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Abstract: Previous application of the stochastic frontier model and subsequent measurement of the
performance of the crop sector can be criticized for the estimated production function relying on
the assumption that the underlying technology is the same for different agricultural systems. This
paper contributes to estimating regional efficiency and the technological gap in Norwegian grain
farms using the stochastic metafrontier approach. For this study, we classified the country into
regions with district level of development and, hence, production technologies. The dataset used is
farm-level balanced panel data for 19 years (1996–2014) with 1463 observations from 196 family farms
specialized in grain production. The study used the true random effect model and stochastic
metafrontier analysis to estimate region level technical efficiency (TE) and technology gap ratio
(TGR) in the two main grain-producing regions of Norway. The result of the analysis shows that
farmers differ in performance and technology use. Consequently, the paper gives some regionally
and farming system-based policy insights to increase grain production in the country to achieve
self-sufficiency and small-scale farming in all regions.

Keywords: grain production; metafrontier; panel data; regional development; technical efficiency

JEL Classification: R58; O52; Q16; C23; D24

1. Introduction

The main objectives of Norwegian agricultural and food policies are agricultural
production in all parts of the country; food security; creating more added value, and
sustainable production with reduced greenhouse gas emissions. Only 3.3% of the total
Norwegian land area is farmland (Statistics Norway 2020). Owing to the topography of
the country, fields are often small, scattered, and difficult to cultivate, which contributes
to the high costs of agricultural production. With a relatively long winter and a short
growing season (five months on average) in most parts of the country, growing fodder,
mainly grass, has a comparative advantage. On the other hand, long summer days, given
sufficient rainfall, is beneficial for crop production. Moreover, the cool climate limits the
spread of pests and diseases (Steinshamn et al. 2016). The Norwegian government supports
farmers in achieving the abovementioned objectives, and the sector is so heavily subsidized
that, without support, it would not be competitive with imports. There is a threat that
Norway may be obliged, by international pressures, to cut back on border protection and
output-related subsidies, which might force the Norwegian agricultural policy toward
more competitive agriculture. Consequently, to achieve food and nutrition security at
a national level, there is a need to improve the performance of farmers in all regions of
Norway. Improving the performance of farmers is a key contributor to the efficient use of
resources and overall productivity growth in the Norwegian economy (Lien et al. 2010).
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In the economics literature, there are two main approaches1 for measuring farm
performance; that is, a parametric approach such as the stochastic frontier approach, and
a non-parametric approach, such as data envelopment analysis. In both methods, the
basis for performance measurement is the radial contraction or expansion, connecting
inefficient observed points with the reference points on the production frontier. For a
sample of producers, both approaches involve estimating the ‘best-practice’ frontier for
a specific group of farms. If the actual production point of a farm lies on the frontier, the
farm is considered as performing to its best and using resources efficiently; if it lies below
the frontier, then it is inefficient. The choice of estimation method has been an issue of
debate, and each approach has its advantages and disadvantages (for details, see Alem
2018; Coelli et al. 2005; Kumbhakar et al. 2015). The treatment of measurement error is
the critical distinction between parametric and non-parametric approaches. The stochastic
frontier approach (SFA) can accommodate noise, such as measurement errors due to
weather, disease, and pest infestation that are likely to be significant in farming. The data
envelopment analysis (DEA) approach is sensitive to outliers since the measurement
error is ignored (Coelli et al. 2005; Barnes et al. 2009). Since farms in our study are
sensitive to external random shocks, we have chosen the SFA approach to evaluate the cost
efficiency scores and determinants of inefficiency. The stochastic frontier approach has been
commonly used for the agricultural sector and assumes that the underlying technology is
the same for all sample observations, regardless of differences in the working environment
(Kumbhakar et al. 2012). Nevertheless, farms in different regions are expected to face
different technology sets and input use because of differences in resource endowments
(O’Donnell et al. 2008). Thus, comparing the performance of farms in different regions
using single estimates across all regions is likely to produce misleading results (for details,
see Alem et al. 2019).

