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ABSTRACT 

We consider financial networks where agents are linked to each other with financial 

contracts. A centralized clearing mechanism collects the initial endowments, the 

liabilities and the division rules of the agents and determines the payments to be 

made. A division rule specifies how the assets of the agents should be rationed, the 

four most common ones being the proportional, the priority, the constrained equal 

awards, and the constrained equal losses division rules. Since payments made depend 

on payments received, we are looking for solutions to a system of equations. The set 

of solutions is known to have a lattice structure, leading to the existence of a least and 

a greatest clearing payment matrix. Previous research has shown how decentralized 

clearing selects the least clearing payment matrix. We present a centralized approach 

towards clearing in order to select the greatest clearing payment matrix. To do so, we 

formulate the determination of the greatest clearing payment matrix as a 

programming problem. When agents use proportional division rules, this 

programming problem corresponds to a linear programming problem. We show that 

for the other common division rules, it can be written as an integer linear 

programming problem. 
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Központosított elszámolási mechanizmusok pénzügyi 

hálózatokban: egy programozási feladat megközelítés 

CSÓKA PÉTER – P. JEAN-JACQUES HERINGS 

ÖSSZEFOGLALÓ 

Olyan pénzügyi hálózatokat vizsgálunk, ahol az ágensek pénzügyi szerződésekkel 

kapcsolódnak egymáshoz. A központosított elszámolási mechanizmus összegyűjti az 

ágensek induló készleteit, kötelezettségeit és felosztási szabályait, és meghatározza a 

teljesítendő kifizetéseket. A felosztási szabály azt határozza meg, hogy az ágensek 

eszközeit hogyan kell szétosztani. besorolni, közülük a négy leggyakoribb az arányos, 

a prioritási, a korlátozott egyenlő jutalmak és a korlátozott egyenlő veszteségek. Mivel 

a teljesített kifizetések a beérkezett kifizetésektől függenek, egyenletrendszerre 

keresünk megoldást. A megoldások halmaza köztudottan háló, amiből következik a 

legkisebb és a legnagyobb klíringmátrix létezése. Korábbi kutatások kimutatták, hogy 

a decentralizált elszámolás hogyan választja ki a legkisebb klíringmátrixot. A 

legnagyobb klíringmátrix kiválasztása érdekében centralizált megközelítést mutatunk 

be az elszámolásban. Ennek érdekében programozási feladatként fogalmazzuk meg a 

legnagyobb klíringmátrix meghatározását. Amikor az ügynökök arányos felosztási 

szabályokat használnak, ez a programozási feladat lineáris programozási feladatnak 

felel meg. Megmutatjuk, hogy a további három elterjedt felosztási szabályra felírható 

egészértékű lineáris programozási feladatként. 

 

JEL: C71, G10 

Kulcsszavak: Pénzügyi hálózatok, Rendszerkockázat, csődszabályok, klíring, 

egészértékű lineáris programozás 
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Abstract

We consider financial networks where agents are linked to each other with financial

contracts. A centralized clearing mechanism collects the initial endowments, the

liabilities and the division rules of the agents and determines the payments to be

made. A division rule specifies how the assets of the agents should be rationed,

the four most common ones being the proportional, the priority, the constrained

equal awards, and the constrained equal losses division rules. Since payments made

depend on payments received, we are looking for solutions to a system of equations.

The set of solutions is known to have a lattice structure, leading to the existence

of a least and a greatest clearing payment matrix. Previous research has shown

how decentralized clearing selects the least clearing payment matrix. We present a

centralized approach towards clearing in order to select the greatest clearing payment

matrix. To do so, we formulate the determination of the greatest clearing payment

matrix as a programming problem. When agents use proportional division rules,

this programming problem corresponds to a linear programming problem. We show

that for the other common division rules, it can be written as an integer linear

programming problem.
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1 Introduction

In this paper, we consider financial networks where agents are linked to each other with

financial contracts. Like the seminal paper of Eisenberg and Noe (2001), a financial net-

work consists of agents corresponding to the financial institutions, initial endowments, and

liabilities. An agent’s initial endowment includes all the agent’s tangible and intangible

assets but excludes the claims and liabilities the agent has towards the other agents. For

outstanding surveys of this literature, we refer the reader to Glasserman and Young (2016)

and Jackson and Pernoud (2021).

In Eisenberg and Noe (2001), agents use proportional division rules to determine pay-

ments in case of bankruptcy, i.e., payments are proportional to liabilities. Other division

rules are important too. In practice, often priority principles are invoked, where a priority

order determines the seniority of the liabilities. Given a permutation determining the rank

of the claims, under the priority rule (see Moulin (2000) and Chatterjee and Eyigungor

(2015)) claimants are paid in a lexicographic order determined by the permutation. Other

important division rules are the constrained equal awards rule and the constrained equal

losses rule (for updated surveys, see Thomson (2013) and Thomson (2015)). Under the

constrained equal awards division rule,1 all claimants get the same amount, up to the value

of their claim. The constrained equal losses division rule is its dual and imposes that all

claimants face the same loss, up to the value of their claim. The choice of the division

rule may also balance the trade-off between welfare maximization and payoff equalization

(Galice, 2019). Csóka and Herings (2018) note that on top of financial networks, default

contagion can also occur in other applications (i.e. supply chains, international student

exchange programs, servers processing job, time banks), where again other division rules

may be in place. We therefore extend the Eisenberg and Noe (2001) framework and allow

for general division rules.

In claims problems, there is a single, exogenously given, bankrupt agent and a division

rule is used to determine the payments to the claimants. In financial networks, there can

be multiple bankrupt agents. As an agent’s asset value, and therefore payments made,

depends on payments received, the actual payments are endogenously determined. Like

the proportional rule for claims problems can be extended to financial networks (Eisenberg

and Noe, 2001), it is possible to extend any division rule for claims problems to financial

networks (Groote Schaarsberg, Reijnierse, and Borm, 2013). The resulting payment matrix

consist of first computing each agent’s asset value as the sum of the initial endowments

and the payments received and next making the payments in accordance with the given

division rule.

