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Abstract:  

We study a simple, microfounded macroeconomic system in which the monetary authority 

employs a Taylor-type policy rule. We analyze situations in which the self-confirming 

equilibrium is unique and learnable according to Bullard and Mitra (2002). We explore the 

prospects for the use of ‘large deviation’ theory in this context, as employed by Sargent 

(1999) and Cho, Williams, and Sargent (2002). We show that our system can sometimes 

depart from the self-confirming equilibrium towards a non-equilibrium outcome characterized 

by persistently low nominal interest rates and persistently low inflation. Thus we generate 

events that have some of the properties of “liquidity traps” observed in the data, even though 

the policymaker remains committed to a Taylor-type policy rule which otherwise has 

desirable stabilization properties. 
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1. INTRODUCTION

1.1. Overview

In the recent literature on monetary policy in microfounded models, there

has been a great deal of discussion concerning nominal interest rate feed-

back rules as a guide for policymakers.1 Generally speaking, the advice

emanating from this literature has been that central banks could achieve

near-optimal macroeconomic outcomes if they committed to a Taylor-type

policy rule that has a certain property. This property is what Woodford

(2001) dubs the “Taylor principle”–the rule must call for the central bank

to change nominal interest rates sufficiently aggressively in response to in-

flation developments in the economy.2 The conventional wisdom is thus

that a monetary authority implementing a rule obeying the Taylor princi-

ple would probably do quite well with respect to minimizing fluctuations

in inflation and real output.

In this paper we explore the robustness of this conventional wisdom to

small departures from the extreme rationality assumptions that underlie it.

We want to take a first step in this literature toward understanding how

certain types of minor misspecifications along with agent learning might

combine to change the global dynamics of the economy in unexpected ways.

To pose this question, we start with a workhorse model from this literature,

in order to remain generally consistent with other authors in this area. We

endow the policymakers with a commitment to a policy rule obeying the

Taylor principle. Thus, in a conventional analysis, we would conclude that

this monetary policy was close to the optimal one. We alter the economy

relative to this benchmark, in part by allowing the agents to use a slightly

misspecified model of the economy, and in part by allowing the agents to

learn over time instead of endowing them with rational expectations. In

this altered economy, we find that the Taylor-type policy rule can still

at the Texas Monetary Economics Conference, Midwest Macroeconomics, Princeton
University, Federal Reserve Macro System Committe, and the Society for Economic Dy-
namics for helpful comments. In addition, we thank the organizers and participants
at the conference “Expectations, Learning, and Monetary Policy,” sponsored by the
Deutsche Bundesbank and the Center for Financial Studies, in Frankfurt, Germany, for
support and insightful comments.
1For a sample of the recent work, see Taylor (1993), the volumes edited by Taylor

(1999) and King and Plosser (1999), and the survey by Clarida, Gali and Gertler (1999).
2This is sometimes also referred to as an “active” policy rule.
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2 JAMES BULLARD AND IN-KOO CHO

be quite successful, as the economy can remain in a small neighborhood

of the unique self-confirming equilibrium for long periods of time. But

we also provide conditions under which the system may abruptly escape

from a neighborhood of that equilibrium towards a persistent low-nominal-

interest-rate, non-equilibrium outcome. This escape outcome has some of

the “liquidity trap” characteristics present in Japanese data from the 1990s,

which we now describe.

1.2. The specter of Japan

During the middle-to-late 1980s, the Japanese economy was widely ad-

mired in the business press and among academics. It had grown rapidly

for many years, and seemed to threaten U.S. world economic leadership.

But Japanese success faded in the 1990s as the economy became mired in

a cycle of poor performance. One of the features of the 1990s Japanese

experience was a sharp decline in short-term nominal interest rates. Figure

1 shows annualized three-month unregulated time deposit rates in Japan

from 1990 through 2000. These rates have remained below one percent

per annum since 1995, after beginning the decade near four percent. The

low nominal interest rates have been associated with low inflation rates.

Consumer prices were rising at a rate of 3 to 4 percent per year in Japan

at the beginning of the 1990s, but the inflation rate has fallen to between

±1 percent since 1995, when measured as a percent increase from the pre-

vious year (the exception is 1997, when it rose to about two percent). Real

performance has been poor during the 1990s, especially when compared to

earlier decades.3

Policymaking at the Bank of Japan is sometimes suspected of causing

the change of fortunes. To critics, if the Bank of Japan had somehow

behaved differently than it did, the 1990s Japanese experience might have

been avoided. A difficult aspect of the critics’ view is that the Bank of

Japan did not appear to behave very differently during the 1990s than it

had during the earlier, more successful periods for the economy. If the Bank

3Summers (1991) has argued that low nominal interest rates leave the economy more
vulnerable to negative shocks, since monetary policymakers targeting nominal interest
rates can do little when an adverse shock is realized.
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Figure 1
Nominal interest rates and inflation in Japan 1990-2000

FIG. 1. Short-term nominal interest rates in Japan during the 1990s fell
dramatically, in tandem with the CPI inflation rate.

of Japan’s policy rule was the right one during the successful periods, why

was essentially the same policy rule the wrong one during the 1990s?

This paper has a lot to say about this type of question. We view Japanese

monetary policymakers as using essentially the same monetary policy rule

during the 1990s as they did during the earlier portions of the postwar era.4

In fact, the policymakers in our model follow a Taylor-type policy rule from

which they never deviate. This is of course an extreme assumption, but

it is also a strength of our analysis, because it makes it clear that our

dynamics are not generated by a change in the policy rule. Instead, the

system endogenously deviates from the targeted equilibrium toward the

liquidity trap outcome. As we will discuss in detail in the main text of the

paper, under certain circumstances a self-reinforcing process can begin in

the neighborhood of the self-confirming equilibrium, propelling the system

4We could also think in terms of U.S. data. In the U.S., short-term nominal interest
rates fell precipitously during the Great Depression and remained near zero for many
years. See Wheelock (1991) for a discussion of the hypothesis that monetary policymak-
ers at the time did not alter their operating procedure in any fundamental way.



4 JAMES BULLARD AND IN-KOO CHO

far from the targeted outcome. From the perspective of the agents in

the model, this turn of events would be puzzling, since the policy rule is

unchanged and produced quite good performance for a long period of time.5

1.3. What we do

We begin with a standard New Keynesian model as described by Wood-

ford (1999, 2003) and Clarida, Gali, and Gertler (1999). We introduce

learning into this economy, following the analysis of Bullard and Mitra

(2002). We restrict attention to situations under which the targeted equi-

librium of the central bank would be both determinate and learnable under

their analysis. We then look for circumstances under which the stability

under learning might break down, and cause the system to visit a low nom-

inal interest rate, low inflation outcome, like the ones displayed in Figure

1.6 We use ‘large deviation’ theory as employed by Sargent (1999) and Cho,

Williams, and Sargent (2002) to generate these departures, or “escapes.”