Agricultural policy intervention might be different for different production environ-
ments and different farming systems because of heterogeneity. There are two common
sources of farm heterogeneity which need to be accounted for in performance analysis
(Baráth and Fertő 2015). The first source of heterogeneity is the heterogeneity of production
conditions among sample farms. The possible solution for this heterogeneity is to include
control variables in the production or cost function if the (approximate) production condi-
tions can be observed (Coelli et al. 2005). Often, however, not all the factors that affect the
performance of the farm are observable, so we seldom have comprehensive information
about the production conditions. For instance, data on soil type, latitude, altitude, precipi-
tation, distance from the service center, and the like are seldom available or are too complex
to be measured by single indicators. In the recent literature, such unobserved heterogeneity
can be separated from farm inefficiency using econometric techniques (Greene 2005b).
The second source of heterogeneity results from differences in the technology used, i.e.,
technological heterogeneity. The fact that agricultural producers face different production
environments may lead to a variation in the crops produced. For instance, farms located in
dry regions might plant a crop variety that can resist drought. Consequently, differences
between working environments mean differences in technology use. The assumption that
all farms use identical technology might not be true; hence, there is a need to account for
technology heterogeneity. In the economics literature, we can find different techniques
to control technology heterogeneity. For instance, using cluster algorithms technique
(Álvarez et al. 2008); using random parameter technique (Greene 2005a); latent class tech-
nique (see e.g., Orea and Kumbhakar 2004); and metafrontier (see, e.g., O’Donnell et al.
2008). Each approach has pros and cons regarding estimating the performance of the
given sector in accounting for technology heterogeneity or regional differences, though the
metafrontier approach is commonly used for regionally-based studies (Alem et al. 2019).

1 There are other approaches, for instance, the Bayesian stochastic frontier (Koop and Steel 2001), semi-parametric (Simar and Wilson 2007), and
stochastic DEA (Huang and Li 2001), though these re not commonly used in empirical studies.
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A metafrontier model has produced promising results in agriculture when focusing
on the dairy sector (see, e.g., Moreira and Bravo-Ureta 2010). Therefore, this study aims
to measure the performance and regional technology gaps of Norwegian crop-producing
farms located in different regions. In the economics literature, the paper contributes as
follows. First, we controlled unobserved farm-level heterogeneity using the Greene (2005b)
model in addition to controlling technological heterogeneity unlike, for instance, Battese
et al. (2004). Second, we used a stochastic metafrontier approach for the crop sector. As far
as we know, this is the first study of regional performance differences conducted for the
crop sector and a Nordic country2. Third, we take advantage of large farm-level panel data
from Norwegian grain-producing farms observed from 1996 to 2014.

This paper is organized as follows. Section 2 describes the theoretical model used.
Sections 3 and 4 introduce the empirical model and the data used. Section 5 presents
the empirical estimation and results. Finally, Section 6 presents our conclusions and the
policy implications.

2. Theoretical Model

As discussed in the introduction, we used a stochastic production frontier for this
study. A general stochastic production frontier model is given by

yit = f (xit, β)e(vit−uit) (1)

where yit is the crop output produced by farm i at time t = 1, 2, . . . , T; xit is a vector of
factor inputs; i = 1, 2, . . . , N for farms at time t; vit is the error term; and uit represents the
technical efficiency of farm i. Both vit and uit are assumed to be independent and identically
distributed (iid) with variance σ2

v and σ2
u , respectively, that means the variables have the

same probability distribution and are mutually independent. The assumption used to
estimate the performance of the farm for Equation (1) is that farms in all regions operate
under the same working environment. A violation of common technology assumption
biases the estimates (for details, see, e.g., Orea and Kumbhakar 2004).