Following Csóka and Herings (2021), a so-called clearing payment matrix satisfies three

1For an axiomatization of its weighted version, see Flores-Szwagrzak (2015).
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conditions. First, feasibility, which states that the payments are in accordance with the

given division rules. Second, limited liability, which requires that the total payments made

by an agent must never exceed the asset value of the agent. Third, priority of creditors,

which expresses that default is only allowed if equity, i.e., asset value minus payments made,

is equal to zero. Since payments made depend on payments received, the determination of

a clearing payment matrix corresponds to the solution to a fixed point problem.

In this paper, we use the system of equations as introduced in Csóka and Herings (2021)

to find a clearing payment matrix. The set of solutions to this system forms a complete lat-

tice, which implies that there is a least and a greatest clearing payment matrix. Csóka and

Herings (2018) show in a decentralized set-up that a large class of decentralized clearing

processes converges to the least clearing payment matrix and Ketelaars and Borm (2021)

derive an analogous result in a continuous set-up. In this paper, we therefore examine how

a centralized approach can be used to select the greatest clearing payment matrix. More

precisely, we present a programming problem whose unique solution is the greatest clearing

payment matrix. The programming problem can be written as a linear programming prob-

lem when all agents use proportional division rules. For the other common division rules,

we demonstrate how the programming problem reduces to an integer linear programming

problem.

The rest of the paper is organized as follows. Section 2 defines financial networks and

clearing payment matrices. Section 3 illustrates the possible multiplicity of clearing pay-

ment matrices and how multiplicity may vary with the division rules that are in place.

Section 4 formulates the programming problems. Section 5 makes some concluding re-

marks.

2 Financial Networks

A financial network is a quadruple F = (N, z, L, d) with the following interpretation.

The finite set N consists of the agents in the financial network.

The vector z ∈ RN
+ represents the endowments of the agents, which are non-negative

real numbers. The endowments of an agent include all the agent’s tangible and intangible

assets, but exclude the claims the agent has on the other agents.

The non-negative liability matrix L ∈ RN×N
+ describes the mutual claims of the agents.

Its entry Lij is the liability of agent i ∈ N towards agent j ∈ N or, equivalently, the claim

of agent j on agent i. It is allowed that simultaneously agent j has a claim on agent i and

agent i has a claim on agent j, so Lij > 0 and Lji > 0 can both hold at the same time.

Agent do not have claims on themselves, so we set Lii = 0 for every i ∈ N.
The determination of the payments to be made by the agents takes place by division
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rules d = (di)i∈N . The division rule di : R+ → RN
+ of agent i ∈ N describes which payments

agent i makes to the agents in N as a function of agent’s i estate Ei. Payments are non-

negative, bounded above by the liabilities, and are such that the sum of the payments is

equal to the minimum of the estate and the sum of the liabilities, so it holds that, for

every Ei ∈ R+, for every j ∈ N, dij(Ei) ≤ Lij, and
∑

j∈N d
i
j(Ei) = min{Ei,

∑
j∈N Lij}.

Moreover, for every j ∈ N, dij is required to be weakly increasing in Ei. It is well-known

that the weak monotonicity of di implies that it is continuous, see for instance Thomson

(2003). The estate of an agent in a financial network depends on the payments received

on outstanding claims and is therefore determined endogenously.

Important examples of division rules are the proportional, priority, constrained equal

awards, and the constrained equal losses division rules.

The division rule di of agent i ∈ N is equal to the proportional division rule if, for every

Ei ∈ R+, it assigns to claimant j ∈ N the amount

dij(Ei) =

{
0, if Lij = 0,

min{ Lij∑
k∈N Lik

Ei, Lij}, otherwise.

Under the proportional division rule, the estate is divided in a proportional way over the

claimants, up to the value of those claims.

The division rule di of agent i ∈ N is equal to a priority division rule if there exists

a permutation π : N → {1, . . . , |N |}, determining the rank of the claims, such that, for

every Ei ∈ R+,

dij(Ei) = max{0,min{Lij, Ei −
∑

k∈N |π(k)<π(j)

Lik}},

where {k ∈ N |π(k) < π(j)} is the set of agents ranked before j according to π. Under a

priority division rule, claims are paid sequentially to agents π−1(1), π−1(2), . . . as long as

the estate of agent i permits this.

We next define the constrained equal awards rule. Let i ∈ N. If Ei >
∑

j∈N Lij, then

define the award λi = maxj∈N Lij. Otherwise, define the award λi ∈ [0,maxj∈N Lij] as the

unique solution to∑
j∈N

min{Lij, λi} = Ei.

The division rule di of agent i is equal to the constrained equal awards division rule if, for

every Ei ∈ R+, it assigns to claimant j ∈ N the amount

dij(Ei) = min{Lij, λi}.

Under the constrained equal awards division rule, all claimants get the same amount, up

to the value of their claim.
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The constrained equal losses rule is the dual of the constrained equal awards rule. If

Ei >
∑

j∈N Lij, then define the loss µi = 0. Otherwise, define the loss µi ∈ [0,maxj∈N Lij]

as the unique solution to∑
j∈N

max{Lij − µi, 0} = Ei.

The division rule di of agent i ∈ N is equal to the constrained equal losses division rule if,

for every Ei ∈ R+, it assigns to claimant j ∈ N the amount

dij(Ei) = max{Lij − µi, 0}.

Under the constrained equal losses division rule, all claimants face the same loss, up to the

value of their claim.

The set of all matrices in RN×N
+ with a zero diagonal is denoted by M. The partial

order ≤ onM is defined in the usual way: For P, P ′ ∈M it holds that P ≤ P ′ if and only

if Pij ≤ P ′ij for all (i, j) ∈ N ×N. For P ∈ M and i ∈ N , let Pi ∈ RN denote row i of P .

For Pi, P
′
i ∈ RN , we write Pi < P ′i if Pij ≤ P ′ij for all j ∈ N and there is k ∈ N such that

Pik < P ′ik.

Consider a financial network F = (N, z, L, d). A payment matrix P ∈M describes the

mutual payments to be made by the agents, that is, Pij is the monetary amount to be paid

by agent i ∈ N to agent j ∈ N . Given a payment matrix P ∈M, the asset value ai(P ) of

agent i ∈ N is given by

ai(P ) = zi +
∑
j∈N

Pji.

Subtracting the payments as made by an agent from the asset value yields an agent’s

equity. The equity ei(P ) of an agent i ∈ N is given by

ei(P ) = ai(P )−
∑
j∈N

Pij = zi +
∑
j∈N

(Pji − Pij).