We spend much of the paper documenting that the escape dynamics de-

pend on three factors. These factors are (1) A certain misspecification on

the part of the private sector regarding the actions of the policy authori-

ties, (2) Feedback from the beliefs of the private sector to the actions of the

policy authority, and (3) A learning rule that reflects the private sector’s

doubt about the accuracy of their specification. We think these factors are

plausibly at work in actual economies.

1.4. Recent related literature

Benhabib, Schmitt-Grohe and Uribe (2001) argued that the interaction

between an active Taylor-type rule, a Fisher relation, and a zero bound on

nominal interest rates helps explain liquidity trap outcomes through the

creation of a low inflation steady state. Our explanation is quite different

5We are describing unintentionally low nominal interest rates as undesirable. Low
nominal interest rates have sometimes been associated with poor economic performance
in actual economies like Japan. In many contexts in monetary theory, however, low
nominal interest rates are welfare-improving. We think of our problem as one where,
for reasons exogenous to the model, the nominal interest rate and the inflation rate
associated with the self-confirming equilibrium are socially optimal, and the goal of
the government is to cause these values to come about. The large deviation from this
equilibrium is then inadvertent and unwanted.
6Another way to put our primary question is to ask, “What assumptions are necessary

to generate escape dynamics in this popular environment?”
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from theirs, because we focus on a model with a single steady state and

generate large deviations from that unique stable equilibrium point. For

analyses of learning in environments more directly related to Benhabib, et

al., (2001), see McCallum (2003), Eusepi (2003), and Evans and Honkapo-

hja (2003). These latter authors discuss the circumstances under which the

Benhabib, et al. (2001) liquidity trap equilibrium might be learnable.

The analysis here has the private sector learning and the central bank

following a stipulated policy. For analyses in which the roles are reversed,

see, for instance, Sargent (1999) and Wieland (2000).

2. ENVIRONMENT

2.1. A baseline economy

We study a model economy based on Woodford (1999, 2003). We use

this model because (1) it is relatively simple, which facilitates our learn-

ing analysis, (2) it has been derived from microfoundations in Woodford

and Rotemberg (1998) and elsewhere, (3) it is a workhorse model in the

literature on monetary policy rules, which helps our argument that large

deviation theory can be quite relevant for current policymaking. We also

think the ideas we illustrate using this model would be equally applicable

in related frameworks.

In our economy, economic time series are being generated in a manner

subtly different from the world that the private sector agents perceive.

However, the self-confirming equilibrium of the model has the private sec-

tor’s perceptions verified by actual events, so that they do not discover

the nature of their misspecified view of the economy. In order to build this

type of model, we first show how the time series being generated depend on

the perceptions of the agents, and then how the agents’ perceptions differ

from this reality. The actual evolution of the economy then depends on the

interaction between these two dynamics.

Woodford’s (1999, 2003) framework consists of two equations which are

log-linear approximations to the first-order conditions for household and

firm maximization problems in his economy. The households have a stan-

dard intertemporal optimization problem which yields a consumption Eu-

ler equation given by equation (1). The monopolistically competitive firms
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face frictions in setting nominal prices, and their profit maximization con-

ditions yield equation (2). Woodford’s framework represents a simplified

linearization about a steady state expressed in terms of the level of output

z, the inflation rate π, and the nominal interest rate r:

zdt = Ẽtz
d
t+1 − σ−1

³
rdt − Ẽtπ

d
t+1

´
+ wt (1)

πdt = κzdt + βẼtπ
d
t+1 (2)

where

wt = αwt−1 + �t, (3)

and ηt and �t are Gaussian white noise terms. We let zdt = zt − z̄t, π
d
t =

πt − π̄t, and rdt = rt − r̄t, so that all variables are expressed as deviations

from target or long-run values at time t denoted by z̄t, π̄t and r̄t. We let Ẽt

be a (possibly nonrational) expectations operator representing the private

sector’s views of the future. The parameters σ, relating to the elasticity of

intertemporal substitution of the representative household, κ, relating to

the degree of price stickiness in the economy, and β, the common household

discount factor, are all fixed and positive. We think of equations (1) and

(2) as describing the optimizing behavior of the private sector, given their

expectations, in Woodford’s (1999) framework.

Rotemberg and Woodford (1998) argue that the coefficients σ−1, β, and
κ are invariant to the policy rule chosen by the monetary authorities for

the determination of rt, and they supplement these equations with vari-

ous forms of Taylor-type policy rules to close the model. We follow their

procedure. We use a Taylor-type policy rule

rdt = φππ
d
t + ηt. (4)

with

φπ > 1 (5)

fixed where ηt is white noise, representing an unexpected shock to the

nominal interest rate. The fact that φπ > 1 means that this policy rule is

“active” in the nomenclature of the literature. We will sometimes refer to
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φπ as the “degree of hawkishness” in the policy rule, because it describes

how aggressively the policy authority reacts to deviations of inflation from

target. Also, since the coefficient φπ is fixed, and the functional form is

also fixed, the policymaker is completely committed to the use of the active

Taylor-type policy rule. This is an important feature of our model which we

will come back to throughout the paper.7 Equation (4) may be rewritten

in the form

rt = φ0 + φππt + ηt (6)

where φ0 ≡ (1− φπ) π̄t + ρ.

We supplement this model with a description of how the long-run or

target values z̄t, π̄t, or r̄t evolve over time. We think of the long-run level

of output z̄ as a constant, and we think of the long-run nominal interest

rate as determined by a Fisher relation. Thus we have

z̄t = z̄ ∀t, (7)

r̄t = π̄t + ρ (8)

where

ρ ≡ β−1 − 1 (9)

is the fixed, long-run real rate of interest. It therefore remains to describe

how the government goes about setting its inflation target π̄t.

One of our key assumptions is that we view the government as indiffer-

ent to the exact target level of inflation within any reasonable bounds.8

Because of this, the monetary authority is willing to acquiesce to a target

level of inflation which is expected by the private sector, so long as the

private sector expects some level that can be put under the rubric of “low

inflation.” We interpret policymakers in our model as having the view that

they do not want to spend time potentially destabilizing the economy by

trying to convince the public that the target is, say, 1.75 percent when the

7We do not impose an explicit lower bound on nominal interest rates, but we do ensure
that such a bound is never violated in our simulations.
8Actual central banks often announce target ranges, for instance, so that they might

be thought of as indifferent to exactly what inflation rate is achieved within the range.
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public thinks it is 2.25 percent. Our policymakers are indifferent between

two such targets, and so, as a tie-breaking rule among potential targets,

they simply set their target to the one that the private sector expects. And

indeed, nearly all of the time in our model, the inflation rate will remain

close to the target that the private sector expects. We can express this

assumption simply as

π̄t = πBt (10)

where πBt is the private sector’s perceived inflation target.

