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Non–technical Summary

The phenomenon that the volatility of financial asset returns commonly exhibits serial
correlation has lead to enormous research activities on modeling and forecasting volatility.
For daily data, asset return volatility is typically modeled via GARCH–type or stochastic–
volatility processes which treat volatility as a latent variable. The increasing availability of
high–frequency data gives rise to a more straightforward approach to modeling volatility
by constructing daily time series. This allows us to treat volatility as an ”observed” rather
than latent variable to which we can apply standard time–series modeling techniques.
Also, because summing over high–frequency intra–daily squared returns yields a consistent
estimator of the actual (daily) volatility, the so–called realized volatility, the forecasting
performance of estimated models can be assessed more adequately as is the case when us-
ing squared daily returns as volatility measure. The autoregressive fractionally integrated
moving average (ARFIMA) and, due to its simple estimation, the heterogeneous autore-
gressive (HAR) model are the most popular models in the current literature. They are
capable of capturing the observed long–memory of volatility, and empirically outperform
GARCH and stochastic–volatility models in terms of their forecasting ability.

In this paper, we investigate more closely the properties of realized volatility and the
common realized volatility models. Using S&P500 index futures data we find that the (non–
transformed as well as the logarithmic) realized volatility series exhibit non–Gaussianity
and conditional heteroskedasticity features that have been neglected in the current research
on realized volatility. To accommodate these properties, we extend models for realized
volatility by replacing the Gaussian with the more flexible normal inverse Gaussian (NIG)
distribution to allow for fat–tailedness and skewness. In addition, we specify a GARCH
process to account for the clustering in the squared residuals of the realized volatility
model. Our empirical in–sample results suggest that both extensions strongly improve the
model’s fit. Of particular importance for risk assessment and risk management, however,
is the predictive performance of volatility models. Evaluating this for the proposed models
over different horizons, we find that explicitly modeling the volatility of realized volatility
leads to better point and interval forecasts. Moreover, the additional specification of the
normal inverse Gaussian distribution further improves the density forecasts.



Nichttechnische Zusammenfassung

Die Beobachtung, dass die Volatilität von Aktienrenditen serielle Korrelation aufweist,
hat zu starkem Forschungsinteresse auf dem Gebiet der Modellierung und Prognose der
Volatilität geführt. Bei Verwendung von Tagesdaten wird die Volatilität üblicherweise
mit Hilfe von GARCH Modellen oder Stochastischen Volatilitätsmodellen beschrieben,
welche die Volatilität als unbeobachtbare Variable behandeln. Die zunehmende Verfüg-
barkeit von hochfrequenten Finanzmarktdaten ermöglicht jedoch die Konstruktion von
täglichen Volatilitätsmaßen, welche nun als ”beobachtbare” und nicht mehr nur als la-
tente Variable behandelt werden können. Gängige Verfahren aus der Zeitreihenmodel-
lierung können daher ohne weiteres zur Modellierung der Volatilität angewandt werden.
Da die Summe über quadrierte Intra–Tagesrenditen ein konsistenter Schätzer für die wahre
(tägliche) Volatilität ist, kann die sogenannte realisierte Volatilität auch zur—im Vergleich
zu dem bisher üblichen täglichen Volatilitätmaß, der quadrierten Tagesrendite—exakteren
Evaluierung der Prognosegüte geschätzter Modelle genutzt werden. Die bekanntesten Mod-
elle für die realisierte Volatilität sind das autoregressive fraktionell integrierte moving av-
erage (ARFIMA) Modell und aufrund seiner einfachen Schätzung das heterogene autore-
gressive (HAR) Modell. Empirische Studien haben gezeigt, dass diese Modelle nicht nur
das lange Gedächtnis der Volatilität reproduzieren können, sondern auch zu wesentlichen
Verbesserungen in der Prognosegüte gegenüber den GARCH– oder stochastischen Volatil-
itätsmodellen führen.

In dieser Studie werden die Eigenschaften der realisierten Volatilität und der realisierten
Volatilitätsmodelle genauer untersucht. Unter Verwendung von S&P500 Index Futures
Daten wird gezeigt, dass sowohl die (untransformierte als auch die logarithmierte) real-
isierte Volatilität nicht normalverteilt ist und bedingte Heteroskedastizität aufweist. Diese
Eigenschaften, insbesondere die der zeitvariierenden Volatiliät der realisierten Volatilität,
wurden in der bisherigen Literatur vernachlässigt. Zur Berücksichtigung dieser Eigen-
schaften werden in dieser Studie zwei Erweiterungen der existierenden Modelle betrachtet.
Um Schiefe und Kurtosis zu berücksichtigen, wird die Normalverteilung durch eine flex-
iblere Verteilung, der Normal Invers Gauss’schen Verteilung, ersetzt. Des weiteren wer-
den die Volatilitätscluster in den quadrierten Residuen der realisierten Volatilitätsmodelle
durch eine GARCH Spezifikation modelliert. Die empirischen Ergebnisse dieser Studie
zeigen, dass beide Erweiterungen zu einer signifikanten Verbesserung in der Modellgüte
führen. Wesentlich relevanter für die Einschätzung und das Management von Risiken ist
jedoch die Prognosegüte von Volatilitätsmodellen. Eine Prognoseevaluierung der erweit-
erten Modelle über verschiedene Prognosehorizonte zeigt, dass die explizite Modellierung
der Volatilität der realisierten Volatilität zu besseren Punkt– und Intervallprognosen führt.
Die Berücksichtigung der Normal Invers Gauss’schen Verteilung verbessert zudem die Güte
von Dichteprognosen.



