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Abstract: Due to a broad consensus in the engaging of global economic integrations, host countries
encounter a number of challenges, especially in international capital mobility. Foreign direct
investment (FDI) becomes a pillar for economic development. This study explores which Association
of Southeast Asian Nations (ASEAN)-6 countries are good representatives to inform the directions
of FDI. For computational modelling, the AR-GARCH model was created using the maximum
entropy bootstrap estimation. Nonparametric techniques consisting of the maximum entropy
bootstrap method and cross-entropy algorithm were applied. The results show that Indonesia has
the nearest cross-entropy (CE) value compared to the whole entropy value, followed by Thailand
and Singapore. Furthermore, it is consistent with the first- and second-order stochastic dominance
analyses. Additionally, the structural dependence of capital movements is displayed to deeply
investigate the capital flow relation among the countries. Consequently, the performances of FDI in
Indonesia, Thailand, and Singapore can significantly convey the scenario of FDI across ASEAN.

Keywords: nonparametric methodology; maximum entropy bootstrap; cross-entropy analysis;
stochastic dominance analysis; C-vine copula

JEL Classification: F43; C53

1. Introduction

Current time-series inferences heavily rely on the stationary process assumption that statistical
properties are supposed to steady over time. In fact, a time series is often nonstationary, which can
appear as seasonality, trends, random walks, or other evolutionary incidences. Such nonstationary
series are by definition unpredictable and cannot be modelled. As a result, this violates the stationarity
assumptions in the process of time-series analysis, and it may result in spurious and unreliable statistical
inferences (Khinchine 1934; Kolmogorov 1931; Vinod 2006). In practice, a series tends to be constant in
a short period and nonstationary in a longer duration. Additionally, an observed time series {xt} on
random variable X can perform as a stochastic process corresponding to the certain period of time (t),
such as days, months, years, etc. It is important to take into account the presence of stationary and
nonstationary series. Model misspecification is a regular problem in statistical data analysis in several
methods. Such models offer biased coefficients and error terms, and these show invalid parameter
estimations. Moreover, in the misspecified models dealing with the asymptotic theory, inferences
employing usual statistics lead to spurious regressions (Phillips 1986; Shin and Sarkar 1997).

An updated technique undertaken in the nonparametric bootstrap methodology is the maximum
entropy bootstrap (MEboot), proposed by Vinod (2006). The MEboot is a powerful tool for highly
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dependent nonstationary time series and it can overcome unnecessary distributional assumptions of
stationary. In addition, creating the simulations beyond the historical time series can guarantee what
the relevant information means and how the future may unfold. The MEboot algorithm can intensively
generate random samples called ensemble Ω based upon the empirical cumulative distribution function
(CDF), which ensures it as an underlying process in cases of nonstationary or regime-switching in the
time series (Vinod 2013; Vinod and Lopez-de-Lacalle 2009). This method also satisfies the ergodic
theorem and the central limit theorem (Chaiboonsri and Chaitip 2013; Srivastav and Simonovic 2014).

In a broad swing of the global economy, the Association of Southeast Asian Nations (ASEAN) has
been shifting towards trade liberalization and international capital mobility. Foreign direct investment
(FDI) has been expanding and is greatly facilitated by agreement among trade partner countries,
especially in advanced ASEAN economies consisting of Singapore, Thailand, Malaysia, Indonesia,
Vietnam, and the Philippines that perform as the top six counties attracting FDI. Despite ASEAN being
one of the major destinations of FDI and playing a crucial role in promoting economic growth in the
region, each ASEAN member country should achieve its true potential, raising a question of who
dominates FDI in ASEAN economy. Having said that, the global competition in trade liberalization
comes up with high challenges to the host countries, so it is necessary for ASEAN member states to
know their true competitive positions for investment in order to prepare more FDI attractive activities,
and the competitive positioning is the ultimate concern for long-term performance of FDI.