If the government adopted a fixed target for inflation, then the escape

dynamics we describe in the remainder of the paper could not occur. We

need the “center of gravity” of the system to move slightly with incoming

shocks. This will be a key aspect of our generation of escape dynamics in

this framework. But–and this is quite important–the model with a fixed

inflation target and the model with the moving target described here are

observationally equivalent at the self-confirming equilibrium.9 Thus poli-

cymakers could argue, as many actually do, that a precise statement of a

numerical inflation target is not necessary to achieve satisfactory stabiliza-

tion performance. They would be right, most of the time. But the fact that

the inflation target moves slightly with incoming shocks opens the door to

the possibility of escape dynamics, as we will demonstrate.

We stress that the government in our model is not trying to outwit the

public. They behave mechanically. They are committed to using an active

Taylor-type policy rule. They are also committed to producing the long-run

level of inflation the public expects to get.

2.2. Private sector perceptions

The private sector agents in our model observe new data on output,

inflation, and nominal interest rates in each period. They are endowed

with a perceived law of motion for the economy, which is given by

zdt = c11wt + c12ηt (11)

9In addition, under some plausible conditions, there would be no escape from the
self-confirming equilibrium and hence the two models would always be observationally
equivalent. This is the case if private sector agents use recursive least squares algorithms,
as described below.
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and

πdt = c21wt + c22ηt. (12)

The set of coefficients c = (cij)
2
i,j=1 represent the beliefs of the private

sector about how output and inflation deviate from their respective targets.

This perceived model is a good one because it corresponds exactly to the

minimal state variable rational expectations equilibrium of this economy.

In endowing the private sector agents with the correct model of the equi-

librium law of motion for the economy, up to the coefficients c, we are

following Evans and Honkapohja (2001) and other authors in the learning

literature. We are giving the agents a lot of information.10 The assumption

is very favorable to the agents being able to learn the rational expectations

equilibrium. If the agents cannot learn the equilibrium under this very fa-

vorable assumption, then it is called into question whether such an equilib-

rium could be stable under learning in an actual economy. The equilibrium

we study will indeed turn out to be learnable in the sense defined by Evans

and Honkapohja (2001). Thus the “large deviation” dynamics we isolate

are all the more remarkable.11

The private sector agents assume that a Fisher relation holds so that

rBt = ρ+ πBt . (13)

The private sector agents also correctly assume that

z̄t = z̄ ∀t ≥ 1. (14)

By fixing the mean of the real sector, we intentionally make any deviation

from an equilibrium more difficult.

Our second key assumption concerns the nature of the private sector’s

beliefs concerning monetary policy. We use this belief to generate feedback

10Including knowledge of the shocks wt and ηt. But not as much information as under
rational expectations.
11We could, of course, study systems where the private sector agents do not have so

much information about the economy. The agents could use a misspecified model, for
instance, or they could be allowed only partial observation of information. But our idea
is to show that large deviation dynamics can occur even under the Evans-Honkapohja,
“minimal deviation from rational expectations” assumption for the agents’ perceived
law of motion.
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between the perceptions of the private sector and the policy choices of the

government. This feedback will be critical in generating escape dynamics.

We assume the private sector believes that the monetary authority uses

a convex Taylor-type rule described by

rt = ψ (πt) , (15)

where ψ0 > 0, ψ00 > 0, and ψ (·) is invertible. The convexity of ψ (·) implies
that monetary policy responds more aggressively to inflation when inflation

is higher, and less aggressively when inflation is lower. The precise form

of the function ψ (·) describing beliefs is not necessary for our analysis.
Given the perceptions (11) and (12), the private sector agents only need a

conjecture for their perceived inflation target πBt in order to compute π
d
t .

To obtain πBt , the private sector agents take the derivative of (15),

drt
dπt

= ψ0 (πt) , (16)

and then invert this equation to obtain

πt =
¡
ψ0
¢−1µ drt

dπt

¶
. (17)

The private sector agents correctly conjecture from (12) that actual infla-

tion πt on the left hand side is distributed about the inflation target πBt .

On the right hand side, an estimate of drt/dπt can be found by computing

the coefficients in the simple auxiliary12 regression

rt = φ̂0,t + φ̂π,tπt + ξt, (18)

where ξt is the regression residual, and using φ̂π,t as the estimate of drt/dπt.

Using these facts, a proxy for the inflation target based on equation (17) is

πBt = δ0 + δ1φ̂π,t, (19)

where the right hand side is a linear approximation of
¡
ψ0
¢−1 ³

φ̂π,t

´
.

12It is auxiliary to the regression defined by equations (11) and (12), as we discuss
below.
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Once the private sector sets πBt , r
B
t is determined by equation (13). Then,

agents can calculate πdt = πt − πBt from observed πt to solve (11) and (12).

We now turn to the question of how the actual environment interacts with

the perceptions of the agents to generate a stationary equilibrium.

3. EQUILIBRIUM ANALYSIS

3.1. Self-confirming equilibrium

The private sector’s model can be parameterized by c = (cij)
2
i,j=1 and

φ = (φ0, φπ). To survive a long series of observed data, (c, φ) must be

consistent with the observations statistically. This consistency will deter-

mine the “equilibrium” model of the private agents. While this sort of

consistency between the subjective beliefs of the decision maker and the

observed data is one of the two pillars of rational expectations, our equi-

librium concept differs from rational expectations equilibrium in the sense

that we do not presume the class of models represented by (11), (12), (18),

and (19) contains the true model. We admit that the model of the private

agents is misspecified. For this reason, we call our equilibrium concept

self-confirming equilibrium.

Definition 3.1. The pair (c, φ) is a self-confirming equilibrium if
the distribution of (πt, rt, zt) generated by (1), (2), (4), (7), (8) and (10)
conditioned on (c, φ) is equal to the conditional distribution of (πt, rt, zt)
calculated from the private agent’s model through (11), (12), (18), and
(19).

Self-confirming equilibrium is milder than rational expectations equilib-

rium because the agents do not need to know the actual model entertained

by the government. Still, the private agents have to know the equilibrium

distribution of (πt, rt, zt) in order to calculate the equilibrium value of

(c, φ). We shall relax this requirement later, when we examine the learning

model.