1 Introduction

Volatility plays an important role both in theoretical developments in finance as well as
in practical applications. With the availability of high–frequency data the research on the
volatility of returns on financial assets has taken new avenues. Next to directly model-
ing high–frequency returns, intra–day returns are also used to construct nonparametric,
lower–frequency (daily) volatility measures, termed realized volatility. Due to its non-latent
character, realized volatility is not only used to assess the predictive performance and ad-
equacy of existing stochastic–volatility models (see, for example, Andersen and Bollerslev,
1998), but also to explore the predictability of realized volatility. In fact, reduced–form
models for realized volatility have already been considered for a variety of different markets
and data sets. Andersen et al. (2003) suggest a fractionally integrated autoregressive mov-
ing average (ARFIMA) model for realized volatility to capture its distinct long–memory
behavior. Persistent sample autocorrelation functions have been widely reported for var-
ious volatility measures of financial assets. Barndorff-Nielsen and Shephard (2002a) and
Koopman et al. (2005) instead specify an unobserved ARMA component (UC) model that
is based on a superposition of Ornstein–Uhlenbeck processes. Another and, due to its
straightforward estimation, rather appealing model for realized volatility is the heteroge-
neous autoregressive (HAR) model as proposed in Corsi (2004). Although it is formally
not a long–memory model, it can adequately reproduce the observed hyperbolic decay of
the autocorrelation function by specifying a sum of volatility components over different
horizons.

All three models have been shown to significantly improve volatility forecasts relative
to conventional stochastic–volatility or GARCH models. In both the ARFIMA and the
HAR models it is commonly assumed that innovations are Gaussian as well as identically
and independently distributed (iid). In the UC–model literature no specific distributional
assumption is made; but when estimating via quasi–maximum–likelihood the Gaussian as-
sumption enters. Moreover, the UC model also assumes white noise innovations. Although
the Gaussianity assumption seems to be more acceptable when modeling the logarithm
of realized volatility, we will show that it is particularly inadequate for non–logarithmic
realized volatility. Empirical distributions of ARFIMA and HAR residuals tend to exhibit
right skewness and fat tails. In addition, regardless of the transformation considered we
find volatility clustering in the residuals of these models, a violation of the iid assump-
tion. Similar patterns can be expected in the UC model, since part of the time–varying
variance might be attributed to the variance of the realized volatility estimator. Ignoring
such properties will lead to inefficiencies when estimating realized volatility models and
result in an inferior forecasting performance. More importantly, in practical applications
the presence of time–varying and non–Gaussian conditional distributions can distort risk
assessment and, thus, impair risk management.

In this paper, we investigate the importance of the observed volatility of realized
volatility in modeling, and forecasting applications and propose two extensions of standard
realized–volatility models. We allow for non–Gaussian innovations and, instead, suggest
the use of the more flexible normal inverse Gaussian distribution. Furthermore, to model
time–dependent conditional heteroskedasticity we also specify a generalized autoregressive
conditional heteroskedasticity (GARCH) specification, which can account for clustering
and—to some extent—for the observed unconditional kurtosis. By doing so, we explic-

1



itly model the volatility of realized volatility which, to our knowledge, has not yet been
considered in the literature.

To assure that the observed time–variation in the volatility of realized volatility is
no artefact due to misspecifications of the HAR or ARFIMA model, we also investigate
the time series behavior of the volatility of the realized volatility estimator relying on
the asymptotic distribution theory of realized volatility derived in Barndorff-Nielsen and
Shephard (2002a). Using different measures of integrated quarticity, the resulting series of
the volatility of the realized volatility error exhibit the same characteristics as those found
for squared residuals. The time–varying behavior has also been reported in Barndorff-
Nielsen and Shephard (2005b) who plot confidence intervals for the measurement error
of realized variance. Those results suggest that any realized volatility model might be
subject to heteroskedastic errors due to the time–varying volatility of the realized volatility
estimator. The assessment of the relevance of the volatility of realized volatility in modeling
and forecasting is therefore very important.

The paper is organized as follows. The next section briefly reviews the construction of
measures of realized volatility and the volatility of the realized volatility error; and then
describes the S&P500 index futures data set used in the empirical application. Section
3 presents a short description of the standard realized–volatility models considered in
this paper, discusses the model extensions we propose, and presents in–sample estimation
results. In Section 4 we perform a simulation study to assess efficiency implications of the
proposed extensions. Section 5 presents and compares out–of–sample point and density
forecasts. Section 6 concludes.

2 Measurement and Data

We begin by briefly reviewing the theory of quadratic variation and integrated variance
and its estimation using realized variance. The asymptotic theory of this estimator is
reproduced involving the notions of integrated quarticity and alternative quarticity mea-
sures, as introduced by Andersen et al. (2002, 2005) and Barndorff-Nielsen and Shephard
(2003, 2004b, 2005a,b). This allows us to compute an approximation to the volatility of
the realized volatility estimator. We then proceed with the description of the data set.

2.1 Construction of Volatility Measures

Let the logarithmic price of a financial asset, denoted by pt, follow the stochastic–volatility
process

pt = p0 +

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW(s), (1)

where µ and σ are càdlàg; W is a standard Brownian motion; and σ is assumed to be
independent of W . Stochastic–volatility processes of this form represent a (special type of)
semimartingale and are widely used in financial modeling. The quadratic variation process
for a sequence of partitions, τ0 = 0 ≤ τ1 ≤ . . . ≤ τn = t, is defined by

[p]t = plim
n−1
∑

j=0

(pτj+1
− pτj

)2. (2)
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With supj{τj+1 − τj} → 0 for n→ ∞ we obtain the integrated variance

[p]t =

∫ t

0

σ(s)2ds. (3)

As already shown by Merton (1980) and extended by Comte and Renault (1998), Ander-
sen and Bollerslev (1998), Andersen et al. (2001b), and by Barndorff-Nielsen and Shephard
(2001), the quadratic variation and hence the integrated variance can be consistently es-
timated by the sum of squared returns computed over very small time intervals. These
results hold even if the exact form of the drift and volatility processes are unknown (see
Barndorff-Nielsen and Shephard, 2002a).