It follows immediately from the above expression that the sum over agents of their equities

is the same as the sum over agents of their initial endowments. We have that∑
i∈N

ei(P ) =
∑
i∈N

zi. (2.1)

The analysis of financial networks is complicated because the mutual liability structure

may result in contagion effects of default.

Our first aim is to define a clearing payment matrix. To do so, we define feasible

payments of agent i ∈ N as payments which belong to the image di(R+) of the division
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rule di of agent i. A payment matrix is feasible if every row i ∈ N of the matrix belongs

to the feasible set of payments of agent i, that is, payments are made in accordance with

the division rules. The set of feasible payment matrices P is therefore defined as

P = {P ∈M | ∀i ∈ N, Pi ∈ di(R+)}.

The following definition of a clearing payment matrix is due to Csóka and Herings (2021).

It extends the definition of Eisenberg and Noe (2001) for proportional division rules in a

continuous setting. For a discrete setting with a smallest unit of account, see Csóka and

Herings (2018).

Definition 2.1. The matrix P ∈M is a clearing payment matrix of the financial network

F = (N, z, L, d) if it satisfies the following three properties:

1. Feasibility: P ∈ P .

2. Limited liability: For every i ∈ N, ei(P ) ≥ 0.

3. Priority of creditors: For every i ∈ N, if Pi < Li, then ei(P ) = 0.

Limited liability requires all agents to end up with non-negative equity. Priority of

creditors states that agents are only allowed to default if their equity is equal to zero.

Csóka and Herings (2021) prove the following result, which relates clearing payment

matrices to the solution of a particular system of equations.

Theorem 2.2. Let F = (N, z, L, d) be a financial network. The payment matrix P ∈ M
is a clearing payment matrix of F if and only if it solves the system of equations:

Pij = dij(ai(P )), i, j ∈ N.

When calculating the clearing payment matrix as the solution to a system of equations,

we take for every agent the value of the estate equal to the agent’s asset value and next use

the respective division rule to spend this asset value. Notice that agent i ∈ N is treated

as a claimant on its own estate ai(P ) with a claim equal to Lii = 0, so a clearing payment

matrix P satisfies Pii = 0.

3 Multiplicity of Clearing Payment Matrices

We start by presenting two examples to show that clearing payment matrices need not be

unique.
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Example 3.1. We consider a financial network F = (N, z, L, d) with three agents N =

{1, 2, 3}, zero endowments z = (0, 0, 0), and a liability matrix equal to

L =

 0 4 8

8 0 4

4 8 0

 .
We examine the possible clearing payment matrices for the four common specifications

of division rules: proportional, priority, constrained equal awards, and constrained equal

losses.

We start with some general observations. Let P be a clearing payment matrix of F. By

Definition 2.1, a clearing payment matrix satisfies limited liability, so, for every i ∈ N, it

holds that ei(P ) ≥ 0. Since by Equation (2.1) the sum over all agents of their equities is

equal to the sum over all agents of their initial endowments, so
∑

i∈N ei(P ) =
∑

i∈N zi = 0,

it follows that, for every i ∈ N, ei(P ) = 0. The condition of priority of creditors in

Definition 2.1 is therefore automatically satisfied and to find a clearing payment matrix,

we should therefore identify those payment matrices where all agents end up with zero

equity while satisfying feasibility. A final observation is that in any clearing payment

matrix the estates of the agents are all between 0 and 12.

Assume all agents use proportional division rules and let P be a clearing payment

matrix of F. The estates of the agents satisfy the following system of equations:

Ei =
∑

j∈N\{i}

Pji = 2
3
Ei+1 + 1

3
Ei−1, i ∈ N,

where we use the convention that agent 0 is identified with agent 3 and agent 4 with agent

1. It now follows from Gaussian elimination that E1 = E2 = E3. Since estates of the agents

are between 0 and 12, the set of clearing payment matrices when all agents use proportional

division rules is given by

Pprop = {P ∈M | ∃E ∈ [0, 12], ∀i ∈ N, Pi = 1
12
ELi}.

There is a one-dimensional, convex set of clearing payment matrices, ranging from no

payments at all to full payments by all agents.

Next assume all agents use priority division rules, where the permutation is chosen such

that larger liabilities have priority. The estates of the agents now satisfy the equations

Ei = min{Ei+1, 8}+ max{Ei−1 − 8, 0}, i ∈ N. (3.1)

Suppose not all estates are equal. Let j ∈ N be such that Ej < Ej+1. It follows from the

system of equations in (3.1) that Ej ≥ 8, since the equation corresponding to Ej cannot

hold with equality if Ej < 8 and Ej < Ej+1. We also have that

Ej+1 = min{Ej+2, 8}+ max{Ej − 8, 0} ≤ 8 + Ej − 8 = Ej,
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a contradiction to Ej < Ej+1. Consequently, it follows that all estates are equal, so 0 ≤
E1 = E2 = E3 ≤ 12.

The set of clearing payment matrices when all agents use priority division rules with

the highest claim having priority is therefore given by

Pprior = {P ∈M | ∃E ∈ [0, 8], ∀i ∈ N, Pi,i−1 = E and Pi,i+1 = 0},
∪{P ∈M | ∃E ∈ [8, 12], ∀i ∈ N, Pi,i−1 = 8 and Pi,i+1 = E − 8}.

There is again a one-dimensional multiplicity of clearing payment matrices, ranging from

no payments at all to full payments by all agents.

We now study the case of constrained equal award division rules. If the maximal estate

across agents is less than or equal to 8, then the estates of the agents satisfy the following

system of equations:

Ei =
∑

j∈N\{i}

Pji = 1
2
Ei+1 + 1

2
Ei−1, i ∈ N.

It then follows that all estates must be equal, so 0 ≤ E1 = E2 = E3 ≤ 8. Any of these

values of the estate generates a clearing payment matrix.