For that reason, simulation-based econometrics such as the entropy-based inferential models
including maximum entropy (ME) method, cross-entropy (CE) algorithm, and the MEboot approach
are particularly applicable to reach the best experimental model fitting. The objectives of this research
are to computationally seek the efficient estimator by applying empirical evidence to determine the
predominant nation of FDI attractiveness and to deeply clarify the structural dependence of capital
flows among ASEAN countries. The rest of this article is organized as follows. We briefly summarize
the maximum entropy bootstrapping estimator, maximum entropy and cross-entropy principles,
stochastic dominance criteria, and C-vine copula model. In Section 3, data descriptive, empirical
applications of the proposed methods are presented, and Section 4 concludes.

2. Methodology

The procedure of this research can be broadly divided into five parts, as detailed in the
following sections.

2.1. AR-GARCH Model

Recently, the world economy has confronted economic crises due to the globalized economic
environment. Likewise, the uncertainty on FDI flows has commonly appeared in host countries.
Such volatile FDI may affect those macroeconomies; underlying the interaction behind volatile FDI is
essential. To capture suitably the unobservable process, the volatile series of FDI is generated via a
class of general autoregressive processes under white noises participating conditional heteroscedastic
variances, which is the GARCH-type modelling. The growth rate of FDI, namely {xt}, is called an
autoregressive process of order k with a GARCH noise for order p,q for t = 0, ±1, ±2, . . . Therefore,
the AR(k)-GARCH (p,q) processes proposed by Bollerslev (1986) are defined by the following three
equations:

xt =
k∑

i=1

αixt−i + εt (1)

εt = σtvt (2)

σ2
t = ϕ0 + ϕ1ε

2
t−1 + . . .+ ϕpε

2
t−p+β1σ

2
t−1 + . . .+ βqσ

2
t−q. (3)

where xt is the growth rate of FDI for each nation, αi and k in Equation (1) represent the parameters
and the order of AR, vt in Equation (2) performs as a white noise (iid(0,1)), and σt satisfies Equation
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(3). ϕi and βi in Equation (3) refer to the parameters of GARCH (p,q). Then, Var (εt|εt−1, εt−2, . . . ) =
σ2

t , E(εt) = 0, Cov(εt, εs) = 0, and t , s. Hence, we can employ these estimations to obtain the
generalized residuals and further calculate the CDF to carry out the maximum entropy.

2.2. Maximum Entropy Bootstrapping Estimator (MEboot)

Vinod (2006), and further studied by Vinod and Lopez-de-Lacalle (2009), invented the MEboot
approach, which is a technique for bootstrapping time series to avoid unnecessary distributional
assumptions like unit root and structural change relating to shape-destroying conversions and
complicated asymptotic to attain stationarity. The maximum entropy bootstrapping estimator (MEboot)
can use to treat the likelihood and obtain unknown parameters. Moreover, the MEboot approach
efficiently offers a certain parameter rather than employing the maximum likelihood estimator (MLE)
(Wannapan Satawat 2018). The MEboot evokes a maximum entropy density f (x) respective to certain
mass-and mean-preserving constraints. Let f (x) be the density of xt, thus the maximizing the Shannon
information is defined by:

H = E(−log f (x)). (4)

According to Vinod (2006), an intensive formation of a plausible ensemble Ω generated from a
density was accomplished and satisfied the maximum entropy (ME) principle. The MEboot algorithm
employs quantiles, which are routed through the Ω from the inverse evident CDF of the ME density,
denoting

{
x j,t

}
, for j = 1, . . . J, J + 1, . . . . The entire mean of all

{
x j,t

}
is definitely equivalent to the

mean of
{
x j,t

}
ex post without a doubt of asymptotic behaviors over time points (T). The constructed

replicates satisfy the ergodic theorem and the central limit theorem and ensure to preserve the original
properties of a time series, such as shapes, autocorrelation, and partial autocorrelation functions.
Chaitip and Chaiboonsri (2013) concisely summarized Vinod’s seven-step to MEboot algorithm to
generate a random realization of xt.