Focusing specifically on the integrated variance over one–day intervals, as is commonly
done, we denote the continuously compounded within–day returns of day t with sampling
frequency M by

rt,j = pt−1+ j

M

− p
t−1+

(j−1)
M

, j = 1, . . . ,M, (4)

and define the realized variance over day t by

RVt =
M

∑

j=1

r2
t,j. (5)

Then, by the theory of quadratic variation of semimartingales, (daily) realized variance
converges uniformly in probability to the (daily) quadratic variation process as the sampling
frequency of returns approaches infinity, i.e., for M → ∞

RVt →
∫ t

t−1

σ2(s)ds, (6)

providing a consistent estimate of the integrated variance. In fact, Barndorff-Nielsen and
Shephard (2002a) have shown that realized variance converges to integrated variance at
rate

√
M .

Given a consistent estimator for the integrated variance of the stochastic–volatility
model (1) the question of precision arises. The asymptotic distribution of the estimator
has been derived in Barndorff-Nielsen and Shephard (2002a,b, 2003, 2004a, 2005b) and is
given by

√
M

(

RVt −
∫ t

t−1
σ2(s)ds

)

√

2
∫ t

t−1
σ4(s)ds

d→ N(0, 1), (7)

where
∫ t

t−1
σ4(s)ds denotes the integrated quarticity. Note that this result does not require

the exact knowledge of the drift and variance processes, µ and σ, and that the asymptotic
normality holds even if the fourth moments of the returns do not exist.

Unfortunately, the computation of the asymptotic distribution is infeasible, given that
the integrated quarticity is unknown. Based on the theory of power variation, Barndorff-
Nielsen and Shephard (2002a, 2004b, 2005a) suggest different estimators of integrated
quarticity. The realized fourth-power variation or realized quarticity, defined as

RQt =
M

3

M
∑

j=1

r4
t,j →

∫ t

t−1

σ4(s)ds, (8)
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is a consistent estimator of the integrated quarticity. A more robust estimator, especially
in the presence of jumps, is the realized quad-power quarticity

RQQt = M
π2

4

M
∑

j=4

|rt,j||rt,j−1||rt,j−2||rt,j−3| →
∫ t

t−1

σ4(s)ds. (9)

An alternative and similarly robust measure, the realized tri-power quarticity,

RTQt = M
Γ

(

1
2

)3

4Γ
(

7
6

)3

M
∑

j=3

|rt,j|
4
3 |rt,j−1|

4
3 |rt,j−2|

4
3 →

∫ t

t−1

σ4(s)ds, (10)

has been proposed in Andersen et al. (2005).
Based on these different quarticity measures, the asymptotic distribution of realized

variance can be approximated by

RVt −
∫ t

t−1
σ2(s)ds

√

2
M
Q∗

t

d→ N(0, 1), Q∗

t ∈ (RQt, RQQt, RTQt), (11)

where
√

2
M
Q∗

t provides an approximation of the standard deviation of the realized variance
error.

Being interested in the volatility of the realized volatility error, the delta method can
be used to derive an approximate asymptotic distribution of realized volatility, i.e.,

√
RVt −

√

∫ t

t−1
σ2(s)ds

√

Q∗

t

2MRVt

d→ N(0, 1), Q∗

t ∈ (RQt, RQQt, RTQt). (12)

From the different measures of integrated quarticity, we can compute three alternative

approximations of the (daily) volatility of the realized volatility estimator
√

Q∗

t

2MRVt
, namely,

√

RQt

2MRVt

=

√

√

√

√

∑M
j=1 r

4
t,j

6
∑M

j=1 r
2
t,j

(13)

√

RQQt

2MRVt

=

√

√

√

√

π2
∑M

j=4 |rt,j||rt,j−1||rt,j−2||rt,j−3|
8
∑M

j=1 r
2
t,j

(14)

√

RTQt

2MRVt

=

√

√

√

√

Γ
(

1
2

)3 ∑M
j=3 |rt,j|

4
3 |rt,j−1|

4
3 |rt,j−2|

4
3

8Γ
(

7
6

)3 ∑M
j=1 r

2
t,j

. (15)

2.2 Data

Our empirical application is based on tick–by–tick transaction prices of S&P500 index
futures recorded at the Chicago Mercantile Exchange (CME). The sample covers the period
from January 1, 1985 to December 31, 2004, a period of 5,040 trading days, and consists
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of 13,241,032 tick–by–tick observations.1 It follows from the theoretical considerations
discussed above that the sampling frequency for constructing the volatility measures should
be as large as possible. In practice, however, very high–frequency returns are contaminated
by transaction costs, bid–and–ask–bounce effects etc., leading to biases in the variance
measures. It is common practice to handle this trade–off by summing returns over 5 or 30
minutes (see, for example, Andersen et al., 2001b, 2005; Barndorff-Nielsen and Shephard,
2004b).2 Given the high liquidity of the S&P500 index futures market our realized–variance
and quarticity measures are based on five–minute returns, an interval for which we assume
that market–microstructure effects are negligible. The five-minute returns were constructed
using the nearest neighbor to the five–minute tag, excluding overnight returns, and by
rolling over to the most liquid contract.

Table 1 presents descriptive statistics of the computed realized volatility,
√
RVt, and

the three volatility measures of the realized volatility estimator defined in (13)-(15). Figure
1 shows plots of the four series as well as their sample autocorrelation and partial autocor-
relation functions. Table 1 reveals that the distribution of realized volatility is fat tailed
and slightly skewed. Similar but much less pronounced patterns are also found for the
logarithmic transform of realized volatility.3 Figure 1 as well as the Ljung–Box statistics
reported in Table 1 indicate strong autocorrelation in realized volatility. The autocorrela-
tion function exhibits a hyperbolic decay, a finding that is in line with the widely reported
long–memory behavior of volatility and also observed in the variance/volatility implied by
estimated GARCH models.

The unconditional distributions of all three measures of the volatility of the realized
volatility estimator exhibit skewness and leptokurtosis, both of which are most pronounced
for the realized–quarticity–based measure (13). This can be explained by the construction
of this measure, with the fourth power yielding larger values for high (absolute) intra–day
returns and focusing on one period at a time. Figure 1 also shows that all volatility–of–
volatility series have long–memory, and that their values are high when realized volatility
is high (cf. Barndorff-Nielsen and Shephard, 2005b). Most importantly, all three measures
exhibit clear time–variation and volatility clustering. Similar patterns are also found for
the volatility of the log–transformed realized volatility estimator.4

1We disregard the overnight trading of contracts at GLOBEX, the CME overnight trading platform,
which started in 1994.