We can minimize the technology heterogeneity by forming relatively homogeneous
groups (k regions) and estimate separate functions using the Greene (2005b) model to
account for unobserved heterogeneity within the region as follows:

yk
it = f

(
xitk, βk

)
e(vit−uit) I = 1, 2, . . . , N(k) (2)

where yk
it is the crop output for farm i in the tth period for the kth region; xitk denotes

the input vector for farm i at time t in region k; vitk represents the error; uitk denotes
the inefficiency of farm i at time t in region k; and βk is a vector of unknown parame-
ters to be estimated for the kth region. As stated above, βk can be estimated using the
Greene (2005b) model to account for the farm effect within the region (unobserved hetero-
geneity). If we assume the exponent of the production frontier in Equation (2) is linear in
βk, then the technology can be represented for instance using a Cobb–Douglas or translog
function (see Section 3). After estimating Equation (2) for each region separately, it is
important to test whether the regions share the same technology using a log-likelihood
ratio test.

The technical efficiency (TEk
it) of the ith farm to the region–k frontier can be computed,

following Alem et al. (2019), as

TEk
it =

yit(k)

f
(
xitk, βk

)
e(vit)

= e−uitk (3)

2 Nordic countries include Norway, Sweden, Denmark, Iceland, and Finland.
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Following Battese et al. (2004), we can estimate the technical efficiency of the ith farm
relative to the metafrontier:

y∗it = f (xit, β∗) ≡ exit β∗ , I = 1, 2 . . . N, and t = 1, 2, . . . , T (4)

where y∗it is the metafrontier output; f (·) is a specified functional form; and β∗ denotes the
vector of parameters for the metafrontier function that satisfies the following constraint:

f (xitβ
∗) ≥ f (xitβ

k) for all k = 1, 2, . . . , K. (5)

The metafrontier function defined by (4) and (5) is a production function of specified
functional form that does not fall below the deterministic function for the stochastic fron-
tier models of the involved regions (O’Donnell et al. 2008). For Equation (5) to hold, the
metafrontier production function is estimated using either linear or quadratic program-
ming, as discussed in detail in Battese et al. (2004). For this study, we applied the linear
programming method, and the β̂∗ parameters of the metafrontier function were estimated
by solving the optimization problem as follows:

min
β∗

T

∑
t=1

N

∑
i=1

[
ln f (xit, β∗)− ln f

(
xit, β̂k

)]
(6)

subject to ln f (xit, β∗) ≥ ln f (xit, β̂k) for all k = 1, 2, . . . , K where ln f (x it, β̂k) is the loga-
rithm of the estimated deterministic component of the stochastic frontier for the kth region.
The frontier can be estimated using the pooled datasets by including observation in all re-
gions. Given that f (xit, β∗) in Equation (6) is log-linear in the parameters, the optimization
problem in Equation (6) can be solved by linear programming as follows:

min
β∗

T

∑
t=1

L

∑
i=1

[(x, β∗)] (7)

subject to (xit, β∗) ≥
(

xit, β̂k
)

for all k = 1, 2, . . . , K where x is the row vector of means
of the elements of the xit vectors overall for i farms in all t periods for the kth region
(Battese et al. 2004). Once Equation (7) is solved using linear programming, we can express
Equation (2) in terms of the metafrontier function in Equation (4), as follows:

yit = e−uitk

[
exit βk

exit β∗

]
exit β∗+vitk . (8)

In Equation (8), the first part on the right-hand side is the technical efficiency relative to
the stochastic frontier for the kth region in Equation (3). The second part on the right-hand
side of Equation (8) is the technological gap ratio (TGR) for the ith farm in the kth region in
the tth period, i.e.,

TGRk
it =

exit βk

exit β∗
. (9)

Equation (9) shows that the TGR is the ratio of the output for the frontier production
function for the kth region compared to the potential output defined by metafrontier
function, given observed inputs (O’Donnell et al. 2008). An alternative expression for the
technical efficiency of the ith farm to the metafrontier (TE∗

it) is given by

TE∗
it = TEk

it × TGRk
it. (10)

Equation (10) shows that the technical efficiency for each region relative to the
metafrontier (TE∗

it) is a product of each farm’s technical efficiency for each region (TEk
it)

and each farm’s technology gap ratio (TGRk
it). According to Battese et al. (2004), TGR
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equal to 1 implies that regions are using the available technology in the country efficiently.
The TGR value is between 0 and 1.

