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1 Introduction

The recent years have witnessed a general success of central banks of major

world economies in conquering inflation. Consequently, a renewed interest

has emerged among academics and policymakers in a more systematic analy-

sis of how to conduct monetary policy in low inflation environments, where

lower average levels of nominal interest rates increase the likelihood of the

zero bound being a binding constraint.1 Questions that immediately arise

are: How can the central bank stimulate aggregate demand in the economy

if it cannot lower nominal interest rates any further? And what should the

central bank do to minimize the chances that the economy might fall into a

situation of zero nominal interest rates?

The relevant literature has been able to sketch the following answers

to these questions: When zero nominal interest rates are reached, the cen-

tral bank can still continue to reduce real rates and stimulate aggregate

demand by generating inflationary expectations.2 To prevent the economy

from falling into a situation of zero nominal rates in the first place, the central

bank should sustain a higher long-run average rate of inflation than would be

the case without the lower bound. In addition to adopting such an inflation

‘buffer,’ the central bank should act in a ‘preemptive’ fashion, turning more

expansionary and aggressive already when adverse shocks threaten to push

the economy into a situation of zero nominal rates.3

The main contribution of this paper is to show that there is a crucial

aspect of the design of monetary policy in a low inflation, low interest rate
1In principle achieving negative nominal rates is feasible, e.g., if one is willing to give

up free convertibility of deposits and other financial assets into cash or if one could levy
a tax on money holdings, see Buiter and Panigirtzoglou (2003) and Goodfriend (2000).
However, a general consensus on the applicability of such policy measures seems not to
have been reached yet.

2The key insight that the management of private-sector expectations by the central
bank can mitigate the effects of the zero lower bound can be traced back to Krugman
(1998). Bernanke and Reinhart (2004) argue that central banks do understand the im-
portance of influencing market expectations of future policy actions. Empirical evidence
that the Federal Reserve has been successful in this is provided by Bernanke, Reinhart
and Sack (2004).

3A more detailed review of the literature follows in section 2.
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environment that so far has not been dealt with: What are the implica-

tions of a high degree of inflation persistence, as actually observed in major

world economies, for the determination of the optimal inflation buffer and

preemptive policy action?

To address this issue, the framework adopted is a version of the well-

known NewKeynesian sticky-price model, where inflation is also partly deter-

mined by past inflation, see Clarida, Galí and Gertler (1999) and Woodford

(2003). The model is calibrated to the U.S. economy accounting for the high

degree of inflation persistence as actually observed in the data, e.g., Chris-

tiano, Eichenbaum and Evans (2001) and Giannoni and Woodford (2003).

From a technical point of view, the policy problem as studied in this paper

simultaneously addresses three specific features, each of which significantly

aggravates its solution. These features are the occasionally binding con-

straint on the policy instrument, the standard conditions of uncertainty, and

the forward-looking nature of the model. Only recently, nonlinear numerical

methods apt to solving this general class of problems have been developed,

see Adam and Billi (2003a) for the purely forward-looking case.

Anticipating the main findings, it is shown that the optimal inflation

buffer is increasing in the degree of inflation inertia, and purely forward-

looking models may severely underestimate its relevance. Assuming the

central bank aims at minimizing a traditional loss function would entail a

somewhat smaller buffer, than with a welfare-theoretic objective. Taking

also into account potential downward nominal rigidities in the price-setting

behavior of firms appears not to increase significantly the buffer. Interest-

ingly, at the lower bound output losses may be accompanied by inflation,

rather than deflation, because of the forward-looking nature of expectations

in the model.4

The remainder of this paper is structured as follows. Section 2 reviews

the related literature. Section 3 introduces the policy problem and its cali-

bration. Section 4 illustrates the optimal policy, thereby revealing the effects
4Demand shortfalls and deflation are features commonly associated with the concept

of a ‘liquidity trap.’
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of inflation inertia on the optimal buffer. Section 5 considers alternative

policy objectives. Section 6 introduces potential downward nominal rigidity.

