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Abstract

We develop a theory of collective brand reputation for markets in which product

quality is jointly determined by local and global players. In a repeated game of imperfect

public monitoring, we model collective branding as an aggregation of quality signals

generated in different markets. Such aggregation yields a beneficial informativeness

effect for incentivizing the global player. It however also induces harmful free-riding

by local, market-specific players. The resulting tradeoff yields a theory of optimal

brand size and revenue sharing that applies to platform markets, franchising, licensing,

umbrella branding, and firms with team production.

Keywords: Collective branding, reputation, free-riding, repeated games, imperfect

monitoring.
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1 Introduction

Most products are experience goods in that product quality is not directly observable prior

to consumption. Consumers therefore base their purchasing decisions foremost on the rep-

utation of brands, formed through past consumption experiences, word of mouth, internet

reviews, and the like, and facilitated by trade-marks and logos. For a firm’s long-term success,

managing its brand reputation is therefore crucial.1 Controlling quality at the brand level is,

however, challenging because it is a coarse measure that, in general, depends on the collective

decisions of different types of agents. For instance, platform brands such as Amazon, Ebay,

and Uber, or franchise brands such as McDonald’s and Burger King have some control over

consumers’ experience but, to a large extent, this experience also depends on the individual

sellers, local delivery services and drivers, and outlets, who ultimately service the consumer

locally.2 Similarly, the quality of manufacturing goods such as cars or beers depends not only

on the decisions taken by the headquarter but also on those by local plant managers.

A crucial feature of brand reputation is, therefore, that it is a collective outcome of actions

taken not only by “global” players, who impact the quality of the entire line of products, but

also “local” players, each of whom affects quality of only a subset of products. The fact that

collective branding involves an aggregation of quality signals about the actions of both global

and local players, raises a number of important economic questions. In particular, what are

the main economic forces affecting whether a collective brand reputation is sustainable, and

when would it be better to sell the different products under different brand names? For

instance, is it better to sell four different products under a single, two, or four independent

brand names?3 More generally, what are the economic tradeoffs that affect the optimal

size of the collective brand? Moreover, what instruments are key for controlling a collective

reputation and how large are the remaining inefficiencies under their optimal use?

To address these and related questions, we develop a framework to study collective brand

reputation. More specifically, we analyze an infinitely repeated hidden action game of imper-

1Brand Finance, which produces annual rankings of companies based on brand/intangible value, reports
that, on average, the total intangible value of a global top ten company accounts for over 85 percent of
such a firm’s market value (https://www.visualcapitalist.com/intangible-assets-driver-company-value/, last
retrieved on 02/20/2022). Similarly, Ocean Tomo, a financial expert and management consulting company,
reports that, in the last decades, intangible assets have become ever more important, and are now responsible
for 90% of all value of S&P 500 businesses. (https://www.oceantomo.com/INTANGIBLE-ASSET-MARKET-
VALUE-STUDY, last retrieved on 02/20/2022).

2Nosko and Tadelis (2015) document such problems in platform markets. Blair and Lafontaine (2005)
highlight the franchisor’s problem of maintaining consistent quality across franchisees, and conclude that the
empirical evidence “seems consistent with the concept that free riding, or individual profit maximization by
opportunistic franchisees, is an issue in franchised chains” (p.137).

3To give a concrete example, Procter & Gamble is a multinational consumer goods corporation that sells
its products under many different brand names, whereas Virgin Group Ltd. explicitly engages in umbrella
branding, purposely selling their products and services under the same brand name.
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fect public monitoring. There are n markets. In each market, two long-lived players jointly

produce a good over an infinite number of periods. One of these players – the local player –

is active in only one market, whereas the other player – the global player – is active in all n

markets. The good is of high quality in a given market only if both players in that market

exert effort. Neither effort nor quality are observable but, at the beginning of each period

and for each market, a noisy (binary) signal of last period’s quality is realized.

Following the key tenet of marketing that consumers identify quality with the reputation

of the good’s brand,4 the n goods can either be sold under independent branding or collective

branding. Under independent branding, the goods are sold under n different brand names,

leading to a market separation in which the market-specific consumer conditions her buying

behavior only on the quality signals associated with the products in her market. By contrast,

under collective branding, the products are all sold under a single brand and quality signals

across all markets are aggregated into a common signal. As a result, behavior in each market

depends only on the pooled quality signals from all markets rather than the individual signals.

Comparing the Perfect Public Equilibrium (PPE) outcomes of the repeated games that

result under independent and collective branding, we identify the following novel trade-off.

On the one hand, collective branding yields an informativeness effect that allows to better

control the incentives of the global player. On the other hand, collective branding yields a

free-rider effect that makes it harder to control the incentives of local players. Hence, with

only global players, collective branding is optimal, because only the informativeness effect

arises. As a result, inefficiencies vanish when both the discount factor approaches 1 and the

brand size goes to infinity. In contrast, with only local players, the free-rider effect renders

independent branding optimal. Moreover, due to imperfect monitoring the folk theorem fails:

a “discountless” inefficiency—bounded away from zero—remains when the discount factor

approaches 1. With both global and local players, the optimal branding choice depends on

the trade-off between the two effects.

This trade-off yields a theory that allows us to answer our questions concerning optimal

brand size, the crucial economic instruments to sustain a collective reputation, and the

remaining inefficiencies if frictions such as discounting vanish. To understand this trade-off,

recall that monitoring in our setup is imperfect. As a result, high effort in the beginning

of the repeated game is sustainable only in an equilibrium in which, on the equilibrium

path, the long-lived players switch to low effort with a strictly positive probability after

an (erroneously) bad signal. We call such a probabilistic switch to low quality a market

breakdown of high-quality production. The optimal brand size is then the one that sustains

a high-quality equilibrium with the smallest on-path probability of market breakdown.

4See, for example, the textbook by Kotler (2003, p.420): “A brand is essentially a marketer’s promise to
deliver a specific set of features, benefits, and services consistently to the buyers.”
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Under collective branding, the sustainability of a high-quality equilibrium depends cru-

cially on how local and global players share their revenues. Hence, this insight identifies a

first crucial instrument for sustaining a collective reputation: a careful calibration of revenue

sharing. In particular, under independent branding, the smallest on-path probability of mar-

ket breakdown obtains for “proportional revenue sharing”, where each player obtains a share

of the revenue that equals his share in the overall effort cost of producing high quality. If

such proportional revenue sharing were used under collective branding, independent brand-

ing would be superior—due to the free-rider effect. For collective branding to outperform

independent branding requires that the local players obtain more than their proportional

share.

We characterize the optimal calibration of revenue sharing under collective branding.

Moreover, we show how, under such optimal revenue sharing, the minimal on-path proba-

bility of market breakdown depends on the firm’s choice of brand size and the underlying

economic fundamentals. In the above-mentioned example of four products, our results on

the optimal brand size imply the following: for intermediate discount factors, it is optimal

to sell four goods under two separate brands of size two each; for small discount factors, four

separate brands are optimal; and for large discount factors, a single brand is optimal. More

generally, collective branding allows a high-quality equilibrium with a lower on-path break-

down probability than independent branding for discount factors that are sufficiently close

to 1. For any such discount factor, there is, however, a finite upper bound on the brand size

that allows a high-quality equilibrium, and so the optimal brand size is finite. This reveals

a second crucial instrument for sustaining a collective reputation: the size of the collective

brand itself. As the discount factor becomes large, both this maximal sustainable and the

optimal finite brand size increase without bound.

However, in the limit as both the discount factor and the optimal brand size become

large, the inefficiency from imperfect monitoring does not vanish. The remaining inefficiency

is equal to the relative importance of local versus global players, and therefore intimately

connected to the trade-off between the informativeness and free-rider effects. In particular,

the remaining inefficiency equals the relative importance of the local players, as measured by

the share of effort cost they bear, multiplied by the aforementioned discountless inefficiency

under independent branding with only local players. Hence, with optimal revenue sharing,

it is as if, in this discountless limit, one achieves the best of both worlds: collective branding

for the global player without any inefficiencies and independent branding for the local players

with its discountless inefficiency due to a failure of the folk theorem.
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Related literature. The unique feature of our paper is the analysis of collective reputation

in the presence of both global and local players.5 The key tradeoff underlying our results

is between the informativeness effect (which is beneficial in the presence of a global player)

and the free-rider effect (which is detrimental in the presence of local players). While the

economics literature has studied variants of these two effects in isolation, our paper is the

first to analyze their interactions and economic implications.

Studying cooperation in a repeated prisoner’s dilemma game with imperfect monitoring,

Matsushima (2001) was, to our knowledge, the first to identify the beneficial informativeness

effect that underlies our paper. Cabral (2009) shows that this informativeness effect may

render umbrella branding optimal, while Cai and Obara (2009) study it as a driver of hori-

zontal integration. These papers effectively only consider global players, thereby abstracting

from free riding on a collective reputation.

By contrast, Tirole (1996), Fishman et al. (2018), and Neeman et al. (2019) study free-

rider problems associated with a collective reputation in settings with only local players.6

These papers however do not consider our beneficial informativeness effect of collective rep-

utation, and therefore address different economic forces. Considering a repeated matching

environment with overlapping generations, Tirole (1996) shows that a collective reputation

may lead to a persistent stigmatization of new generations due to shirking by some earlier

generation. In his framework, there are no inherent benefits from a collective reputation.

In a two-period model with persistent investment and different types of firms, Fishman et

al. (2018) study free-riding on a collective brand reputation, but with the benefit that the

collective brand can select its members based on their investment decisions and/or types.

Neeman et al. (2019) point out that a collective reputation may serve as a commitment

device. Trading off this effect against the free-rider effect, they therefore study a different

trade-off from ours.

Focusing on brand management, our study is related to the literature on co-branding,

brand extension, and umbrella branding (e.g., Kotler, 2003). With respect to this extensive

literature, our contribution is to study potential free-rider problems which, in our view,

are endemic to such settings.7 While most work in this literature focuses on reputation

models with hidden information (e.g., Wernerfelt, 1988, Choi, 1998, Cabral, 2000, Miklos-

Thal 2012, and Moorthy, 2012), our work is more closely related to studies that analyze

umbrella branding in a moral hazard framework. Hence, our modelling of reputation follows

the one pioneered in Klein and Leffler (1981) rather than the type-based approach developed

5See Bar-Isaac and Tadelis (2008) for a survey of the literature on seller reputation.
6Winfree and McCluskey (2005) and Fleckinger (2014) also study collective reputation, but in a funda-

mentally different framework in which consumers observe the product’s (collective) quality at the time of
purchase.

7See Castriota and Delmastro (2012) for an empirical study of the importance of collective reputation in
wine markets.
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in Kreps and Wilson (1982) and Milgrom and Roberts (1982).

Building on Klein and Leffler (1981), Andersson (2002) shows that in a repeated game of

moral hazard but perfect monitoring, a single brand name that pools the reputation across

independent markets is helpful only if markets display asymmetries. Hakenes and Peitz

(2008) and Cabral (2009) highlight that, with imperfect monitoring, pooling reputation can

be beneficial even when markets are symmetric.

Moreover, our paper contributes to the literature on the management of moral hazard in

team production, pioneered by Holmström (1982). In our setup, there are two types of team

production: physical team production within a market and reputational team production

across markets. Since the focus of our analysis is on the reputational team production

problem, we assume that the market-specific effort choices of the local and global players are

perfectly complementary so that these players can fully resolve their physical team production

problem. That is, the outcome under independent branding is identical to the one that would

obtain if the global and local player were to vertically integrate.

Our results also provide insights into the classical quality management problem in fran-

chising and licensing. In franchising (licensing), we can view the franchisor (licensor) as a

global player, while the outlets (licensees) are local players. Practitioners and legal scholars

have pointed out the importance of free-rider problems in these contexts. For instance, Had-

field (p.949, 1990) notes that the individual “franchisee is inclined to make decisions about

how much effort to put into the business based on the profits that will accrue directly to

her in her own outlet,” whereas “customers make judgments about the quality of the entire

franchise system based on their experience at an outlet”.8 Similarly, Klein and Saft (p.349ff,

1985) remark that the “franchise arrangements create an incentive for franchisees to shirk on

quality,” further pointing out that “the individual franchisee directly benefits from the sales

of the low quality product, and the other franchisees share in the losses caused by decreased

future demand”.9 In the context of trademark licensing, Calboli (2007) explains that, legally,

“trademarks are protected only as conveyors of information about the products which they

identify and as symbols of commercial goodwill” (p.357) and points out the free-rider prob-

8A concrete example is the Burger King scandal in Germany in 2014. After an undercover report exposed
severe problems of poor hygiene in outlets in Cologne, Burger King tried to put the blame on the individual
outlets but German consumers associated the negative report with the Burger King brand as a whole rather
than its local franchisee in Cologne. Similarly, in Kentucky Fried Chicken Corp. v. Diversified Packaging
Corp., 549 F.2d 368, 380 (1977), the Court observed “A customer dissatisfied with one Kentucky Fried outlet
is unlikely to limit his or her adverse reaction to the particular outlet; instead, the adverse reaction will
likely be directed to all Kentucky Fried stores. The quality of a franchisee’s product thus undoubtedly affects
Kentucky Fried’s reputation and its future success.”

9In the context of licensing, the court in Siegel v. Chicken Delight, 448 F.2d 43, n.38 (1971) observed that
“the licensor owes an affirmative duty to the public to assure that in the hands of his licensees the trade-name
continues to represent that which it purports to represent.” Klein and Saft (p.349ff, 1985) interpret this view
as expressing “a legal obligation for quality maintenance in a system involving many producers operating
under a common trade name.”
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lem that licensees’ “lack of direct ownership of the mark could make them less interested in

the long-term success of the products” (p.360).

To our knowledge, our paper is the first to formally model, and rigorously analyze, this

classical problem.10 Our result that, without properly calibrating revenue shares, a collective

reputation destroys any benefits from pooling reputations confirms that due to free-riding

“the value of the trademark will suffer dramatically” (Hadfield, 1980). Yet, our results also

show that a franchisor can partially mitigate free-rider problems and thereby maintain the

trademark’s value by shifting revenue streams from himself to the franchisees. This reinforces

the insight of Bhattacharyya and Lafontaine (1995) that revenue sharing is crucial for con-

trolling double moral hazard problems in franchising in that free-rider problems associated

with a collective reputation are key factors in the determination of optimal revenue shares.

Plan of the paper. In the next section, we present the model. This is followed, in Section

3, by the equilibrium analysis of independent branding. In Section 4, we first study the polar

case of collective branding in which the burden of effort is borne entirely by the global player.

We then turn to the other polar case in which all of the burden of effort is borne by the local

player. The analysis of these polar cases is instructive for analyzing the generic case in which

local and global players share the effort cost. Section 5 addresses the comparative statics in

the brand size n and obtains results concerning the maximum implementable brand size, n,

the optimal brand size, n̂, and (in)efficiency results for limiting cases. We conclude in Section

6. We collect all proofs in Appendix A.11

2 The Model

We consider an infinitely repeated game of imperfect public monitoring in discrete time

t = 0, 1, . . .. There are n ≥ 2 symmetric markets, indexed by i = {1, . . . , n} with one long-

lived global player, G, and n long-lived local players, Li. For each period t, production in a

market i requires the market-specific binary input, etG,i ∈ {0, 1}, of the global player G and

the binary input, etL,i ∈ {0, 1}, of the market-specific local player Li.
12 The good produced

10Extensively discussing the free-rider problem in franchising, Blair and Lafontaine (2005) capture the bare
essentials of this problem in a highly stylized model that abstracts from any reputational concerns.

11By applying the abstract methods of decomposability and self-generation developed in Abreu, Pearce,
and Stacchetti (1990), we study, in Appendix B, asymmetric PPE in the case of n = 2 markets, addressing
the robustness of our results to asymmetric equilibrium outcomes.

12That is, we assume that the global player can choose different effort levels in different local markets.
While this “independent effort choice” assumption is the appropriate one for some applications (think of
the global player delivering meat to hamburger outlets as discussed in footnote 8), for other applications it
makes more sense that the global player has to choose a common effort level in all local markets (think of
a global advertising effort). While we focus our formal analysis on the (more stringent) independent effort
choice case, we discuss in the conclusion that all of our propositions extend to the common effort level case.
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in market i is sold to a (representative) market-specific short-lived consumer Ci.

Production technology. The quality qti of good i ∈ {1, . . . , n} in period t ∈ {0, 1, 2, ..}
is either high, qti = 1, or low, qti = 0, and depends on the simultaneous effort choices of

G and Li. In particular, it is equal to one if and only if both G and Li put in effort and

zero otherwise: qti = etG,i · etL,i. The aggregate cost of effort for producing high quality in a

specific market is c > 0, of which G incurs the share λG and Li incurs the remaining share

λL = 1− λG. That is, λG represents the importance of the global player’s effort cost relative

to that of the local player: G’s effort cost is etG,iλGc and Li’s is e
t
L,iλLc.