Next consider the case where the maximal estate across agents is strictly greater than

8. Let j ∈ N be such that Ej > 8. Since Ej = Pj+1,j + Pj−1,j ≤ Pj+1,j + 4, it holds that

Pj+1,j > 4, so Ej+1 > 8. We therefore find that all estates are strictly greater than 8. The

system of equations becomes

Ei = Ei+1 − 4 + 4 = Ei+1, i ∈ N,

so solutions are given by 8 ≤ E1 = E2 = E3 ≤ 12. The set of clearing payment matrices

when all agents use constrained equal awards division rules is therefore given by

Pcea = {P ∈M | ∃E ∈ [0, 8], ∀i ∈ N, Pi,i−1 = 1
2
E and Pi,i+1 = 1

2
E},

∪{P ∈M | ∃E ∈ [8, 12], ∀i ∈ N, Pi,i−1 = E − 4 and Pi,i+1 = 4}.

We again find a one-dimensional multiplicity of clearing payment matrices, ranging from

no payments to full payments.

We finally examine the constrained equal losses division rules. If the maximal estate

across agents is less than or equal to 4, then the estates of the agents satisfy the following

system of equations:

Ei =
∑

j∈N\{i}

Pji = Ei+1, i ∈ N,

so solutions are given by 0 ≤ E1 = E2 = E3 ≤ 4. Consider next the case where at least one

estate, say Ej, exceeds 4. Then agent j makes a payment greater than 4 to agent j − 1, so
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Ej−1 exceeds 4. It now follows that all estates exceed 4. We obtain the following system

of equations:

Ei = 4 + 1
2
(Ei+1 − 4) + 1

2
(Ei−1 − 4) = 1

2
Ei+1 + 1

2
Ei−1,

so solutions are given by 4 ≤ E1 = E2 = E3 ≤ 12. The set of clearing payment matrices

when all agents use constrained equal losses division rules is therefore given by

Pcel = {P ∈M | ∃E ∈ [0, 4], ∀i ∈ N, Pi,i−1 = E and Pi,i+1 = 0},
∪{P ∈M | ∃E ∈ [4, 12], ∀i ∈ N, Pi,i−1 = 1

2
E + 2 and Pi,i+1 = 1

2
E − 2}.

Again a one-dimensional multiplicity of payment matrices results, which ranges from a

least to a greatest clearing payment matrix. 4

The next example shows that multiplicity of clearing payment matrices may depend on

the division rules that are being used. This example also demonstrates the possibility of

multiple clearing payment matrices when all agents have strictly positive endowments.

Example 3.2. We consider a financial network F = (N, z, L, d) with three agents N =

{1, 2, 3}, endowments z = (3, 6, 7), and a liability matrix equal to

L =

 0 6 4

12 0 5

0 0 0

 .
The highest possible asset value of agent 2 results when agent 1 pays the full liability

L12 = 6 to agent 2, which leads to asset value a2(P ) = z2 + L12 = 6 + 6 = 12 of agent 2.

Since agent 2 has liabilities of 12 towards agent 1 and liabilities of 5 towards agent 3, agent 2

will always default and end up with zero equity due to priority of creditors, irrespective of

the division rules in place.

We next examine the set of clearing payment matrices for the four most common

specifications of division rules and start with the case of proportional division rules. From

the system of equations presented in Theorem 2.2, we have that

P12 = min{3
5
(3 + P21), 6},

P21 = 12
17

(6 + P12).

This system of equations has P12 = 6 and P21 = 144/17 as its unique solution. We find

that the unique clearing payment matrix in the presence of proportional division rules and

the resulting vector of equities are given by

P prop ≈

 0 6 4

8.47 0 3.53

0 0 0

 e(P prop) ≈

 1.47

0.00

14.53

 .
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In case of priority division rules with higher claims having priority, Theorem 2.2 leads to

the following two equations:

P12 = min{3 + P21, 6},
P21 = 6 + P12.

The unique solution is given by P12 = 6 and P21 = 12. We find that with priority division

rules the unique clearing payment matrix and resulting vector of equities are given by

P prior =

 0 6 4

12 0 0

0 0 0

 e(P prior) =

 5

0

11

 .
We continue with the examination of constrained equal awards division rules.

Suppose there is a clearing payment matrix such that the asset value of agent 1 is below

8. This implies P21 = a1(P ) − z1 < 8 − 3 = 5. When using the constrained equal awards

division rule, agent 2 only makes a payment to agent 1 less than 5 if the asset value of

agent 2 is below 10. Theorem 2.2 yields the following equations:

P12 = 1
2
(3 + P21),

P21 = 1
2
(6 + P12).

The only solution to this system of equations has P12 = 4 and P21 = 5, which is incompat-

ible with an asset value of agent 1 below 8. Consequently, any clearing payment matrix

results in an asset value of agent 1 of at least 8.

We next examine the existence of a clearing payment matrix where the asset value of

agent 1 is at least equal to 8. To obtain such an asset value, the payment of agent 2 to

agent 1 must at least be equal to 5. Under the constrained equal awards division rule, the

asset value of agent 2 must then at least be equal to 10. The result of Theorem 2.2 gives

rise to the following two equations:

P12 = min{3 + P21 − 4, 6},
P21 = 6 + P12 − 5 = P12 + 1.

We find a continuum of solutions, with the value of P12 ranging between 4 and 6 and

P21 = P12 + 1. For every E ∈ [8, 10], we obtain a clearing payment matrix and resulting

equities

P cea =

 0 E − 4 4

E − 3 0 5

0 0 0

 e(P cea) =

 0

0

16

 .
We conclude with the case of constrained equal losses division rules. Agent 1 has endow-

ments equal to 3, makes at least a payment of 2 to agent 2, so will achieve equal losses on
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the payments to agents 2 and 3. The asset value of agent 2 is at least equal to 8, so also

agent 2 will achieve equal losses on the payments to agents 1 and 3. Theorem 2.2 gives

rise to the following two equations:

P12 = min{2 + 1
2
(3 + P21 − 2), 6} = min{21

2
+ 1

2
P21, 6},

P21 = 7 + 1
2
(6 + P12 − 7) = 61

2
+ 1

2
P12.

The unique solution is given by P12 = 6 and P21 = 19/2. We obtain the following market

clearing payment matrix and corresponding equity:

P cel =

 0 6 4

9.5 0 2.5

0 0 0

 e(P prior) =

 2.5

0.0

13.5

 .
4

In Example 3.2, different division rules imply significantly different structural properties

as far as clearing payment matrices are concerned. Constrained equal award division rules

lead to a one-dimensional multiplicity of clearing payment matrices, whereas the clearing

payment matrix is uniquely determined under the other division rules. Agent 1 defaults in

almost all clearing payment matrices for constrained equal awards division rules, but not

when any of the other division rules are used. Agent 2 fully defaults with respect to agent 3

under the priority division rule, fully pays the liability to agent 3 under constrained equal

awards rules, whereas the claim of agent 3 on agent 2 is partially paid for under the other

division rules.