3. Empirical Model

We used the translog function which is widely used in applied econometrics
(Berndt and Christensen 1973) as follows:

ln(yit) = β0 +
4

∑
k=1

βk ln xkit +
4

∑
k=1

4

∑
l=1

βkl ln xkit ln xlit + βtt +
1
2

βttt2 (11)

+
1
2

4

∑
k=1

βkk(ln xkit)
2 +

4

∑
k=1

βkt ln xkitt + θk
i + vk

it − uk
it

where yit denotes a vector of crop-outputs at a time “t” and xit denotes the vector of
inputs used in time t. As stated above, vit is the error term and uk

it denotes the effi-
ciency term while β are parameters to be estimated. θk

i captures farm-specific unobserved
heterogeneity. Equation (11) were estimated using a single-stage maximum likelihood
estimator based on Greene (2005b) and the technical inefficiency (TEk

it) estimated following
Jondrow et al. (1982) using farm-level data, which is discussed in the next section.

4. Data

The Norwegian Institute of Bioeconomy Research (NIBIO) conducts a survey every
year to collect farm-level production and economic data. The survey covers the five regions
of Norway in all farm size and farm types. For the implementation of the Norwegian
agricultural policy, the country is divided into five main regions based on geographical
and climatic conditions. Eastern Norway is relatively highly populated as the capital city,
Oslo, is in this region. The region is characterized by relatively hot summers and cold
winters. Compared to the other regions, the land here is flatter and more suitable for crop
production. Southern Norway shares most of the characteristics of the eastern region but is
not as suitable for crop production as the fields are scattered and the terrain is more rugged.
Northern Norway is characterized by wide inland plains, dark winters, and the midnight
sun in summer. Central Norway is located between Northern Norway and the southern
part of the country and, so, shares characteristics of both north and south. Western Norway
is the region with most of Norway’s fjords and mountains and the region that receives
most of the country’s rain.

The dataset used in this study is farm-level balanced panel data for 19 years (1996–2014)
with a total of 1463 observation. To assess the technical efficiency and productivity growth,
we need to be sure that farms under consideration are comparable. Most farms that are
engaged in grain production are located in the eastern and central regions of Norway.
The 2012 statistics show that three is 2,325,765 decare of cultivated land (Figure 1). Among
this, 81% is based in the east and 17% in central regions (SSB 2016). Thus, to obtain a
homogenous group of farms, only farms specialized in grain production in Eastern and
Central Norway that reported their account data for the period 1996–2014 were selected.

The production data contained crop output, which includes grain output (y) and is
represented by farm revenue from grain and grain products (sales + farm use + farmhouse
consumption). Grain output is an aggregate of four main species: barley, wheat, oats, and
oilseed species. The aggregate is quality-adjusted and is measured in FU (feed units) as
defined by the Norwegian Institute of Bioeconomy Research (NIBIO). Cultivated land
(x1) is productive land (both owned and rented) in decare. Labor (x2) is the total labor
hours used on the farm, which includes hired labor and owners, and family labor. Variable
farm input (x3) is input like fertilizers, feed, oil and fuel products, electricity, expenses
for the plant, constructive materials, and other costs, deflated by the CPI to 2014 Euro
prices. Capital (X4) is expenditure on fixed-cost items plus depreciation and maintenance
costs for on-farm capital tied up in machinery and buildings. All values were deflated by



Economies 2021, 9, 10 6 of 10

the consumer prices index to 2014 Euro prices. The summary and definitions of both the
output and input variables are shown in Table 1.

Economies 2021, 9, x FOR PEER REVIEW 6 of 11 
 

 
Figure 1. Five regions total cultivated and grain land in 2012, computed data from Statistics Norway (2016). 