Timing. The infinitely repeated game starts after the long-lived players set, for each good

i, the revenue shares πG and πL = 1 − πG that accrue to G and Li, respectively. At the

beginning of each period t ≥ 1, before effort choices are made, there is a binary signal

sti ∈ {0, 1}, providing noisy information about the good’s quality in the previous period.13

As we formalize below, the branding decision determines the (public) observability of these

signals. The realization of the market-specific signal sti depends on the previous period as

follows: if qt−1
i = 1, then sti = 1 with probability 1 − α; similarly, if qt−1

i = 0, then sti = 0

with probability 1− β. The parameters α ∈ (0, 1) and β ∈ (0, 1− α), measure the noisiness

of the signal and represent the probabilities of type II and type I errors, respectively. Before

effort choices are made, there is also the realization of an independent public randomization

device rt ∈ [0, 1], uniformly distributed over the unit interval, and independent over time.14

After the effort choices have been made, the consumer in market i, Ci, decides whether to

buy good i (bti = 1) or not (bti = 0).

Payoffs. In market i, the consumer’s valuation equals the good’s quality level qti . As we

focus on high-quality equilibria, we fix the price of the good to 1.15 As agreed upon in

an initial stage prior to the repeated game, the global player G and local player Li receive

shares πG and πL = 1 − πG of the revenue from selling good i. Assuming that the signal sti
is non-contractible, these shares are independent of the signal realization and, focusing on

symmetric equilibria, uniform across markets. We discuss the feasibility of more elaborate

schemes of revenue sharing under different modeling assumptions in the conclusion.

13For notational convenience, we set s0i = 1.
14The public randomization device simplifies the exposition of our results; none of our results require the

existence of such a signal. Footnote 19 makes this explicit.
15In our formal modelling of the repeated game, we treat this price as fully exogenous. Equivalently, we

could have assumed—as is commonly done in the literature on umbrella branding—that the price is equal to
consumers’ willingness to pay for the good, e.g., because multiple (identical) consumers bid for the good in
a (second-price) auction.
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A natural division of the revenue is to set a player’s reward share equal to his cost share,

(πG, πL) = (λG, λL). We refer to this sharing rule as proportional rewards. For the case in

which costly effort is needed from both the global and local players, λG, λL > 0, we define

the reward-to-cost-share ratio of player j as γj ≡ πj/λj. Governed by the accounting identity

λGγG + λLγL = 1, there is a one-to-one relationship between the reward shares (πG, πL) and

the reward-to-cost-share ratios (γG, γL). In the particular case of proportional rewards, we

have γG = γL = 1.

Summarizing, the period-t profit of a long-lived player k ∈ {G,Li} in market i is equal to

btiπk − etk,iλkc.

The long-lived players discount profits with factor δ ∈ (0, 1). The payoff of the (short-lived)

consumer in period t and market i is given by

(qti − 1)bti = (etG,ie
t
L,i − 1)bti.

While we view the revenue shares (πG, πL) as the outcome of a bargaining process between

the long-lived players prior to the repeated game, we do not model this bargaining stage

explicitly. As bargaining takes place under full information, we do assume however that it

results in an efficient outcome, so that the revenue shares maximize the joint value of the

long-lived players. We therefore seek the perfect public equilibrium (PPE) that maximizes

the joint value of G and Li,
16

Vi ≡
∞∑
t=0

δt
[
bti − (etG,iλG + etL,iλL)c

]
,

and is strongly symmetric in the sense that all n local players use identical strategies after

every history. Let V i and V i denote the maximal and minimal values of Vi, respectively, that

can be sustained in a PPE.

Public histories. We model the distinction between independent and collective branding

purely as differences in public information concerning the signals s. With independent brands,

the public signal in market i is the market-specific signal si together with the randomization

device r. Consequently, the public history, ht
i, in market i at time t is

ht
i = (sτi , r

τ )τ=0,...,t.

16As consumer surplus is equal to zero in any equilibrium, this PPE also maximizes the discounted sum of
aggregate surplus.
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By contrast, the public signal under collective branding consists only of the aggregate

signal s̃τ =
∑

i s
τ
i—the number of positive realizations of the n noisy quality signals—together

with the randomization device r.17 Consequently, the public history, ht, in market i at time

t is

ht = (s̃τ , rτ )τ=0,...,t.

The difference in public histories between independent and collective branding captures

the key tenet of marketing: consumers identify the quality of a good through its brand name

alone. In particular, under collective branding, consumers cannot discern information about

the good’s quality that is market specific.18 The public history can therefore contain only

aggregate signals of identically branded products. Our focus on perfect public equilibrium

(PPE) then implies that we study only behavior in which players condition their strategies on

the coarse brand-specific public history rather than any finer information. This also means

that, under independent branding, players’ strategies in market i are independent of the

quality signals in another market j ̸= i.

Before proceeding, we formally define our equilibrium concept for both independent and

collective branding. Under independent branding, players view the markets as independent,

and we therefore consider the PPE of some generic market i. In this generic market, a public

strategy for a consumer is a sequence of maps ait : h
t
i → {0, 1}, a public strategy for the local

player i is a sequence of maps eLit : h
t
i → {0, 1}, and a public strategy for the global player

in market i is a sequence of maps eGit : h
t
i → {0, 1}. A perfect public equilibrium (PPE)

under independent branding is a profile of public strategies {ai, eLi, eGi} if for each date t

and history ht, the strategies form a Nash equilibrium from that point on.

Under collective branding with n brands, a public strategy for a consumer i is a sequence

of maps ait : ht
i → {0, 1}, a public strategy for the local player i is a sequence of maps

eLit : h
t
i → {0, 1}, and a public strategy for the global player is a sequence of maps eGt =

(eG1t, . . . , eGnt) : h
t
i → {0, 1}n. A perfect public equilibrium (PPE) under collective branding

is a profile of public strategies {a1, . . . , an, eL1, . . . , eLn, eG} if for each date t and history

ht, the strategies form a Nash equilibrium from that point on. Moreover, an L-strongly

symmetric PPE under collective branding is a PPE in which all n local players use the

same strategy after every history. Our analysis of collective branding uses as the equilibrium

concept L-strongly symmetric PPE. In Appendix B, we also study asymmetric PPE for the

special case of two markets and show that they are strictly suboptimal for discount factors

exceeding 1/2.

17Rather than its sum, we may take the aggregated signal s̃τ as any symmetric and strictly increasing
function of the individual signals (sτ1 , . . . , s

τ
n).

18For example, consider a beer tasting website such as beeradvocate.com. Even though large beer brands
are often produced in several plants, including under license in foreign countries, the tasting notes on such
websites do not distinguish between them.
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To ensure that our analysis is non-trivial, we assume throughout that c < c ≡ (1 − α −
β)/(1−β). This assumption is necessary and sufficient for effort to be sustainable for a large

enough discount factor under independent branding.

3 Independent Branding

In this section, we analyze equilibrium outcomes when the goods in the different markets

are branded independently. Since all markets are symmetric and independent, we fix some

market i and drop the market subscript for the remainder of this section. All our payoff

results are therefore in terms of “per-market averages”. We sometimes use the superscript I

to denote optimal solutions in this case of independent branding.

Worst PPE. It is straightforward to see that neither G nor L exerting any effort (etG =

etL = 0) and short-lived consumers not purchasing the good (bt = 0) in every period t after

any history ht is a PPE. In this PPE, both G and L receive their minmax payoff of zero.

This minmax equilibrium outcome represents the worst PPE outcome with the associated

payoff of V I = 0.

Strategy profiles sustaining high quality. If the best PPE yields a strictly positive

payoff, V
I
> V I = 0, then it involves players exerting effort in equilibrium, resulting in

high quality. We refer to such an equilibrium as as a high-quality equilibrium. Stated more

formally, a high-quality equilibrium is a PPE with the outcome that the global and local

players choose high effort in period 0 with probability 1.

Because effort is costly, a high-quality equilibrium must provide players with incentives

to induce it. From Abreu, Pearce, and Stacchetti (1990), it is without loss to assume that a

PPE takes on only extreme points of the equilibrium value set, and this equilibrium value set

is a subset of the convex hull of the enforceable payoff vectors. Because of the perfect com-

plementarities in effort, there are, in the case of independent branding, only two enforceable

payoff vectors: the payoff vector associated with both long run players exerting effort and the

minmax payoffs of zero. As a result, providing incentives for effort involves a probabilistic

triggering of these minmax payoffs, intuitively representing a market breakdown. Hence, the

best PPE is the high-quality equilibrium with the smallest market breakdown probability,

provided high-quality equilibria exist. If a high-quality equilibrium does not exist, the best

PPE coincides with the worst PPE so that V
I
= V I = 0.

Under independent branding, there is only a binary public signal s on which players can

condition their behavior. As a result, any high-quality equilibrium sustained through the use

of extreme points can be characterized by the probability of market breakdown, ρ0, in the

11



event that the signal s points to shirking (s = 0). More formally, a strategy profile σI(ρ0)

sustaining such a high-quality equilibrium has the following structure: for ρ0 ∈ (0, 1], if the

period-t history ht involves sτ = 0 and rτ ∈ [0, ρ0] for some τ ≤ t, then etG = etL = 0 and

bt = 0; otherwise, etG = etL = 1 and bt = 1.

The strategy profile σI(ρ0) implies that, in period 0, both G and L exert effort, and

the consumer purchases the good. This continues in all subsequent periods until the public

quality signal assumes the value of zero (falsely indicating that the quality in the previous

period was zero) and the realized value of the public randomization device is not larger than

ρ0; from then on, no effort will ever be exerted and the good will not be purchased. In short,

a bad quality signal triggers a reversion to the worst PPE with probability ρ0.
19

Payoffs and market breakdown probabilities. Playing the strategy profile σI(ρ0) yields

a payoff of

Ṽj = πj − λjc+ δ(1− p0)Ṽj = λjV (p0, γj), with V (p0, γj) ≡
γj − c

1− δ(1− p0)
, (1)

to long-lived player j ∈ {G,L}, where p0 ≡ αρ0 represents the expected probability that, in

any period after which effort was exerted and the consumer purchased the good, the long-run

players stop exerting effort and consumers stop purchasing the good. We refer to p0 as the

on-path market breakdown probability of a high-quality equilibrium. Clearly, V (p0, γj) ≥ 0 if

and only if γj ≥ c. In this case, V (p0, γj) is decreasing in p0 and increasing in γj. Using the

identity λGγG + λLγL = 1, it follows that the payoffs of both long-lived players exceed the

minmax payoff of zero if and only if γG ∈ [c, (1− λLc)/λG] and γL ∈ [c, (1− λGc)/λL].
20

Incentive constraints. In equilibrium, every consumer receives a payoff of zero, and it is

straightforward to see that no consumer has an incentive to deviate from the above strategy

profile (which gives him just his minmax payoff of zero). To see whether any of the long-lived

players G or L is better off deviating, note first that the answer is trivially no once the

reversion to the worst PPE has been triggered. Consider now a one-shot deviation before

such a reversion has been triggered: player j’s value from one-time shirking is equal to

Ṽ d
j = πj + δ(1− p1)Ṽj = λj × [γj + δ(1− p1)V (p0, γj)] ,

19Instead of a probabilistic permanent transition to the worst PPE, an alternative strategy profile would
involve a deterministic transition to a finite punishment phase of length T , thus not requiring the existence
of a public randomization device. In the absence of integer constraints on T , such deterministic strategies
would support the same equilibrium outcome.

20The upperbound on γj follows from γ−j ≥ c⇔ 1/λ−j − γjλj/λ−j ≥ c⇔ γj ≤ (1− λ−jc)/λj .
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where

p1 ≡ (1− β)ρ0

is the market breakdown probability when one of the players shirks.

The incentive constraint of player j ∈ {G,L}, Ṽj ≥ Ṽ d
j , can be written as

δ(p1 − p0)V (p0, γj) ≥ c. (ICI
j )

The left-hand side represents the discounted future loss from the one-shot deviation, induced

by an increase in the market breakdown probability from p0 to p1, whereas the right-hand

side represents the short-run gain, which equals the saved effort cost.

Characterizing the best PPE. In the best high-quality equilibrium, the punishment

probability ρ0 maximizes aggregate surplus

ṼG + ṼL = λGV (αρ0, γG) + λLV (αρ0, γL) =
1− c

1− δ[1− αρ0]

subject to (ICI
G) and (ICI

L). Because the surplus is decreasing in ρ0, this amounts to minimiz-

ing the punishment probability ρ0 subject to the two incentive constraints. As (IC
I
j ) depends

on j only through γj, and V (p0, γj) is strictly increasing in γj, the optimal revenue shares

maximize min{γG, γL}, implying γG = γL = 1. Moreover, both incentive constraints must be

binding: If only one constraint were binding, the revenue shares could be adapted to relax this

constraint slightly and thereby lower ρ0 and increase the objective. Hence, at the optimum,

each long-lived player’s reward share is proportional to his cost share: (πG, πL) = (λG, λL).

Defining,

ρI0 ≡
(1− δ)c

δ[1− α− β − (1− β)c]
and δ

I ≡ c

1− α− β + βc
, (2)

we obtain the following proposition:

Proposition 1. If δ ≥ δ
I
, the best PPE is a high-quality equilibrium with a market breakdown

probability of pI0 = αρI0. In this equilibrium, the sharing rule is proportional (i.e., γG = γL =

1); and the joint value is equal to V
I
= V (pI0, 1) > 0 = V I .

Otherwise, a high-quality equilibrium does not exist and the best PPE coincides with the

worst PPE in that V
I
= V I = 0.

The average per-period payoff vI ≡ (1− δ)V
I
in the best PPE is therefore given by

vI =

0 if 0 < δ < δ
I
,

1− c−
(

α
1−α−β

)
c if δ

I ≤ δ < 1.
(3)
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For δ ≥ δ
I
, the average payoff vI is independent of the discount factor, and strictly less than

the efficient payoff of (1 − c), identifying a failure of the folk theorem.21 In the limit as the

probability of a “false negative” (α) becomes small, this inefficiency vanishes: limα→0 v
I =

1− c. While this inefficiency also decreases as the probability of a “false positive” decreases,

it does not vanish in the limit as β becomes small: limβ→0 v
I = 1 − c/(1 − α) < 1 − c.

Finally, note that the critical discount factor δ
I
is positively related to both α and β, with

lim(α+β)→0 δ
I
= c.

Indeed, under perfect monitoring (α = β = 0), high quality provision in every period is

sustainable for δ ≥ c and yields a per-period equilibrium value of 1 − c. Hence, imperfect

monitoring exacerbates the implementation of high quality in two ways. First, for a discount

factor δ ∈ [c, δ
I
), high quality is not sustainable with imperfect monitoring whereas it would

be under perfect monitoring. Second, for δ ≥ δ
I
, high quality in the initial period is sus-

tainable both with perfect and imperfect monitoring, but the equilibrium value is lower with

imperfect monitoring, vI < 1− c, as high quality cannot be sustained forever.

Note that expression (3) does not depend on the effort cost structure (λG, λL). This

means that “vertical integration”—where the same agent chooses etG and etL and, in return,

gets all of the revenue from selling the good—has no effect on the set of PPE values. As

alluded to before, in our model, the physical team production problem can thus be solved

costlessly.

4 Collective Branding

In this section, we analyze equilibrium outcomes when the long-lived players sell the goods

in the n markets under one collective brand. In this case, the public history ht contains the

aggregated signals s̃τ =
∑

i s
τ
i of the previous periods τ ≤ t rather than the individual signals

sτi . Since the public signal s̃τ has n + 1 possible realizations rather than only two as in the

case of independent branding, the players’ strategies in a PPE with collective branding are

potentially more complex.

Worst PPE. Similar to the case of independent branding, however, there always exists

a straightforward PPE in which, irrespective of the public histories, all long-lived players

exert no effort in every period, and consumers do not purchase the good. As this gives each

long-lived player his minmax payoff of zero, the joint value in the worst PPE under collective

21As first shown by Radner et al. (1986), the folk theorem may not hold in repeated games with imperfect
monitoring and double-sided moral hazard. In our model, the signal structure conditional on the global
player shirking is identical to the one conditional on the local player shirking. This implies a failure of the
pairwise full rank condition in the repeated game, and results in the set of feasible payoffs not having full
dimension. We refer to Appendix B for more details.
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branding is V C = 0, coinciding with the worst PPE outcome under independent branding,

V I = 0.

Poisson’s binomial distribution. Recall that under collective branding, the aggregated

public signal in period t, s̃t, is equal to the number of markets in which the quality signal sti
indicated that quality was high in period t− 1. That is, suppressing the period superscript

t for notational convenience, s̃ has n + 1 possible realizations. The probability distribution

of these aggregated signals s̃ depends on the distribution of the underlying market-specific

signals si.