2The impact of market–microstructure effects on the realized–variance measures as well as possible
data–adjustment and prefiltering procedures, allowing the full use of the tick–by–tick data, is discussed in
Aït-Sahalia et al. (2005); Zhang et al. (2005), Areal and Taylor (2002), Bandi and Russell (2005), Corsi
et al. (2001), and Curci and Corsi (2003), among others.

3Sample skewness and kurtosis of the logarithmic realized volatility are 0.5950 and 4.8070, respec-
tively; and the Kolmogorov–Smirnov test rejects the null of Gaussianity (p–value=0.0087). Our results
for logarithmic realized volatility are in line with Andersen et al. (2001a,b), who note that the assumption
of Gaussianity is better in the case of logarithmic realized volatility, but differ from those reported in
Thomakos and Wang (2003), who perform tests on Gaussianity, however, using a much shorter sample
period.

4However, fluctuations over time are somewhat smaller, and the volatility measures have an asymptotic
lower bound, as has been shown by Barndorff-Nielsen and Shephard (2005b). Results for log–transformed
realized volatility are available upon request.

5



3 Modeling Realized Volatility

Volatility modeling plays a prominent role in the financial–econometrics and risk–management
literature. With the availability of high–frequency data, the volatility literature has de-
veloped in several directions, one of which focuses on modeling and predicting alternative
measures of realized volatility. In this section we briefly summarize the recently devel-
oped approaches to modeling realized volatility before discussing the modeling extensions
examined.

3.1 Conventional Realized–Volatility Models

To capture the long–memory in realized volatility (or logarithmic realized volatility), An-
dersen et al. (2003) specify the autoregressive fractionally integrated moving average,
ARFIMA(p, d, q), model

φ(L)(1 − L)d(
√
RV t − µ) = ψ(L)ut, (16)

with d denoting the fractional difference parameter, φ(L) = 1−φ1L−. . .−φpL
p and ψ(L) =

1+ψ1L+ . . . ψqL
q. Typically, ut is assumed to be a Gaussian white noise process. Keeping

this assumption (regardless of the transformation of realized volatility considered), several
papers have adopted and extended this model by including, for example, leverage effects
(and other nonlinearities) or exogenous variables. The results reported in the literature
for different markets and data sets show significant improvements in the point forecasts
of volatility when using ARFIMA rather than GARCH–type models.5 In the context of
interval forecasting, we expect the distributional assumptions for the error terms to be of
particular importance.

An alternative to ARFIMA, though formally not a long–memory model, has been sug-
gested by Corsi (2004). Extending the heterogeneous ARCH model of Müller et al. (1997),
the long–memory pattern is reproduced by a sum of (a small number of) volatility compo-
nents constructed over different horizons. Defining the k–period realized volatility compo-
nent by the sum of the single–period realized volatilities, i.e.,6

(√
RV

)

t+1−k:t
=

1

k

k
∑

j=1

√

RVt−j, (17)

the heterogeneous autoregressive (HAR) model for realized volatility of Corsi (2004), in-
cluding the daily, weekly and monthly realized volatility components, is given by

√
RV t = α0 + αd

√
RV t−1 + αw

(√
RV

)

t−5:t−1
+ αm

(√
RV

)

t−22:t−1
+ ut. (18)

In Corsi (2004), ut is assumed to be Gaussian white noise, giving rise to the same objections
as raised against the ARFIMA model class. Employing the volatility–component structure

5See, for example, Martens et al. (2004), Martens and Zein (2004), Oomen (2004), Pong et al. (2004),
Thomakos and Wang (2003), and Koopman et al. (2005), among others.

6Note that based on Jensen’s inequality the volatility components cannot exactly be interpreted as the
realized volatility over the specific time interval. However, our definition allows to interpret the HAR model
as a restricted AR(22) model. Also, employing the ”true” daily, weekly and monthly realized volatilities—as
defined by the square root of the sum of the realized variances—yields similar empirical results.
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(18), simulations reported in Corsi (2004) show that the HAR model is able to reproduce the
observed hyperbolic decay of the sample autocorrelations of realized volatility. Moreover,
the HAR model’s forecasting performance is strong and similar to that of ARFIMA models.
A good predictive performance has also been reported in Andersen et al. (2005), who extend
the HAR model by including different jump measures.

In view of the similar performance of ARFIMA and HAR models and given the straight-
forward estimation of the latter, the HAR model might be preferable in practice. In con-
trast to the HAR model, the estimation of ARFIMA models is non–trivial. The simplest
approach is to first estimate the fractional difference parameter, using, for example, the
semiparametric estimator of Geweke and Porter-Hudak (1983), and then fit an ARMA
model to the filtered series. However, the joint estimation of the ARMA parameters and
the fractional difference parameter has been shown to generally improve the accuracy of
the estimate of d,7 though complicating the estimation since the long–memory autocovari-
ance matrix needs to be estimated. Well–known methods for a joint maximum–likelihood
estimation of ARFIMA parameters include the approaches of Hosking (1981) and Sowell
(1992).8

Below, we jointly estimate parameters using exact maximum–likelihood with the Geweke–
Porter–Hudak estimate serving as starting value. The AIC and BIC criteria as well as the
correlograms of the residuals suggest an ARFIMA(0,d,3) model for the realized volatility
of S&P500 index futures. Table 2 presents the parameter estimates of the ARFIMA and
the standard HAR models, with the latter also being estimated via maximum likelihood.