2.3. Maximum Entropy (ME) Principle

The principle of ME is to extract meaningful constraints that predicate the observed signals
originated by the system. Following the concept of Jaynes (1963) since 1957, if the probability
distribution function (PDF) of a given parameter X, being continuous distribution, is unknown and
some parts of the parameter distribution are known, we can adopt the ME algorithm as demonstrated
by Muoz-Cobo et al. (2017) to obtain the parameter distribution. In the case of X taking a compact
aspect being [a; b], with b > a, the Shannon information entropy is expressed:

H = −

∫ b

a
fX(x) log( fX(x))dx = −

∫ b

a
log( fX(x))dFX, (5)

where H denotes the information entropy defined by Shannon (1948). fX(x) is the PDF of the random
parameter X, and FX(x) is the CDF. Considering the PDF in general form in Equation (6), the gi(x)
functions assign the different moments of the distribution function of the parameter X, where the
number i is taken from 1 to n as follows:∫ b

a
gi(x) fX(x)dx = u(gi) = ui, i = 0, 1, 2, . . . , n. (6)

The ME can be solved to achieve the PDF definition fX(x) that maximizes the information entropy.
Taking the Lagrange multiplier method of Equation (6) gives:

J[ fX] = −
∫ b

a
fX(x) log( fX(x))dx +

n∑
i=0

λi

∫ b

a
dxgi(x) fX(x) − ui

, (7)
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The first variation of the functional J[ fX(x)] is δJ[ fX(x)] and the interference δ fX(x) equals to zero,
and we receive the PDF of the parameter as:

fX(x) = exp

−1 +
N∑

i=0

λigi(x)

. (8)

More generally, a nonlinear approach is required to obtain the values of λi, which are procured
from the observed information on the distribution moments.

2.4. Cross-Entropy (CE) Analysis

A general problem in various fields of economic research is finding the expected value of a random
quantity such as:

α := E f [N(X)], (9)

where X = (X1, . . . , Xn) ∈ Rn denotes a vector with the PDF f (x), and N refers to an arbitrary
real-valued function in Rn. To estimate α, the samples X1, . . . , Xn are assumed to be independent and
identically distributed (i.i.d.) from an approximately chosen PDF g(·), and the α is estimated by:

α̂N(g) =
1
N

N∑
j=1

N

(
X j

) f
(
X j

)
g
(
X j

) . (10)

The PDF g(·) has to dominate N(·) f (·) in the absolutely continuous aspect. This quotes,
Supp [N(·) f (·)] ⊂ Supp [g(·)], where Supp stands for the support of the corresponding function. We
seek to find the best parameter θ∗. At the present, Rubinstein (1997) introduced the cross-entropy
method to estimate the parameter θ∗ such that g(·; θ∗) minimizes the Kullback–Leibler cross entropy
corresponding to the zero-variance PDF g∗. In common, a certain stochastic optimization problem is
necessary to solve for θ∗ (Homem-de-Mello 2007).

2.5. Stochastic Dominance Analysis

Given X1 and X2 be the two interesting variables at any point in time and the observations,
Xki, i = 1, . . . , N; K = 1, 2 are not necessarily i.i.d., suppose that U1 refers to the sequence of all Von
Neumann–Morgenstern utility functions, u, such that u′ > O (increasing). U2 stands for the class of all
utility functions in u1 within u′′ � O (strict concavity). Let F1(x) and F2(x) denote the CDF, respectively.

Definition 1. X1 first-order stochastic dominates X2, denoted that X1<FSDX2, if and only if:

(1) E[u(X1)]≥ E[u(X2)] for all µ ∈ U1 with strict inequality for some µ; or
(2) F1(x) ≤ F2(x) for all x with strict inequality for some x.

Definition 2. X1 second-order stochastic dominates X2, denoted that X1<SSDX2, if and only if either:

(1) E[u(X1)]≥ E[u(X2)] for all µ ∈ U2 with strict inequality for some µ; or

(2)
∫ x
−∞

F1(t)dt1 ≤
∫ x
−∞

F2(t)dt for all x with strict inequality for some x.