If players exert effort in all n markets, the aggregated signal s̃ follows the standard bino-

mial distribution of n independent Bernoulli trials, each with the identical success probability

1 − α. However, if shirking occurs in some (but not all) markets, the distribution of s̃ does

not correspond to a standard binomial distribution, since the success probability in a market

without shirking is 1−α, whereas it is only β in a market where shirking occurs. In particu-

lar, if shirking takes place in k of the n markets, s̃ obtains from n trials of which n− k have

a success probability of 1− α, and k have a success probability of β. Let Pn(s̃|k) denote the

resulting probability of s̃ successes.

The distribution Pn(·|k) is thus the convolution of the binomial distribution of k trials

with success probability β and the binomial distribution of n−k trials with success probability

1− α.22 It is also the convolution of Pn−1(·|k) and a signal from a market without shirking,

as well as the convolution of Pn−1(·|k − 1) and a signal from a market with shirking. Hence,

Pn(s|k) exhibits the following recursive structure:

Pn(s|k) = (1−α)Pn−1(s−1|k)+αPn−1(s|k) = βPn−1(s−1|k−1)+(1−β)Pn−1(s|k−1). (4)

Being a special case of “Poisson’s binomial distribution” (Wang, 1993), the probability

distribution Pn(·|k) is unimodal and log concave with expectation En(s|k) = k(1 − β) +

(n − k)α. A property, crucial for our analysis, is that Poisson’s extension of the binomial

distribution retains the monotone likelihood ratio property (MLRP). That is, for all s, k ∈
{1, . . . , n}, the following holds:

Pn(s|k)
Pn(s|k − 1)

<
Pn(s− 1|k)

Pn(s− 1|k − 1)
.

This also means that the distributions Pn(·|k) are ordered in the sense of first-order stochastic

dominance (FOSD), since MLRP implies FOSD.

22Our analysis does not require the use of an explicit formula for Pn(s|k). However, for completeness, we

report here that, following Rukhin et al. (2009), Pn(s|k) can be written as Pn(s|k) =
∑k

i=0

(
k
i

)(
n−k
s−i

)
βi(1 −

β)k−i(1− α)s−iαn−k−s+i, using the convention that the binomial coefficient
(
k
i

)
is 0 for a negative integer i.
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Indeed, the FOSD-relation reflects the simple intuition that when shirking occurs in one

more market, the players are less likely to observe at least the same number of successes. Yet,

the recursive structure (4) implies that the probability of observing at least s − 1 successes

is greater than the probability of observing at least s successes without shirking in one more

market.23 Hence, for our Poisson’s binomial distribution the magnitude of FOSD is also

limited: for all k = 0, . . . , n− 1 and s = 1, . . . , n, it holds that

Pn(s̃ ≥ s|k + 1) ≤ Pn(s̃ ≥ s|k) ≤ Pn(s̃ ≥ s− 1|k + 1). (5)

The first inequality is FOSD, the second inequality describes the sense in which FOSD is

limited. Both this notion of limited FOSD and the recursive structure (4) will be useful in

the subsequent analysis.

Collective-branding strategies. Similar to the analysis with independent branding, we

consider collective-branding strategy profiles σC(·) that are characterized by n+1 punishment

probabilities, {ρs}ns=0, where s indicates the number of positive quality signals. In particular,

if the period-t history is such that s̃τ = s and rτ ∈ [0, ρs] for some τ ≤ t, then etG,1 = etG,2 =

etL,1 = etL,2 = 0 and bt1 = bt2 = 0; otherwise, etG,1 = etG,2 = etL,1 = etL,2 = 1 and bt1 = bt2 = 1.24

The strategy profile σC(·) implies that the repeated game starts, in period 1, with all

long-lived players exerting effort, and in each market the consumer purchasing the good.

This continues in all subsequent periods until the number of realized positive quality signals

in some future period t is s̃t and the realization of the public randomization device is less

than ρs̃t , which then triggers a reversion to the worst PPE.

Market breakdown probabilities. Conditional on all long-lived players having exerted

effort in the past, and consumers having purchased the goods, the strategy profile σC(·) in-
duces breakdown probabilities, both on-path as well as following a deviation. The breakdown

probability in the period after shirking in k markets is denoted pk, and given by

pk =
n∑

s=0

Pn(s|k)ρs. (6)

23To see this, note that by (4) it holds, Pn(s̃ ≥ s− 1|k + 1) = βPn−1(s− 2|k) +
∑n−1

j=s−1 Pn−1(j|k) + (1−
β)Pn−1(n|k) and Pn(s̃ ≥ s|k) = (1−α)Pn−1(s− 1|k)+

∑n−1
j=s Pn−1(j|k)+αPn−1(n|k), where Pn−1(n|k) = 0.

Subtracting the second from the first yields Pn(s̃ ≥ s− 1|k+1)−Pn(s̃ ≥ s|k) = βPn−1(s− 2|k)+αPn−1(s−
1|k) ≥ 0.

24Since s̃ = n is indicative of no-shirking, it will always be optimal to have ρn = 0.

16



Incentive constraints. When players adopt the strategy profile σC(·), G’s average value

across the n markets, ṼG, equals πG − λGc+ δ(1− p0)ṼG, implying

ṼG =
πG − λGc

1− δ(1− p0)
= λGV (p0, γG), (7)

where V (p0, γG) is as defined in equation (1).

The global player is free to choose different effort levels in different markets.25 Her

(average-per-market) value from shirking in k markets in the current period and subsequently

reverting to the collective branding strategy σC(·) is

Ṽ d,k
G = πG − n− k

n
λGc+ δ[1− pk]ṼG, (8)

where the second term on the right-hand side represents the average-per-market effort cost

when shirking in k markets and exerting effort in the other n − k markets. We can rewrite

the incentive constraint, ṼG ≥ Ṽ d,k
G , as

δ(pk − p0)V (p0, γG) ≥ c · k
n
. (ICC,k

G )

Intuitively, the left-hand side represents the (average) long-term loss — the breakdown prob-

ability rising from p0 to pk — from the one-shot deviation, whereas the right-hand side

represents the average short-run gain — the (per-market-average) reduction in effort costs

— from that deviation.

Local player L’s value under strategy profile σC(·), ṼL, equals πL − λLc + δ(1 − p0)ṼL,

implying

ṼL =
πL − λLc

1− δ(1− p0)
= λLV (p0, γL). (9)

The local player’s value from deviating to shirking in the current period and subsequently

reverting back to the collective branding strategy σC(·) is

Ṽ d
L = πL + δ(1− p1)ṼL. (10)

We can write the local player’s incentive-constraint, ṼL ≥ Ṽ d
L , as

δ(p1 − p0)V (p0, γL) ≥ c. (ICC
L )

Intuitively, the left-hand side represents the long-term loss — the breakdown probability

rising from p0 to p1 — from the one-shot deviation, whereas the right-hand side represents

25In the conclusion, we discuss the case where G is constrained to take the same action in all markets.
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the short-run gain — the reduction in effort costs — from that deviation.

The best high-quality equilibrium. The best high-quality equilibrium is characterized

by the vector of punishment probabilities ρC = (ρC0 , . . . , ρ
C
n ) that maximizes aggregate surplus

nṼ d
G + nṼ d

L =
n(1− c)

1− δ(1− p0)
= nV (p0, 1) (11)

subject to the (n + 1) incentive constraints (ICC,k
G ) and (ICC

L ). Note that maximizing ag-

gregate surplus is equivalent to minimizing the on-path breakdown probability p0, which is

linear in the punishment probabilities ρs. Because we can also express the incentive con-

straint as constraints that are linear in the punishment probabilities ρs, characterizing the

best PPE under collective branding involves solving a linear programming problem with

n+1 constraints. Fixing the players’ reward- to-cost-share ratios γ ≡ (γG, γL), the vector of

punishment probabilities ρC is a solution to the linear program

P(γ) : min
(ρ0,...,ρn)

n∑
s=0

Pn(s|0)ρs

s.t.
n∑

s=0

[
Pn(s|k)− Pn(s|0)

k
− cPn(s|0)

n(γG − c)

]
ρs ≥

(1− δ)c

nδ(γG − c)
, ∀ k ∈ {1, . . . , n}

n∑
s=0

[
Pn(s|1)− Pn(s|0)−

cPn(s|0)
γL − c

]
ρs ≥

(1− δ)c

δ(γL − c)
,

where constraint k is equivalent to the incentive constraint (ICC,k
G ) and the last constraint is

equivalent to (ICC
L ).

The next lemma is our main step towards a characterization of solutions to P(γ).

Lemma 1. Suppose ρC is a solution to P(γ). Then at ρC at least one constraint is binding

and ρC exhibits the following cut-off structure: there is an integer s < n such that ρCs = 1 for

all s < s and ρCs = 0 for all s > s. The solution implies p0 ≤ ... ≤ pn.

The lemma shows that, optimally, the punishment probabilities are concentrated in a

bang-bang fashion on the lowest values of the public aggregated signal s̃. In particular, there

is a cutoff signal s such that all realization of s̃ that lie below this threshold imply a market

breakdown with certainty, whereas realizations of s̃ above the threshold imply no market

breakdown whatsoever. Formally, the result follows from the MLRP property of Poisson’s

binomial distribution, which reflects the intuitive notion that low values of the public signal

s̃ are less likely when agents put in effort. This property implies that concentrating the

punishment probabilities on the lowest values of s̃ provides the strongest incentives for effort.26

26Cai and Obara (2009) establish a similar result in a related model but without any free-rider effects.

18



The cutoff signal s, and its relation to the discount factor δ, play a crucial result in the

subsequent analysis. Defining

γG ≡ c+
cα

n(1− α− β)
≤ γL ≡ c+

cα

1− α− β
,

the next lemma formalizes the sense in which the optimal cutoff signal s deceases with the

discount factor δ. It moreover shows that the cutoff signal equals 0 if the discount factor

is close to 1, and, in this case, all constraints k = 2, . . . , n in program P(γ) are slack at a

solution.

Lemma 2. A high-quality equilibrium exists only if γG > γG and γL > γL. In this case,

there is a critical discount factor δ
C ∈ [0, 1) such that a high-quality equilibrium exists if and

only if δ ≥ δ
C
. For δ > δ

C
, the cut-off signal s is decreasing in δ. In particular, there is a

threshold δ
C

0 < 1 such that for δ > δ
C

0 , we have s = 0 and, moreover, of the first n constraints

in program P(γ) at most the constraint with respect to k = 1 is binding.

Identifying the effects of a collective reputation. In order to identify both the in-

formativeness effect and the free-rider effect under collective reputation, it is instructive to

begin by considering two polar cases: First, the case in which only the global player, G, has

to incur costly effort (i.e., λG = 1) so that only the informativeness effect arises, and, second,

the one in which only local players have to incur costly effort for producing high quality

(i.e., λL = 1), so that only the free-rider effect obtains. Due to the informativeness effect,

collective branding in the first polar case permits sustaining a better reputation and a higher

value in the best PPE than independent branding. In the second case, by contrast, collective

branding induces only the free-rider effect, which tends to reduce the maximum sustainable

value in the best PPE.

The informativeness effect. In order to identify the informativeness effect and show that

in the absence of any reputational free-riding, collective branding is optimal, we first study

the polar case in which the global player incurs all effort costs for producing high quality,

i.e., λG = 1. The local players’ effort in this polar case is costless so that they do not need

any incentives to exert effort. It is therefore optimal to give the entire revenue share to the

global player. Hence, just as under independent branding, the proportional reward scheme,

(πG, πL) = (λG, λL), is optimal.

Our first step in identifying the informativeness effect of collective branding is to show

that when only effort from the global player matters, λG = 1, we can replicate the best PPE

outcome under independent branding by collective branding. The replication is trivial if ρI0 >

1, implying that no high-quality equilibrium exists under independent branding. Suppose
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therefore instead that under independent branding we have ρI0 ≤ 1. That is, independent

branding allows a high-quality equilibrium, so that V
I
> 0, with αρI0 as the minimum on-

path market breakdown probability sustaining the best high-quality equilibrium. Turning to

collective branding of the n goods, define the vector of punishment probabilities ρC(ρI0) =

(ρ1(ρ
I
0), . . . , ρn(ρ

I
0)) with

ρs(ρ
I
0) ≡

n− s

n
ρI0, s = 0, ..., n. (12)

The following lemma obtains:

Lemma 3. Suppose λG = 1 and ρI0 ∈ [0, 1] with value V
I
> 0. Then, the vector of punishment

probabilities ρC(ρI0) sustains a high-quality equilibrium under collective branding with the same

value V
I
and the same on-path breakdown probability p0 = αρI0. Moreover, for each k =

0, . . . , n − 1, the incentive constraint (ICC,k
G ) coincides with the incentive constraint (ICI

G)

under independent branding.

The lemma shows that, under collective branding, the vector of punishment probabilities

ρC(ρI0) replicates the best high-quality equilibrium outcome under independent branding.

This result may appear surprising.27 Formally, it means that there is always a solution to

a system of (n + 1) linear equations—the requirement pC0 = pI0 and the n binding incentive

constraints (ICCk
G )—by (n + 1) variables—the punishment probabilities (ρ0, . . . , ρn) each of

which has to lie between 0 and 1. That such a solution always exists relies on the properties

of Poisson’s binomial distribution. To provide an intuition for why the construction in (12)

represents such a solution, note that it ensures that pCk with collective branding equals the

market breakdown probability ρI0 multiplied by the expected ratio of failures when shirking

in a share k/n of n markets. This has two implications. First, in the absence of shirking, the

induced probability of market breakdown with n markets equals the probability of market

breakdown under independent branding, implying pC0 = pI0. This is so because the expected

ratio of failures when there are n markets equals this expected ratio when there is only one

market: without shirking, they both equal α. As a consequence, collective branding with the

punishment probabilities ρC(ρI0) induce the same value V
I
. Second, the construction implies

that the difference in market breakdown probabilities between shirking in k and l < k markets

is linear in the additional number of markets in which shirking occurs: pCk − pCl = (k − l)A,

where A = (1−α−β). Thus, pCk −pC0 = kA so that, under ρC(ρI0), all n incentive constraints

(ICCk
G ) collapse into a single one. The first implication then implies that this collapsed

incentive constraint coincides with the incentive constraint under independent branding.

27It also contradicts the claim in Proposition 4 of Cabral (2009) that no-umbrella branding can be strictly
optimal.
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Note, however, that—except for the knife-edge case n = 2 and ρI0 = 1—the vector ρC(ρI0)

does not satisfy the cutoff structure that Lemma 1 identifies as necessary for an optimal so-

lution.28 Consequently, under collective branding we can improve on the outcome associated

with ρC(ρI0) by raising the breakdown probabilities ρs(ρ
I) for smaller s to one and lowering

them to zero for higher s.

This improvement identifies the beneficial informativeness effect of collective branding.

Indeed, optimal punishments under collective branding concentrate market breakdown on

those events in which the number of bad quality signals is large, because these events are

more likely when shirking occurs and therefore represent the most efficient way to discourage

shirking. Hence, the improvement on the replicated outcome under collective branding,

as induced by ρC(ρI0), shows that the information structure under collective branding is

more effective in preventing the global player to shirk than the information structure under

independent branding. This informativeness effect is an implication of the natural MLR

property of Poisson’s binomial distribution, because Lemma 1’s optimality result – showing

that only punishment probabilities that display a cutoff structure use the collective signal

optimally – is based on that property.

The following proposition confirms the superiority of collective branding when only the

effort of the global player matters, even though signals are independent across markets and

the global player has the flexibility to shirk in any number of markets.

Proposition 2. Suppose λG = 1. Then, the optimal rewards exhibit γ̂G = 1 and collective

branding is superior to independent branding: V
C ≥ V

I
. This superiority is strict if ρI0 ≤ 1,

except in the special case n = 2 and ρI0 = 1. If ρI0 > 1, then collective branding is strictly

superior to independent branding for n > 2 and ρI0 close to one.

The free-rider effect. In order to identify the free-rider effect, we next turn to the other

polar case in which only local players incur effort costs, i.e., λL = 1. As this implies λG =

1−λL = 0, the global player’s effort can be induced “for free” in that the global player does not

need any incentives to exert effort. Hence, it is optimal to give the entire revenue share of each

good i to Li, implying once more that the proportional reward scheme, (πG, πL) = (λG, λL),

is optimal.