Section 7 briefly concludes. The appendix explains the solution method and

the numerical algorithm employed.

2 Related Literature

The relevance of the zero lower bound for the determination of the optimal

inflation rate in the economy has been noted by Phelps (1972) and Sum-

mers (1991). The buffer role of inflation and preemptive policy action find

support also in Bernanke (2000). Faust and Henderson (2004) argue that

determining how large an inflation buffer to allow is a technical question and

the answer may change over time as the economy changes; therefore, they

suggest keeping the choice of the inflation target in the hands of the central

bank and for revisiting it periodically.

A number of recent papers examine how monetary policy should be con-

ducted in the presence of a zero lower bound on nominal interest rates.5

One strand of the literature examines the performance of simple policy

rules. Among these are Fuhrer and Madigan (1997), Coenen, Orphanides

and Wieland (2004), and Reifschneider and Williams (2000) that study dy-

namic rational expectation models employing simulation methods. Wolman

(2004) adopts a general equilibrium framework. This set of papers shows

that with a targeted inflation rate close enough to zero simple policy rules

formulated in terms of inflation rates, e.g., the ‘Taylor rule’ (1993), can gen-

erate significant real distortions.6 Pursuing instead a target rate of inflation

5Rotemberg and Woodford (1998) and Smets (2003), among others, address the lower
bound constraint only indirectly by penalizing policies resulting in exceedingly variable
nominal interest rates. This approach has the advantage of preserving the simplicity of
standard linear-quadratic approximation methods. But comes at the cost of neglecting
the asymmetry that is inherent in the interest rate policy.

6Reifschneider and Williams (2000) and Wolman (2004) find also that simple policy
rules formulated in terms of a price level target, rather than an inflation target, can yield
a dramatic reduction of the real distortions associated with the zero lower bound. In
fact, price level rules build in an offset to past deviations from the rule itself, introducing
into the central bank’s policy actions a form of ‘history-dependence’ that relates to policy
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larger than zero can reduce the distortions in the stochastic properties of the

economy. But how to determine the optimal size of such an inflation target

remains an open question, addressed by the current paper.

Another strand of the literature examines the design of optimal mone-

tary policy in models with backward-looking expectations. Orphanides and

Wieland (2000) and Kato and Nishiyama (2003) characterize optimal mone-

tary policy in stochastic dynamic rational expectation models where private-

sector expectations about future policy actions play no role. These papers

show that ‘preemptive’ easing is optimal in the run-up to a binding lower

bound even if the central bank cannot intervene in the economy through the

expectational channel by promising inflation.

However, key to effective central-bank action is the ‘management of ex-

pectations’ on future policy actions, see Krugman (1998). Building on this

insight, a further set of papers study the purely forward-looking version of the

standard New Keynesian sticky-price model. Jung, Teranishi and Watanabe

(2001) and Eggertsson and Woodford (2003) consider the deterministic setup

and very special cases of the stochastic shock processes, respectively. But

‘preemptive’ easing of optimal policy arises from having uncertainty about

the future state of the economy. Adam and Billi (2003a) offer a rigorous

treatment of optimal policy design under standard conditions of uncertainty

in the purely forward-looking model.

The optimal monetary policy in the New Keynesian sticky-price model

when the central bank is unable to commit to future plans is characterized by

Adam and Billi (2003b).7 Discretionary policy making gives rise to a down-

ward bias in the average inflation rate.8 Aiming for a positive inflation target

can alleviate the lower bound constraint, but has to be weighed against the

additional welfare costs being imposed on the economy. Already a modest

making under commitment.
7Wether policymakers can and may want to credibly commit to future plans is currently

subject of debate, see Orphanides (2003).
8Krugman (1998) seems to have been the first to note that under discretion the lower

bound may generate a ‘deflation bias.’
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degree of inflation inertia significantly amplifies the demand shortfalls and

deflation that arise at zero nominal rates. Instead in the current paper it

is shown that higher inflation indexation might lead to an inflationary path

at the lower bound. This counter intuitive result is explained by the abil-

ity of the central bank to generate inflationary expectations under policy

commitment.