2.6. The C-Vine Copula Model

The fundamental theorem is based on the concept of Sklar (1959), and this can be shown in
Equation (13) as follow:

F(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)). (11)
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F: n-dimensional distribution with marginal Fi , i = 1, 2, . . . , n;
F1, . . . , Fn: random vectors;
C: n-copula for all X1, X2, . . . , Xn.

The function C is a distribution function that has uniform margins between zero and one, and
it is labelled as the copula function. It binds the univariate margins F1 and F2 to produce bivariate
distribution F.

The vine copula models are a graphical representation to specify pair copula constructions
(PCCs). Basically, a principle for constructing multivariate copula generated from the product of
bivariate pair copula was statistically explained as canonical (C-) vines. This contribution was a flexible
model since bivariate copulas can accommodate complex structural dependences such as asymmetric
dependences or strong joint-tail behaviors (Nikoloulopoulos et al. 2012; Charfeddine and Benlagha
2016). Consequently, the estimated patterns of relation among FDI flows in ASEAN are defined as
X = x1, x2, x3, x4, x5, x6 with marginal distribution function F1, F2, F3, F4, F5, F6. The n-dimensional
density (n = 6) corresponding to a C-vine copula is formulated as:

C12...n[F1(x1), F2(x2), . . . , Fn(xn)]

=
n−1∏
j=1

n− j∏
k=1

c j, j+k|1,..., j−1[F(x j |x1,...,x j−1),F(x j+k |x1,...,x j−1)],
(12)

where the C-vine comprises of five trees (j = 1, 2, . . . , 5) and 15 edges. Each edge associates with a
pair-copula. Then, the C-vine copula log-likelihood function is defined as:

L(x1, . . . , xn;θ) =
n−1∑
j=1

n− j∑
k=1

τ∑
t=1

log
(
c j, j+k|1,..., j−1[F(x j |x1,...,x j−1),F(x j+k |x1,...,x j−1)]

)
. (13)

where θ denotes a set of the C-vine parameters and the time series contains τ independent observations.
So, a C vine with six variables, five trees and 15 edges is displayed in Figure 1.
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3. Data and Empirical Results

In this section, we present data description. Then, we show the application for the computational
experiment for the past observations of a time series.

3.1. Data Analysis

To examine which country is the main indicator for FDI inflows in ASEAN, a series of FDI from
the annual reports by the World Bank Development Indicators (WDI) database were collected during
1970 to 2017. For a brief insight of the underlying data, the plots of FDI series display a growing trend
over full periods and are not normally distributed for all ASEAN-6 countries, as shown in Figure 2.
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Figure 2. Plots of foreign direct investment (FDI); net inflows (BoP, current US$) in ASEAN-6 countries.

Then, those FDI series were transformed to be a growth rate, which typically shows the changed
annualized rate of growth of the FDI in order to inform certain properties of parameterized distributions.
Figure 3 demonstrates the plots of the FDI’s growth rate. It can be clearly seen that there was low
stability at the beginning of the FDI historical performance in Vietnam. Later, Vietnam established a
transitional economy and opened the economy to the global market. As a result, it was extraordinary
for Vietnam to enhance FDI from 1986 up to mid-1990 (Schaumburg-Mller 2002). Whereas, other
nations have remained constant in FDI scales, excepting Malaysia that increased dramatically in 2010
due to its stimulating FDI policy.
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Table 1 summarizes the descriptive statistics involving mean–medium and maximum–minimum
FDI volumes, standard deviation, and normality properties. To simply determine whether the data set
is a normal distribution, the skewness values of all nations were found, and they are greater than 1,
indicating that the distribution is highly skewed. The kurtosis ranks for the whole are also leptokurtic.
Moreover, the big Jarque–Bera test value and the tiny probability mean that the null hypothesis of
normality distribution is rejected at the 5% significance level. Consequently, the FDI data series for
all countries have no normal distribution. Even though Singapore is the largest destination of FDI
inflows, they would not be able to utilize the mean value to perform as a higher position country in
terms of averaging to dominate other countries in ASEAN.

Table 1. Descriptive data of the FDI.