As in the previous polar case, we again first ask the question whether, for ρI0 ≤ 1, collective

branding can replicate the best outcome under independent branding. Note that for λL = 1,

program P(γ) simplifies to a program with only the last constraint, since for λG = 0, the

28Note that in order to express program P properly for λL = 0, we must first rewrite the final con-

straint as
∑n

s=0

[
Pn(s|1)− Pn(s|0)− cPn(s|0)λL

πL−cλL

]
ρs ≥ (1−δ)cλL

δ(πL−cλL) , implying that for λL = 0 the constraint is

automatically met. Hence, for the polar case λG = 1 Lemma 1 also holds.
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first n constraints are automatically satisfied.29

Regardless of this simplification, Lemma 1 still applies. Hence, under collective branding,

the optimal punishment vector ρC has the cut-off structure ρC = (1, . . . , 1, ρCs , 0, . . . , 0) with

some cutoff s. Combining this with the observation that for the polar case λL = 1 only

the local player’s incentive constraint matters, allows us to pinpoint exactly the free-rider

effect of collective branding. To do so, note that—under both independent and collective

branding—we can rewrite the local player’s incentive constraint as

δ

(
p1
p0

− 1

)
p0V (p0, 1) ≥ c,

where we used that for λL = 1 the best PPE exhibits γL = 1. Under independent branding,

p1/p0 = (1− β)/α > 1. By contrast, under collective branding, we can exploit the recursive

structure (4) to rewrite p0 and p1, induced by ρC = (1, . . . , 1, ρCs , 0, . . . , 0) with cutoff s, as

follows:

p0 = α∆+B; and p1 = (1− β)∆ +B,

where ∆ ≡ Pn−1(s−1|0)(1−ρCs )+Pn−1(s|0)ρCs > 0 andB ≡ Pn(s̃ ≤ s−1|0)+Pn−1(s−1|0)ρCs ≥
0. Hence, under collective branding and for any ρC exhibiting a cutoff structure, the ratio of

punishment probabilities satisfies

p1
p0

=
(1− β)∆ +B

α∆+B
≤ 1− β

α
, (13)

where the (weak) inequality holds with equality if and only if B = 0, which requires s = 0.

Recalling that under independent branding p1/p0 = (1 − β)/α > 1, we can now fully

identify the free-rider effect on the basis of inequality (13). In particular, a local player

choosing to shirk under collective branding does not increase the punishment probability by

as much as he would under independent branding as he correctly anticipates the other local

players to put in effort (and thus likely to generate positive signals). Only in the case in

which, under collective branding, the transition to the worst PPE occurs only if all signals

are bad (s = 0) is the punishment probability ratio p1/p0 the same as under independent

branding.

In order to see that this free-rider effect renders collective branding suboptimal, note

that the minimum cutoff of ρC is s = 0. This minimum cutoff is indeed the optimal one

if and only if the only remaining constraint in P(γ) is satisfied for ρ = (1, 0, . . . , 0). Using

Pn(0|1) = αn−1(1 − β) and Pn(0|0) = αn, we find the value of ρC0 at which the constraint

29In order to see that the first n constraints in P(γ) are automatically satisfied for λL = 1, express them

first in their proper form for λG = 0 as
∑n

s=0

[
Pn(s|k)−Pn(s|0)

k − cPn(s|0)λG

n(πG−cλG)

]
ρs ≥ (1−δ)cλG

nδ(πG−cλG) .
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with ρC = (ρC0 , 0, . . . , 0) binds:

ρC0 = ρL0 ≡ (1− δ)c

δαn−1[1− α− β − (1− β)c]
=

ρI0
αn−1

.

Hence, the optimal cutoff equals 0 whenever ρI0 ≤ αn−1. In that case, market breakdown

occurs only if all n markets yield a bad signal, which on path occurs with probability αn. The

on-path probability of market breakdown is therefore αnρC0 = αρI0, which is equal to the min-

imum on-path probability of market breakdown under independent branding. Consequently,

for ρI0 ≤ αn−1, the aggregate surplus associated with the best PPE under collective branding

matches the aggregate surplus associated with the best PPE under independent branding so

that we have V
C
= V

I
.

If ρI0 > αn−1 instead, then the best PPE with collective branding must be strictly worse

than with independent branding: either collective branding can implement effort only with

punishment probabilities ρC0 = 1 and ρC1 > 0, which due to MLRP, yields a larger breakdown

probability p0—implying V
I
> V

C
> 0, or collective branding cannot implement high effort

at all—implying V
I
> V

C
= 0. In either case, we have V

I
> V

C
, i.e., collective branding

performs strictly worse. This also means that V
I
= 0 implies V

C
= 0 so that the critical

discount factor at which effort is sustainable with collective branding cannot be smaller than

the corresponding discount factor under independent branding, δ
I ≤ δ

C
. We collect these

insights in the following proposition.

Proposition 3. Suppose λL = 1. Then, independent branding is superior to collective brand-

ing, i.e., V
I ≥ V

C
, and δ

I ≤ δ
C
. This superiority is strict if ρI0 ∈ (αn−1, 1]. If ρI0 ≤ αn−1,

independent branding and collective branding perform equally well, i.e., V
I
= V

C
.

The proposition’s superiority result of independent branding is due to the harmful free-

rider effect of collective branding. In particular, the local player’s continuation payoff under

collective branding depends on the signals generated by other players. As he cannot affect

those other signals, collective branding can only hurt incentives. Perhaps surprisingly, how-

ever, collective branding does as well as independent branding if ρI0 ≤ αn−1. To understand

this, note that – under independent branding – the local player is, conditional on generating

a bad signal, punished only with probability ρI0. If this conditional punishment probability

is small (i.e., ρI0 ≤ αn−1), then the same on-path punishment probability can be generated

under collective branding by transiting to the worst PPE only if all n signals are bad. That

is, only if the local player himself as well as all the other n − 1 local players generate bad

signals, implying that s = 0 so that (13) holds with equality. From the viewpoint of the local

player, the outcome of the other signals is purely random and the probability that all of them

are bad (given that the other local players do not shirk) equals αn−1. In other words, the

randomness of the other n − 1 signals under collective branding plays the same role as the
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Figure 1: Best PPE’s per-period values under independent vs. collective branding.

public randomization device under independent branding and therefore collective branding

does not distort incentives. By contrast, if ρI0 > αn−1, then to generate the same on-path

punishment probability under collective branding requires that the transition to the worst

PPE may have to occur even if at least one of the n signals is positive. That is, if ρI0 > αn−1,

then s > 0 so that the inequality in (13) is strict. Since this means that, with some proba-

bility, a local player is “punished” even after generating a positive signal, collective branding

is strictly harmful for incentives.

Contrasting the two effects. Figure 2 contrasts the two polar cases, displaying the

comparative statics for the average per period payoff vC and vI with respect to the discount

factor δ for those cases. Panel (a) depicts the case where only the global player needs to be

incentivized (λG = 1). It illustrates the result of Proposition 2 that collective branding is

superior to independent branding in general, and strictly so in two ways. First, in the case

δ ≥ δ
I
, where a high-quality equilibrium is sustainable with independent branding, collective

branding can sustain it with a strictly lower on-path market breakdown probability (except

in the special case n = 2 and ρI0 = 1). Second, in the case δ < δ
I
, where a high-quality

equilibrium is not sustainable with independent branding, collective branding can sustain it

for δ smaller but close enough to δ
I
.

By contrast, panel (b) illustrates the implied comparative statics for the other polar case,

where only the local players have to be incentivized (λL = 1). Defining δL as the value of

δ at which ρI0 = αn−1, the values V
C
and V

I
coincide for δ ≥ δL. As illustrated in panel

(b), this implies that, in addition to vI , also the maximum average per-period payoff under

collective branding, vC , is constant. For δ < δL, we have V
C
< V

I
and, due to continuity of

vC for δ > δ
C
, the maximum average per-period payoff vC is therefore strictly increasing in δ

over the interval [δ
C
, δL]. Moreover, in the interval [δ

I
, δ

C
] a high-quality equilibrium is only

sustainable for independent branding. Consequently, the blue curve vC lies always (weakly)

below the red curve vI – in stark contrast to panel (a). In short, panel (a) displays the
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optimality of collective branding for the case λG = 1, whereas panel (b) shows the optimality

of independent branding for the other polar case λL = 1.

The trade-offs of a collective reputation. We now turn to the generic case in which the

global and local players share the overall effort cost c according to the proportions λG ∈ (0, 1)

and λL = 1− λG.

In Section 3, we showed that – under independent branding – it is optimal to provide the

long-lived agents with proportional rewards: (πG, πL) = (λG, λL). Trivially, this was also the

case in the two polar cases of collective branding studied above.

It is therefore instructive to start our analysis of collective branding in the generic case

assuming such proportional rewards: γG = γL = 1. It then follows that the incentive

constraints coincide with the two polar cases studied above. Under collective branding and

proportional rewards, the optimal on-path breakdown probability p0 is minimized subject to

δ(pk − p0)V (p0, 1)
n

k
≥ c, k = 1, ..., n; (ICCk

G )

δ(p1 − p0)V (p0, 1) ≥ c. (ICC
L )

Note however that by Lemma 1, we have pk−p0 ≥ p1−p0, which together with k ≤ n implies

that (ICCk
G ) follows from (ICC

L ). As a result, all (ICCk
G ) are redundant so that the optimal

on-path breakdown probability p0 is minimized subject only to (ICC
L ). This, however, implies

that, for proportional rewards γG = γL = 1, the intermediate case λG ∈ (0, 1) boils down

to the polar case with only local effort costs (λL = 1). As a result, Proposition 3 applies,

meaning that it extends to all λL ∈ (0, 1] and proportional rewards:

Proposition 4. Suppose λL ∈ (0, 1]. Then collective branding is suboptimal with proportional

rewards (πG, πL) = (λG, λL), and strictly so for ρI0 ∈ (αn−1, 1].

This result demonstrates in an extreme sense the drawback of a collective reputation.

As soon as explicit incentives for the local players’ effort are needed, independent branding

always outperforms collective branding with proportional rewards.

The proposition raises the question whether the long-lived agents can use the reward

structure as a tool to mitigate this extreme effect of a collective reputation. We next argue

that they can indeed do so: by carefully calibrating the revenue shares γG and γL, the

long-lived players can reduce the local players’ free-rider problem.

To see this, recall that, in general, the incentive constraints depend on the revenue shares

γG and γL as follows:

δ(pk − p0)V (p0, γG)
n

k
≥ c, k = 1, ..., n; (ICCk

G (γG))
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δ(p1 − p0)V (p0, γL) ≥ c. (ICC
L (γL))

Since V (p0, γL) is increasing in γL, an increase in γL relaxes the constraint (ICC
L ). Of course,

an increase in the local players’ revenue share γL is accompanied by a decrease in the global

player’s revenue share γG.
30 Yet, for γL = γG = 1, each (ICCk

G ) holds strictly whenever

the constraint (ICC
L ) binds so that by continuity a small increase in γL ensures that the

corresponding small decrease in γG is such that each (ICCk
G ) remains satisfied, while (ICC

L ) is

relaxed. This reasoning suggests that, starting with proportional rewards, we can improve the

objective under collective branding by relaxing (ICC
L ) through increasing the local players’

reward γL. Defining

γ̃G ≡ 1 + (n− 1)(1− λG)c

λG + (1− λG)n
< 1 and γ̃L ≡ n− (n− 1)λGc

λG + (1− λG)n
> 1,

the following lemma refines this intuition and determines the bounds on the optimal γG and

γL.

Lemma 4. Suppose λG ∈ (0, 1) and V
C
> 0. Then the optimal reward-to-cost-share ratios

γ̂G and γ̂L exhibit γ̂G ∈ [γ̃G, 1) and γ̂L ∈ (1, γ̃L] and ensure that the local and at least one of

the global incentive constraints are binding. In particular, for δ ∈ (δ
C

0 , 1), the global incentive

constraint (ICC1
G ) is binding and (γ̂G, γ̂L) = (γ̃G, γ̃L).

Lemma 4 shows that, when incentives are needed for inducing local players’ effort, pro-

portional rewards are never optimal under collective branding. Hence, the lemma leaves

open the possibility that, for the optimal reward structure, the minimum on-path breakdown

probability that sustains high quality is actually lower under collective branding than under

independent branding, implying V
C
> V

I
. The next proposition shows that this is indeed

the case for large discount factors—no matter how small the global player’s share of the effort

cost is, provided it is strictly positive.

Proposition 5. There exists a threshold δ < 1 such that V
C

> V
I
for all δ ≥ δ and all

λG > 0.

The previous results characterize properties of the best high-quality equilibrium without

characterizing its outcome explicitly. Recall, however, that the best PPE induces a value

V
C
> 0 if and only if the following program has a solution p̂0:

PC : min
(γG,γL,ρ0,...,ρn)

p0 =
n∑

s=0

Pn(s|0)ρs

s.t. δ(pk − p0)V (p0, γG)n/k ≥ c ∀k = 1, . . . , n; (ICCk
G (γG))

30In particular, γG = πG/λG = (1− πL)/(1− λL) = (1− λLγL)/(1− λL).
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Figure 2: Comparison of V
C
and V

I
for n = 3 and parameters α = β = 1/3 and c = 1/5.

δ(p1 − p0)V (p0, γL) = c; (ICC
L (γL))

λLγL + λGγG = 1, (14)

where (14) is the accounting identity that links γG and γL. We denote a solution to PC by

a triple (γ̂G, γ̂L, ρ̂) ∈ Rn+1. In the case in which PC admits a solution (γ̂G, γ̂L, ρ̂) with value

p̂0, it follows that

V
C
=

1− c

1− δ(1− p̂0)
> 0.

Writing out the program that determines the value V
C
allows us to obtain the following

comparative static result:

Proposition 6. Suppose that collective branding sustains a high-quality equilibrium: V
C
> 0.

Then, the optimal reward-to-cost-share ratio γ̂L is strictly increasing, and the induced value

V
C
strictly decreasing, in the cost share λL.

The proposition confirms the intuition that we can interpret λL as a measure of the

relative magnitude of the free-rider effect. The larger is the share of the effort cost that

needs to be borne by the local players, the larger are those players’ incentives to take a

free ride, and therefore the larger is the reward-to-cost-share ratio γ̂L that the local players

optimally receive. While this increase mitigates the free-rider problem, the flip side is that

this decreases the reward-to-cost-share ratio γ̂G and therefore exacerbates the global player’s

incentive problem so that the resulting aggregate payoff is reduced.

For a specific parametrization, Figure 2 illustrates our results on the optimality of col-

lective branding in relation to the discount factor δ and the magnitude of the source of the

free-rider effect, λL. It shows the general insight that, for low discount factors, effort is nei-

ther implementable under independent nor collective branding so that V
I
= V

C
= 0. For
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intermediate discount factors, effort is only implementable with collective branding when λL

is small (i.e., V
C
> V

I
= 0), whereas it only implementable with independent branding when

λL is large (i.e., V
I
> V

C
= 0). For larger discount factors, effort is implementable under

both independent and collective branding (V
C
> V

I
> 0), but collective branding outper-

forms independent branding only when λL is not too large (V
I
> V

C
> 0). For discount

factors exceeding δ, collective branding outperforms independent branding, no matter how

large λL < 1.

5 Optimal Collective Brand Size

In the previous section, we have shown that, in the presence of local players, a careful

calibration of the revenue shares is essential for building a collective brand reputation. In

this section, we identify a second essential tool for managing collective branding reputation:

the size of the collective brand. In particular, we show that the relative magnitude of the

free-rider effect, as measured by the parameter λL, determines how the sustainability of high

quality varies with brand size.

In this section, we thus analyze the comparative statics in the brand size n, obtaining

results on the maximum implementable brand size, n, and the optimal brand size, n̂. Our

main result reveals that, even when brand size is chosen optimally (without any additional

constraints), there remains an inefficiency in the limit as the discount factor becomes large.

Despite the usual intractability of Poisson’s binomial distributions (e.g., Biscarri et al., 2018),

the recursive structure (4) of the probability distribution Pn(·|k) enables us to express the

limiting inefficiency in closed form as a function only of (i) the corresponding limiting ineffi-

ciency in the polar case in which the local players bear all effort costs, and (ii) the effort cost

share λL of the local players.

To make clear the dependencies on the collective brand size n, we denote variables with a

superscript n throughout this section. For instance, V
n
now denotes the average per-market

value in the best equilibrium when the brand size is n.

Informativeness effect only (λL = 0). We first consider the benchmark in which collec-

tive reputation does not exhibit a free-rider problem. For this benchmark, we show that, for

any discount factor δ > c, we obtain efficiency in the limit as n goes to infinity, implying

that both the maximum implementable brand size, n, and the optimal brand size, n̂, are un-

bounded. An intuition behind this efficiency results follows from the observation that with

perfect monitoring (α = β = 0) efficiency obtains if and only if δ ≥ c. Extending the brand

size mitigates the inefficiency induced by imperfect monitoring. This inefficiency vanishes in
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the limit as n becomes large.31

Recall that this benchmark corresponds to the polar case λG = 1. For this case, the in-

centive constraint (ICn
L(γL)) is redundant so that the optimal pair (ρ̂n, γ̂n

G) that characterizes

the best PPE exhibits

γ̂n
G = 1 and ρ̂n = argmin

ρ
pn0 (ρ) s.t. (IC

n;1
G (1)), . . . , (ICn;n

G (1)).