In this paper the interest rate is assumed to be the only available policy

instrument.9 The role of the exchange rate and of quantity-based monetary

policies in mitigating the distortions imposed by the lower bound is ana-

lyzed, among others, by Auerbach and Obstfeld (2003), Coenen and Wieland

(2003), McCallum (2003), and Svensson (2003). Eggertsson and Woodford

(2004) study the implications of optimal fiscal policy in the form of distor-

tionary taxation. These papers however do not address the issue of how to

characterize the optimal inflation buffer.

3 Model and Calibration

This section introduces the optimal policy problem and illustrates the cali-

bration to the U.S. economy.

3.1 Monetary Policy Problem

A standard dynamic general equilibrium framework with nominal rigidities

from staggered price-setting behavior of firms is considered. It is well-known

in the literature as the ‘New Keynesian’ model, as described by Clarida, Galí

and Gertler (1999) and Woodford (2003).

Log-linearizing the model around the deterministic steady-state, apart

from the zero lower bound on nominal interest rates, reduces it to a two-

equation system: an aggregate-supply relation capturing the price-setting

behavior of firms; and an intertemporal IS relation describing the private

9Indirectly, also ‘promises’ that have to be kept form past commitments can be thought
of as policy instruments, see appendix A.1.
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expenditure decisions of households.10 This otherwise standard monetary

policy problem is here augmented by explicitly imposing the lower bound,

kept in its original nonlinear form.

The policy problem of the central bank is:

max
(yt,πt,it)

−E0

∞X
t=0

βt
¡
(πt − θπt−1)

2 + αy2t
¢

(1)

s.t.

πt =
1

1 + βθ
[βEtπt+1 + θπt−1 + λyt] (2)

yt = Etyt+1 − σ (it −Etπt+1 − rnt ) (3)

rnt = (1− ρr) r̄ + ρrr
n
t−1 + εrt (4)

it ≥ 0 (5)

where πt denotes the quarterly inflation rate and yt the output gap, i.e.,

the deviation of output from its ‘natural’ flexible-price equilibrium. The

quarterly nominal interest rate it is the instrument of monetary policy.

The welfare-theoretic objective of the central bank, equation (1), is a

quadratic (second-order Taylor series) approximation to the expected utility

of the representative household. Where β ∈ (0, 1) is the discount factor and
the weight α > 0 depends on the underlying structure of the economy.11 The

model abstract from the transaction frictions and money demand distortions

associated with positive nominal interest rates.

Equation (2) is a deterministic aggregate-supply relation, that allows for

backward-looking indexation of individual prices to an aggregate price in-

10The reader is referred to Woodford (2003) for further discussion of the foundations of
the New Keynesian model.
11With inflation inertia from backward-looking indexation of individual prices to an

aggregate price index, firms that do not reoptimize their prices raise them mechanically
by an amount θπt−1. To reduce the distortions associated with price dispersion it is thus
the change in the rate of inflation, πt − θπt−1, rather than inflation, πt, that has to be
stabilized around zero, see Ch. 6 in Woodford (2003).
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dex. Where λ > 0 is the slope parameter, that depends on the underlying

structure of the economy, and θ ∈ (0, 1) indicates the degree of indexation
to the aggregate price index. For θ = 0 equation (2) reduces to the purely

forward-looking case. For θ > 0 inflation is partly determined by lagged

inflation, which becomes an endogenous state variable of the model. This

follows Christiano, Eichenbaum and Evans (2001) in addressing the sub-

stantial criticism directed at the purely forward-looking version of the New

Keynesian stick-price model for its inability to capture the high persistence

that inflation displays in the data.

The model abstracts from so-called ‘cost-push’ shocks that would shift

the aggregate-supply relation.12 Therefore, without a zero lower bound con-

straint on the nominal interest rate there would be no tension between the

two goals of inflation and output stabilization. This simplifies the solution

of the problem, since introducing exogenous ‘cost-push’ shocks would add

an additional state variable to the model.13 It also has an important ad-

vantage in terms of interpreting the results. The distortions observed in the

stochastic properties of the economy are arising only from the lower bound.