Singapore Thailand Malaysia Indonesia Vietnam Philippines

Mean 1.72 × 1010 3.75 × 109 3.92 × 109 5.05 × 109 2.64 × 109 1.34 × 109

Median 5.87 × 109 2.09 × 109 2.76 × 109 6.29 × 108 1.11 × 109 6.76 × 108

Maximum 7.13 × 1010 1.59 × 1010 1.51 × 1010 2.51 × 1010 1.23 × 1010 6.08 × 109

Minimum 9.30 × 107 5.53 × 107 9.40 × 107
−4.55 × 109

−8.90 × 105
−1.06 × 108

Std.Dev. 2.28 × 1010 4.23 × 109 4.05 × 109 8.19 × 109 3.84 × 109 1.69 × 109

Skewness 1.332 1.159 1.021 1.334 1.367 1.671
Kurtosis 3.281 3.550 2.938 3.282 3.391 5.037

Jarque–Bera 14.347 11.363 8.346 14.399 15.262 30.655
Probability 0.001 0.0153 0.000 0.001 0.003 0.000

Sum 8.25 × 1011 1.80 × 1011 1.88 × 1011 2.42 × 1011 1.27 × 1011 6.43 × 1010

Sum Sq.Dev. 2.45 × 1022 8.40 × 1020 7.71 × 1020 3.15 × 1021 6.94 × 1020 1.33 × 1020

3.2. Correlation Analysis

In order to explore who dominates FDI direction in ASEAN, we initially began by determining if
there is an association between two countries. Table 2 represents the correlation analyses in terms of
parametric and nonparametric correlations. According to the simple Person’s correlation, it indicates
that Singapore has a mostly positive relationship to other countries considered. It should be noted that
the Person’s correlation analysis attempts to draw a linear association between two variables, but those
variables might be inconsistent. If the relationship is not linear, then the interpretation is meaningless.
To further verify that those certain variables are related to each other, we used the nonparametric
correlations (Kendall’s tau and Spearman’s rho) to measure the strength and direction of association
between the two involved variables. Unlike with the Person’s correlation, Indonesia has a strong and
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positive relationship to other countries at the 0.01 and 0.05 levels of significance of both Kendall’s tau
and Spearman’s rho ranks.

Table 2. Person’s correlation, Kendall’s tau and Spearman’s rank correlation.

Correlations Singapore Thailand Malaysia Indonesia Vietnam Philippines

Parametric
Singapore 1.000 0.081 0.248 −0.016 0.117 0.063
Thailand 0.081 1.000 0.196 0.067 −0.015 −0.079
Malaysia 0.248 0.169 1.000 −0.008 −0.026 0.001
Indonesia −0.016 0.067 −0.008 1.000 0.037 0.020
Vietnam 0.117 −0.015 −0.026 0.037 1.000 −0.015

Philippines 0.063 −0.079 0.001 0.020 −0.015 1.000

Nonparametric
Kendall’s Tau

Singapore 1.000 0.096 0.092 0.268 ** −0.015 −0.066
Thailand 0.096 1.000 −0.021 0.089 −0.022 −0.034
Malaysia 0.092 −0.021 1.000 0.116 −0.047 −0.073
Indonesia 0.268 ** 0.089 0.116 1.000 0.067 0.036
Vietnam −0.015 −0.022 −0.047 0.067 1.000 −0.090

Philippines −0.066 −0.034 −0.073 0.036 −0.090 1.000

Spearman’s rho
Singapore 1.000 0.152 0.117 0.340 * −0.020 −0.091
Thailand 0.152 1.000 −0.031 0.122 −0.022 −0.013
Malaysia 0.117 −0.031 1.000 0.111 −0.067 −0.101
Indonesia 0.340 * 0.122 0.111 1.000 0.088 0.050
Vietnam 1.000 0.096 0.092 0.268 ** 1.000 −0.066

