(
X(tj)

)′yj (10)

and
Var
[
β̂ββ(tj)

]
=
[(

X(tj)
)′X(tj)

]−1(
X(tj)

)′D(tj)X(tj)
[(

X(tj)
)′X(tj)

]−1
. (11)

Aalen et al. (2008, p. 159) showed that the cumulative parameter function estimator
B̂(t) has approximately a multivariate normal distribution around its true value B(t),
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with the variance-covariance matrix expressed in (9). Therefore, the 100(1− α)% confidence
interval for the kth cumulative parameter functions Bk(t) is expressed by

B̂k(t)± z α
2

√
σ̂kk(t) (12)

where σ̂kk(t) is the kth diagonal element of the variance-covariance matrix expressed in the
Equation (9). To test that a covariate Xk has no significant effect on the hazard function
given in model (3), Aalen et al. (2008) formulated the null and alternative hypotheses in the
usual way as follows

H0 : βk(t) = 0, ∀ t ∈ [0, t0]

versus
H1 : βk(t) > 0 or βk(t) < 0

where t0 is a suitably chosen time point, but often t0 is the upper limit of the study time
interval. If H0 is true, then the increment ∆B̂k(tj) at time tj of the cumulative parameter
function given in (8) tends to fluctuate around zero (Aalen et al. 2008). Under the alternative
hypothesis H1 : βk(t) > 0, the increment ∆B̂k(tj) tends to be positive while under H1 :
βk(t) < 0, the increment ∆B̂k(tj) tends to be negative. Furthermore if B̂k(t) approximately
follows a straight line, then βk(t) is constant. The test described above is helpful when the
estimated cumulative parameter functions are plotted against time. However, a quantitative
measure of significance may be needed to assess the magnitude of significance. Hosmer
and Royston (2002) advised to proceed as follows. Consider model (3) and assume that
there is a need to test the null hypothesis

H0 : βk(tj) = 0 for all k with k = 0, 1, . . . , p. (13)

Hosmer and Royston (2002) stated that the (p + 1) statistics for the above hypothesis
are obtained from the components of the vector

û = ∑
tj

Kjβ̂ββ(tj) (14)

where β̂ββ(tj) given by (10) is the vector of estimators of the parameter coefficients for model
(3), and Kj is a (p + 1)× (p + 1) diagonal matrix of weights. Four types of weights can
be used.

• Weights 1: Kj = diag(1), that is Kj is a diagonal matrix with each element of the main
diagonal equals to unit.

• Weights 2: Kj = diag(nj) where nj is the number of individuals at risk at time tj.

• Weights 3: Kj = diag
[
ŜKM(tj−1)

]
where ŜKM(tj−1) is the Kaplan–Meier estimate of

the survival function at time tj−1 for j = 2, 3, . . . and K1 = diag
[
ŜKM(t0) = 1

]
.

• Weights 4: Kj = diag
[
ŜKM(tj−1)/se(β̂kk(tj)

]
where β̂kk(tj) is the kth diagonal element

of the variance-covariance matrix (11). Hence, Kj is a diagonal matrix whose main
diagonal elements are the ratio of the Kaplan–Meier estimates of the survival function
at time tj−1 and the standard error of the Aalen estimate of the parameter function of
interest at time tj.
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To completely define the test statistic to use, the estimator of the variance-covariance
matrix of û given in (14) is obtained from the symmetric matrix Kj and the variance of β̂(tj)
given by (11). Hence,

V̂ar(û) = ∑
tj

KjVar
[
β̂ββ(tj)

]
K′j

= ∑
tj

Kj

[(
X(tj)

)′X(tj)
]−1(

X(tj)
)′D(tj)X(tj)

[(
X(tj)

)′X(tj)
]−1

K′j . (15)

Hence, the test statistic for H0 given in (13) is

zuk =
ûk

se(ûk)
(16)

where ûk is the kth element of û given in (14) and se(ûk) is the square root of the kth diagonal
element of V̂ar(û) given in (15). Hosmer and Royston (2002) pointed out that the statistic
zuk in (16) approximately follows the standard normal distribution.

2.5. Dataset

Among over 6000 active and inactive cryptocurrencies, we recorded 500 cryptocur-
rencies whose information on the variables of interest is available. The details of other
cryptoccurrencies is not available, and for many of them, the white papers are not decen-
tralized. The covariates of interest are described in Table 2.

Table 2. Description of variables of interest.

Variable Description Code/Value/Unit

Type The type of a cryptocurrency 0 = token
1 = coin

Blockchain Indicator of the type of blockchain of a cryptocurrency
0 = other
1 = Ethereum
2 = Standalone

Series Indicator on when a cryptocurrency was released
0 = series 1 (2009–2013)
1 = series 2 (2013–2017)
2 = series 3 (2017–2021)

Mining Indicator on whether a cryptocurrency is minable or not 0 = not minable
1 = minable

Region Region in which a cryptocurrency’ s’headquarters are based

0 = unknown
1 = South America
2 = Oceania
3 = North America
4 = Europe
5 = Asia
6 = Africa

The Kaplan–Meir estimation of the overall survival function (Figure 1) at the end of
the study time is 75%, or equivalently, the rate of death at the end of the study time is 25%.
The time is in years with origin fixed in 2009.
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Figure 1. Kaplan–Meier estimates and 95% confidence limits of the survival function for the cryp-
tocurrency data.