Figures 2 and 3 show the results of the residual analysis for the two models. The
time series plots and the sample autocorrelation and partial autocorrelation functions of
the squared residuals clearly illustrate that the residuals of both models exhibit volatil-
ity clustering. In both cases, ARCH–LM tests indicate strong autoregressive conditional
heteroskedasticity, which is also in line with the time–variation observed in the measures
of the volatility of the realized volatility error. Moreover, the QQ–Plot and the kernel
density estimates in Figures 2 and 3 convincingly illustrate the inadequacy of the normal-
ity assumption in both realized–volatility models. Skewness and kurtosis of the ARFIMA
residuals are 17.45 and 734.71, respectively, and those of the HAR model are 15.08 and
609.43.9

3.2 Long-memory, Time–dependent Heteroskedasticity and Fat

Tails

Motivated by the empirical results we extend the realized volatility models in this sec-
tion. Since HAR and ARFIMA models behave similarly in terms of forecasting and model
misspecifications, we focus our discussion solely on extended HAR models. The proposed
modifications can be straightforwardly adopted in an ARFIMA framework—though the
estimation will be even more challenging. But we expect the results for the extended HAR
and ARFIMA models to be compatible.

7Agiakloglou et al. (1993) report poor small–sample properties of the Geweke–Porter–Hudak estimator.
8See Doornik and Ooms (2003) for a recent review on this topic.
9Note that we find the same form of time–dependent heteroskedasticity for both models when using

logarithmic realized volatility. The non–Gaussianity is less pronounced, but still existent.
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To account for the observed volatility clustering in realized volatility, we extend the
HAR model by including a GARCH component, giving rise to the HAR–GARCH(p, q)
model

√
RV t = α0 + αd

√
RV t−1 + αw

(√
RV

)

t−5:t−1
+ αm

(√
RV

)

t−22:t−1
+

√

htut (19)

ht = ω +

q
∑

j=1

αju
2
t−j +

p
∑

j=1

βjht−j (20)

ut|Ωt−1 ∼ (0, 1). (21)

The error term,
√
htut, follows a conditional density with time–varying variance. To deal

with the non–Gaussianity of the error terms we specify a standardized normal inverse
Gaussian (NIG) distribution for the (unconditional) iid innovations ut. Although the incor-
poration of the GARCH specification can produce fatter unconditional tails, the normality
assumption does not allow for the observed skewness. We will adopt the NIG distribu-
tion, which is rather flexible and able to reproduce a range of symmetric and asymmetric
distributions, such as the normal and the Cauchy. Its density is given by

f (x;α, β, µ, δ) =
α

π

K1

(

αδ
√

1 +
(

x−µ
δ

)2
)

√

1 +
(

x−µ
δ

)2
exp

{

δ

(

√

α2 − β2 + β

(

x− µ

δ

))}

(22)

where Ki (x) is the modified Bessel function of the second kind with index i; µ ∈ R denotes
the location parameter, δ > 0 the scale, α > 0 the shape, and β ∈ (−α, α) the skewness
parameter. Mean and variance are given by

E [x] = µ+
δβ

√

α2 − β2
and Var [x] =

δα2

√

α2 − β2
3 . (23)

To derive the standardized NIG distribution with zero mean and unit variance, we solve
the resulting equations and derive the values of µ and δ in terms of α and β, and obtain

µ = −β (α2 − β2)

α2
and δ =

(α2 − β2)
3/2

α2
. (24)

By combining the HAR model (18) with a standardized NIG distribution and a GARCH
specification, we obtain a quasi–long–memory model that should be able to capture both
non–Gaussianity and time–dependent conditional heteroskedasticity.

Note that these extensions can be easily adopted in the ARFIMA framework and have,
in part, been considered in Baillie et al. (1996), who propose an ARFIMA–GARCH model
to analyze inflation.

Maximum–likelihood estimates for various HAR specifications are presented in Table
2. Specifically, we extend the conventional HAR model with Gaussian innovations (Model
I) by including a GARCH(1,1) specification (Model II); Model III corresponds to Model
I but with zero mean NIG–distributed errors; and Model IV includes both modifications,
i.e., we allow for NIG–distributed innovations and conditional heteroskedasticity.

The results show that the GARCH extension substantially improves the goodness of
fit, as measured by the AIC and BIC criteria. Both criteria as well as the ARCH-LM test

8



suggest a GARCH(1,1) specification, which is also the preferred choice when modeling the
volatility of asset returns. Comparing the parameter estimates of the mean equation of
Model II to those of the standard HAR Model I, we observe an increase in the parameter
of the weekly volatility component, αw, while, at the same time, the influence of realized
volatility lagged by one day decreases when including the GARCH specification.

It is well–known that for a GARCH process the kurtosis of the dependent variable is
determined by both the kurtosis of the error distribution and the persistence in the GARCH
equation, i.e., by α1 + β1 in a GARCH(1,1) process. Bai et al. (2003) have shown that the
commonly reported parameter estimates, which are in the range of 0.85 < α̂1 + β̂1 < 1,
are not sufficient for generating the observed kurtosis when assuming normally distributed
errors. Given that our persistence estimates under Gaussianity assumption lies within
the (0.85, 1)–interval and that the kurtosis of realized volatility is much stronger than is
commonly found for asset returns, simply adding a GARCH specification will not suffice
to capture the observed kurtosis. A more heavy–tailed distribution for the innovations is
required.

The goodness–of–fit measures reported in Table 2 show that replacing the Gaussian
by the NIG distribution greatly improves the models’ fit both for the conventional and
the GARCH specification (Models I and II). The parameters in the mean equation of the
HAR–NIG model differ from those in the standard HAR model. Although the persistence—
measured by the sum of the autoregressive coefficients—reduces, the model–implied un-
conditional mean still matches the sample mean of the realized volatility.

The overall, and overwhelmingly preferred specification turns out to be the HAR–
GARCH model with NIG–distributed innovations, suggesting that both extensions to the
standard long–memory model for realized volatility are important. This finding is in line
with the GARCH literature for asset returns. For example, Verhoeven and McAleer (2004)
and Mittnik et al. (1998, 2000) show that GARCH models with skewed and leptokurtic
errors outperform their Gaussian counterparts.