Proposition 7. Suppose λG = 1 and δ > c. Then the maximum implementable brand size,

n, and the optimal brand size, n̂, are unbounded, and efficiency obtains in the limit:

lim
n→∞

vn = 1− c.

In the appendix, we prove the proposition using the following steps. Based on a sand-

wich argument, we first show that, in the limit, ρ̂n is of the deterministic form r̂n =

(1, . . . , 1, 0, . . . , 0). We next show that minimizing p0 with respect to such deterministic

cutoffs, only the two extreme constraints (IC1
G) and (ICn

G) need to be considered.32 In a

final step, we apply central limit arguments and Chebyshev’s inequality to show that, in the

limit as n goes to infinity, efficiency obtains for these deterministic cutoffs.

Including the free-rider effect (λL > 0). Proposition 7 implies that without a moral

hazard problem for the local players, efficiency obtains when expanding the collective repu-

tation over an infinite number of markets. The next proposition shows that this is no longer

true as soon as there is a slight moral hazard problem concerning the local player’s effort. In

this case, there is an upper bound on the extent of collective branding.

Proposition 8. Suppose λL > 0. Then there is an upper bound n ∈ N such that effort is

implementable under collective branding of size n only if n < n. Consequently, V
n
> 0 only

if n < n. Moreover, n is increasing in δ.

Our final result returns to the main focus of our paper: identifying the inefficiencies of a

collective reputation due to free-riding by local players. Proposition 7 shows that if collective

reputation does not suffer from a free-rider problem, then, for any discount factor δ > c,

inefficiencies vanish as the collective brand size grows large. Our final proposition shows that

if there is a free-rider problem (λL > 0), then, even as the discount factor δ approaches 1,

the maximum per-period payoff vn is bounded away from efficiency.

31In the literature on repeated games with imperfect monitoring, Matsushima (2001) also notes this effect.
32Confirmed by simulations, we conjecture that this also holds with respect to an optimal non-deterministic

ρ̂n for finite n. The intractability of the Poisson’s binomial distribution however prevents us from proving
this analytically.
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Proposition 9. Suppose λL > 0. Then,

lim
δ→1

n = ∞; lim
δ→1

n̂ = ∞; and v∞ ≡ lim
n→∞

lim
δ→1

vn = λG(1− c) + λLv
I < 1− c.

The proposition shows that, even in the limit, efficiency is not attained: the limiting

payoff, v∞, lies strictly below 1 − c. More importantly, it reveals the economic insight that

we can decompose this limiting payoff by expressing it as a convex combination of the efficient

payoff, 1− c, and the (inefficient) payoff under independent branding, vI , with the weights

corresponding to the effort cost shares λG and λL.

This decomposability result indicates, that in the limit, it is as if we obtain the best of

both worlds: implementing collective branding for the global player, yielding the efficient

payoff 1 − c, and, at the same time, independent branding for the local players, with its

optimal but inefficient payoff of vI . The optimal calibration of the revenue shares is crucial

for this decomposability. This does, however, not mean that the two incentive problems are

independent and do not interact; at all times incentive constraints of both types of players

are binding.

6 Conclusion

We have developed a theory of collective brand reputation in a repeated game of imperfect

public monitoring. The key novelty is the interaction between a global player, who takes

costly actions to impact the quality of the entire product line, and local players, each of

whom is able to affect the quality of only a single product. This makes the analysis applicable

to a large set of economic environments in which such two-sided moral hazard problems are

endemic, including platform markets, franchising, licensing, and team production.

While under independent branding, the quality signals relating to different products are

received individually by the product’s consumer, they are effectively pooled under collective

branding. If all of the effort costs are borne by the global player, only a beneficial informa-

tiveness effect arises, implying that collective branding is superior to independent branding.

In that case, any inefficiency arising from imperfect monitoring vanishes in the limit as the

collective brand size becomes large. By contrast, if all of the effort costs are borne by the local

players, only a free-rider effect obtains, implying that collective branding is never superior to

independent branding, and is strictly inferior unless the discount factor is sufficiently large.

In the generic case in which both types of players bear some of the effort costs, a careful

calibration of revenues shares mediates the tradeoff between the beneficial informativeness

effect and the harmful free-rider effect. Under optimal revenue sharing, collective branding

is superior to independent branding as long as the share of the effort costs borne by the local
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players is sufficiently small or the discount factor sufficiently large. As the discount factor

becomes large, the optimal size of the collective brand increases without bound. In the limit

as both the discount factor and the collective brand size become large, the remaining in-

efficiency is equal to the local players’ effort cost share multiplied by the inefficiency under

independent branding. In that limit, it is thus as if the best of both worlds could be achieved:

collective branding for the global player and independent branding for the local players.

Throughout the paper, we have assumed that the global player makes separate effort

choices for each product/market. This may be a reasonable assumption for some applica-

tions (think of a franchisor’s delivery of beef to hamburger outlets or its advertising in local

media33) but perhaps less so for some others (think of a headquarter’s advertising in national

media). If, under collective branding, the headquarter had to choose the same effort level

in all markets, then only one aspect would need to be changed in our analysis: the global

player would no longer have n incentive constraints but only a single one, namely (ICCn
G ). It

follows immediately that the resulting value under collective branding is weakly larger – and

strictly larger for sufficiently large discount factors, than with separate effort decisions.34 As

we show in the final part of Appendix A, however, all of our propositions would continue to

hold under that alternative assumption. In particular, the comparative statics and limiting

values remain valid.

We have also assumed that effort choices are private information. An exciting avenue

for future research consists in allowing for within-brand monitoring of effort choices. Such

an analysis would, however, require a solution concept beyond PPE and therefore a more

complex (and less well-understood) analytical framework. For instance, if the global player

were to observe signals of local players’ effort choices that are more informative than those

observed by consumers, the global player’s strategy would naturally depend on her private

history (at least for the equilibrium to improve upon the PPE outcome in the absence of

monitoring).

Because our analysis reveals the crucial role of revenue sharing, a further interesting

question is to identify alternative modeling assumptions under which players benefit from

more elaborate revenue sharing schemes than the ones we have analyzed. First, note that if

the signals were fully contractible so that revenue shares could directly condition on them,

then the players would be able to solve completely the moral hazard problem by using

budget breakers, along the lines of Holmström (1982). Suppose instead, as we assume in the

paper, that such direct conditioning on signal realizations is, due to their non-verifiability,

infeasible. Then the players may, following the logic of relational contracting (e.g., Levin,

33As discussed in Blair and Lafontaine (2005, ch. 9.6), regional or local advertising effort is often determined
not by the local franchisee but the franchisor, leading to frictions between franchisees and franchisor (see,
e.g., Broussard v. Meineke Discount Muffler Shops).

34Recall from Lemma 4 that, in the best PPE, (ICC1
G ) is binding, and (ICCn

G ) slack, for δ large.
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2003), try to exploit the repeated game structure to implement conditional revenue sharing

implicitly through voluntary payments.35 However, under our assumption that signals are

fully uninformative about behavior of specific players (and, under collective branding, in

specific markets), such relational contracts cannot help alleviate the moral hazard problem.36

An open question though is whether this might be different if, under collective branding, all

players could not only observe the aggregate signal but also attribute the individual signals

to a specific local market. While such an assumption does not reflect our interpretation

of collective branding, we expect relational contracts that implement voluntary payments

from local markets with a bad signal to local markets with a good signal, to be sustainable

and alleviate the moral hazard problem. However, for such outcomes to be attainable in a

PPE, consumers must also be able to observe such voluntary transfers between producers in

different markets, which seems unlikely to hold in practice.

Moreover, we assumed that effort choices of the global and local players are binary and

perfectly complementary within a market. This assumption allowed us to focus on the

reputational team production problem across markets and abstract from the physical team

production problem within a market. In a richer production structure with continuous effort

choices that are imperfect complements, players must then, on the one hand, also solve the

physical team production problem, but have, on the other hand, more punishments abilities

to control reputational team production. As these complexities are beyond the scope of this

paper, we leave such an analysis for future research.

In our analysis, we have assumed that all markets are identical. Allowing for a market-

specific signal structure (αi, βi) would enable us to study a number of novel questions such as

which products to group together and sell under a common brand name, or how to optimally

design aggregate brand-level quality signals. However, such an extension would have to deal

with at least two analytical difficulties. First, this would require giving up the convenient

restriction to symmetric equilibria. Second, this would require dealing with more complex

Poisson’s binomial distributions.37

Another interesting topic for future work consists in studying optimal task assignment

within a collective brand. Suppose that production requires a continuum of tasks, indexed

by i ∈ [0, 1]. Let cG(i) and cL(i) denote the effort cost for the global and local player,

respectively, in performing task i. Suppose that ∆c(i) ≡ cG(i)−cL(i) is strictly decreasing in

i, with ∆c(ι̂) = 0 for some ι̂. First-best efficiency thus requires that tasks [0, ι̂) are performed

by local players, and tasks (ι̂, 1] by the global player. An implication of our analysis in Section

35The relational contracting literature offers the insight that our focus on static revenue shares is without
loss.

36Technically, the condition of “pairwise identifiability” (Fudenberg et al., 1994) fails in our context.
37As Poisson’s binomial distributions in general satisfy MLRP, we would expect the main insights of our

analysis to carry over to such an extension.
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3 is that such “myopic” cost minimization is indeed optimal under independent branding.

Under collective branding, however, our results imply that the global player should optimally

take on more tasks as the joint value is decreasing in the share of the effort costs borne by the

local players.38 That is, optimal task assignment introduces a productive inefficiency under

collective branding to mediate the free-rider problem.

Finally, we point out that in our modeling of collective branding, we have assumed that

players only see a global, non-market specific signal about previous qualities. In practice,

buyers may however observe both global and local signals about the provided quality, giving

rise to the possibility of distinct reputations of global and local players. As a concrete

example of this, consider Boeing’s problems at their local assembly lines in Charleston.39

After airlines learned about these local problems, they refused to take delivery of airplanes

assembled there. Hence, a further worthwhile extension is to consider a model in which

players base their quality perceptions on both types of signal, and study their interplay and

effects on buyer behavior.

Appendix A: Proofs

Proof of Proposition 1: To obtain the best PPE, we minimize ρ0 subject to (ICI
G) and

(ICI
L). As (IC

I
j ) is violated for ρ0 small (provided λj > 0), the optimal ρ0 must be such that

one of the two incentive constraints holds with equality, and the other with a weak inequality.

That is,

ρ0 = ρ̂0(γG, γL) ≡
(1− δ)c

δ [(1− α− β)minj γj − (1− β)c]
. (15)

This solution satisfies the domain restriction ρ0 ∈ [0, 1] if ρ̂0(γG, γL) is positive and not larger

than one, which holds if and only if40

min
j

γj ≥ γ ≡ (1− βδ)c

δ(1− α− β)
. (16)

If (16) does not hold, then an equilibrium with e0G = e0L = 1 = b0 = 1 and the given (γH , γL)

does not exist.

From these considerations it then follows that, at an optimum, we must have γH = γL.

38In the context of platform markets, the “Fulfillment by Amazon” (FBA) program may be understood
through this lens. The FBA program, established in 2006, amounted to Amazon (as the global player) taking
over the tasks of storage, shipping and handling returns from individual merchants (the local players).

39See https://www.bizjournals.com/seattle/news/2020/09/15/boeing-consolidation-787-assembly-study-
everett.html (last retrieved on 02/20/2022).

40It is straightforward to verify that if the r.h.s. of (15) is not larger than 1 it is also positive.
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To see this, first suppose γG > γL is optimal. We must then have that (16) is satisfied and

ρ0 = ρ̂0(γG, γL) =
(1− δ)c

δ [(1− α− β)γL − (1− β)c]
.

But then we can lower ρ0 further by raising γL slightly, since ρ̂0(γG, γL) is decreasing in γL

whenever γG > γL (and this increase is also feasible since it relaxes (16)). Conversely, also

γG < γL cannot be optimal, since we could then lower ρ0 further by raising γG. Hence, at the

optimum it must hold γG = γL, which, together with the accounting identity λGγG+λLγL = 1

implies that γG = γL = 1.

Having established that at an optimum γG = γL = 1, it then follows from (15) that the

minimizing ρ0 equals ρI0 as defined in (2). Finally from (16), it follows that an equilibrium

sustaining e0G = e0L = 1 = b0 = 1 exists if and only if δ ≥ δ
I
, where we note that our

parameter restriction at the end of Section 2, c < c, implies δ
I
< 1. Q.E.D.

Proof of Lemma 1: First note that solving P(γ) disregarding all constraints, yields ρs = 0

for all s, but this violates all constraints. Because the optimization problem is linear, it

follows that at least one of the constraints must be binding at an optimal solution.

Second, suppose to the contrary that ρC is optimal but such a s does not exist. Then there

are l < h such that ρl < 1 and ρh > 0, with ρC satisfying all the constraints of P(γ). Consider

changing ρC to ρ̂C by only lowering ρh by ∆ρ > 0 and raising ρl by ∆ρ · Pn(sh|0)/Pn(sl|0).
This change does not affect p0 =

∑n
s Pn(s|0)ρs. Therefore, the objective and the right-hand

side of all the constraints remain unchanged. The left-hand side of the constraints change by{
[Pn(sl|k)− Pn(sl|0)]

Pn(sh|0)
Pn(sl|0)

− [Pn(sh|k)− Pn(sh|0)]
}

∆ρ

k
.

After rewriting the term in curly brackets as{
Pn(sl|k)− Pn(sl|0)

Pn(sl|0)
− Pn(sh|k)− Pn(sh|0)

Pn(sh|0)

}
Pn(sh|0) =

{
Pn(sl|k)
Pn(sl|0)

− Pn(sh|k)
Pn(sh|0)

}
Pn(sh|0),

the MLRP of Poisson’s binomial distribution implies that the term is strictly positive so that

the left-hand side of each constraint strictly increases. As a result, ρ̂C must also be optimal,

since it attains the same objective value and all constraints are strictly satisfied. The latter

however contradicts the first observation that for any solution to P(γ) at least one constraint

is binding.

To see the final claim of the lemma, note that given the cutoff structure, it follows that

pk =
∑n

s=0 Pn(s|k)ρs = Pn(s̃ < s|k) + Pn(s|k)ρs = (1 − ρs)Pn(s̃ < s|k) + ρsPn(s̃ ≤ s|k) ≤
(1 − ρs)Pn(s̃ < s|k + 1) + ρsPn(s̃ ≤ s|k + 1) = Pn(s̃ < s|k + 1) + Pn(s|k + 1)ρs = pk+1 for

all k = 0, . . . , n− 1, where the inequality follows from first-order stochastic dominance (i.e.,
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equation (5)). Q.E.D.

Proof of Lemma 2: In order to prove the lemma, we first construct an algorithm for finding

a solution to P(γ) on the basis of Lemma 1. First, define s as the smallest s̃ ∈ {0, . . . , n− 1}
such that

s̃∑
s=0

∆G(k, s) ≥
(1− δ)c

nδ(γG − c)
, ∀k = 1, ..., n, (17)

and
s̃∑

s=0

∆L(1, s) ≥
(1− δ)c

δ(γL − c)
, (18)

where

∆G(k, s) ≡
Pn(s|k)− Pn(s|0)

k
− cPn(s|0)

n(γG − c)
and ∆L(k, s) ≡

Pn(s|k)− Pn(s|0)
k

− cPn(s|0)
γL − c

.

The variable s is found algorithmically by starting with s̃ = 0 and increasing it successively

until either all of the n+ 1 inequalities associated with (17) and (18) hold, or s̃ = n. If this

procedure ends with s̃ = n, then s does not exist, implying that the feasible set of P(γ) is

empty so that, for the given γ, there is no high-quality equilibrium. If the procedure ends

with s̃ < n, then s = s̃. In a next step, compute for k = 1, . . . , n,

ρkG ≡ 1

∆G(k, s)

{
(1− δ)c

nδ(γG − c)
−

s−1∑
s=0

∆G(k, s)

}
; ρL ≡ 1

∆L(1, s)

{
(1− δ)c

δ(γL − c)
−

s−1∑
s=0

∆L(1, s)

}
.