Moreover, equation (3) is a stochastic intertemporal IS relation, where

σ > 0 denotes the real interest rate elasticity of output. Equation (4) de-

scribes the evolution of the exogenous ‘natural’ real-rate of interest shock

rnt .
14 It is assumed to follow an AR(1) process with autoregressive coefficient

ρr ∈ (0, 1) and equilibrium value r̄. The innovation εrt is assumed normally

distributed with zero mean. The quarterly discount factor is implied by the

relation β = (1 + r̄)−1.

Equation (5) represents the zero lower bound on nominal interest rates,

kept in its original nonlinear form. Importantly, in this otherwise linear-

12Such disturbances could be interpreted as variations over time in the degree of mo-
nopolistic competition between firms.
13The model already has four state variables, see appendix A.1, and solving it is tech-

nically challenging.
14The disturbance rnt summarizes all shocks that under flexible prices generate time

variation in the real interest rate. Therefore, it captures the combined effects of preference
shocks, productivity shocks, and exogenous changes in government expenditure.
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quadratic policy problem certainty equivalence breaks down. The long-run

average rate of inflation π̄ does not necessarily coincide with the determin-

istic steady-state rate of inflation πss, in practice πss ≤ π̄.15 This lends

to clarify that studying the approximated model log-linearized around the

deterministic steady-state does not represent a limitation as serious as one

might initially think.

A paramount advantage of focusing on the nonlinearity induced by the

lower bound alone is that it economize in the dimension of the state space.

A fully nonlinear setup would require instead an additional state variable to

keep track over time of the higher-order effects of price dispersion, as shown

by Schmitt-Grohé and Uribe (2003).

3.2 Calibration to U.S. Economy

The optimal monetary policy problem introduced in the previous section is

calibrated to the U.S. economy. The baseline parametrization is summarized

in table 1.

The values assigned to the structural parameters of the economy are taken

from table 6.1 in Woodford (2003). Interestingly, the weight α derived from

the underlying structure of the economy is equal to 0.003 quarterly. This

is only a small fraction of unity that instead is commonly assumed in the

literature on the evaluation of monetary policy rules, based on the idea that

the central bank should give equal weight to its stabilization objectives.

In addition, following Christiano, Eichenbaum and Evans (2001) and the

estimates of Giannoni and Woodford (2003), the degree of inflation indexa-

tion θ is set close to unity, namely 0.99. This takes into account that in the

limiting case of full inflation indexation (θ = 1) the optimal nonlinear policy

for the welfare-theoretic loss function, equation (1), is not well defined. The

central bank would be stabilizing the pure change in the rate of inflation,

15The deterministic steady-state rate of inflation πss is the inflation rate that would
be observed when the state of the economy corresponds to the deterministic steady-state.
Only if certainty equivalence were to hold then πss = π̄.
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πt−πt−1, rather than inflation, πt. There would be no tension between infla-
tion stabilization and a higher long-run average rate of inflation in protecting

the economy from the lower bound.

The parameters that describe the evolution of the exogenous real-rate

shock rnt are set to the estimates of Adam and Billi (2003a). An equilib-

rium value of 3.5% annually, implying a quarterly discount factor of 0.9913,

standard deviation 1.6% annually and autoregressive coefficient of 0.8.

The robustness of the results obtained for the baseline calibration is

checked by solving the monetary policy problem also under the alternative

assumption of a much lower equilibrium value of the real-rate shock, say 2%

annually. Lowering the equilibrium value is of interest since it is equivalent

to increasing the variability of the real-rate disturbance, implying that the

economy would be more often than usual in a situation of zero nominal rates.

A lower equilibrium value of the real-rate shock may also be interpreted as

due to a reduction in the expected growth rate of government expenditures.