Table 1. Descriptive statistics (mean value) for crop production in two regions (1996–2014). 

Region Output 
(in €2014) 

Land (×1) 
(0.1 hectare) 

Labor (×2) 
(in hours) 

Var. Cost (×3) 
(in €2014) 

Fixed Cost (×4) 
(in €2014) 

N 

Eastern Norway 
Std. Dev. 

33,527.50 
(23,694) 

342 
(212) 

991 
(634) 

9391.00 
(6403) 

15,917.40 
(10,372) 

1292 

Central Norway 
Std. Dev. 

28,547.30 
(13,664) 

282 
(85) 

676 
(222) 

6195.50 
(2808) 

11,755.20 
(5762) 171 

Norway 
Std. Dev. 

32,945.40 
(22,804) 

335 
(202) 

954 
(606) 

9017.50 
(6179) 

15,430.90 
(10,032) 1463 

Source: Author’s calculations. 

5. Estimation Results and Discussion 
Technical efficiency (TE) estimates were obtained from the stochastic frontier model 

and estimated separately for the two regions and the pooled data following the procedure 
for the ‘True’ random effect model (Greene 2005b) using STATA version 14. The meta-
frontier estimated using SHAZAM version 10 following O’Donnell et al. (2008). The re-
sults of the analysis are discussed below. 

5.1. Input Elasticity and Technological Change 
The estimated parameters of the stochastic frontier (SF) translog function specified in 

Equation (11) for estimation for the two regions and the pooled data are reported in Table 
2.  

Table 2. Parameter estimates for the translog function and the metafrontier. 

 Eastern Norway Central Norway Pooled Data Metafrontier 
S. Frontier 𝛃1 x1(land) 0.64 *** (0.05) 0.77 *** (0.16) 0.65 *** (0.04) 0.36 𝛃2 x2 (labor) 0.17 *** (0.03) 0.27 *** (0.03) 0.15 *** (0.03) 0.51 𝛃3 x3 (V.cost) 0.12 *** (0.03) 0.09 *** (0.01) 0.12 *** (0.03) 1.35   𝛃𝟒 xସ (F.cost) 0.12 *** (0.03) 0.17 * (0.08) 0.12 *** (0.03) 0.01 𝛃11 x1 ∗ x1 0.50 ** (0.18) 1.05 (0.90) 0.12 *** (0.03) −0.52 𝛃22 x2 ∗ x2 0.11 (0.06) 0.25 (0.22) 0.57 *** (0.17) 0.21 𝛃33 x3 ∗ x3 0.04 (0.05) 0.001 (0.08) 0.06 (0.05) 0.01 

Figure 1. Five regions total cultivated and grain land in 2012, computed data from Statistics Norway (2016).

Table 1. Descriptive statistics (mean value) for crop production in two regions (1996–2014).

Region Output
(In €2014)

Land (×1)
(0.1 Hectare)

Labor (×2)
(In Hours)

Var. Cost (×3)
(In €2014)

Fixed Cost (×4)
(In €2014) N

Eastern Norway
Std. Dev.

33,527.50
(23,694)

342
(212)

991
(634)

9391.00
(6403)

15,917.40
(10,372) 1292

Central Norway
Std. Dev.

28,547.30
(13,664)

282
(85)

676
(222)

6195.50
(2808)

11,755.20
(5762) 171

Norway
Std. Dev.

32,945.40
(22,804)

335
(202)

954
(606)

9017.50
(6179)

15,430.90
(10,032) 1463

Source: Author’s calculations.

5. Estimation Results and Discussion

Technical efficiency (TE) estimates were obtained from the stochastic frontier model
and estimated separately for the two regions and the pooled data following the procedure
for the ‘True’ random effect model (Greene 2005b) using STATA version 14. The metafron-
tier estimated using SHAZAM version 10 following O’Donnell et al. (2008). The results of
the analysis are discussed below.

5.1. Input Elasticity and Technological Change

The estimated parameters of the stochastic frontier (SF) translog function specified in
Equation (11) for estimation for the two regions and the pooled data are reported in Table 2.