We rearrange equations (1) and (2) as

·
zdt
πdt

¸
=

"
σ

κφπ+σ
1−βφπ
κφπ+σ

κσ
κφπ+σ

κ+βσ
κφπ+σ

#·
Ẽtz

d
t+1

Ẽtπ
d
t+1

¸
+

"
σ

κφπ+σ
1

κφπ+σ
κσ

κφπ+σ
κ

κφπ+σ

#·
wt

ηt

¸
(20)
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or more compactly as ·
zdt
πdt

¸
= BẼtyt+1 +D

·
wt

ηt

¸
. (21)

Since the private agent’s model is confined to those which can be repre-

sented in the form of (11) and (12),

Ẽtπ
d
t+1 = c21αwt (22)

and

Ẽtz
d
t+1 = c11αwt. (23)

These expectations can be substituted into equation (21) to obtain the

actual values for zt and πt·
zdt
πdt

¸
= B

·
c21αwt

c11αwt

¸
+D

·
wt

ηt

¸
, (24)

or equivalently,·
zdt
πdt

¸
= B

·
c11α 0
c21α 0

¸ ·
wt

ηt

¸
+D

·
wt

ηt

¸
=

µ
B
·
c11α 0
c21α 0

¸
+D

¶·
wt

ηt

¸
. (25)

By replacing the left hand side by (11) and (12) and arranging terms, we

have µ·
c11 c12
c21 c22

¸
− B

·
c11α 0
c21α 0

¸
+D

¶·
wt

ηt

¸
= 0 (26)

which must hold for any value of (wt, ηt) in equilibrium. Thus, the equi-

librium value of c = (cij)2i,j=1 obtains by solving·
c11 c12
c21 c22

¸
− B

·
c11α 0
c21α 0

¸
+D = 0 (27)

as in Bullard and Mitra (2002). Let ce be the equilibrium value of c.

In a self-confirming equilibrium, the slope φ̂π of the auxiliary regression

rt = φ̂0 + φ̂ππt (28)



ESCAPIST POLICY RULES 13

must satisfy

φ̂π = φπ. (29)

Once φ is determined, the equilibrium target inflation rate can be calculated

according to (19) and (10). Then, the equilibrium target nominal interest

rate is given by the Fisher equation, and therefore, all endogenous variables

are determined in equilibrium.

Because the private sector correctly identifies φπ according to equation

(29), the self-confirming equilibrium outcome is observationally equivalent

to the model in which the government is committed to the monetary policy

rule (4) with a fixed inflation target.

3.2. Learnability

3.2.1. Decreasing gain algorithms

In a self-confirming equilibrium, the private sector agents have to know

precisely the equilibrium distribution of πt and rt, which is too demanding

to be a descriptive model of an economic agent. Instead, let us assume

that the private sector agents recursively estimate c = (cij)2i,j=1 and φ =

(φ0, φπ). To differentiate the equilibrium value from the estimated value,

we add a “hat” to the corresponding variable to denote the estimate, and by

time subscript t, we mean the estimate based on the information available

at the beginning of time t. Assuming that the private sector agents choose

the estimator to minimize the forecasting error, the estimators for c =

(cij)
2
i,j=1 and φ = (φ0, φπ) evolve according to the following recursive least

squares formulae:·
ĉ11,t+1
ĉ12,t+1

¸
=

·
ĉ11,t
ĉ12,t

¸
+ atΣ

−1
wη,t

·
wt

ηt

¸ £
zdt − ĉ11,twt − ĉ12,tηt

¤
, (30)

·
ĉ21,t+1
ĉ22,t+1

¸
=

·
ĉ21,t
ĉ22,t

¸
+ atΣ

−1
wη,t

·
wt

ηt

¸ £
πdt − ĉ21,twt − ĉ22,tηt

¤
, (31)

"
φ̂0,t+1
φ̂π,t+1

#
=

"
φ̂0,t
φ̂π,t

#
+ atΣ

−1
π,t

·
1
πt

¸³
rt − φ̂0,t − φ̂π,tπt

´
, (32)

Σwη,t+1 = Σwη,t + at

µ·
w2t wtηt
wtηt η2t

¸
− Σwη,t

¶
, (33)
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and

Σπ,t+1 = Σπ,t + at

µµ
1 πt
πt π2t

¶
− Σπ,t

¶
, (34)

where at > 0 is the gain sequence, which is set as

at =
1

t
(35)

for the recursive least squares learning algorithm.

An important question is whether and when the agent can learn the

self-confirming equilibrium through the recursive least squares learning al-

gorithm.

Definition 3.2. (Evans and Honkapohja (2001)) A self-confirming
equilibrium (ce, φe) is learnable if there is a µ > 0 such that, if (ĉ0, φ̂0) is
in a µ-neighborhood of (ce, φe), then

(ĉt, φ̂t)→ (ce, φe) (36)

with probability 1 where (ĉt, φ̂t) is generated by the least squares learning
algorithm described above.

In order to show that the least squares learning algorithm converges,

we borrow the machinery developed for stochastic approximation.13 To

simplify notation, let

xt =


ĉt
φ̂t

col(Σwη,t)
col(Σπ,t)

 (37)

and

vt =

·
wt

ηt

¸
(38)

and write the recursive formula (30), (31), (32), (33) and (34) compactly

as

xt+1 = xt + atQ(xt, vt). (39)

Remark 3.1. It is a convention to contain xt in a compact set, be-
cause the decision maker can easily identify that the estimator is out of the

13See, for example, Kushner and Yin (1997).



ESCAPIST POLICY RULES 15

reasonable range if it becomes too large or too small. The most common
method is to use the projection facility to contain xt in a compact set.14

Let xt = (x1,t, . . . , xc,t) ∈ <c. Define

Λ =
cY

k=1

[xk, x̄k] (40)

where we choose xk and x̄k so that xe is contained in the interior of Λ and
along the boundary of Λ, the gradient induced by equation (44) below is
pointing to the interior of Λ. That is, if xt ∈ Λ but xt+1 6∈ Λ according
to (39), then xt+1 is “projected” back into some point in the interior of Λ.
Thus, we have to adjust xt+1 according to the projection facility. Let

xt+1 = λ(xt + atQ(xt, vt)) (41)

be the “adjusted” learning algorithm by incorporating the projection facil-
ity λ. Although the selection of Λ is arbitrary and requires some knowledge
about the location of xe, we can usually choose Λ sufficiently large to in-
clude all “reasonable” values of xt in practice. The role of the projection
facility is only to ensure that xt is contained in a compact set. Thus, in
order to simplify notation, we shall drop the projection facility λ for the
rest of the paper from the recursive formula, and instead, assume that there
is a compact set Λ ⊂ such that

xt ∈ Λ ∀t ≥ 1. (42)