Philippines 0.096 1.000 −0.021 0.089 −0.015 1.000

** Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05 level (2-tailed).

3.3. The Empirical Applications of the Entropy-Based Inferential Models

Afterwards, we constructed the AR-GARCH model. The simulated data sets were carried out
using the MEboot estimation, which efficiently offers a precise parameter. The residuals were obtained
and converted into the CDF terms, which execute to be a real-valued random variable. Then, we
utilized those CDF sets to compute on the entropy formula. Furthermore, the cross-entropy approach
was calculated to implicitly measure the minimum underlying set of events. The results of the entropy
and the CE method are reported in Table 3. Empirically, Indonesia has apparently the nearest CE value
(8.083) comparing to the overall Entropy value (6.491), followed by Thailand (8.245) and Singapore
(8.504). Theoretically, the CE approach offers more accuracy to solve classification problems since it
computes the actual probability of FDI series (X) for each time t associated with the realized entropy
(Q) following a particular probability distribution within the entire observations. Like using a neural
network to execute classification, this calculation statistically yields to the CE between X and Q, in
which we can verify and evaluate the division of FDI. In short, we are cross-checking which country
dominates FDI direction in ASEAN economy. Consequently, Indonesia, Thailand, and Singapore can
be viewed as the key indicators of FDI inflows among ASEAN-6 host economies. It is consistent with
the nonparametric correlation analysis above, implying that the flow directions of FDI in Indonesia,
Thailand, and Singapore are more straightforward than elsewhere in ASEAN.
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Table 3. Results of the general entropy and the cross-entropy.

Country CE Analysis Using MEboot Overall Entropy Ranking

Singapore 8.505

6.491

3
Thailand 8.245 2
Malaysia 8.804 4

Indonesia 8.083 a 1
Vietnam 8.880 5

The Philippines 8.983 6
a the nearest cross-entropy (CE) value to the overall entropy value using MEboot.

Interestingly, Indonesia in recent years is one of the most popular prospective FDI host countries
for FDI, and its FDI growth coincides with the global FDI growth. The FDI is playing a crucial role
in the economic expansion, mainly driven by mining, chemical, pharmaceutical, transportation, and
telecommunication industries. The Government has reformed many regulations and bureaucracies to
create a good investment climate, and its global credit rating can also be graded. This influences the
country’s allure as an investment destination, providing its wealth of good strategies, political stability,
and skilled workforce. Thailand is becoming more attractive as an FDI destination. The government
has promoted several investment funds for technology and infrastructure to enhance in public–private
partnerships. The target FDI sectors are in the areas of commerce, entrepreneurship, and innovation.

Even Singapore remains center stage as a regional hub for oversea trade and investment. It
is relatively the largest share recipient of FDI in ASEAN. Though, those FDI inflows are mainly
classified in the financial and insurance services and wholesale and retail trade sectors, while the
manufacturing and real estate sectors play only a minor capacity. Consequently, this seems to be a weak
link between recorded FDI flows and real economic activities in foreign-owned companies in Singapore
(Sjöholm 2016). FDI performances undertaken by Singapore are likely untrustworthy. In addition,
since Singapore is voluntarily open internationally, its economy indeed depends on the global economy.
Hence, it is vulnerable with the world economy and its main trading partner’s economic situations.

3.4. Stochastic Dominance Analysis

To deeply look inside more accurate results of the FDI analyses, we applied the stochastic
dominance-based entropy approach between Indonesia and Singapore. Let F and G denote the CDF
of FDI for Indonesia and Singapore, respectively. It is clearly seen that the distribution of FDI-based
MEboot method in Indonesia dominates that of the relevant parts in Singapore’s both first- and
second-order stochastic dominance analyses, as depicted in Figure 4b,c.
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Since FDI occupies a special place in the link between economic progression and globalization,
consequently, each host country should reach its actual relative position of FDI against competitors in
order to enhance more competitiveness. This finding reveals that the directions of FDI in Indonesia
(in particular), Thailand, and Singapore are the good representatives of all ASEAN-6 nations. In
response, governments elsewhere should recognize that Indonesia, Thailand, and Singapore can
display vital signs or leadership to boost up or slow down the FDI situation across ASEAN region. On
the other hand, Malaysia, Vietnam, and the Philippines performed as followers and should improve
their competitiveness by using government policies for attracting FDI, such as reforming business
regulations, reforming and opening up policies, etc.