Table 2 also shows the results of the linear programming estimates for the metafrontier.
All variables are normalized; that is, we divide all variables by their geometric mean
value before their logarithms. Consequently, the first-order parameters are interpreted as
production elasticities at the geometric mean. The coefficient for the land is the largest
among other partial production elasticities in all regions of Norway and statically significant
(p < 0.001). The results imply that the percentage change in the land has a larger influence
on grain production compared to other inputs. As a result, any intervention to improve the
grain sector needs to prioritize these inputs. On the other hand, the estimated elasticity of
grain output for labor input (x2) is 0.17 in the eastern region, and 0.27 in the central region,
which are statically significant at p < 0.001. The partial elasticity of grain output for variable
input is statically significant (p < 0.001) for both regions. Moreover, the partial elasticity



Economies 2021, 9, 10 7 of 10

of fixed input (x4) in all regions is positive and statically significant in all regions, with a
minimum value of 0.12 in the eastern region and 0.17 in central regions.

Table 2. Parameter estimates for the translog function and the metafrontier.

Eastern Norway Central Norway Pooled Data Metafrontier

S. Frontier
β1 x1(land) 0.64 *** (0.05) 0.77 *** (0.16) 0.65 *** (0.04) 0.36
β2 x2 (labor) 0.17 *** (0.03) 0.27 *** (0.03) 0.15 *** (0.03) 0.51
β3 x3 (V.cost) 0.12 *** (0.03) 0.09 *** (0.01) 0.12 *** (0.03) 1.35
β4 x4 (F.cost) 0.12 *** (0.03) 0.17 * (0.08) 0.12 *** (0.03) 0.01
β11 x1 ∗x1 0.50 ** (0.18) 1.05 (0.90) 0.12 *** (0.03) −0.52
β22 x2 ∗x2 0.11 (0.06) 0.25 (0.22) 0.57 *** (0.17) 0.21
β33 x3 ∗x3 0.04 (0.05) 0.001 (0.08) 0.06 (0.05) 0.01
β44 x4 ∗x4 −0.01 (0.08) 0.23 (0.28) 0.01 (0.07) 0.03
β12 x1 ∗x2 −0.06 (0.07) −0.10 (0.40) −0.05 (0.08) −0.83
β13 x1 ∗x3 −0.14 (0.09) −0.25 (0.33) −0.17 * (0.08) 0.06
β14 x1 ∗x4 −0.15 (0.09) −0.15 (0.22) −0.20 * (0.08) −1.30
β23 x2 ∗x3 0.02 (0.04) 0.37 (0.26) 0.02 (0.04) −1.40
β24 x2 ∗x4 0.02 (0.05) −0.17 (0.30) 0.01 (0.05) 1.28
β34 x3 ∗x4 0.09 (0.07) 0.01 (0.10) 0.11 * (0.06) 0.57
βt t 0.09 *** (0.00) 0.03 *** (0.00) 0.03 *** (0.00) 0.63
βtt t ∗ t 0.01 *** (0.00) 0.01 *** (0.00) 0.01 *** (0.00) 0.64
δ1 t ∗ x1 −0.03 (0.02) −0.05 * (0.02) −0.03 * (0.01) −0.65
δ2 t ∗ x2 0.01 (0.01) 0.02 * (0.01) 0.02 (0.01) −0.22
δ3 t ∗ x3 −0.02 * (0.01) 0.004 (0.01) −0.02 ** (0.01) 0.59
δ4 t ∗ x4 −0.00 (0.01) −0.03 (0.03) −0.003 (0.01) −0.61
α0 _cons −0.39 *** (0.03) −0.28 *** (0.05) −0.37 *** (0.03) 0.89

U-sigma −3.77 *** (0.15) −3.86 *** (0.59) −3.79 *** (0.14)
V-sigma −3.06 *** (0.07) −4.54 *** (0.47) −3.12 *** (0.07)

Theta 0.16 *** (0.01) 0.14 *** (0.03) 0.16 *** (0.01)
Sigma_u 0.15 *** (0.01) 0.14 *** (0.04) 0.15 *** (0.01)
Sigma_v 0.22 *** (0.01) 0.10 *** (0.02) 0.22 *** (0.01)
Lambda 0.70 *** (0.02) 1.04 *** (0.06) 0.70 *** (0.02)

Log-L −216 *** 43 *** −215 ***
RTS 1.06 1.33 1.04

N 1292 171 1463

Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001; RTS = returns to scale. Source: Author’s calculations.