A complete lattice is a partially ordered non-empty set in which every non-empty subset

has a supremum and an infimum. In both Example 3.1 and in Example 3.2, the set of

clearing payments matrices is a complete lattice. This turns out to be a general result as

has been shown in Csóka and Herings (2021).

Theorem 3.3. Let F = (N, z, L, d) be a financial network. The set of clearing payment

matrices of F is a complete lattice. In particular, there exists a least clearing payment

matrix P− and a greatest clearing payment matrix P+.

Eisenberg and Noe (2001) have shown Theorem 3.3 for the case of proportional division

rules. Csóka and Herings (2018) prove a similar result in a discrete set-up.

4 Centralized Clearing as a Programming Problem

Csóka and Herings (2018) show in a discrete set-up that decentralized clearing results in

the least clearing payment matrix. Ketelaars and Borm (2021) consider the continuous set-

up and show that decentralized clearing processes converge to the least clearing payment
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matrix under mild conditions. Consider a decentralized clearing process where all agents

simultaneously make the largest payments that are compatible with their cash at hand. In

Example 3.1 all agents start with zero endowments, there are no positive feasible payments,

and the decentralized clearing process stops at the least clearing payment matrix with zero

payments. For the case of constrained equal awards division rules in Example 3.2, the

decentralized clearing process is illustrated in Table 1.

z L P 1 P 2 . . . P 10 . . . P−

3 0 6 4 0 1.5 1.5 0 3 3 . . . 0 3.996 3.996 . . . 0 4 4

6 12 0 5 3 0 3 3.75 0 3.75 . . . 4.995 0 4.995 . . . 5 0 5

7 0 0 0 0 0 0 0 0 0 . . . 0 0 0 . . . 0 0 0

Table 1: The sequence of payment matrices using constrained equal awards division rules

in Example 3.2.

In P 1, both agent 1 and agent 2 make equal payments to their creditors. Then, the

new asset value of agent 1 becomes 3 and the new asset value of agent 2 becomes 1.5. In

the next iteration, agents again make additional payments P 2−P 1 in accordance with the

constrained equal awards division rules. The payment matrices along the sequence show

total payments made so far. P 10 is rounded to three decimals. The process takes infinitely

many steps and converges to the least clearing payment matrix P−.

As Examples 3.1 and 3.2 demonstrate, the amount of default can be significantly higher

in the least clearing payment matrix than in the greatest clearing payment matrix. This

triggers the natural question whether it is possible to find the greatest clearing payment

matrix. Since decentralized clearing processes end up in the least clearing payment matrix,

doing so requires a centralized approach. We show in this section that the greatest clearing

payment matrix can be found by solving a particular maximization problem. For the

division rules considered in this paper, this maximization problem can be written as a

linear programming problem or an integer linear programming problem.

Throughout this section, 1 denotes a vector of ones of appropriate dimension. Theo-

rems 4.1, 4.3, and 4.5 correspond to unpublished parts of Csóka and Herings (2017).

Theorem 4.1. Let F = (N, z, L, d) be a financial network. The greatest clearing payment

matrix of F is the unique solution to the following maximization problem:

maxP∈P
∑

i∈N
∑

j∈N Pij,

subject to

z + P>1− P1 ≥ 0.

(4.1)

Proof. Let P ′ be a solution to (4.1) and let some i ∈ N be given. We show that

P ′i = di(ai(P
′)).
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If P ′i = Li, then we have that

ai(P
′) = zi +

∑
j∈N

P ′ji ≥
∑
j∈N

P ′ij =
∑
j∈N

Lij,

where the inequality follows from (4.1). From the definition of a division rule, it follows

that di(ai(P
′)) = Li, so it holds that P ′i = di(ai(P

′)).

Consider the case P ′i < Li. We show that ei(P
′) = 0. Suppose ei(P

′) > 0. Since P ′ ∈ P
there exists E ′ ∈ R+ such that P ′i = di(E ′). Since di is continuous and ei(P

′) > 0 there

exists ε > 0 such that

zi +
∑

j∈NP
′
ji −

∑
j∈Nd

i
j(E

′ + ε) ≥ 0.

The payment matrix P ′′ ∈ P defined by

P ′′i = di(E ′ + ε),

P ′′j = P ′j , j 6= i,

satisfies the constraints in (4.1) and leads to a strictly higher value of the objective function

than P ′, a contradiction. Consequently, it holds that ei(P
′) = 0.

Since P ′ ∈ P there exists E ′ ∈ R+ such that P ′i = di(E ′) and from P ′i < Li and the

definition of a division rule, we have
∑

j∈N d
i
j(E

′) = E ′. Since ei(P
′) = 0, we therefore have

that

E ′ =
∑
j∈N

dij(E
′) =

∑
j∈N

P ′ij = zi +
∑
j∈N

P ′ji = ai(P
′).

It follows that P ′i = di(E ′) = di(ai(P
′)).

We use Theorem 2.2 to conclude that P ′ is a clearing payment matrix.

Let P be any clearing payment matrix. By feasibility, it holds that P ∈ P . By limited

liability, it holds that, for every i ∈ N,

ei(P ) = zi +
∑
j∈N

Pji −
∑
j∈N

Pij ≥ 0.

Any clearing payment matrix therefore satisfies the constraints in (4.1). We have that P ′

is the clearing payment matrix with the largest sum of the payments made, so we can use

Theorem 3.3 to conclude that P ′ must be the greatest clearing payment matrix. 2

The maximization over P ∈ P in the program (4.1) guarantees that payments are

feasible. The constraint ensures that no agent ends up with negative equity. The property

that an agent is not allowed to default when having positive equity follows from the fact

that the solution maximizes the objective function. Otherwise, it would be possible to
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increase the value of the objective function by having the defaulting agent make additional

payments. The maximization of the objective function also guarantees that the greatest

clearing payment matrix is selected.