The introduction of the NIG distribution affects the GARCH–parameter estimates.
The persistence is much less than under the Gaussian assumption since excess kurtosis can
in part be captured by the NIG’s shape parameter, α. Note also that, in comparison to
the HAR–NIG model without GARCH specification, the shape parameter is much larger,
indicating less kurtosis.

Figure 4 demonstrates the adequacy of the HAR–GARCH(1,1)–NIG model. Both skew-
ness and the tail behavior of the innovations are well captured by the NIG. The GARCH–
filtered volatility series (top panel in Figure 4) shows the clustering in the volatility of
realized volatility. In fact, the time series pattern of the filtered series is, though less pro-
nounced, similar to the characteristics observed in the measures of the volatility of realized
volatility discussed in Section 2.2.

4 Gains in Efficiency

Ignoring the presence of heteroskedasticity and non–Gaussianity in innovations leads to
inefficient parameter estimates when estimating standard HAR and ARFIMA models as
proposed in the literature. Inaccurate estimates do not only hamper their interpretation
but also affect forecast accuracy.
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To assess the effects of explicitly allowing for heteroskedasticity and non–Gaussianity on
efficiency, we conduct a simulation study. We generate 1,000 series, each with sample size
5,000, from a HAR–GARCH(1,1) model with standardized NIG–distributed innovations,
using the estimates reported in Table 2. For each replication we consider the first 500,
1,250, 2,500, and, finally, all 5,000 data points which corresponds to about 2, 5, 10 and
20 years of daily data, respectively, with the latter approximating the sample size of our
data set. From the simulated data we estimate the HAR specifications I-IV discussed in
the previous section.

Table 3 reports the root mean square error of the parameter estimates for the four
models from the 1,000 simulation runs. Focusing first on the results for the parameters
of the HAR mean equation, we see that the inclusion of the GARCH specification yields
greater improvements in efficiency than just allowing for NIG–distributed innovations, in-
dicating that the incorporation of conditional heteroskedasticity is more relevant. Notably,
although the HAR model with NIG errors is generally more efficient than the standard
HAR specification, it has difficulties in estimating the constant and the parameter of the
weekly volatility component. This is in line with our discussion in the previous section.
Adding the GARCH specification, however, these problems vanish. As expected, given
that it matches the data generation process, the HAR–GARCH–NIG model exhibits the
strongest gains in parameter efficiency. The results suggest that allowing for clustering in
the volatility of volatility leads to substantial efficiency gains, whereas the relevance of the
NIG extension on efficiency is somewhat ambiguous. The forecasting experiment reported
in the next section will shed additional light on this issue.

Turning our attention to the parameters of the variance equation in Table 3 we find
that, for larger sample sizes, the efficiency results for the (wrongly specified) Gaussian
HAR–GARCH model are surprisingly good. The results for the parameters of the NIG
distribution should not be taken too seriously in the case of the standard HAR model, in
view of the existing trade–off between the kurtosis induced by the GARCH specification
and the kurtosis of the NIG distribution, captured by the shape parameter α. However,
for the HAR–GARCH specification we can conclude that a sufficiently large sample size is
required to accurately estimate the distributional parameters.

5 Prediction

In order to assess the relevance of the volatility of realized volatility for out–of–sample
forecasts we consider the period from December 13, 1988 to December 30, 2004 of the
futures data, providing us with 4,040 forecasts. We estimate all four model specifications
from the first 1,000 observations (January 1, 1985 to December 12, 1988) and construct
realized–volatility forecasts up to 22 days ahead. We then recursively re–estimate by
expanding the data set by one observation and again predict up to 22 days ahead. The
specific forecasting horizons we consider are one day, one week, two weeks, and one month.

To evaluate the predictive performance of the different volatility models we follow An-
dersen and Bollerslev (1998) and Andersen et al. (2003), among others, and compute the R2

statistic from the Mincer–Zarnowitz regressions of observed realized volatility on the corre-
sponding forecasts. In addition to this regression coefficient, we also report the root mean
square forecast error (RMSE), the mean absolute error (MAE) and the root mean squared
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percentage error (RMSPE). Assigning more weight to large volatility–forecast errors, the
RMSE will be of particular interest under a risk–management perspective.10

The results of the forecasting exercise are presented in Table 4. The first four columns
report the evaluation criteria for h–day–ahead forecasts of daily volatility. Specifically, we
forecast daily volatility up to 22 days ahead and compute the R2 of a projection of the
h–day–ahead daily realized volatility on a constant and the h–day–ahead daily volatility
forecast. Correspondingly, RMSE, MAE and RMSPE values are based on daily forecast
errors. The results show that all four statistics yield more or less the same performance
rankings for the four models. Strikingly, the best model for forecasting daily volatility is
clearly the HAR model with GARCH specification and Gaussian distributed innovations.
The model consistently provides the best forecasts over all forecasting horizons. Consider-
ing shorter horizons of up to one week, we find the HAR–GARCH–NIG model to perform
second best. However, for longer horizons the standard HAR model performs slightly bet-
ter. In fact, the performance of the two models is very similar. In contrast, the forecasts
obtained from the HAR model with NIG assumption perform worst.

The last four columns of Table 4 report criteria for evaluating the performance of h–
day–ahead average realized volatility rather than the h–day–ahead daily volatility forecasts.
Note that the h–day–ahead average volatility actually is of main interest for regulatory risk
assessment. The R2 statistic in the last four columns is based on a regression of h–day–
ahead average realized volatility on a constant and the h–day–ahead predictions. All other
criteria are based on the h–day–ahead average forecast errors. Since we model and predict
daily realized volatility, we have to transform these daily forecasts to obtain the average
volatility forecasts. This induces a bias for which we did not correct.

According to all evaluation criteria, the HAR–GARCH model with Gaussian distributed
innovations is still the overall preferred model. This is consistent with the results for the
daily volatility forecasts. The standard HAR model and the HAR–GARCH model with
NIG–distributed innovations have a similar performance, with the latter being slightly
better and favoring the inclusion of the GARCH specification.