Wang and Ho (2010) showed that the estimated time trend variable is the average
annual rate of technical change (TC). As indicated in Table 2, the estimated parameter
for time for the two regions is positive and significant. These show that the rate of TC
increases at an increasing rate over time. The only significant interaction parameter with
time (t) for the eastern region is when time interacts with variable input (x3). The negative
value suggests that technological change (TC) has been variable and input-saving over the
last 19 years and, thus, TC is non-neutral. On the other hand, the interaction parameter
with time (t) for the central region with land and labor are statically significant (p < 0.05).
The negative value of tx1 suggests that technological change (TC) in the central region has
been land-saving over the last 19 years but not labor-saving.

The sum of the functional-coefficient for the translog function at the geometric mean is
1.06 and 1.04 for the eastern region and the pooled data, respectively. Since constant returns
to scale (CRS) is not rejected at any reasonable level of significance (Table 2), ∑4

k=1 βk = 1
reveals that grain production exhibits constant returns to scale for the eastern region. In
line with this finding, the study conducted by Lien et al. (2010) on the determinants of
off-farm work and its effects on farm performance on the case of Norwegian grain farmers
was unable to conclude that there were increasing returns to scale (Lien et al. 2010). On the
other hand, the central region displays increasing returns to scale (∑4

k=1 βk = 1.33) since
constant returns of scale were rejected at 5% of significance (Table 2). A study conducted
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on Norwegian grain farms for the period 1972–1996 reported increasing returns to scale
(Løyland and Ringstad 2001). Our findings do not lend support to previous studies that
have concluded that there are increasing and decreasing scale economics in the Norwegian
grain production industry. The results for scale economics and policy implications differed
from region to region such that there is a need for regionally based analysis.

5.2. Technical Efficiency and Technology Gap Ratio (TGR)

The value of technical efficiency for grain production for the region (TEi) estimated by
the SFA model is shown in Table 3. Farms in the central and eastern regions achieved the
mean technical efficiency of 0.87 and 0.88, respectively. The average technical efficiency
score of 0.87 indicates grain output by about 87% of the potential given its regional technol-
ogy. There are no regional-level studies for the crop sector in the literature for comparison.
However, if we consider the same technology assumption in our model, the result is in
line with other studies, for example, a study of grain farming in Norway that estimated a
single frontier model is working under a common production frontier (technology) for six
different models and reported that the mean technical efficiency varies from 0.64 to 0.91
(Kumbhakar et al. 2012). Other studies focusing on the comparison of SFA and DEA on
Norwegian grain production reported a mean technical efficiency of 0.70 and 0.75 for SFA
and DEA models, respectively (Odeck 2007).

Table 3. Technical efficiency estimates for grain production in two regions.

Region Mean Std. Dev. Minimum Maximum N

Eastern Norway 0.88 0.06 0.29 0.98 1292
Central Norway 0.87 0.10 0.39 0.98 117

All regions 0.88 0.06 0.29 0.98 1463

Source: Author’s calculations.

Table 4 shows the most interesting feature of the analysis, which illustrates the differ-
ence between the average technical efficiency of the regional frontier and the metafrontier
model (TE*). For instance, the average SF technical efficiency of eastern Norway to the
metafrontier was only 0.52 for the years 1996–2014. The results show that farmers in the east
are much less efficient compared with the metafrontier. The highest efficiency compared
with the metafrontier is reported in the central region (0.71).