When the financial network has proportional division rules, the greatest clearing pay-

ment matrix can be found as the solution to a linear programming problem. The following

result has been shown in Eisenberg and Noe (2001). It follows as a special case of The-

orem 4.1 when the feasibility constraint P ∈ P is replaced by explicit constraints that

ensure payments are made according to proportional division rules.

Theorem 4.2. Let F = (N, z, L, d) be a financial network with proportional division rules.

The greatest clearing payment matrix of F is the unique solution to the following linear

programming problem:

maxP∈RN×N
+ ,λ∈RN

+

∑
i∈N

∑
j∈N Pij,

subject to

Pij = λiLij, i, j ∈ N,
λi ≤ 1, i ∈ N,
z + P>1− P1 ≥ 0.

(4.2)

The first and second constraint in the linear program (4.2) guarantee that payments

are proportional to the liabilities and at most equal to those liabilities. These constraints

replace the requirement P ∈ P of maximization problem (4.1). Demange (2018) uses a

similar program to create a threat index by calculating the marginal effects of endowment

increases.

Also for constrained equal awards division rules, we can replace the requirement P ∈ P
of the program in (4.1) by a set of simple constraints. We define, for every i ∈ N, Li =

maxj∈N Lij. Using Theorem 4.1, the following result follows in a straightforward way.

Theorem 4.3. Let F = (N, z, L, d) be a financial network with constrained equal awards

division rules. The greatest clearing payment matrix of F is the unique solution P+ to the

following maximization problem:

maxP∈RN×N
+ ,λ∈RN

+

∑
i∈N

∑
j∈N Pij,

subject to

Pij = min{λi, Lij}, i, j ∈ N,
λi ≤ Li, i ∈ N,
z + P>1− P1 ≥ 0.

(4.3)
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The program in (4.3) maximizes the total payments as made by the agents subject to

three conditions. The first condition expresses that agent i pays all of its claimants the

amount λi, except when λi would exceed the value of the claim. This yields the feasibility

condition of clearing payment matrices under the constrained equal awards rule. The

second condition serves to pin down a unique value of λi in all circumstances. It is possible

to omit this constraint in the optimization problem, although one loses the property that

λi is uniquely determined as well as the interpretation of λi as the highest payment made

by agent i. The third condition requires that no agent ends up with negative equity.

It is well-known that the constraint in (4.3) involving a minimum operator can be

avoided by introducing binary decision variables qij for every i, j ∈ N. If qij = 0, then the

payment Pij is equal to Lij and if qij = 1, then Pij is equal to λi ≤ Lij. This leads to the

following result.

Theorem 4.4. Let F = (N, z, L, d) be a financial network with constrained equal awards

division rules. The greatest clearing payment matrix of F is the unique solution P+ to the

following integer linear programming problem:

maxP∈RN×N
+ ,λ∈RN

+ ,q∈{0,1}N×N

∑
i∈N

∑
j∈N Pij,

subject to

Pij ≤ λi, i, j ∈ N,
Pij ≤ Lij, i, j ∈ N,
Pij ≥ λi − Li(1− qij), i, j ∈ N,
Pij ≥ Lij − Liqij, i, j ∈ N,
λi ≤ Li, i ∈ N,
z + P>1− P1 ≥ 0.

(4.4)

Proof. We show first that any (P, λ, q) ∈ RN×N
+ × RN

+ × {0, 1}N×N satisfying the

constraints in (4.4) is such that, for every i, j ∈ N, Pij = min{λi, Lij}. We show next that

for any (P, λ) ∈ RN×N
+ ×RN

+ satisfying the constraints in (4.3) there is q ∈ {0, 1}N×N such

that (P, λ, q) satisfies the constraints in (4.4).

Let (P, λ, q) ∈ RN×N
+ ×RN

+ ×{0, 1}N×N satisfy the constraints in (4.4). Let i, j ∈ N be

such that qij = 0. The constraints Pij ≤ λi, Pij ≤ Lij, and Pij ≥ Lij − Liqij = Lij imply

Pij = min{λi, Lij}. Let i, j ∈ N be such that qij = 1. The constraints Pij ≤ λi, Pij ≤ Lij,

and Pij ≥ λi − Li(1− qij) = λi imply Pij = min{λi, Lij}.
Let (P, λ) ∈ RN×N

+ ×RN
+ satisfy the constraints in (4.3). For every i, j ∈ N, if Pij < Lij,

then define qij = 1, and if Pij = Lij, then define qij = 0. We show that (P, λ, q) sat-

isfies the constraints in (4.4). Since Pij = min{λi, Lij}, it follows that Pij ≤ λi and

Pij ≤ Lij. If Pij < Lij, then qij = 1 and Pij = λi = λi − Li(1− qij). Clearly, it holds that
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Pij ≥ 0 ≥ Lij − Li. If Pij = Lij, then qij = 0 and Pij ≥ 0 ≥ λi − Li = λi − Li(1 − qij). It

also holds that Pij = Lij = Lij − Liqij. 2

To obtain elegant formulations, we have treated all payments Pij for i, j ∈ N in the same

way in the optimization problems (4.3) and (4.4). Of course, there is no need to introduce

explicit variables Pij and qij when Lij = 0 since we can simply substitute Pij = 0.

Also for the constrained equal losses rule, we can replace the requirement P ∈ P of

the program in (4.1) by a set of simple constraints. Using Theorem 4.1, we obtain the

following result in a straightforward way.

Theorem 4.5. Let F = (N, z, L, d) be a financial network with constrained equal losses

division rules. The greatest clearing payment matrix of F is the unique solution to the

following maximization problem:

maxP∈RN×N
+ ,µ∈RN

+

∑
i∈N

∑
j∈N Pij,

subject to

Pij = max{Lij − µi, 0}, i, j ∈ N,
µi ≤ Li, i ∈ N,
z + P>1− P1 ≥ 0.

(4.5)

The program in (4.5) maximizes the total payments as made by the agents subject to

three conditions. The first condition expresses that agent i pays all creditors the amount of

their claim minus µi, except when µi exceeds the value of the claim. This corresponds to the

feasibility condition of clearing payment matrices under the constrained equal losses rule.