3.5. The Structural Dependence of Capital Flows in ASEAN by the C-Vine Copula Approach

Technically, the FDI in Indonesia is determined as a leadership, which is the predominant sign for
capital movements among ASEAN-6 nations. The consequence of variables is evidently supported by
the CE and the stochastic dominant analyses as mentioned above. In the first levels, we estimated
the empirical dependence measure using pairwise maximum likelihood estimation. Based on the
C-vine copula structure (six variables, five5 trees and 15 edges), the estimated C-vine pair-copula
parameters are 0.19, 0.38, 0.07, 0.05, 0.01, 0.22, 0.04, 0.19, −0.01, 0.45, −0.01, −0.01, 0.15, −0.03, and 0.02,
and the log likelihood is 27.02. Then, we employed all of those relevant variables, which maximize the
sum of empirical dependencies using the spanning tree algorithm, to graphically draw the tree of the
specified C-vine corresponding to the pair-copula parameters as edge labels. Considering the details
of Figure 5, it is obvious that structural dependences dominated by Indonesian’s net capital flows
are positive and influence the FDI directions for others. To summarize, Indonesia shows moderately
positive dependencies with Singapore, within a Gaussian copula (N) with correlation ρ = 0.5, and
Thailand (N , 0.11), whereas it has relatively low effects on Malaysia (N , 0.03), Vietnam (N , 0.03), and
the Philippines (N , 0.01).
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4. Conclusions

Since a time series regularly behaves as stochastic processes, the approaches using normal
statistics may occur misspecified models. In the global economy, FDI has long been a key pillar
in investment dynamic. Especially in ASEAN economy, FDI can enhance economic expansion at
various levels of development. FDI flows to ASEAN have been rising since 2000, and the upward
trend is reflective of attraction and confidence for oversea investment in the region. This causes
ASEAN member states to rely more on the adoption of FDI. Then, this study sought to measure the
competitive positions of each ASEAN nation. The findings would enhance the competitiveness of those
ASEAN countries to understand, monitor and expedite FDI strategies in order to achieve effective
aboard investment and attain competitive advantages across ASEAN economy. Consequently, we
adopted the nonparametric methodology for multiprocessing analyses, including maximum entropy
bootstrap method, cross-entropy algorithm, and the stochastic dominance analyses. For computational
modelling, the AR-GARCH model was generated to obtain residual terms using the MEboot method.
Furthermore, the C-vine copula model was applied to determine the structural dependence of FDI in
ASEAN. The main findings can be drawn as follows:

• From basically testing and measuring the correlations between two variables, we found Indonesia
has a more positive influence than other nations using the nonparametric correlations of Kendall’s
tau and Spearman’s rho at the 0.01 and 0.05 levels of significance ranks.

• For advanced investigations on the classification tasks, the CE was preferred instead of the
classification on parametric correlation, since it incorporates with entropy (information content)
when handling all of the probabilities. It works with a very specific set of possible output values
to evaluate the quality of the system network. Empirically, Indonesia performs the narrowest CE
point compared to the overall Entropy point, followed by Thailand and Singapore, implying that
Indonesia, Thailand, and Singapore can be identified as the main indicators for the FDI directions
in the ASEAN.

• Being precisely supported by the first- and second-order stochastic dominance analyses, Indonesia
is perceived as a leading indicator of FDI direction in ASEAN.

• Moreover, the structural dependence model called the C-vine copula strongly emphasized that the
net capital flows in ASEAN rely on the capital movements in Indonesia. The positive dependences
are obvious for the overall analysis.

This study has some policy implications. Therefore, the performances of FDI in Indonesia,
Thailand, and Singapore can be evidently viewed as the key indicators for trends and developments of
FDI in the ASEAN region. The Governments of Malaysia, Vietnam, and the Philippines should create
more incentives toward FDI policies, such as competitive positioning, investment promotion, a degree
of economic stability, etc. According to a positive correlation between FDI inflows, the enhancement to
strengthen the ASEAN economic integration can bring benefits across the ASEAN economy.
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