The first step is to extract the determinate dynamics that is a reasonable

approximation of the stochastic dynamics. Define

Q̄(x) = lim
T→∞

1

T
E

"
TX
t=1

Q(xt, vt)

#
. (43)

By the mean dynamics, we mean the ordinary differential equation (ODE)

ẋ = Q̄(x) (44)

which is often called the associated ODE. Since the dynamics of the indi-

vidual components are crucial for later analysis, it is useful to write down

14See, for example, Marcet and Sargent (1989) and Woodford (1990).
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the associated ODE for each component:

"
˙̂
φ0
˙̂
φπ

#
= Σ−1×"

ρ− φ̂0 + (1− φ̂π)(γ0 + γ1φ̂π)

(φπ − φ̂π)σ
2
π + (γ0 + γ1φπ)

³
ρ− φ̂0 + (1− φ̂π)(γ0 + γ1φ̂π)

´# (45)

Σ̇ =

·
1 γ0 + γ1φ̂π

γ0 + γ1φ̂π (γ0 + γ1φ̂π)
2 + σ2π

¸
− Σ (46)

where

σ2π =
σ2�

1− α2
. (47)

The self-confirming equilibrium is the outcome that causes the right hand

side of the ODE to vanish:

φ̂π = φπ, (48)

φ̂0 = ρ+ (1− φπ)(γ0 + γ1φπ), (49)

and

Σ =

·
1 γ0 + γ1φ̂π

γ0 + γ1φ̂π (γ0 + γ1φ̂π)
2 + σ2π

¸
. (50)

This proves that if the learning process converges, the private sector agents

learn the true attitude of the government toward inflation, φπ.

Kushner and Yin (1998) present the general conditions under which the

stochastic recursive algorithms converge to the stable points of the associ-

ated ODE. We state the key result of Kushner and Yin (1998) adapted for

our model:

Theorem 3.1. Suppose that the following conditions are satisfied: (1)

at > 0, at → 0,
PT

t=1 at → ∞ as T → ∞ and
P∞

t=1 a
2
t < ∞, (2) vt

is a martingale difference with bounded second moments, (3) Q in (39) is

Lipschitz continuous, (4) The associated ODE (44) has a stable point xe

with a basin of attraction, (5) There is a compact set Λ ⊂ such that xt ∈ Λ
infinitely many times with probability 1. Then, for any initial condition

x0 ∈ Λ for (39), xt → xe with probability 1.
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It is straightforward to verify every condition for Theorem 3.1. From the

right hand side of (44), we can calculate the stationary point of (44) where

φ̂π,t = φπ (51)

must hold. That is, in a self-confirming equilibrium, the private sector

agents correctly infer the degree of the government’s hawkishness toward

inflation. Following Bullard and Mitra (2002), we can verify that the sta-

tionary point of the associated ODE (i.e., the self-confirming equilibrium)

is stable if

φπ > 1. (52)

Hence, as long as the government is committed to an active Taylor-type

rule, the least squares learning algorithm converges to the self-confirming

equilibrium. Furthermore, by following Bullard and Mitra (2002), we can

also show that if

φπ < 1, (53)

then the self-confirming equilibrium is not stable. From Evans and Honkapo-

hja (2001) and Bullard and Mitra (2002), we know that xt → xe with

probability 0 if φπ < 1.

If the private sector agents estimate (c, φ) according to the least squares

learning algorithm, then the gain sequence at for the recursive algorithm

satisfies the conditions of Theorem 3.1 and (ĉt, φ̂t) converges to the self-

confirming equilibrium with probability 1. Since the distribution of (ĉt, φ̂t)

converges to the mass point concentrated at (c, φ), the linearly approxi-

mated model is indeed an excellent way of analyzing the asymptotic prop-

erties of the original (non-linear) model.

The stability of the self-confirming equilibrium demonstrates that the

observational equivalence between the policy rule (4) with a fixed inflation

target and the monetary policy rule with a time-varying target is quite

robust. In the self-confirming equilibrium, one cannot reject the hypothesis

that the government is using an active Taylor-type rule with a fixed inflation

target. And, there is no possibility of escape so long as the private sector

agents use recursive least squares.
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3.2.2. Fixed gain algorithms

However, in the least squares learning algorithm characterized by the

gain sequence at = 1/t, the private sector agents presume that the under-

lying economy is stationary so that the data observed a long time ago is

just as useful as the most recently observed data, and consequently, they

assign equal weight to all past data. But if the private sector agents are a

little suspicious about the stationarity of the underlying economy, the least

squares learning algorithm is no longer a sensible way of estimating (c, φ).

In particular, if the agent observes that the estimated hawkishness of the

government toward inflation is fluctuating, the stationarity of the economy

and the commitment of the government to respond aggressively to inflation

is called into question.

Under this hypothesis, a sensible learning algorithm assigns a larger

weight to more recently observed data. One simple way of implementing

this idea is to set

at = a > 0 (54)

for a small positive constant a, so that the private sector agents can dis-

count the influence of past observations at a geometric rate. In contrast to

the least squares learning algorithm in which at is decreasing, we call the

learning algorithm with at = a a fixed gain algorithm.

One cannot apply Theorem 3.1 to show the convergence to the self-

confirming equilibrium with probability 1 for a fixed gain algorithm, be-

cause one of the conditions of the theorem regarding at is violated. Yet,

we can still prove that the invariance distribution converges to the self-

confirming equilibrium in a weaker sense.

Theorem 3.2. (Benveniste, Metivier and Priouret (1990)) For each

a > 0, the recursive learning algorithm has an invariance distribution of

(ĉt, φ̂t). This invariance distribution converges weakly to the self-confirming

equilibrium which is the stable point of the associated ODE.

For a sufficiently small a > 0, (ĉt, φ̂t) must be distributed around the

stable point of the associated ODE. Thus, many of the properties found
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in the least squares learning algorithm are carried over to the fixed gain

algorithm.

Surprisingly, with at fixed to a small value a > 0, the dynamics of (ĉt, φ̂t)

reveals rare but recurrent escapes from the self-confirming outcome (the

stable solution of the associated ODE). In particular, φ̂π,t escapes from the

stable point φπ > 1, and moves toward 1, before returning to a neighbor-

hood of φπ > 1. Recall that the government is committed to a fixed value

φπ > 1, which means that its attitude toward inflation remains equally

hawkish at all times throughout the entire episode. But because the per-

ceived hawkishness of the government’s attitude toward inflation is fluctu-

ating over time due to the shocks in the system, the target inflation rate

is also fluctuating. As a result, as we will see, the inflation rate and the

nominal interest rate may stay away from the stable point of the associated

ODE (the self-confirming equilibrium) for an extended period.