4 Optimal Policy

The policy problem outlined in the previous section is solved assuming that

the central bank can credibly commit to its policy plans. The solution

method and the numerical algorithm employed are explained in appendixes

A.1 and A.2, respectively. This section illustrates the main findings. All

variables are expressed in terms of annualized percentage points.

4.1 Buffer Role of Inflation

Discussed for first are the effects of inflation indexation in the economy on

the stochastic distribution of inflation. The model is nonlinear and certainty

equivalence breaks down, therefore, the long-run average rate of inflation π̄

will in general differ from the deterministic steady-state rate of inflation πss.

Depicted in each plot of figure 1 are two sets of statistics, one with the

zero lower bound being imposed (ZLB) and another with the nominal interest

10



rate allowed to become negative (LQ). The degree of inflation indexation θ

ranges from zero, corresponding to the purely forward-looking case, to the

baseline value of 0.99 implying almost full indexation.

The top panel of figure 1 shows that the optimal long-run average rate of

inflation consistent with the lower bound is increasing in the degree of infla-

tion indexation.16 The inflation buffer, from less than 1 basis point annually

in the purely-forward looking case, rises to about 79 basis points annually

with almost full inflation indexation. This reveals that inflation inertia in

the economy needs to be taken appropriately into account in assessing the

practical significance of the buffer role of inflation.

The middle panel of figure 1 depicts the standard deviation of inflation

over the degree of inflation indexation. Together with the first panel, this

shows that there is a positive relation between the inflation buffer and the

standard deviation of inflation. A positive correlation between the level and

the volatility of inflation is a well-known empirical feature of the data. The

model abstracts from exogenous ‘cost-push’ shocks, therefore, the inflation

buffer and the volatility of inflation are due solely to the policy trade-off that

arises from the zero lower bound.

The bottom panel of figure 1 illustrates how inflation indexation trans-

lates into actual inflation persistence in the economy. The autocorrelation of

inflation is higher with the zero lower bound, than without. The asymmetry

in the stochastic distribution of inflation arising from the lower bound adds

inertia to the inflation process. In the purely-forward looking case the au-

tocorrelation of inflation is about 0.73 with the lower bound and only about

0.49 without. However, for almost full inflation indexation in the economy

it rises above 0.99 both with and without the lower bound; the difference

is almost indistinguishable. Interestingly, this implies that a high level of

inflation inertia as observed in the data would be consistent with the central

bank either taking into account the lower bound or neglecting it.
16The statistics reported for the stochastic distribution of inflation, i.e., mean, standard

deviation and autocorrelation, are computed from a stochastic simulation of one-million
model periods on the optimal policy, see appendix A.2.
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To further clarify the practical relevance of the inflation buffer, figure 2

depicts the average occurrence of zero nominal interest rates as a function

of the degree of inflation indexation in the economy. Both with the zero

lower bound being imposed (ZLB) and without (LQ). Taking into account

the lower bound, a higher degree of indexation in the economy entails that

zero nominal interest rates occur less often. For the purely-forward looking

case the lower bound would bind about one quarter every 15 years on average.

While for almost full inflation indexation zero nominal rates are encountered

about one quarter every 218 years on average only.

Figure 2 also reveals that for a low degree of inflation indexation zero

nominal rates occur more frequently if the zero lower bound is being imposed.

Instead, for a sufficiently high degree of inflation indexation zero nominal

rates occur less frequently if there is a lower bound. 17

4.2 Policy Responses

Figure 3 displays optimal policy responses (y, π, i) and optimal expectation

responses (Ey0, Eπ0, Ei0) to a real-rate shock.18 Depicted in each plot are

three sets of optimal responses. With the zero lower bound imposed (ZLB,

θ = 0 or 0.99) and with the nominal interest rate allowed to become negative

(LQ). Interestingly, the linear-quadratic approximation of the policy prob-

lem is independent of the degree of inflation indexation θ, since the model

abstracts from ‘cost-push’ shocks.