Table 4. Technical efficiency to the region (TEi), the metafrontier (TE*), and technology gap ratio (TGR).

Regions TEi TE* TGR N

Eastern Norway 0.88 0.52 0.59 1292
Central Norway 0.87 0.71 0.82 117

Source: Author’s calculations.

Estimates of the mean values of the TGR vary even more widely than the average
technical efficiency estimates in the metafrontier model. A similar result was reported,
for instance, in (Boshrabadi et al. 2008). The TGR for each region is reported in Table 5.
The results show that farms in the central region achieved the highest TGR (0.82) with
minimum variation (SD = 0.28). Conversely, the lowest average TGR score was estimated
for Eastern Norway (0.59). The value TGR ranges from a minimum of 0.27 in the central
region and with a maximum of 1 for all regions.

Table 5. Technology gap ratio (TGR) for grain production.

Regions Mean SD Variance Minimum Maximum N

Eastern Norway 0.59 0.30 0.09 0.39 1.000 1292
Central Norway 0.82 0.28 0.08 0.27 1.000 117

Source: Author’s calculations.
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In general, as we discussed in the theoretical part of the paper, a lower (higher) TGR
value implies a larger (smaller) technology gap between the individual frontier and the
metafrontier. The TGR score of 1 indicates that the farmer is applying the best technology
available in the region, i.e., a TGR score equal to 1 is equivalent to a point where the
individual region frontier coincides with the metafrontier. The TGR score of 1 in all
Norwegian regions indicates that it is possible to produce maximum grain output as
represented by the metafrontier, given the status of the environment. An important policy
implication of efficiency analysis for the different regions is to ascertain, by increasing
productivity, gains attained by increasing technical efficiency, i.e., catching up (Battese et al.
2004; O’Donnell et al. 2008). Therefore, policymakers could minimize the gap between the
farmers in the eastern region through training and knowledge sharing (transfer) within
the region. This policy intervention helps farmers achieve the highest possible output on
the metafrontier given the current technology available in the grain farming sector. On
the other hand, grain firms located in those regions near the metafrontier need additional
investment in research to develop new technology. The analysis shows the central regions
of Norway fall, relatively, in the latter situation.

6. Conclusions and Policy Implications

This paper aimed to measure the performance and regional technology gaps of Nor-
wegian crop-producing farms located in different regions. We controlled unobserved
heterogeneity and technological regional differences using Greene (2005b) and metafrontier
models, respectively. The empirical analysis is based on balanced farm-level panel data
for 19 years (1996–2014) with 1463 observations from 196 family farms specialized in grain
production. The estimated average technical efficiency is 0.88 for the eastern region and
0.87 central regions. The results suggest that grain farms in all regions suboptimally use
available technology in the area, given the regional technology. The study also shows that
TGR is different for the two grain-producing regions of Norway. The results show that
farmers in the eastern region (0.59) are much further from the metafrontier compared to
the central region (0.82), which suggests that farmers in different regions use different pro-
duction technologies according to the resource endowments and environmental situation
of the region. Consequently, intervention to improve the grain sector in Norway demands
these technology differences in the regions be considered.

Policymakers could minimize the gap for farmers within the eastern regions through
training and knowledge sharing (transfer) within the region, which allows the inefficient
grain-producing farms to learn from the best-performing farms. Moreover, technology
adoption and information transfer from the central to the eastern region is crucial to
reduce the gap. This policy intervention helps farmers achieve the highest possible out-
put on the metafrontier with the current technology available in the agricultural sector.
Grain-producing farms in the central region are near to the frontier and, thus, additional
investment in new technology development is required for relative improvements in farm
performance. This policy intervention helps farmers in the central region to use new tech-
nology to shift the production frontier upwards and improve grain production performance
in the region.

TGR was estimated using a single output framework. It might be interesting to
see if the results are different if the metafrontier was estimated in multiple input-output
frameworks. Thus, the limitations of this study suggest important topics that could benefit
from further study.
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