In summary, the forecasting evaluations show that allowing for time–varying volatility of
realized volatility improves the accuracy of volatility (point) forecasts. The improvements
are more pronounced for larger forecast horizons. Permitting skewness and leptokurtosis
in the innovation distribution does not seem to help in point forecasting. This is somehow
in line with the conclusions drawn from our efficiency simulations discussed in Section 4.

Time–varying volatility of realized volatility gives rise to a time–varying conditional
density of realized volatility. In such a setting, however, the simple evaluation of point fore-
casts is not sufficient and the uncertainty associated with the forecasts should be assessed.
The evaluation of forecast intervals is important in applications, since the uncertainty of
the volatility estimates carries over to the uncertainty of return forecasts. Therefore, we
also evaluate the accuracy of the density forecasts using a method proposed by Diebold
et al. (1998) which is based on Rosenblatt (1952). They show that for a correct density
forecast the probability–integral transform, zt, defined as the cumulative density function
of the forecast errors

zt =

∫ yt

∞

pt (u|xt−1) du (25)

10Note, however, that under the null hypothesis of the Mincer–Zarnowitz test for unbiasedness of fore-
casts, the RMSE is a homogeneous function of the regression coefficient.
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should be iid uniformly distributed on the unit interval.
Figure 5 presents the corresponding probability integral transforms of the four models.

It turns out that the zt of the models with Gaussian innovations are far from uniformly
distributed, although the incorporation of the volatility of realized volatility leads to some
improvement. The inability to capture the skewness is clearly illustrated by the graphs.
In contrast, the NIG–based HAR models provide very accurate density forecasts with the
HAR–GARCH specification being somewhat superior. These results strongly favor the
NIG extension of HAR–GARCH models.

6 Conclusion

We have shown that the commonly used reduced–form realized–volatility models, such
as the ARFIMA or HAR, exhibit non–Gaussian distributed innovations and time–varying
volatility that might be partly attributed to the time–variation in the volatility of the real-
ized volatility estimator. We, therefore, reject the common Gaussian iid assumption for the
residuals in these models and favor a specification with NIG–distributed innovations and,
more importantly, one that allows for the clustering in the volatility of realized volatility by
also including a GARCH component. In–sample estimation results show an overwhelming
superiority of the HAR–GARCH model with NIG distributed innovations. It appears to
be important to incorporate the volatility of realized volatility and to specify an adequate
distribution of the error terms, when modeling realized volatility. Both extensions are also
considered in Bollerslev et al. (2005) as part of a highly accurate three–equation auxiliary
model for returns and realized variations that can also be used for indirect inference.

Investigating the implications of the two proposed extensions for the efficiency of the
parameter estimates we conclude that the time–varying volatility of realized volatility is
of importance and a GARCH–type extension should be incorporated. Our forecasting
experiments suggest that the specification of a fat–tailed and possibly skewed distribution,
such as the NIG, does not seem to improve point forecasts of volatility. However, the
analysis of transformed residuals suggests that distributional assumptions should matter
for tail–quantile forecasts. In fact, our density forecast results show that, whenever interval
or density forecasts are the main focus, a flexible distribution, such as the NIG, should be
specified in addition to GARCH.
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Table 1: Descriptive Statistics

Series Mean Std.Dev. Median Skewness Kurtosis Ljung–Box(22)√
RVt 0.8627 0.5935 0.7586 15.35 496.76 14,605.0

√

RQt

2MRVt
0.0821 0.0893 0.0675 19.29 606.68 3,498.8

√

RQQt

2MRVt
0.0676 0.0475 0.0570 6.62 96.89 12,551.5

√

RTQt

2MRVt
0.0704 0.0500 0.0594 6.29 79.95 10,955.2

Reported are the descriptive statistics of realized volatility and the measures of
the volatility of the realized volatility estimator as defined in equations (13)-
(15).
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Table 2: Estimation Results
Model Parameter Estimates AIC BIC

ARFIMA(0,d,3) d ψ1 ψ2 ψ3

0.3483
(0.0217)

0.09389
(0.0258)

0.1798
(0.0181)

0.0452
(0.0174)

1.0882 1.0947

HAR Model Mean Eq. Distribution Variance Eq.
α0 αd αw αm α β ω α1 β1

I 0.1066
(0.0198)

0.4983
(0.0015)

0.2132
(0.0059)

0.1659
(0.0191)

0.1985
(0.0003)

1.1315 1.1380

II 0.0657
(0.0068)

0.2339
(0.0170)

0.4541
(0.0189)

0.2130
(0.0177)

0.0040
(0.0002)

0.7464
(0.0053)

0.2428
(0.0066)

-0.0133 -0.0042

III 0.2180
(0.0075)

0.2540
(0.0068)

0.2285
(0.0077)

0.2645
(0.0078)

1.0313
(0.0498)

0.6740
(0.0479)

0.0933
(0.0034)

-0.2592 -0.2501

IV 0.0868
(0.0073)

0.2322
(0.0142)

0.3965
(0.0227)

0.2565
(0.0184)

1.6918
(0.1088)

1.054
(0.0975)

0.0034
(0.0003)

0.8143
(0.0117)

0.1237
(0.0110)

-0.4597 -0.4480

The different HAR-model specifications are as follows: I is a standard HAR model with Gaussian innovations; II also
includes GARCH effects; III is a standard HAR model with (standardized) NIG innovations; and IV corresponds to the
HAR–GARCH model with (standardized) NIG innovations. The numbers in parentheses are the standard errors.
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Table 3: Efficiency Results

Mean Eq. Distribution Variance Eq.

O
bs

.