By construction, each ρkG and ρL lies in [0, 1]. Taking ρ as the maximum over all ρkG and ρL, it

then follows from Lemma 1 that the solution ρC of program P(γ) exhibits ρCs = 1 for s < s,

ρCs = ρ, and ρCs = 0 for s > s, with an attained objective of p0 =
∑s

s=0 Pn(s|0) + Pn(s|0)ρ.
From this algorithm, we next identify the comparative statics of the threshold signal s

with respect to the discount factor δ. To do so, first note that the left-hand sides of the n+1

inequalities associated with (17) and (18) are independent of δ, whereas the right-hand sides

decrease with δ over [0, 1] and grow arbitrarily large as δ approaches 0. This implies that the

threshold s fails to exist when δ is small and when it does exist for some δ̂, it exists for all

δ > δ̂ and, moreover, s is decreasing in δ. This establishes

In order to derive the critical discount factor δ
C
, we first compute for each of the con-

straints in (17) the minimum δ
k

G such that there is an s̃ that fulfills it. In particular,

δ
k

G ≡ c

∆k
Gn(γG − c) + c

, where ∆k
G ≡ max

s̃

{
s̃∑

s=0

∆G(k, s)

}
. (19)

In order to see that γG > γG is a sufficient and necessary condition for ∆k
G > 0 for all
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k = 1, . . . , n, note that ∆G(k, s) ≥ 0 only if ∆G(k, 0) ≥ 0, since

∆G(k, 0) < 0 ⇔ Pn(0|k)
Pn(0|0)

< 1 +
kc

n(γG − c)
⇒ Pn(s|k)

Pn(s|0)
< 1 +

kc

n(γG − c)
⇔ ∆G(k, s) < 0,

where “⇒” follows from MLRP. Hence, ∆k
G > 0 if and only if ∆G(k, 0) > 0, where the latter

is equivalent to

γG > c+
kc

n[((1− β)/α)k − 1]
.

Since the right hand side is decreasing in k,41 a sufficient and necessary condition for ∆k
G > 0

for all k = 1, . . . , n is γG > γG.

Likewise, compute for the constraint (18) the maximum δL such that there is an s̃ that

fulfills it. That is,

δL ≡ c

∆L(γL − c) + c
, where ∆L ≡ max

s̃

{
s̃∑

s=0

∆L(1, s)

}
(20)

and a sufficient and necessary condition for ∆L > 0 is γL > γL.

Hence, we have established the first statement of the lemma that a high-quality equilib-

rium exists only if γG > γG and γL > γL.

By taking δ
C
as the maximum over all δ

k

G and δL, we also establish the the second and

third statement of the lemma, concerning the threshold discount factor δ
C

and that the

optimal cut-off signal s is decreasing in δ.

We finally show the last part of the lemma, proving the statements about the threshold

level δ
C

0 .

As shown, γG > γG and γL > γL imply ∆G(k, 0) > 0 for all k = 1, . . . , n, and ∆L(1, 0) > 0.

Noting that the right-hand sides of (17) and (18) vanish when δ approaches 1, the algorithm

stops for s̃ = 0, for δ close enough to 1, namely for δ ≥ δ
C

0 , where

δ
C

0 ≡ max

{
max

k

{
c

c+ n(γG − c)∆G(k, 0)

}
,

c

c+ (γL − c)∆L(1, 0)

}
.

To see the last statement of the lemma, note that with s = 0, (ICCk
G ) reduces to

nδ(Pn(0|k)− Pn(0|0))ρ0
V (p0, 1)

k
≥ c.

Because Pn(0|k) = [(1 − β)/α]kαn it follows from (1 − β)/α > 1 that Pn(0|k) is convex in

k. As a result, the left hand side of (ICCk
G ) is increasing in k while the right hand side is

41Its derivative is of the same sign as ψ(r, k) ≡ rk − 1− krk log r, where r ≡ (1− β)/α > 1. As ψ(1, k) = 0
and ∂ψ(r, k)/∂r = −k2rk−1 log r < 0 for r > 1, it follows that ψ(r, k) < 0.
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independent of k. Hence, if the constraint holds for k = 1, it holds for all k > 1. Q.E.D.

Proof of Lemma 3: Suppose ρI0 ≤ 1, implying δ ≤ δ
I
, and consider the associated vector of

punishment probabilities ρC(ρI0) = (ρ0(ρ
I
0), . . . , ρn(ρ

I
0)) with ρs(ρ

I
0) as defined by (12). Since

ρs(ρ
I
0) ≤ ρI0 ≤ 1 and the signs of ρs(ρ

I
0) and ρI0 coincide, it follows ρs(ρ

I
0) ∈ [0, 1] for all

s = 0, ..., n. Moreover, the punishment probabilities in ρC(ρI0) lead to a market breakdown

after shirking in k markets of

pk =
n∑

s=0

Pn(s|k)ρs(ρI0) =
n∑

s=0

Pn(s|k)
n− s

n
ρI0 =

(n− E[s|k])
n

ρI0 =
(n− k)α + k(1− β)

n
ρI0.

In particular, the on-path breakdown probability p0 coincides with the one under independent

branding: p0 = αρI0. Moreover, for these punishment probabilities each (ICC,k
G ) is equivalent

to the incentive constraint (ICI
G):

n

k
· δ(pk − p0)V (p0, 1) ≥ c ⇔ δρI0(1− α− β)V (p0, 1) ≥ c.

Hence, ρC(ρI0) replicates the best PPE outcome under independent branding. Q.E.D.

Proof of Proposition 2: As defined in (2), recall from Proposition 1 that ρI0 represents the

punishment probability associated with the best PPE under independent branding. If ρI0 > 1

then V
I
= 0 so that a (weak) superiority of collective branding holds trivially since V

C ≥ 0.

Hence, suppose ρI0 ≤ 1. Lemma 3 shows that the ρC(ρI0) is feasible in the sense that is satisfies

all incentive constraints (ICC,k
G ), and attains the value V

I
. But because ρs(ρ

I
0) violates the

optimal cutoff structure (except for the special case of n = 2 and ρI0 = 1), Lemma 1 then

implies that we can strictly improve upon this outcome. It follows that the best PPE yields

a strictly higher payoff under collective branding. This then also implies that δ
I ≥ δ

C
, with

a strict inequality for n > 2. Hence, for n > 2, it holds δ
I
> δ

C
so that for any δ ∈ [δ

C
, δ

C
),

implying that ρI0 > 1 but close to 1, we have V
C
> V

I
= 0, which proves the last statement

of the proposition. Q.E.D.

Proof of Proposition 3: Follows directly from the text. Q.E.D.

Proof of Proposition 4: Follows directly from the text. Q.E.D.

Proof of Lemma 4: Suppose to the contrary that V
C
> 0 but γ̂L ≤ 1, implying γ̂G ≥ 1.

Then, as argued, the program of minimizing p0 w.r.t. ρ
C subject to all (ICCk

G ) and (ICC
L ) has

a solution ρC = (1, . . . , 1, ρs, 0, . . . , 0) such that (ICC
L ) binds, while all constraints (ICCk

G )

are slack. Since ∂V (p0, γL)/∂γL > 0, raising γL slightly results in all constraints being slack,

allowing to lower p0 by reducing ρs (or if ρs = 0 lowering s). This contradicts that γ̂L ≤ 1
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is optimal. If γ̂L ≥ 1 but no (ICCk
G ) is binding, one can lower p0 by the same procedure,

whereas if (ICC
L ) is slack one can lower p0 through a similar procedure by raising γG. We

conclude that γ̂G < 1 < γ̂L and are such that (ICC
L ) and at least one (ICCk

G ) is binding.

Lemma 2 shows that for δ ∈ (δ
C

0 , 1), the binding constraint must be (ICC1
G ). In this case,

(γ̂L, γ̂G) are such that both (ICC1
G ) and (ICC

L ) hold with equality, implying

δ(p1 − p0)V (p0, γ̂G)n = c = δ(p1 − p0)V (p0, γ̂L) ⇔ n(γ̂G − c) = γ̂L − c.

Combining the latter equation with the identity λGγG+λLγL = 1 yields γ̂G = γ̃G and γ̂L = γ̃L.

Note that for δ < δ
C

0 the constraint (ICC1
G ) may be slack at the optimum. Hence, in general,

we have

δ(p1 − p0)V (p0, γ̂G)n ≥ c = δ(p1 − p0)V (p0, γ̂L) ⇔ n(γ̂G − c) ≥ γ̂L − c.

Combining this latter inequality with our previous finding that γ̂G < 1 < γ̂L yields the result

γ̂G ∈ [γ̃G, 1) and γ̂L ∈ (1, γ̃L]. Q.E.D.

Proof of Proposition 5: By Proposition 3, collective branding with proportional rewards

can attain the value V
I
, whenever ρI0 ≤ αn−1. Lemma 4 then implies that V

C
> V

I
, since

it shows that proportional rewards are strictly suboptimal, meaning that collective branding

can attain a value exceeding V
I
. The result then follows from the observation that ρI0 ≤ αn−1

if and only if δ ≥ δ, where

δ =
c

c+ αn−1(1− α− β − (1− β)c)
.

Q.E.D.

Proof of Proposition 6: Suppose the model’s parameters are such that V
C
> 0, implying

that there is an optimal triple (γ̂G, γ̂L, ρ̂) to PC . In particular, for this triple (γ̂G, γ̂L, ρ̂),

the constraint (ICC
L (γ̂L)) as well as at least one constraint (ICCk

G (γ̂G)) are binding. Now

consider an increase in the parameter λG, while keeping γG constant at γ̂G. These changes

imply a decrease in λL together with an increase in πG. From γL = (1− λGγG)/(1− λG), it

however follows that ∂γL/∂λG > 0 so that the overall effect on γL is positive. Hence, (ICC
L )

is relaxed, implying that we can, in fact, also increase γG slightly above γ̂G, thereby relaxing

all constraints so that ρ̂ together with the raised γG and γL lead to the same p0 but with all

constraints satisfied with strict inequality. By Lemma 4, the triple is suboptimal, meaning

there is a different triple leading to a strictly lower p0, implying a strictly larger V
C
. Q.E.D.

Proof of Proposition 7: Let rs ∈ Rn+1 denote deterministic cutoffs ρ of the form (1, . . . , 1, 0, . . . , 0).

That is, rs is an (n+1)-dimensional vector with the first s entries being 1 and the remaining
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n + 1 − s entries being 0. Denote by Rn = {r0, r1, . . . , rn+1} ⊂ Rn+1 the set of all rs for a

given n.

Given n and γn
G = 1, recall that we have

ρ̂n = argmin
ρ

p0(ρ) s.t. (IC
n;1
G (1)), . . . , (ICn;n

G (1)).

In addition to this minimization problem, consider for a given n and γn
G = 1 the problems

ρ̃n = argmin
ρ

p0(ρ) s.t. (IC
n;1
G (1)) and (ICn;n

G (1));

r̂n = arg min
rs∈Rn

p0(r
s) s.t. (ICn;1

G (1)), . . . , (ICn;n
G (1));

r̃n = arg min
rs∈Rn

p0(r
s) s.t. (ICn;1

G (1)) and (ICn;n
G (1)).

Because the first problem is less stringent than the minimization problem underlying ρ̂n,

whereas the second is more stringent, it follows

p0(ρ̃
n) ≤ p0(ρ̂

n) ≤ p0(r̂n).

Moreover, if ρ̃n has the cutoff at s, then r̃n = rs+1 so that

p0(r̃
n)− p0(ρ̃

n) = Pn{s|0}(1− ρ̃ns ).

Since limn→∞ Pn{s|0} = 0, it follows

lim
n→∞

p0(ρ̃
n) = lim

n→∞
p0(r̃

n). (21)

Because the minimization problem associated with r̃n is a relaxed version of the mini-

mization problem associated with r̂n, it holds p0(r̂n) ≥ p0(r̃
n). The next lemma shows that,

in fact, p0(r̂n) = p0(r̃
n).

Lemma 5. The minimizer r̂n minimizes p0 subject to only the incentive constraints (IC
n;1
G (1))

and (ICn;n
G (1)).

Proof. The statement is trivially satisfied for n = 2, so suppose n > 2. Rewriting (ICn;k
G (1))

as
pnk − pn0

k
≥ c

δnV (p0, 1)
(22)

shows that if pk is convex in k, in the sense that the incremental differences

pnk+2 − pnk+1 − (pnk+1 − pnk) (23)
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are positive, then the left hand side of (22) is increasing in k so that (ICn;1
G (1)) implies all

other constraints and, hence, at most (ICn;1
G (1)) can be binding. If, in contrast, pk is concave

in k, then the left hand side is decreasing in k so that (ICn;n
G (1)) implies all other constraints

and, hence, at most (ICn;n
G (1)) can be binding.

We next argue that, for any rs ∈ Rn, the curvature of pk(r
s) w.r.t. k, i.e., the sign of (23),

depends on the cutoff s. To see this, note first that the recursive structure (4) of Pn(s|k)
implies that the incremental differences (23) rewrites as:

pnk+2 − pnk+1 − (pnk+1 − pnk) =
s∑

s=0

[Pn(s|k + 2) + Pn(s|k)− 2Pn(s|k + 1)]

=(1− α− β)2{[Pn−2(s|k)− Pn−2(s− 1|k)].} (24)

The single peakedness of Pn−2(.|k) implies that Pn−2(s|k) is increasing in s for all s smaller

than the mode, mk, of Pn−2(.|k) and decreasing in s for all s larger than mk. Since mk is

decreasing in k, mk lies in between the modes of the binomial distributions B(n− 2, β) and

B(n− 2, (1− α)), i.e., mk ∈ [m0,mn−2] with m0 = ⌊(n− 1)β⌋ and mn−2 = ⌊(n− 1)(1− α)⌋,
where ⌊x⌋ is the greatest integer less than or equal to x. Therefore, if s ≤ m0, then (24) is

positive for all k and, hence, the incremental differences are positive for all k, implying pk is

convex. Similarly, if s− 1 > mn−2, then (24) is negative for all k and, hence, the incremental

differences are negative for all k, implying pk is concave. For s ∈ [m0,mn−2 + 1], the sign

of (24) may depend on k. The single peakedness of Pn−2(.|k) together with the decreasing

mode mk implies however that (24) can switch sign at most once as k increases and only from

positive to negative. If so, there is a k such that pk is convex for all k ≤ k and concave for all

k ≥ k. This means that for k ≤ k, (ICn;1
G (1)) implies (ICn;k

G (1)), and for k ≥ k, (ICn;n
G (1))

implies (ICn;k
G (1)).

A direct corollary of Lemma 5 is that

pn0 (ρ̃
n) ≤ pn0 (ρ̂

n) ≤ pn0 (r̂n) = pn0 (r̃
n).

Since this string of inequalities holds for all n, it holds also in the limit, implying that

lim
n→∞

pn0 (ρ̃
n) ≤ lim

n→∞
pn0 (ρ̂

n) ≤ lim
n→∞

pn0 (r̂n) = lim
n→∞

pn0 (r̃
n).

By (21) and a sandwich theorem, it then follows that

lim
n→∞

pn0 (ρ̃
n) = lim

n→∞
pn0 (ρ̂

n) = lim
n→∞

pn0 (r̂n) = lim
n→∞

pn0 (r̃
n).

The next lemma shows that, for large enough n, we can pick deterministic cutoffs such
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that p0 is arbitrarily close to zero, while the constraints are all slack, provided that δ > c.

Lemma 6. Suppose δ > c so that ε ≡ (δ − c)/δ > 0. Then, for all ε ∈ (0, ε)

∃n ∈ N : ∀n > n, ∃s(n) ≤ n : pn0 (r
s(n)) < ε and (ICn;1

G (1)) and (ICn;n
G (1)) are slack.

Proof. Fix ε > 0 and let

K =
c

δV (ε, 1)(1− α− β)
.

Denote the pdf of the normal distribution N (µ, σ2) with mean µ = n(1 − α) and variance

σ2 = nα(1− α) by

φn(s) =
1√

2πnα(1− α)
e−

1
2

(s−n(1−α))2

nα(1−α) .

Then there is an ñ1 such that for all n > ñ1, the equation

φn(s̃(n)) =
K

(1− ε)n

has the solution s̃(n) = µ− σh(n) < (1− α)n− 1 with

h(n) ≡

√
ln

(
n

2πα(1− α)K2/(1− ε)2

)
.

By noting that limn→∞ h(n) = ∞, Chebyshev’s inequality implies that there is an ñ2(> ñ1)

such that for all n > ñ2 it holds

Φn(s̃(n)) ≡ Pr{s ≤ s̃(n)} =

∫ s̃(n)

−∞
φn(s)ds < ε/2.

Since the binomial distribution B(n, (1− α)) converges in distribution to N (µ, σ2), there is

an ñ3(> ñ2) such that for any n > ñ3

|Pn{s ≤ s(n)|0} − Φn(s̃(n))| < ε/2,

where s(n) = ⌈s̃(n)⌉ is the smallest integer greater than s̃(n). Hence, for any n > ñ3

pn0 (r
s(n)) = Pn{s ≤ s(n)|0} < Φn(s̃(n)) + ε/2 < ε.

It remains to be shown that rs(n) satisfies (ICn;1
G (1)) and (ICn;n

G (1)) with slackness.
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The constraint (ICn;1
G (1)) for rs(n) rewrites as

Pn−1(s(n)|0) ≥
1

n

c

δV (p0(rs(n)), 1)(1− α− β)
.