We begin our analysis of this phenomenon with a quantitative illustra-

tion.

3.3. A quantitative illustration

The main qualitative feature of our simulation–that the system even-

tually displays a large deviation from the self-confirming equilibrium–is

quite robust across parameter choices. But for purposes of illustration, we

used the following parameter values. For the structural parameters, we

took the calibrated values from Woodford (1999), σ = 0.157, κ = 0.024,

and we set β = .9975. This means that the annualized real interest rate,

ρ = β−1−1, is one percent in this example. We set δ0 = −ρ. In the stochas-
tic processes, we set α = .9, σ� = .00372, and ση = .002. This represents a

high degree of serial correlation and a low level of noise in the system rela-

tive to Woodford (1999). This is mainly so that the noise does not interfere

with our observation of the escape dynamics. We keep the constant gain

factor small by setting a = .005.We set δ1 = 1/500, a low value that shows

how mild the inflation target dependence on private sector beliefs can be.

This leaves only the coefficient in the government’s Taylor-type rule to be

set. We want to choose a value that is consistent with both determinacy

and learnability in the Bullard and Mitra (2002) analysis. This requires

roughly that φπ > 1 in this model. Of course, we want to analyze an active
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Taylor-type rule as well, which also means φπ > 1. Accordingly, we set

φπ = 5. In conjunction with δ1 = 1/500, this parameter choice means that

the government’s target inflation rate at the self-confirming equilibrium is

2.997 percent. The target nominal interest rate is then 4.0 percent for this

example.

The escape outcome will turn out to be a situation where the perceived

hawkishness of monetary policy, φ̂π,t, is consistent with a Fisher relation

instead of with a Taylor-type rule. In the Fisher relation, nominal interest

rates move one-for-one with inflation, so that φ̂π,t = 1, far more passive

than the actual value of φπ = 5. The escape outcome is therefore charac-

terized by values of −20 basis points for the inflation rate, and 80 basis
points for the nominal interest rate.

Figure 2 shows the nominal interest rate dynamics for this example, in

a simulation of 3,500 periods initialized at the self-confirming equilibrium.

The system remains in a neighborhood of the self-confirming equilibrium

for about 3,000 periods before an abrupt escape to the low nominal interest

rate, low inflation outcome occurs. The low nominal interest rate outcome

is not a self-confirming equilibrium, because the private sector holds the

belief φ̂π = 1 when in fact the government’s policy is unchanged and has

φπ = 5. Therefore, even though it is not apparent from the figure, the

system does not remain at the escape outcome indefinitely. Instead, the

private sector gradually begins to discover that its estimate of monetary

hawkishness is too low, and they begin to revise their estimate away from

one and toward the actual value φπ. This sends the system on a climb back

toward the self-confirming equilibrium.15

Figure 2 displays an abrupt escape from the self-confirming equilibrium,

in the context of 3,500 observations of the nominal interest rate. In Figure

3, the dynamics of the nominal interest rate and the inflation rate are

shown near the date of the escape–to obtain this figure, we selected 100

observations on the nominal interest rate as well as inflation for the period

near the escape depicted in Figure 2. Figure 3 shows that the escape

dynamics are abrupt, but not unrealistically so when compared to the

15This figure makes it seem like an escape would hardly ever occur. However, some-
what larger values of the gain a cause escapes to occur much more frequently.
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Figure 2.  An abrupt departure

FIG. 2. A large deviation from the self-confirming equilibrium nominal inter-
est rate. The system maintains interest rates in a neighborhood of 4.0 percent
for many periods, but eventually the system departs to a low nominal interest
rate outcome.

actual Japanese data in Figure 1. The nominal interest rate falls from

about 4 percent to just below 1 percent over a period of 16 quarters or

so. The inflation rate also falls during this period. The inflation rate is

relatively smooth in the figure because we do not have an inflation-specific

shock in the model.

Despite the fact that the self-confirming equilibrium is globally stable

under the learning algorithm, the model admits recurrent epochs of low

inflation and low nominal interest rates. Our main interest is to understand

the dynamics away from the stable self-confirming equilibrium. Because the

convex Taylor-type rule complicates the analysis significantly, we prefer to

use the linearly approximated model to investigate the escape dynamics.

However, we first need to examine whether the linearly approximated model

is a sensible one to use to investigate the dynamics around the stationary

point as well as away from the stationary point of the associated ODE.

3.3.1. Heuristics

Before presenting a formal analysis, it may be instructive to see the

mechanism that triggers the escape observed in Figure 2. Figure 4 depicts
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Figure 3.  Escape dynamics

FIG. 3. A closer look at the escape dynamics. The nominal interest rate
falls sharply over a period of say, 20 quarters, close to the observed timing in
Japan documented in Figure 1. Inflation also falls, from just below three percent
to a slight rate of deflation. Inflation is relatively smooth because we have no
inflation-specific shock in the model.

the self-confirming equilibrium in the linearly approximated model. The

linearly approximated Taylor-type rule has a slope steeper than the Fisher

equation which is a line with slope 1 passing through −ρ on the π-axis.
The intersection of the linearized Taylor-type rule and the Fisher equation

is the self-confirming equilibrium outcome. From equations (11) and (12),

we know that (πdt , r
d
t ) is distributed around the self-confirming equilibrium.

Since the estimated Taylor-type rule (18) must have the same slope as the

(true) linearized Taylor-type rule, (πdt , r
d
t ) must be distributed along the

linearized Taylor-type rule.

Since the self-confirming equilibrium is stable, we can find a small neigh-

borhood around the equilibrium in which the gradient of the associated

ODE is pointing toward the equilibrium. That is, there exists µ > 0 such

that ∀x ∈ Nµ(x
s), where xs is the stationary solution of the associated

ODE, such that

d

dt
|x− xs|2 < 0. (55)
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FIG. 4. Heuristic escape dynamics. Data generated along BC leads private
sector agents to estimate a less hawkish monetary policy (a regression line with
a flatter slope). This causes the inflation target to fall, reinforcing the belief in a
less hawkish policy. This process continues until the escape outcome is reached.

It must be pointed out that the notion of stability does not require that the

gradient induced by the ODE points to the self-confirming equilibrium. It

suffices that xt can return to the small neighborhood of the self-confirming

equilibrium and remains there after a certain finite period. Indeed, in

our case, the path returning to the neighborhood of the self-confirming

equilibrium may take a long detour, and (55) generally fails outside of the

small neighborhood of the stable solution xs.