Similar to the case of constrained equal awards division rules, the second condition serves

to pin down the value of µi. The only case where µi would not be uniquely determined

without this constraint is when agent i does not make any payments in the greatest clearing

payment matrix, a case that can only occur if zi = 0 and i does not receive any payments

from any of the other agents or if i does not have any creditors, both rather contrived

situations. The third condition requires that no agent ends up with negative equity.

Similar to the case for constrained equal awards division rules, it is possible to avoid

the constraint in (4.5) involving the maximum operator by introducing binary decision

variables qij for every i, j ∈ N. If qij = 0, then the payment Pij is equal to 0 and if qij = 1,

then Pij is equal to Lij − µi. This leads to the following result.

Theorem 4.6. Let F = (N, z, L, d) be a financial network with constrained equal losses

division rules. The greatest clearing payment matrix of F is the unique solution P+ to the
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following integer linear programming problem:

maxP∈RN×N
+ ,µ∈RN

+ ,q∈{0,1}N×N

∑
i∈N

∑
j∈N Pij,

subject to

Pij ≥ Lij − µi, i, j ∈ N,
Pij ≤ Lij − µi + Li(1− qij), i, j ∈ N,
Pij ≤ Liqij, i, j ∈ N,
µi ≤ Li, i ∈ N,
z + P>1− P1 ≥ 0.

(4.6)

Proof. We show first that any (P, µ, q) ∈ RN×N
+ × RN

+ × {0, 1}N×N satisfying the

constraints in (4.6) is such that, for every i, j ∈ N, Pij = max{Lij − µi, 0}. We show next

that for any (P, µ) ∈ RN×N
+ ×RN

+ satisfying the constraints in (4.5) there is q ∈ {0, 1}N×N

such that (P, µ, q) satisfies the constraints in (4.6).

Let (P, µ, q) ∈ RN×N
+ × RN

+ × {0, 1}N×N satisfy the constraints in (4.6). Let i, j ∈ N
be such that qij = 0. The constraints Pij ≥ 0, Pij ≥ Lij − µi, and Pij ≤ Liqij = 0 imply

Pij = max{Lij − µi, 0}. Let i, j ∈ N be such that qij = 1. The constraints Pij ≥ 0,

Pij ≥ Lij − µi, and Pij ≤ Lij − µi + Li(1− qij) = Lij − µi imply Pij = max{Lij − µi, 0}.
Let (P, µ) ∈ RN×N

+ ×RN
+ satisfy the constraints in (4.5). For every i, j ∈ N, if Pij > 0,

then define qij = 1, and if Pij = 0, then define qij = 0. We show that (P, µ, q) satisfies

the constraints in (4.6). Since Pij = max{Lij − µi, 0}, it follows that Pij ≥ Lij − µi. If

Pij > 0, then qij = 1 and Pij = Lij − µi = Lij − µi + Li(1 − qij). Clearly, it holds that

Pij = Lij − µi ≤ Lij ≤ Li = Liqij. If Pij = 0, then qij = 0 and Pij = 0 ≤ Li − µi ≤
Lij − µi + Li = Lij − µi + Li(1− qij). It also holds that Pij = 0 = Liqij. 2

We finally turn to priority division rules. The following result follows immediately from

Theorem 4.1.

Theorem 4.7. Let F = (N, z, L, d) be a financial network with priority division rules.

The greatest clearing payment matrix of F is the unique solution P+ to the following

maximization problem:

maxP∈RN×N
+ ,E∈RN

+

∑
i∈N

∑
j∈N Pij,

subject to

Pij = max{0,min{Ei −
∑

k∈N |π(k)<π(j) Lik, Lij}}, i, j ∈ N,
Ei ≤

∑
k∈N Lik, i ∈ N,

z + P>1− P1 ≥ 0.

(4.7)
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The program in (4.7) maximizes the total payments as made by the agents subject to

three conditions. The first condition expresses that agent i pays all creditors at most their

claim or what is left after creditors having priority are paid off. The maximum makes sure

that in case the latter amount is negative, no payments are made. This corresponds to

the feasibility condition of clearing payment matrices under the priority rule. The second

condition serves to pin down the value of Ei for solvent agents. The third condition requires

that no agent ends up with negative equity.

The next result demonstrates that the problem of finding the greatest clearing payment

matrix can be written as an integer linear programming problem as well in the case of

priority division rules.

Theorem 4.8. Let F = (N, z, L, d) be a financial network with priority division rules. The

greatest clearing payment matrix of F is the unique solution P+ to the following integer

linear programming problem:

max
P∈RN×N

+ ,E∈RN
+ ,q∈{0,1}N×N ,r∈{0,1}N×N

∑
i∈N

∑
j∈N

Pij, (4.8)

subject to

Pij ≤ Lij, i, j ∈ N, (4.9)

Pij ≤ Ei −
∑

k∈N |π(k)<π(j)

Lik +
∑
k∈N

Lik(1− qij), i, j ∈ N, (4.10)

Pij ≤ Liqij, i, j ∈ N, (4.11)

Pij ≥ Ei −
∑

k∈N |π(k)<π(j)

Lik −
∑
k∈N

Lik(1− rij), i, j ∈ N, (4.12)

Pij ≥ Lij − Lirij, i, j ∈ N, (4.13)

Ei ≤
∑
k∈N

Lik, i ∈ N, (4.14)

z + P>1− P1 ≥ 0. (4.15)

Proof. We show first that any (P,E, q, r) ∈ RN×N
+ × RN

+ × {0, 1}N×N × {0, 1}N×N

satisfying the constraints in (4.8) is such that

Pij = max{0,min{Ei −
∑

k∈N |π(k)<π(j)

Lik, Lij}}, i, j ∈ N.

We show next that for any (P,E) ∈ RN×N
+ ×RN

+ satisfying the constraints in (4.7) there is

(q, r) ∈ {0, 1}N×N × {0, 1}N×N such that (P,E, q, r) satisfies the constraints in (4.8).

Let (P,E, q, r) ∈ RN×N
+ ×RN

+ × {0, 1}N×N × {0, 1}N×N satisfy the constraints in (4.8).

Fix some (i, j) ∈ N ×N. We distinguish three cases.