The survival outcomes of the levels of the variables can be compared graphically by
using the Kaplan–Meier estimation of the survival function per group of covariate. The plots
are displayed in Figure 2. The log-rank and Wilcoxon test statistics are summarized in
Table 3.

Figure 2a suggests that the survival outcome is significantly better for tokens as
compared to coins (χ2 = 42.02; p < 0.001). Figure 2b indicates a relatively better survival
outcome for cryptocurrencies under Ethereum (χ2 = 66.90; p < 0.001). Figure 2d suggests
a significant high risk as a cryptocurrency is minable (χ2 = 32.22; p < 0.001). Among the
levels of the variable Series, cryptocurrencies released in the series 2009–2013 present
significantly better survival outcomes (χ2 = 8.04; p = 0.018) as Figure 2d indicates, this
is the same for South American cryptocurrencies (χ2 = 132.03; p < 0.001) as Figure 2e
shows of the variable Region.

Table 3. Log-rank and Wilcoxon test statistics.

Variable Log-Rank χ2 Test Statistic (p-Value) Wilcoxon χ2 Test Statistic (p-Value)

Type 42.02 (p < 0.001) 35.45 (p < 0.001)
Blockchain 66.90 (p < 0.001) 55.62 (p < 0.001)
Mining 32.22 (p < 0.001) 22.34 (p < 0.001)
Series 13.10 (0.001) 8.04 (0.018)
Region 153.49 (p < 0.001) 132.03 (p < 0.001)

The log-rank test for comparison is suitable for comparing levels of covariates that
obey the proportional hazard assumption (PHA); these are covariates Type, Blockchain
and Mining for which the plots are approximately parallel. Wilcoxon test is suitable in
comparing the levels of covariates Series and Region for which corresponding plots cross
each other, leading to the violation of the PHA.
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(a) (b)

(c) (d)

(e)

Figure 2. Plots of the Kaplan–Meier estimates of the survival function for levels of covariates from
2009 to 2021. (a) Type, (b) Blockchain, (c) Mining, (d) Series, (e) Region.

3. Results and Interpretation
3.1. Cox Proportional Hazards Model (CPHM)

Unlike Kaplan–Meier estimation, which treats one variable at a time, the the CPHM
makes inference by considering several variables at a time.

Table 4 presents the estimated hazard ratios based on all the covariates.
The model suggests that the risk of death of cryptocurrencies under standalone

blockchain is 2.771 (95% CI: 1.221; 6.288) times that of cryptocurrencies under the re-
ferral blockchain.

The significance for covariate Region is observed in North America, Europe and Asia.
I all these regions the survival outcomes are better than the referral level. The CPHM
suggests that the risk of death of cryptoccurrencies from unknown region is 6.757 (95% CI:
[3.106; 14.706]) times that of cryptocurrencies based in North America. Such risk is 4.348
(95% CI: [2.439; 7.752]) times that of cryptocurrencies based in Europe and 13.333 (95% CI:
[5.181; 34.483]) times that of cryptocurrencies based Asia.
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Table 4. Cox Proportional hazards model for all covariates.

Covariate (Reference) Level Haz. Ratio Std. Err. z P > z 95% Conf. Int.

Type (Token) Coin 0.737 0.350 −0.640 0.521 [0.290; 1.872]
Blockchain (Other) Ethereum 0.798 0.382 −0.470 0.638 [0.312; 2.041]

Standalone 2.771 1.159 2.440 0.015 [1.221; 6.288]
Series (Series 1) Series 2 3.270 0.230 2.840 0.671 [1.452; 3.215]

Series 3 2.870 0.952 1.450 0.424 [1.413; 3.624]
Mining (Not minable) Minable 0.855 0.208 −0.640 0.520 [0.530; 1.378]
Region (Unknown) South America 0.091 0.396 −0.562 0.741 [0.067; 0.201].

Oceania 0.402 0.414 −0.880 0.377 [0.053; 3.031]
North America 0.148 0.059 −4.800 p < 0.001 [0.068; 0.322]
Europe 0.230 0.068 −4.980 p < 0.001 [0.129; 0.410]
Asia 0.075 0.036 −5.370 p < 0.001 [0.029; 0.193]
Africa 0.755 0.554 −0.380 0.702 [0.179; 3.182]

3.2. Aalen Additive Hazards Model (AAHM)

Hosmer and Royston (2002) designed a STATA code based on an ado file for analysing
survival data using the AAHM.