Because the self-confirming equilibrium is stable, we begin by supposing

that a cluster of data has been generated about the equilibrium point. We

then imagine that for some reason (as we will explain shortly), φ̂π,t has

decreased. Despite the fact that the government is actually maintaining

the same degree of hawkishness, the perceived attitude of the government

toward inflation can change. Because the private sector agents conjecture

the target inflation rate according to (19), the perceived target inflation

rate also drops. Then, as the government incorporates the private sector’s

belief through (10), the actual target also shifts toward the left of the self-

confirming equilibrium in Figure 4.
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Once this lowering of the inflation target has occurred, the new realiza-

tions of (πdt , r
d
t ) will be generated around the new inflation target according

to (7) and (8 ). Since the target inflation and the target interest rate must

satisfy the Fisher relation, they must stay along the 45 degree, Fisher re-

lation line passing through −ρ on the π-axis in Figure 4. As the private
agents are fitting the regression equation to the observed data, the esti-

mated slope must converge toward 1, because one cluster of data is around

the self-confirming equilibrium and the other cluster of data is away from

the equilibrium along the Fisher relation, which has slope 1.

As φ̂π,t becomes smaller, π
B
t and π̄t again become still smaller following

the same process described above, so that the inflation and nominal interest

rate targets are even further away from the self-confirming equilibrium. As

most data are accumulated along the Fisher relation, the estimated slope

must continue to converge toward 1. The limit of this process has the target

inflation rate determined accordingly:

π̄t = π∗t = δ0 + δ1 (56)

which is precisely the lower bound of target inflation found in the simula-

tions.

Since φ̂π,t = 1 is not a stable point of the associated ODE, the mean

dynamics starts to take over to push φ̂π,t back to the self-confirming equi-

librium φ̂π,t = φπ > 1.

It remains to explain what kind of a sequence of outcomes can trigger

(πt, rt) away from the small neighborhood of the self-confirming equilibrium

in which the gradient induced by the associated ODE is pointing toward the

self-confirming equilibrium. By the definition of the associated ODE, the

outcome must stay around the self-confirming equilibrium on average. The

weak law of large numbers indicates that the outcome must stay around the

mean with a large probability. Essentially, we have to identify a sequence

of unusual events that pushes φ̂π,t away from the small neighborhood of

φπ > 1 in order to explain what events can trigger the episode of escape

from the self-confirming equilibrium.

Although the simulations were carried out under the assumption that

vt = (wt, ηt) has a Gaussian distribution, it is much more convenient to
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explain the key intuition of escape if we assume that the perturbations have

discrete, binomial distributions. For the sake of discussion, let us assume

that ηt can have ση > 0 with probability 0.5, and −ση with probability
0.5. Similarly, assume that �t = −σ� or σ� with an equal probability.
Since wt and ηt can have two different values respectively, (πt, rt) can

have 4 different realization around the self-confirming equilibrium as de-

picted in Figure 4 by the points A, B, C, and D. The convex hull of those

four realizations forms a parallelogram centered around the self-confirming

equilibrium. By connecting the self-confirming equilibrium to each one of

the four points, we can see how each realization can change the slope of

φ̂π,t. Let us call the vector obtained by connecting the self-confirming equi-

librium to one of the four realization of the outcomes a shifting vector. We

then have four shifting vectors. Since the convex hull of the four points

forms a parallelogram, two shifting vectors must be linearly dependent, as

they are pointing in opposite directions.

Let us draw a small ball around the self-confirming equilibrium. We

need to find the sequence of outcomes that can reach the boundary of the

ball with the minimal steps. More precisely, fix a point on the boundary

of the ball, and find a sequence of “unusual” events that lead to a small

neighborhood of the exit point with minimal steps.

Because the four shifting vectors are two pairs of linearly dependent

vectors, if one chooses three or more vectors out of four to generate an

escape path from the self-confirming equilibrium, some of the vectors cancel

out. In order to minimize the waste of time for escape, any path that

can reach a small neighborhood of a fixed point on the boundary of the

small ball around the self-confirming equilibrium must be generated by at

most two out of four different shifting vectors around the self-confirming

equilibrium. A careful examination of Figure 4 reveals that among all six

possible combinations of two shifting vectors out of four, exactly one pair

of shifting vectors pushes φ̂π,t below φπ. This is the sequence of “unusual”

events that most likely trigger the escape out of the small neighborhood of

the self-confirming equilibrium.

One may wonder why the estimated slope φ̂π,t does not escape upward

from φπ. To see this, first recall that as the estimated slope becomes
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larger, the perceived and actual inflation targets also increase. Thus, the

center of the distribution of data is shifting toward the right of the self-

confirming equilibrium in Figure 4. However, as more data are generated

along the Fisher relation, which has slope 1, the estimated slope must

converge toward 1. This lowers the inflation target, tending to move the

system back toward the self-confirming equilibrium. Thus, whenever there

is an escape, it must happen in such a way that the target inflation falls

from the self-confirming equilibrium level.

3.3.2. Formal analysis

Because the slope of the estimated Taylor-type rule, φ̂π,t plays a vital

role in determining the target inflation rate, we shall focus on the dynamics

of φ̂π,t. The intercept φ̂0,t is determined as the regression residual, once

φ̂π,t is determined. Let φs be the self-confirming equilibrium outcome.

Similarly, let φr = (ρ, 1). If φ = φr, then the estimated Taylor-type rule

coincides with the Fisher relation.

Fix ρφ > 0 and define

Ωρφ =
n
∃T <∞, φt 6∈ Nρφ(φ

s) & φ1 = φs
o
. (57)

By following the analysis of Dupuis and Kushner (1989), one can show that

there exists S∗(ρφ) ∈ (0,∞) such that

− lim
a→0

a log Pr
³
Ωρφ

´
≤ S∗(ρφ) (58)

which implies that Ωρφ is a rare event whose probability vanishes at the

rate of e−S
∗(ρφ)/a, as a→ 0, φt converges to φ

s in distribution. Let Σv be

the covariance matrix for the perturbation vt.