Case 1. Pij = 0.
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If Lij = 0, then it clearly holds that Pij = max{0,min{Ei −
∑

k∈N |π(k)<π(j) Lik, Lij}}.
Assume Lij > 0. It follows from (4.13) that rij = 1. From (4.12) we obtain that Pij ≥
Ei −

∑
k∈N |π(k)<π(j) Lik, so Pij = max{0,min{Ei −

∑
k∈N |π(k)<π(j) Lik, Lij}} as desired.

Case 2. 0 < Pij < Lij.

It follows from (4.11) that qij = 1 and from (4.13) that rij = 1. We use (4.10) and (4.12)

to conclude that Pij = Ei −
∑

k∈N |π(k)<π(j) Lik. We conclude that Pij = max{0,min{Ei −∑
k∈N |π(k)<π(j) Lik, Lij}}.
Case 3. 0 < Pij = Lij.

It follows from (4.11) that qij = 1, so from (4.10) that Pij ≤ Ei −
∑

k∈N |π(k)<π(j) Lik,

and we conclude that Pij = max{0,min{Ei −
∑

k∈N |π(k)<π(j) Lik, Lij}}.
Let (P,E) ∈ RN×N

+ × RN
+ satisfy the constraints in (4.7). For every i, j ∈ N, we define

qij ∈ {0, 1} and rij ∈ {0, 1} as follows. If Pij = Lij = 0, then define qij = rij = 0. If

Pij = 0 < Lij, then define qij = 0 and rij = 1. If 0 < Pij < Lij, then define qij = rij = 1.

Finally, if 0 < Pij = Lij, then define qij = 1 and rij = 0. We verify next that the inequalities

in (4.9)–(4.13) are satisfied. To do so, we fix (i, j) ∈ N ×N and distinguish four cases.

Case 1. Pij = Lij = 0.

The inequalities in (4.9)–(4.13) reduce to

0 ≤ 0,

0 ≤ Ei +
∑

k∈N |π(k)≥π(j) Lik,

0 ≤ 0,

0 ≥ Ei −
∑

k∈N |π(k)<π(j) Lik −
∑

k∈N Lik,

0 ≥ 0.

These equalities are clearly satisfied, where the fourth inequality uses the fact that Ei ≤∑
k∈N Lik.

Case 2. Pij = 0 < Lij.

The inequalities in (4.9)–(4.13) reduce to

0 ≤ Lij,

0 ≤ Ei +
∑

k∈N |π(k)≥π(j) Lik,

0 ≤ 0,

0 ≥ Ei −
∑

k∈N |π(k)<π(j) Lik,

0 ≥ Lij − Li.

Since 0 = Pij = max{0,min{Ei −
∑

k∈N |π(k)<π(j) Lik, Lij}} and Lij > 0, it follows that

Ei −
∑

k∈N |π(k)<π(j) Lik ≤ 0, so the fourth inequality above holds. The other inequalities

hold trivially.

Case 3. 0 < Pij < Lij.
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The inequalities in (4.9)–(4.13) reduce to

Pij ≤ Lij,

Pij ≤ Ei −
∑

k∈N |π(k)<π(j) Lik,

Pij ≤ Li,

Pij ≥ Ei −
∑

k∈N |π(k)<π(j) Lik,

Pij ≥ Lij − Li.

Since Pij = max{0,min{Ei −
∑

k∈N |π(k)<π(j) Lik, Lij}} and 0 < Pij < Lij, it follows that

Pij = Ei −
∑

k∈N |π(k)<π(j) Lik. It is now easily verified that all inequalities above hold.

Case 4. 0 < Pij = Lij.

The inequalities in (4.9)–(4.13) reduce to

Lij ≤ Lij,

Lij ≤ Ei −
∑

k∈N |π(k)<π(j) Lik,

Lij ≤ Li,

Lij ≥ Ei −
∑

k∈N |π(k)<π(j) Lik −
∑

k∈N Lik,

Lij ≥ Lij.

From 0 < Lij = Pij = max{0,min{Ei −
∑

k∈N |π(k)<π(j) Lik, Lij}} it follows that Ei −∑
k∈N |π(k)<π(j) Lik ≥ Lij. We have shown the second inequality above. The fourth inequal-

ity above follows from Ei ≤
∑

k∈N Lik. The other inequalities are trivially true. 2

We assumed in Theorems 4.3–4.8 that all agents use the same division rule. A closer

inspection of the proofs reveals that this feature is not used. We can therefore obtain

similar results if agents use heterogeneous division rules within the classes of proportional,

constrained equal awards, constrained equal losses, and priority division rules.

5 Conclusion

We consider financial networks with perfectly liquid non-negative endowments, liabilities,

and agent-specific bankruptcy rules. The set of clearing payment matrices is a complete

lattice, so has a least and a greatest element. We illustrate by means of examples that there

can be infinitely many clearing payment matrices and that multiplicity of clearing payment

matrices depends on the division rules that are in place. Previous research has shown that

decentralized clearing leads to the selection of the least clearing payment matrix. We show

how a centralized approach can be used to select the greatest clearing payment matrix. We

present a programming approach to calculate the greatest clearing payment matrix. We

also show that for proportional division rules, this programming problem can be written as
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a linear programming problem. For common division rules like constrained equal awards,

constrained equal losses, and priority division rules, we show how the programming problem

can be written as an integer linear programming problem.

There are many possibilities for further research. The Eisenberg and Noe (2001) model

has been extended in various ways. For setups with default costs, see Rogers and Veraart

(2013), Roukny, Battiston, and Stiglitz (2018), and Jackson and Pernoud (2020). Schulden-

zucker, Seuken, and Battiston (2020) introduce credit default swaps and show how these

can lead to multiplicity of clearing payment matrices. Cifuentes, Ferrucci, and Shin (2005)

analyze a related direct externality in financial networks, when agents’ endowments also

contain one illiquid asset. Defaulting agents firesale the illiquid asset, which reduces the

other agents’ value of endowments as well. In this setting, Amini, Filipović, and Minca

(2016) give conditions for uniqueness of the clearing payment matrix and the corresponding

asset prices. Feinstein (2017) generalizes those conditions for multiple illiquid assets. If

these conditions are not satisfied, there is again scope for multiplicity of clearing payment

matrices. An examination of the trade-off between decentralized and centralized clearing

is therefore highly relevant for the various extensions of the baseline model.
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