Since V (pn0 , 1) is strictly decreasing in pn0 and pn0 (r
s(n)) < ε, the inequality holds strictly if

Pn−1(s(n)|0) ≥ K/n.

The de Moivre-Laplace theorem implies there is an ñ4(> ñ3) such that for all n > ñ4

1− ε <
Pn−1(s(n)|0)
φn(s(n))

< 1 + ε.

Hence, for n > ñ4 it holds

Pn−1(s(n)|0) > (1− ε)φn(s(n)) ≥ (1− ε)φn(s̃(n)) = K/n,

where the second inequality follows since, s(n) ≤ ⌈s̃(n)⌉ ≤ ⌈(1− α)n− 1⌉ ≤ (1− α)n. This

shows that rs(n) satisfies (ICn;1
G ) with slackness for all n > ñ4.

Recall (ICn;n
G ) for rs(n) rewrites as

pnn(r
s(n))− pn0 (r

s(n)) ≥ c

δV (p0(rs(n)), 1)
.

Since limn→∞ s̃(n)/n = (1−α) > β, it follows by the law of large numbers that for any ε̃ > 0,

there is an ñ5(> ñ4) so that for all n > ñ5, we have

pnn(r
s(n)) =

s(n)∑
s=0

Pn(s|n) > 1− ε̃.

In particular, for ε̃ ∈ (0, (δ − c− δε)/(δ(1− c))), it follows

pnn(r
s(n))− pn0 (r

s(n)) > 1− ε̃− ε >
c(1− δ + δε)

δ(1− c)
=

c

δV (ε, 1)
>

c

δV (pn0 (r
s(n)), 1)

.

This confirms that (ICn;n
G (1)) for rs(n) holds with slackness for all n > ñ5. Taking n = ñ5

completes the lemma.

Noting that pn0 arbitrarily close to 0 means that the average per period payoffs, vn, is

arbitrarily close to 1− c, then yields the Proposition. Q.E.D.

Proof of Proposition 8: If λL > 0 and V
n
> 0, then there is a triple (γ̂n

G, γ̂
n
L, ρ̂

n) where
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ρ̂n = (1, . . . , 1, ρsn , 0, . . . , 0) ∈ Rn+1 with sn ∈ {0, . . . , n − 1} such that incentive constraint

(ICC
L (γ̂

n
L)) is satisfied. That is,

pn1 (ρ̂
n)− pn0 (ρ̂

n) ≥ c

δV (pn0 (ρ̂
n), γ̂n

L)
. (25)

Because pn0 (ρ̂
n) ≥ 0 and γ̂n

L ≤ 1/λL, we have

V (pn0 (ρ̂
n), γ̂n

L) =
γ̂n
L − c

1− δ(1− pn0 (ρ̂
n))

≤ 1/λL − c

1− δ
,

so that the right-hand side of (25) is larger than some lower bound that is strictly larger than

zero and independent of n.

We next argue that the left-hand side, pn1 − pn0 , of (25) goes to zero as n grows arbitrarily

large. To see this, apply the recursive structure (4) to obtain

pn1 (ρ̂
n)− pn0 (ρ̂

n) = (1− α− β)[Pn−1(s
n − 1|0)(1− ρ̂sn) + Pn−1(s

n|0)ρ̂sn ]. (26)

Since Pn−1(.|0) is a binomial distribution of n − 1 trials with success probability 1 − α, the

individual probability Pn−1(s|0) goes to zero for any s as n grows arbitrarily large. Equation

(26) then implies that pn1 (ρ̂
n)−pn0 (ρ̂

n) goes to zero as n grows arbitrarily large, which implies

that there exists an n̂ such that (25) is violated for all n > n̂. Consequently, there is an

upper bound on n such that Pn has a solution. Since n is an integer, there is actually a lower

upper bound n such that Pn has a solution if and only if n < n. Note that if for parameters

(α, β, c, δ, λL, n) the program Pn has a solution then it also has a solution when δ increases,

implying that n is increasing in δ. Q.E.D.

Proof of Proposition 9: We first prove the second statement (which implies the first

statement) by showing that for any n, there is a δ(n) such that for all δ that exceed δ(n), it

holds n̂ > n. To see this, fix n and take γL = γ̃n
L. Lemma 2 implies that for δ > δ

n

0 , we have:

ρ̂n0 < 1, ρ̂ni = 0 for all i = 1, . . . , n, (ICn;1
G (γ̃n

G)) holds with equality while all other (ICn;k
G (γ̃n

G))

are slack. Moreover, by Lemma 4, γ̂L = γ̃n
L so that (ICn

L(γ̃
n
L)) holds with equality for ρ̂n.

Using this latter equality yields that for any δ > δ
n

0 we have

ρ̂n0 =
c/δ − c

(Pn(0|1)− Pn(0|0))(γ̃n
L − c)− Pn(0|0)c

=
c/δ − c

αn−1[(1− α− β)(γ̃n
L − c)− αc]

. (27)

Note that the right-hand side converges to zero as δ goes to one. Hence, given n, we can find

a δ(n) < 1 so that for all δ > δ(n), we have ρ̂n0 < α.

We next argue that for all δ > δ(n), we must have n ̸= n̂, because, already for brand size

n + 1, we can, given δ, find a ρn+1 that yields a strictly lower pn+1
0 . To see this, consider
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ρn+1 = (ρ̂n0/α, 0, . . . , 0) and γL = γ̃n+1
L . It follows that

pn+1
0 (ρn+1) = Pn+1(0|0)ρ̂n0/α = αn+1ρ̂n0/α = αnρ̂n0 = Pn(0|0)ρ̂n0 = pn0 (ρ̂

n)

and

pn+1
1 (ρn+1) = Pn+1(0|1)ρ̂n0/α = αn(1− β)ρ̂n0/α = αn−1(1− β)ρ̂n0 = Pn(0|1)ρ̂n0 = pn1 (ρ̂

n).

Hence,

[pn+1
1 (ρn+1)− pn+1

0 (ρn+1)]γ̃n+1
L − pn+1

0 (ρn+1)c = [pn1 (ρ̂
n)− pn0 (ρ̂

n)]γ̃n+1
L − pn0 (ρ̂

n)c

> [pn1 (ρ̂
n)− pn0 (ρ̂

n)]γ̃n
L − pn0 (ρ̂

n)c = c/δ − c,

where the inequality holds because γ̃n+1
L > γ̃n

L. This implies that (ICn+1
L (γ̃n+1

L )) is slack. As

γL = γ̃n+1
L , the left-hand sides of (ICn+1

L (γ̃n+1
L )) and (ICn+1;1

G (γ̃n
G)) are equal to each other,

implying that (ICn+1;1
G (γ̃n

G)) and, thus, all the other (ICn+1;k
G (γ̃n

G)) are slack as well. For

the optimal ρ̂n+1 it therefore holds pn+1
0 (ρ̂n+1) < pn0 (ρ̂

n). For δ > δ(n), brand size n + 1 is

therefore superior to brand size n. Since this argument holds for any n, it follows that n̂

cannot be finite and limδ→1 n̂ = ∞.

To see the final statement of the proposition, first fix n and γL = γ̃n
L, and pick a δ

arbitrarily close to 1, then, as discussed above, ρ̂n is such that ρ̂n0 equals (27) and ρ̂ni = 0 for

all i = 1, . . . , n. The average per-period value can therefore be written as

vn =
(1− δ)(1− c)

1− δ + δαnρ̂n0
=

(1− c)

1 + cα
(1−α−β)(γ̃n

L−c)−αc

= (1− c)− αc(1− λL + λLn)

(1− α− β)n
.

Hence,

lim
n→∞

vn = 1− c− λL
αc

1− α− β
.

Q.E.D.

Collective branding when the global player has to choose the same effort level

in each market. In the following, we show that all of our propositions continue to hold if

(under collective branding) the global player must choose, in each period t, the same effort

level in all n markets so that etG,i = etG for all i and t. As we argue below, for Proposition

1-8, this follows straightforwardly, and only for Proposition 9 do we have to adapt its proof

slightly.

Let V̂ C denote the resulting value in the best equilibrium. As discussed in the Conclusion,

if the global player has to choose the same effort level in each market, then—under collective
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branding—the global player would no longer have n incentive constraints (ICCk
G ), k = 1, ..., n,

but only one, namely (ICCn
G ). Because V̂ C is the value of a more relaxed problem than V

C
,

it immediately follows that V̂ C ≥ V
C
.

Proposition 1 is concerned with equilibrium under independent branding and thus remains

unaffected.

Proposition 2, which considers collective branding in the polar case λG = 1, also continues

to hold: As the local player does not have to bear any effort cost, it is still optimal to give

all of the rewards to the global player (so that γG = 1). Since V̂ C ≥ V
C
, collective branding

continues to be superior to independent branding, and strictly so if ρI0 ≤ 1 (except possibly

in the special case n = 2 and ρI0 = 1) or if n > 2 and ρI0 is larger than, but sufficiently close

to, one.

Proposition 3 is concerned with equilibrium in the polar case in which the local player

bears all of the effort cost (λL = 1) and the global player does not need to be incentivized;

the proposition therefore remains unchanged.

Turning to Proposition 4, recall from the arguments in the main text that—under pro-

portional rewards (i.e., (πG, πL) = (γG, γL))—all of the global player’s incentive constraints

are slack whereas the local player’s constraint is binding at the optimum. Hence, indepen-

dently of whether or not the global player has to choose the same effort level in all markets,

collective branding is suboptimal.

Proposition 5 also carries over: Since V̂ C ≥ V
C
, collective branding still yields a strictly

larger value in the best equilibrium than independent branding for all δ ≥ δ (with the same

value of δ as before) and λG > 0.

To see that Proposition 6 goes through, note that its proof only relies on the observation

that (ICC
L ) and at least one (ICk

G), k = 1, ..., n, must be binding at the optimal reward-to-

cost share ratio γ̂L. This still holds true when the global player has to choose the same effort

level in all markets: in this case, (ICC
L ) and (ICn

G) must be binding at the optimal γ̂L. (Of

course, the optimal value γ̂L may be different but that is irrelevant for the argument.)

Proposition 7 focuses on the case λG = 1 and δ > c, stating that both the maximum

implementable and the optimal brand size are unbounded, and efficiency obtains in the

limit as the number of brands grows large. As the minimum sustainable on-path breakdown

probability p0 is weakly lower when (ICk
G), k < n, can be ignored, and since the efficient

payoff 1− c is an upper bound on the per-period equilibrium value the proposition remains

unchanged.

Next, Proposition 8 states that, if λL > 0, then the maximum sustainable brand size is

finite and increasing in the discount factor. For the finiteness result, the proof only uses the

incentive constraint of the local player and shows that it is violated for n large, even if all

of the rewards are given to the local player (γL = 1/λL). The assertion on the maximum
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implementable brand size being increasing in the discount factor follows from the observation

that any solution to the program of minimizing the on-path breakdown probability is still a

solution when δ increases, which continues to hold true when (ICk
G), k < n, can be ignored.

Hence, the proposition carries over to the case where the global player has to choose the

same effort level in all markets.

Finally, we turn to Proposition 9. When the global player has to choose the same effort in

all markets, then in the best equilibrium, the reward-to-cost share ratios (for a given brand

size n), (γ̂n
L, γ̂

n
G), are such that both (ICCn

G ) and (ICC
L ) hold with equality. Hence,

δ(pnn − pn0 )V (pn0 , γ̂
n
G) = c = δ(pn1 − pn0 )V (pn0 , γ̂

n
L) ⇔ (pnn − pn0 )(γ̂

n
G − c) = (pn1 − pn0 )(γ̂

n
L − c).

Combining this with the identity λGγ
n
G + λLγ

n
L = 1 and λG = 1− λL yields

γ̂n
L =

(pnn − pn0 )− (pnn − pn1 )(1− λL)c

pn1 − pn0 + (pnn − pn1 )λL

For δ large, we have s̄n = 0.42 Hence,

pn0 = αnρn0 ; p
n
1 = αn−1(1− β)ρn0 ; p

n
n = (1− β)nρn0 ,

implying

γ̂n
L =

((1− β)n − αn)− ((1− β)n − αn−1(1− β))(1− λL)c

αn−1(1− β)− αn + ((1− β)n − αn−1(1− β))λL

(28)

=
(1− xn)− (1− xn−1)(1− λL)c

xn−1 − xn + (1− xn−1)λL

, (29)

where xn ≡ αn/(1 − β)n. Since α < 1 − β, it follows that xn goes to zero as n → ∞. We

thus obtain

lim
n→∞

lim
δ→1

γ̂n
L =

1− (1− λL)c

λL

That is, as n grows unbounded and δ goes to one, γ̂n
L and γ̃n

L converge to the same limit.

From the proof of Proposition 9, it follows that the limiting per-period value is the same

whether or not the global player has to choose the same effort in all markets.

42This follows from the proof of Lemma 2. When the global player has to choose the same effort in all
markets, the critical discount factor above which s̄n = 0 is given by

δ̂C0 = max

{
c

c+ n(γ̂nG − c)∆G(n, 0)
,

c

c+ (γ̂nL − c)∆L(n, 0)

}
.
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Differentiating (29) w.r.t. n yields

∂γ̂n
L

∂n
=

−(1− c)(1− λL)(1− x)xn+1ln(x)

(λLx+ xn(1− λL − x))2
,

which is positive since ln(x) < 0 so that γ̂n
L is strictly increasing in n. Using the same

arguments as in the proof of Proposition 9, this implies that the optimal, as well as the

maximum sustainable, brand size becomes unbounded as the discount factor goes to one.

Appendix B

In this appendix, we apply the abstract methods of decomposability and self-generation

developed in Abreu, Pearce, and Stacchetti (1990) for the case of two markets, n = 2, under

collective branding. This more formal analysis confims that the failure of the folk theorem is

due to the dimensionality problem that the enforceable payoff vectors lie on a two dimensional

plane within R3. Focusing on n = 2, allows us to study also asymmetric equilibrium outcomes

and show that they are necessarily suboptimal for lower discount factors. In particular, we

focus on the implementation of equilibrium outcomes in which players choose the cooperative

actions b1 = eG,1 = eL,1 = b2 = eG,2 = eL,2 = 1 in the first period of the repeated game, both

for symmetric and asymmetric perfect public equilibrium outcomes.

For fixed revenue shares πG = 1 − πL, the infinitely repeated game with imperfect mon-

itoring has 5 players – the two local players, the global player, and the two consumers.

We will refer to local player 1 as player 1, local player 2 as player 2, the global player as

player 3, consumer 1 as player 4, and consumer 2 as player 5. Players 1, 2, and 3 are

long-lived players, whereas the consumers, player 4 and 5, are short-lived. Except for the

global player, all players have a binary action set, A1 = A2 = A4 = A5 = {0, 1}. The

global player, as player 3, has an action set containing four actions that we can express as

binary numbers, denoting in which of the two markets the global player picks effort: i.e.,

A3 = {eG1eG2}eG1,eG2∈{0,1} = {00, 10, 01, 11}. Expressing player 3’s action as a binary num-

ber, we can represent a pure action profile a as an element from {0, 1}6 and the set of pure

action profiles contains 26 = 64 elements.

Because in equilibrium the short-lived players play myopic best replies, the set of feasible

pure action profiles in the stage game of the overall repeated game is smaller. As explained

in the main text, a consumer in market i buys if and only if the local and global player

exert effort in market i. As a result, the set of feasible pure action profiles, B, contains

24 = 16 elements and for any feasible pure action profile consumers obtain a payoff of zero.

Restricting attention to the set of feasible pure action profiles allows us to focus on the

long-lived players, 1, 2, and 3, while ensuring equilibrium behavior of the short-run players.
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Concerning the long-lived players, the feasible action profile a = (eL1, eL2, eG1, eG2, b1, b2) ∈ B

yields the following stage payoffs to the three (long-lived) players:

u1(a) = b1πL − λLeL1c; u2(a) = b2πL − λLeL2c; u3(a) = (b1 + b2)πG − λG(eG1 + eG2)c.

Note that, restricted to the feasible pure action profiles in B, each player can guarantee

himself at least a zero payoff by not exerting any effort. Moreover, by not exerting any effort,

any pair of players can ensure that the other player gets at most a zero payoff. Hence, the

minmax-payoff of each player is zero.

The observable signals are the aggregated quality reports s = s1 + s2 ∈ {0, 1, 2} and

the uniformly distributed public correlation device r ∈ [0, 1]. Given the action profile a, the

perfect complementarity of efforts imply that the probability of signal si ∈ {0, 1} in market

i is

P{si = 1|a} = (1− α)aiai+2 + β(1− aiai+2),

where ai is the i−th element of the action profile a = (eL1, eL2, eG1, eG2, b1, b2) ∈ B. Following

Mailath and Samuelson (2006,p.253), we combine the signal s and r into one continuous signal

y by defining

y = s1 + s2 + r ∈ Y ≡ [0, 3].