Figure 3a displays the cumulative parameter function with its 95% confidence limits
for cryptocurrencies under Ethereum blockchain. The plot oscillates around the zero line,
and the plot of 95% confidence limits are on either sides of the zero line. This indicates that
the slope may be zero at some time value, and the risk of cryptocurrencies under Ethereum
may not be significantly different from that of the referral group. The same AAHM results
are observed for the crypto-coins (Figure 3c) and minable cryptocurrencies (Figure 3d).

Figure 3b indicates that the cumulative parameter function for cryptocurrencies under
standalone blockchain is positive, and so is the major part of the 95% confidence limits.
This suggests that the risk of such cryptocurrencies is higher than that of the referral
group. The same observation occurred for cryptocurrencies released from the year 2013 as
Figure 3e,f show.

Figure 4 gives the plots of the cumulative parameter functions and their 95% confi-
dence limits for levels of the variable Region. The cumulative parameter functions with
their 95% confidence limits are negative for levels South America (Figure 4a), North America
(Figure 4c), Europe (Figure 4d) and Asia (Figure 4e). The pattern for level Oceania is negative
together with the major parts of its confidence limits (Figure 4b). This suggests a relatively
higher risk of cryptocurrencies of the referral region. The pattern for level Africa (Figure 4f)
oscillates around the zero line, and the plot of 95% confidence limits are on either sides of
the zero line. This indicates that the slope may be zero at some time value, and the risk of
African cryptocurrencies may not be significantly different from that of the referral region.

Table 5 displays the results of the test statistics of the AAHM for all the covariates
using the four types of weights. All the tests are against the difference of the levels of
covariate Mining. The test based on type 4 weights suggests the moderate evidence of
difference of the levels of covariate Type and the overwhelming difference of levels of
covariates Blockchain, Series and Region. The overwhelming difference for levels of covariate
Series and some levels of covariate Region is also noticed by test 1, 2 and 3.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. AAHM for levels of covariates Type, Blockchain, Mining and Series. (a) Ethereum, (b) Stan-
dalone, (c) Coin, (d) Minable, (e) Series 2 (2013–2017), (f) Series 3 (2017–2021).
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(a) (b)

(c) (d)

(e) (f)

Figure 4. AAHM for levels of covariate Region. (a) South America, (b) Oceania, (c) North America,
(d) Europe, (e) Asia, (f) Africa.

Table 5. Tests for significance of covariates.

Test 1 Test 2 Test 3 Test 4

Covariate (Reference) Level z P z P z P z P

Type (Token) Coin −0.477 0.634 0.004 0.997 −0.385 0.700 −2.229 0.026
Blockchain (Other) Ethereum −0.451 0.652 −0.437 0.662 −0.510 0.610 7.230 p < 0.001

Standalone 3.098 0.002 2.712 0.007 2.907 0.004 5.196 p < 0.001
Series (Series 1) Series 2 6.114 p < 0.001 6.052 p < 0.001 6.090 p < 0.001 5.558 p < 0.001

Series 3 6.519 p < 0.001 6.524 p < 0.001 6.526 p < 0.001 7.719 p < 0.001
Mining (Not minable) Minable −0.324 0.746 −0.754 0.451 −0.448 0.654 0.990 0.322
Region (Unknown) South America −7.367 p < 0.001 −7.784 p < 0.001 −7.487 p < 0.001 −7.365 p < 0.001

Oceania −2.956 0.003 −2.935 0.003 −2.984 0.003 −7.153 p < 0.001
North America −5.895 p < 0.001 −6.312 p < 0.001 −5.985 p < 0.001 −6.110 p < 0.001
Europe −5.332 p < 0.001 −5.661 p < 0.001 −5.403 p < 0.001 −5.497 p < 0.001
Asia −6.327 p < 0.001 −6.837 p < 0.001 −6.471 p < 0.001 −6.353 p < 0.001
Africa −1.468 0.142 −1.339 0.181 −1.418 0.156 −7.350 p < 0.001
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4. Conclusions

This paper used survival regression models for analysing the risk to death of the
cryptocurrencies from 2009 to Q2 2021. The dataset is a sample of 500 cryptocurrencies for
which a correct information on the covariates of interest were found. The exploration was
conducted using the Kaplan–Meier estimation of the survival function.

The Cox Proportional Hazards Model (CPHM) also was used and suggested a rela-
tively higher risk for cryptocurrencies under standalone blockchain. This result was also
found by the plot of the survival functions of the levels of blockchain covariate. It was
found by the CPHM that cryptocurrencies released in the series 2013–2017 are at a high risk
as compared to those of 2009–2013 release. The CPHM also suggested that cryptocurrencies
for which headquarters are unknown are at a relatively higher risk. The results of the
Aalen Additive Hazards Models (AAHM) showed that unlike other covariates, the levels
of covariate Mining are not significantly different.

Among more than 6000 active and inactive cryptocurrencies, this paper considered
500 cryptocurrencies for which the information on the variables of interest were easily
found. The study still needs improvement by considering a relatively bigger sample size.
Apart from considering a big sample in future research, re-sampling may also improve the
measurement of the standard errors and then evaluate the accuracy of the results found in
this paper.
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