Proposition 3.1. ∀ρφ > 0,

lim
a→0

Pr
³
φt ∈ Nρφ(φ

r)
¯̄̄
Ωρφ

´
= 1. (59)

Proof. As φt is moving away from φs, the target (πt, rt) also moves

along the Fisher relation. Thus, (πt, rt) is realized around the target, and
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the deviation (πdt , r
d
t ) from the target is bounded by v under the first (tem-

porary) assumption. Abusing notation, we can write

|rt − πt − ρ| ≤ v ∀t ≥ 1. (60)

Fix a small ρφ > 0. Since the target is moving smoothly with respect

to the changes of φt, we can choose a corresponding ρπ > 0 such that

φt ∈ Nρφ(φ
s) if and only if πt ∈ Nρπ(π

s). Define T (ρφ) as the first time

when

φt 6∈ Nρφ(φ
s) (61)

and similarly, let T (ρφ/2) be the first time when

φt 6∈ Nρφ/2
(φs). (62)

Since φT (ρφ) minimizes the (weighted) forecasting error, φT (ρφ) solves

min
(φ0,φπ)

(1− a)

T (ρφ)X
j=1

aj−1
h
rT (ρφ) − φ0 − φππT (ρφ)−j+1

i2
. (63)

We can write

(1− a)

T (ρφ)X
j=1

aj−1
h
rT (ρφ) − φ0 − φππT (ρφ)−j+1

i2
=

(1− aT (ρφ/2))

T (ρφ)−T (ρφ/2)X
j=1

aj−1
h
rT (ρφ) − φ0 − φππT (ρφ)−j+1

i2

+ aT (ρφ)−T (ρφ/2)
T (ρφ/2)X
j=1

aj−1
h
rT (ρφ) − φ0 − φππT (ρφ)−j+1

i2
. (64)

Note that the second term vanishes as a→ 0. Instead of the entire objective

function, let us focus on the first term of the above equation, and examine

a “simplified” minimization problem:

min
(φ0,φπ)

(1− aT (ρφ/2))

T (ρφ/2)−T (ρφ/2)X
j=1

aj−1
h
rT (ρφ) − φ0 − φππT (ρ)−j+1

i2
.

(65)
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Let {φ̂at } be the sequence of estimators obtained from the “original” min-

imization problem (63) and {φ̂m,a

t } be the sequence obtained from the

“simplified” minimization problem (65). We add a to the superscript of φt
in order to emphasize the role of the gain sequence. Since the objective

function of (63) converges uniformly to the objective function of (65) which

is strictly concave, the sample path
n
φ̂
a

t

o
converges uniformly to

n
φ̂
m,a

t

o
:

lim
a→0

¯̄̄
φ̂
a

t − φ̂
m,a

a

¯̄̄
= 0 ∀t ∈ {T (ρφ/2), . . . , T (ρφ)}. (66)

In (65), the agent is fitting a regression line to the data generated around

the Fisher relations:

Etπt = πt, Etrt = rt, and rt = πt + ρ. (67)

By the definition of T (ρφ), ¯̄̄
πT (ρφ) − πs

¯̄̄
= ρπ (68)

which is fixed. Since the feedback rule is a smooth function of φt, πt must

be scattered between πT (ρφ) and πs, and the number of the data points

must increase as a → 0. Hence, as a → 0, the estimated slope φ̂
m,a

π,T (ρφ)

from (65) must converges to the slope of the Fisher relation in distribution:

φ̂
m,a

a,T (ρφ)
→ 1 (69)

weakly as a → 0. Combining (66) and (69), we have the desired conclu-

sion.

Note that the proof of Proposition 3.1 applies both to the original system

and to the linearly approximated system. Thus, the tail of the linearly

approximated model is “close” to the tail of the original model in the sense

that conditioned on the event that φ̂t moves away from the center of the

distribution, the most likely place of escape is φr.

The proof of Proposition 3.1 reveals the two key elements that generate

the escape dynamics. The first element is the fixed gain algorithm that

reflects the small amount of suspicion on the part of private sector agents

about the stationarity of the underlying economy. With the fixed gain
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algorithm, the influence of the past data observed before T (ρφ/2) is de-

preciated at a geometric rate, which is crucial in obtaining (66). With the

least squares estimation in which every data is assigned the equal weight,

the data observed before T (ρφ/2) can maintain the same level of influence

to φ̂
a

T (ρφ)
as a → 0, which keeps the estimator around the self-confirming

equilibrium instead of triggering the escape dynamics.

The second element is the misspecification of the model and the feedback.

The auxiliary regression (18) presumes φ0 as a constant. However, φ0
reflects the location of the center of the distribution, which is the target

inflation and the target nominal interest rate. Since both variables are

changing according to the government’s feedback rule, the agent’s model,

especially (18), is misspecified.

However, the misspecified model alone is not enough to trigger the es-

cape dynamics. The unusual dynamics are triggered only when the mis-

specification is combined with the feedback rule of an agent, in this case,

the government. Once the private sector becomes pessimistic about the

government’s attitude toward inflation (lower φ̂π), the private sector’s pes-

simism is reflected in the government’s shift of the target level of inflation,

even though its attitude toward inflation φπ remains unchanged. However,

as the data is generated along the Fisher relation, the shifted target is

interpreted by the private sector as less hawkish attitude of the govern-

ment, because the estimated slope φ̂π is lowered toward 1. This process

is self-reinforcing until the estimated slope coincides with the slope of the

Fisher relation. This is the point where the escape dynamics stops and the

mean dynamics takes over to push the private sector’s belief back to the

self-confirming equilibrium.

4. CONCLUSION

In this paper we have developed a theory of near-zero nominal interest

rates, as observed in Japan in the 1990s and the U.S. in the 1930s. Our

theory is that the economy inadvertently “slides down a Fisher relation”

because of misunderstanding concerning the nature of the government’s

inflation target. The theory is based on the existence of a self-confirming

equilibrium in which inflation and nominal interest rates are relatively high.
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Our dynamic system can make sudden departures from that equilibrium

towards a persistent low inflation, low nominal interest rate outcome which

looks like observed “liquidity trap” episodes in major industrialized coun-

tries. These escape dynamics are a consequence of the large deviation

properties of our system. We have stressed that three key ingredients are

required to generate the escape dynamics. The first of these is that the

private sector’s model of the government’s policy is (subtly) misspecified.

The second element is that there is some feedback from beliefs to policy

actions. And finally, the private sector needs to learn using a constant gain

algorithm, which might be interpreted as allowing these agents to acknowl-

edge their own uncertainty concerning the system in which they operate.

With these elements in place, we showed that the long-run behavior of our

small macroeconomic model includes recurrent visits to the “liquidity trap”

outcome, even though that outcome is not a self-confirming equilibrium of

the system.

From the government’s point of view, perhaps little can be done to stop

the private sector from continually using available data to update their es-

timates of the policy rule the government uses. And similarly, the nature

of the econometric procedure the private sector employs may also be some-

thing the government cannot reliably influence. However, the third element

needed to generate escape dynamics in this model is the feedback from pri-

vate sector beliefs to the inflation target. If the government could credibly

commit to a constant long-run inflation target, there could be no escape

from the unique self-confirming equilibrium in this model. A number of

central banks have, in recent years, begun to state their inflation target

more explicitly, although not the Bank of Japan or the Federal Reserve.
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