M
od

el

α0 αd αw αm α β ω α1 β1

50
0

I 0.0763 0.0818 0.1403 0.1238 0.0606
II 0.0723 0.0672 0.1216 0.1185 0.0061 0.1953 0.1055

III 0.0940 0.0536 0.1245 0.1029 0.5634 0.4313 0.0650
IV 0.0493 0.0455 0.0825 0.0816 0.5355 0.4272 0.0031 0.1017 0.0471

12
50

I 0.0392 0.0592 0.0952 0.0794 0.0589
II 0.0338 0.0428 0.0722 0.0679 0.0023 0.0802 0.0508

III 0.0652 0.0358 0.0955 0.0660 0.5945 0.4501 0.0558
IV 0.0229 0.0278 0.0491 0.0470 0.2376 0.2032 0.0011 0.0383 0.0276

25
00

I 0.0256 0.0409 0.0650 0.0565 0.0571
II 0.0223 0.0302 0.0499 0.0476 0.0013 0.0501 0.0370

III 0.0559 0.0285 0.0837 0.0481 0.6082 0.4607 0.0535
IV 0.0149 0.0203 0.0333 0.0310 0.1466 0.1262 0.0007 0.0252 0.0195

50
00

I 0.0179 0.0343 0.0537 0.0438 0.0529
II 0.0141 0.0219 0.0361 0.0335 0.0008 0.0325 0.0251

III 0.0504 0.0223 0.0775 0.0387 0.6270 0.4743 0.0513
IV 0.0099 0.0139 0.0237 0.0220 0.1112 0.0938 0.0004 0.0166 0.0131

All entries report root mean square error of parameter estimates for the different mod-
els. They are based on 1,000 simulations from the HAR–GARCH–NIG model as given
in Table 2. “Obs.“ denotes the number of simulated observations of each simulation
run and “Model“ corresponds to the different models: I is a standard HAR model with
Gaussian innovations; II also includes GARCH effects; III is a standard HAR model
with (standardized) NIG innovations; and IV corresponds to the HAR–GARCH model
with (standardized) NIG innovations.
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Table 4: Forecast Evaluation
h–day–ahead Daily Vola. h–day–ahead Average Vola.

h M
od

el

R2 RMSE MAE RMSPE R2 RMSE MAE RMSPE

1
d
ay

I 0.4848 0.3161 0.1926 0.3298
II 0.5109 0.3084 0.1849 0.2925

III 0.5034 0.3173 0.1996 0.3422
IV 0.5074 0.3091 0.1870 0.3034

5
d
ay

s I 0.4122 0.3431 0.2216 0.3799 0.5839 0.5816 0.3773 0.2476
II 0.4244 0.3369 0.2043 0.3137 0.6033 0.5726 0.3521 0.2123

III 0.3999 0.3574 0.2326 0.4076 0.5844 0.6174 0.4102 0.2770
IV 0.4141 0.3448 0.2184 0.3664 0.5966 0.5807 0.3687 0.2348

10
d
ay

s I 0.3274 0.3697 0.2413 0.4234 0.5817 0.8099 0.5474 0.2529
II 0.3494 0.3608 0.2155 0.3285 0.6032 0.7954 0.4974 0.2074

III 0.3057 0.3823 0.2519 0.4458 0.5690 0.8726 0.6015 0.2835
IV 0.3250 0.3730 0.2399 0.4126 0.5884 0.8206 0.5429 0.2450

22
d
ay

s I 0.2029 0.4015 0.2711 0.4839 0.5292 1.2385 0.8914 0.2757
II 0.2591 0.3914 0.2373 0.3548 0.5693 1.2142 0.7953 0.2170

III 0.1633 0.4128 0.2804 0.4993 0.5036 1.3294 0.9683 0.3002
IV 0.1937 0.4069 0.2712 0.4737 0.5340 1.2661 0.8958 0.2696

h denotes the forecast horizon and “Model“ represents the different model speci-
fications: I is a standard HAR model with Gaussian innovations; II also includes
GARCH effects; III is a standard HAR model with (standardized) NIG innova-
tions; and IV corresponds to the HAR–GARCH model with (standardized) NIG
innovations. The reported R2 are the regression coefficients of realized volatility
on a constant and volatility forecasts.
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Figure 1: Time series (upper panel), sample autocorrelation functions (acf) (middle panel) and partial autocorrelation functions
(pacf) (bottom panel) of realized volatility and the three measures of the volatility of the realized volatility estimator as defined in
equations (13)-(15).

17



-10

-5

 0

 5

 10

 15

 20

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 5  10  15  20
-0.1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 5  10  15  20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.5

 1

 1.5

 2

 2.5

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2
 1e-12
 1e-10
 1e-08
 1e-06
 1e-04

 0.01
 1

 100

-2-1.5-1-0.5  0  0.5  1  1.5  2

u
t

ac
f
of
u

2 t

p
ac

f
of
u

2 t

of ν

p
d
f
of
u

t

p
d
f
of
u

t
Q

Q
-p

lo
t

of
u

t

Figure 2: Residual analysis of the ARFIMA(0,d,3) model with Gaussian innovations.
Shown are the time series of the residuals (upper panel), the sample autocorrelation func-
tions (acf) and partial autocorrelation functions (pacf) of the squared residuals (second
panel), the quantile–quantile plot (third panel) and on the bottom panel the kernel density
estimates of the residuals (dashed line) and the estimated normal density (solid line) in
level (left) and log scales (right).
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Figure 3: Residual analysis of the pure HAR model with Gaussian innovations. Shown are
the time series of the residuals (upper panel), the sample autocorrelation functions (acf)
and partial autocorrelation functions (pacf) of the squared residuals (second panel), the
quantile–quantile plot (third panel) and on the bottom panel the kernel density estimates
of the residuals (dashed line) and the estimated normal density (solid line) in level (left)
and log scales (right).
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Figure 4: Diagnostics of the HAR–GARCH(1,1)–NIG model. The upper panel presents
the GARCH–filtered volatility–of–realized–volatility series; the middle panel shows the
quantile–quantile plot of the residuals, the bottom panel presents the kernel density es-
timates of the residuals (dashed line) and the estimated NIG density (solid line) in level
(left) and log scales (right).
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Figure 5: Probability integral transforms of density forecasts based on the four models:
Model I refers to the standard HAR model with Gaussian innovations; Model II also
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