We denote the density of this continuous signal over the support Y by ρ(y|a). Since the

distribution of r is uniform, the density ρ(y|a) is the step function:

ρ(y|a) =


P{s = 0|a} , if y ∈ [0, 1)

P{s = 1|a} , if y ∈ [1, 2)

P{s = 2|a} , if y ∈ [2, 3].

Following Abreu, Pearce, and Stacchetti (1990), we define an action profile a ∈ B as

enforceable on W ⊂ R3
+ if there exists a (Lebesgue measurable) mapping γ : Y → W such

that for any i = 1, 2, 3,

Vi(a, γ) ≡ (1− δ)ui(a) + δ

∫ 3

0

γi(y)ρ(y|a)dy

≥ (1− δ)ui(a
′
i, a−i) + δ

∫ 3

0

γi(y)ρ(y|a′i, a−i)dy for all a′i ∈ Ai.

Note that, given the density ρ(y|a), it holds for any a ∈ B which is enforceable on W
that∫ 3

0

γi(y)ρ(y|a)dy =
2∑

j=0

∫ j+1

j

γi(y)ρ(y|a)dy =
2∑

j=0

P{s = j|a}
∫ j+1

j

γi(y)dy =
2∑

j=0

P{s = j|a}wj+1,
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where wj+1 =
∫ j+1

j
γi(y)dy lies in the convex hull of W . Consequently, the definition of en-

forceability in our framework is equivalent to saying that an action profile a ∈ B is enforceable

on W ∈ R3
+ if there exists a triple w1, w2, w3 in the convex hull of W such that

Vi(a, γ) ≡ (1− δ)ui(a) + δ
2∑

j=0

P{s = j|a}wj+1

≥ (1− δ)ui(a
′
i, a−i) + δ

2∑
j=0

P{s = j|a′i, a−i}wj+1 for all a′i ∈ Ai. (30)

The perfect complementarity in the effort levels implies that any action profile for which,

in some market, effort is only supplied by one player is not enforceable. As a result, only the

following 4 action profiles of the 16 feasible action profile in B are enforceable:

(0, 0, 00, 0, 0); (1, 0, 10, 1, 0); (0, 1, 01, 0, 1); (1, 1, 11, 1, 1);

with associated enforceable payoff vectors 0

0

0

 ;

 uL

0

uG

 ;

 0

uL

uG

 ;

 uL

uL

2uG

 ,

where uL = πL − λLc and uG = πG − λGc.

Abreu, Pearce, and Stacchetti (1990) show that the set of equilibrium payoffs, E(δ), is a
subset of the convex hull of the enforceable payoff vectors. Because these payoff vectors lie

on a two dimensional plane within R3, we can express any point w ∈ R3 in the convex hull

of these four points by a unique pair of scalars (µ1, µ2) ∈ [0, 1]2 such that

w = ŵ(µ1, µ2) ≡ µ1

 uL

0

uG

+ µ2

 0

uL

uG

 .

Hence, the convex hull is the set Ŵ ≡ {ŵ(µ1, µ2)|µ1, µ2 ∈ [0, 1]} and the aggregate payoff

associated with any point ŵ(µ1, µ2) is V (µ1, µ2) = (µ1 + µ2)(uL + uG). As a result, the

equilibrium payoff that maximizes aggregate payoffs is attained by a solution (µ∗
1, µ

∗
2) of the

following program:

P : max
µ1,µ2

V (µ1, µ2) s.t. ŵ(µ1, µ2) ∈ E(δ).

Apart from the fact that E(δ) ⊂ Ŵ , the presence of the correlation device r implies

that the set E(δ) is convex. Moreover, since the two markets are symmetric, E(δ) exhibits
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the symmetry that w(µ1, µ2) ∈ E(δ) implies w(µ2, µ1) ∈ E(δ). From the convexity and this

symmetry of E(δ), it follows that there is a symmetric solution µ∗
1 = µ∗

2 = µ∗ to problem P
with an associated payoff vector w∗ that is symmetric in the sense that w∗ = ŵ(µ, µ) for some

µ ∈ [0, 1]. Note also that for any w = (w1, w2, w3) ∈ E(δ) we have w = ŵ(w1/uL, w2/uL) so

that be defining

M(δ) ≡ {(w1/uL, w2/uL)|(w1, w2, w3) ∈ E(δ)},

we obtain an equivalent representation of E(δ) in terms of pairs (µ1, µ2).

Implementation of a11 ≡ (1, 1, 1, 1, 1, 1) in the first period. We next study an equilib-

rium in which a11 is the aggregate-payoff-maximizing strategy profile. We first argue that,

in this case, the action profile a11 ≡ (1, 1, 1, 1, 1, 1) in the first period must also lead to a

symmetric equilibrium payoff w ∈ E(δ). To see this, note first that for the action profile

a11 to be implementable in equilibrium it has to be enforceable on E(δ). The convexity of

E(δ) implies it is equal to its convex hull so that the requirement is that we have to find

three equilibrium payoffs w1, w2, w3 ∈ E(δ) such that (30) holds for each long-lived player.

Since any equilibrium value w ∈ E(δ) corresponds to a (unique) pair (µ1, µ2) ∈ [0, 1] such

that w = ŵ(µ1, µ2), finding three equilibrium values is equivalent to finding three pairs

µ0 = (µ0
1, µ

0
2), µ

1 = (µ1
1, µ

1
2), µ

2 = (µ2
1, µ

2
2) in M(δ) such that (30) holds for each long-lived

player with wj = ŵ(µj).

With respect to player 1, (30) is

(1− δ)uL + δ
2∑

j=0

P{s = j|a11}ŵ1(µ
j) ≥ (1− δ)(uL + λLc) + δ

2∑
j=0

P{s = j|0, a11−1}ŵ1(µ
j).(31)

With respect to player 2, (30) is

(1− δ)uL + δ
2∑

j=0

P{s = j|a11}ŵ2(µ
j) ≥ (1− δ)(uL + λLc) + δ

2∑
j=0

P{s = j|0, a11−2}ŵ2(µ
j).

With respect to player 3, (30) leads to three conditions of which, due to P{s = j|01, a11−3} =

P{s = j|10, a11−3}, the latter two coincide:

(1− δ)2uG + δ
2∑

j=0

P{s = j|a11}ŵ3(µ
j) ≥ (1− δ)2(uG + λGc) + δ

2∑
j=0

P{s = j|00, a11−3}ŵ3(µ
j),

(1− δ)2uG + δ

2∑
j=0

P{s = j|a11}ŵ3(µ
j) ≥ (1− δ)(2uG + λGc) + δ

2∑
j=0

P{s = j|10, a−3}ŵ3(µ
j),
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(1− δ)2uG + δ

2∑
j=0

P{s = j|a11}ŵ3(µ
j) ≥ (1− δ)(2uG + λGc) + δ

2∑
j=0

P{s = j|01, a11−3}ŵ3(µ
j).

Combining and rewriting these conditions, we get local player 1’s incentive constraint

1− δ

δ

λLc

(1− α− β)uL

≤ −αµ0
1 + (2α− 1)µ1

1 + (1− α)µ2
1; (32)

local player 2’s incentive constraint

1− δ

δ

λLc

(1− α− β)uL

≤ −αµ0
2 + (2α− 1)µ1

2 + (1− α)µ2
2; (33)

the global player’s incentive constraint not to shirk in both markets:

2(1− δ)

δ

λGc

(1− α− β)uG

≤ −(1−β+α)(µ0
1+µ0

2)+2(α−β)(µ1
1+µ1

2)+(1−α+β)(µ2
1+µ2

2); (34)

and the global player’s incentive constraint not to shirk in only one market:

1− δ

δ

λGc

(1− α− β)uG

≤ −α(µ0
1 + µ0

2) + (2α− 1)(µ1
1 + µ1

2) + (1− α)(µ2
1 + µ2

2). (35)

The action profile a11 is implementable if a triple of pairs µ = (µ0, µ1, µ2) in M(δ) exist that

together satisfy the constraints (32), (33), (34), (35). In this case, implementing a11 in the

first period with continuation payoffs ŵ0(µ0), ŵ1(µ1), ŵ2(µ2) yields an aggregate payoff of

V (µ0, µ1, µ2) = (uG+uL)[2(1−δ)+δ{α2(µ0
1+µ0

2)+2α(1−α)(µ1
1+µ1

2)+(1−α)2(µ2
1+µ2

2)}] (36)

Hence, the triple of pairs, µ = (µ0, µ1, µ2), that maximizes aggregate payoffs from an equilib-

rium strategy that implements a11 in the first period is a solution to the following program

P(a11) : max
µ=(µ0,µ1,µ2)∈M(δ)

V (µ) s.t. (32), (33), (34), (35).

If a solution to P(a11) exists, then there is one that is symmetric in the sense that

(µ0
1, µ

1
1, µ

2
1) = (µ0

2, µ
1
2, µ

2
2), because for any asymmetric solution µ its symmetric average µ̃

with µ̃i
1 = µ̃i

1 = (µi
1 + µi

2)/2 has the same objective value V , lies in M(δ) (due to the

convexity of E(δ)), and also satisfies all constraints (since the original µ does so).

Using this observation, program P(a11) simplifies to finding three scalars (µa, µb, µc) with

(µa, µa), (µb, µb), (µc, µc) ∈ M(δ) that maximize

W = (uG + uL)[2(1− δ) + 2δ{α2µa + 2α(1− α)µb + (1− α)2µc}] s.t. (37)
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1− δ

δ

λLc

(1− α− β)uL

≤ −αµa + (2α− 1)µb + (1− α)µc; (38)

1− δ

δ

λGc

(1− α− β)uG

≤ −(1− β + α)µa + 2(α− β)µb + (1− α + β)µc; (39)

1− δ

δ

λGc

2(1− α− β)uG

≤ −αµa + (2α− 1)µb + (1− α)µc. (40)

Implementation of a10 ≡ (1, 0, 1, 0, 1, 0) in the first period We next study the imple-

mentability and optimality of the asymmetric action profile a10 ≡ (1, 0, 1, 0, 1, 0) in the first

period. If the equilibrium that maximizes aggregate payoffs is such that it implements the

asymmetric action a10 ≡ (1, 0, 1, 0, 1, 0) in the first period, then the equilibrium attains the

value V ∗ = V (µ∗
1 + µ∗

2) = (uG + uL)(µ
∗
1 + µ∗

2). Moreover, it requires that the action a10 is en-

forceable in E(δ). Hence, there must be three pairs µ0 = (µ0
1, µ

0
2), µ

1 = (µ1
1, µ

1
2), µ

2 = (µ2
1, µ

2
2)

in M(δ) such that (30) holds for a = a10 for each long-lived player with wj = ŵ(µj). That is

for player 1, we have

(1− δ)uL + δ
2∑

j=0

P{s = j|a10}ŵ(µj) ≥ (1− δ)(uL + λLc) + δ
2∑

j=0

P{s = j|0, a10−1}ŵ(µj). (41)

For player 2, we have

(1− δ)0 + δ
2∑

j=0

P{s = j|a10}ŵ(µj) ≥ −(1− δ)λLc+ δ
2∑

j=0

P{s = j|1, a10−2}ŵ(µj). (42)

Since P{s = j|a10} = P{s = j|1, a10−1} for all j = 0, 1, 2, constraint (42) is satisfied for any

triple µ0, µ1, µ2. For player 3, we have

(1− δ)uG + δ

2∑
j=0

P{s = j|a10}ŵ(µj) ≥ (1− δ)(uG + λGc) + δ

2∑
j=0

P{s = j|00, a10−3}ŵ(µj), (43)

(1− δ)uG + δ
2∑

j=0

P{s = j|a10}ŵ(µj) ≥ (1− δ)(uG − λGc) + δ
2∑

j=0

P{s = j|11, a10−3}ŵ(µj), (44)

(1− δ)uG + δ

2∑
j=0

P{s = j|a10}ŵ(µj) ≥ (1− δ)uG + δ

2∑
j=0

P{s = j|01, a10−3}ŵ(µj). (45)

The second inequality (44) holds for any triple (µ0, µ1, µ2), since P{s = j|a10} = P{s =

j|11, a10−3} for each j = 0, 1, 2. Moreover, (43) implies (45), since P{s = j|00, a10−3} = P{s =

j|01, a10−3} for each j = 0, 1, 2. Hence, a10 is enforceable on E(δ) if and only if we find a triple

(µ0, µ1, µ2) in M(δ) such that (41) and (43) hold.

52



Rewriting (41) yields the retailer’s incentive constraint

1− δ

δ

λLc

(1− α− β)uL

≤ −(1− β)µ0
1 + (1− 2β)µ1

1 + βµ2
1. (46)

Rewriting (43) yields the global player’s incentive constraint

1− δ

δ

λGc

(1− α− β)uG

≤ −(1− β)(µ0
1 + µ0

2) + (1− 2β)(µ1
1 + µ1

2) + β(µ2
1 + µ2

2). (47)

The aggregate payoff associated with the strategy profile a10 that is enforceable on E(δ) by
(µ0, µ1, µ2) is

W (µ0, µ1, µ2) = (uG+uL)[(1−δ)+δ{(1−β)α(µ0
1+µ0

2)+[(1−β)(1−α)+αβ](µ1
1+µ1

2)+(1−α)β(µ2
1+µ2

2)}]

It follows that the equilibrium with the maximum aggregate payoffs that implements

the asymmetric action a10 in the first period is a solution (µ̂0, µ̂1, µ̂2) to the following linear

program:

P10 : max
µ0,µ1,µ2∈M(δ)

W (µ0, µ1, µ2) s.t. (46), (47).

Denote the value of this program as Ŵ 10 = W (µ̂0, µ̂1, µ̂2).

If the equilibrium that maximizes aggregate payoffs is such that it implements the asym-

metric action a10 in the first period then it holds Ŵ 10 = V ∗.

Comparison of a11 and a10. We first show that for δ small, the action profile a11 is optimal

whenever it is implementable.

Lemma 7. Suppose δ ≤ 1/2 and a11 is implementable. Then implementing a11 is optimal.

Proof. If a10 is not implementable in that no combination (µ̂0, µ̂1, µ̂2) in M(δ) exists that

satisfies (46) and (47), then the result follows trivially, since the only other implementable

action profile a00 = (0, 0, 0, 0, 0, 0), which yields aggregate payoffs of 0, which is weakly less

than any aggregates payoffs from a a triple of pairs µ = (µ0, µ1, µ2) in M(δ) that implements

profile a11.

So suppose a10 is implementable. We next demonstrate that for δ ≤ 1/2, the aggregate

payoffs associated with any triple (µ̂0, µ̂1, µ̂2) in M(δ) that implements a10, the aggregate

payoffs are less than 2(uG + uL)(1 − δ), a lower bound on the payoffs of implementing a11

when it is implementable. To show this, consider the relaxed version of program P10 in

which we disregard (46). Denoting this relaxed program as P̃10 and its value as W̃ 10, it

follows W̃ 10 ≥ Ŵ 10. The relaxed program has constraint (47) binding, since disregarding

this constraint yields a solution with µ0
1 + µ0

2 = µ1
1 + µ1

2 = µ2
1 + µ2

2 which violates (47).
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A binding (47) implies

(1− β)(µ0
1 + µ0

2) = (1− 2β)(µ1
1 + µ1

2) + β(µ2
1 + µ2

2)−
1− δ

δ

λGc

(1− α− β)uG

. (48)

Substituting out the expression (µ0
1 + µ0

2), program P̃10 rewrites as

max
µ1,µ2∈M(δ)

(uG + uL)

{
1− δ + δ

[
(1− β)(µ1

1 + µ1
2) + β(µ2

1 + µ2
2)− α

1− δ

δ

λGc

(1− α− β)uG

]}
.

The solution to this exhibits µ1
1 + µ1

2 = µ1
1 + µ1

2 = µ∗
1 + µ∗

2 and, hence,43

W̃ 10 ≤ (uG + uL)

{
1− δ + δ

[
(µ∗

1 + µ∗
2)− α

1− δ

δ

λGc

(1− α− β)uG

]}
Hence, W̃ 10 ≥ V ∗ implies

(uG + uL)

{
1− δ + δ

[
(µ∗

1 + µ∗
2)− α

1− δ

δ

λGc

(1− α− β)uG

]}
≥ (uG + uL)(µ

∗
1 + µ∗

2)

so that

µ∗
1 + µ∗

2 ≤ 1− α
λGc

(1− α− β)uG

Hence, if the equilibrium that maximizes aggregate payoffs is such that it implements the

asymmetric action a10 ≡ (1, 0, 1, 0, 1, 0) in the first period, then we have µ∗
1 + µ∗

2 ≤ 1. As a

consequence, the maximum aggregate payoffs in E(δ) is smaller than (uG + uL), which for

δ ≤ 1/2 is smaller than 2(uG + uL)(1− δ), a lower bound on the payoffs of implementing a11

when it is implementable.
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