In particular, figure 3 shows that without lower bound a real-rate shock

would not generate any policy trade-off, i.e., the required real-rate could be

implemented, at least theoretically, through variations in the nominal rate

alone, leaving both output at potential and inflation at zero. Instead, taking

17Section 4.3 shows that a higher degree of inflation indexation reduces the amount of
preemptive easing of nominal interest rates.
18Policies and expectations are displayed for a range of ±4 unconditional standard devia-

tions of the real-rate shock. To improve readability, the other state variables not shown on
the x-axes are all set to zero. This assumes that the monetary authority faces no past com-
mitments and that there was no inflation in the previous period, i.e., µ1 = µ2 = π−1 = 0,
see appendix A.1.
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into account the zero lower bound, for a sufficiently strong adverse real-

rate shock the central bank will not be able to further lower nominal rates

once the bound is binding. As depicted, with a zero (more generally, with a

sufficiently small) degree of inflation indexation in the economy, output starts

falling below potential and deflation arises. These are features commonly

associated with the concept of a ‘liquidity trap.’ However, if the degree

of inflation indexation is sufficiently high optimal policy generates inflation,

rather than deflation

This striking result of output losses being associated with rising inflation

due to the presence of the zero lower bound on nominal rates can be inter-

preted in the follow manner. Once the lower bound is reached, to achieve a

reduction in the real-rate of interest and stimulate aggregate demand in the

economy, the central bank needs to promise future inflation. As one may in-

fer from the aggregate-supply relation, equation (2), the higher is the degree

of inflation indexation in the economy the more inflation has to be promised

in order to contain the deflationary pressure. A larger inflation promise may

not only reduce the deflationary pressure but actually drive inflation up. Im-

portantly, this outcome relies on the assumption that the central bank can

credibly commit to carry out an inflationary policy in the future, after the

economy has evolved out of the binding lower bound.19

4.3 Preemptive Easing

Figure 4 illustrates in greater detail the optimal nominal interest rate re-

sponse, i, and also the optimal real-rate response, i − Eπ0, to a real-rate

shock. Again, depicted in each plot are three sets of optimal responses. With

the zero lower bound imposed (ZLB, θ = 0 or 0.99) and with the nominal

interest rate allowed to become negative (LQ).

19Adam and Billi (2003b) study optimal monetary policy in a similar model but under
discretion, i.e., assuming that the central bank is unable to influence expectations of the
future course of policy. They show that the zero lower bound entails a deflation bias,
rather than an inflation buffer. Moreover, inflation persistence causes the real interest
rate to remain undesirably high for a longer period of time, significantly increasing the
amount of deflation associated with adverse real-rate shocks.
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The two panels of figure 4 reveal that ‘preemptive’ easing of nominal

(and real) interest rates is optimal in the run-up to a binding lower bound.

Nominal (and real) rates are lowered more rapidly than without the lower

bound. To understand why this is the case one should note, looking back at

figure 3, in response to an adverse real-rate shock expected output is falling

already before the lower bound is actually reached, while output is yet at

potential. This is consistent with the intertemporal IS relation, equation (3).

Once the lower bound starts to bind and the central bank is promising future

inflation, output is expected to rise above potential. Then a further slide in

output commences to drag down also expected output.

Furthermore, the top panel of figure 4 discloses that a higher degree of

inflation indexation in the economy reduces the optimal amount of ‘preemp-

tive’ easing of nominal rates. Expected output needs to falls by less while

output is yet at potential (cfr. figure 3). And the lower panel shows that the

central bank needs to generate a smaller reduction in the real interest rate

once at the lower bound, since it promises more future inflation (cfr. figure

3).

4.4 Dynamic Responses

Figure 5 displays the dynamic responses of the economy (y, π − π̄, i, ) to

a real-rate shock, namely −3 unconditional standard deviations below its

baseline equilibrium value of 3.5% annually.20 This represents a relatively

large adverse real-rate shock, that would push it down to −1.3% annually.

As argued by Krugman (1998), negative real rates are plausible even if the

marginal product of physical capital remains positive. For instance agents

20Since in this nonlinear model certainty equivalence fails to hold, results are discussed
in terms of the implied ‘mean dynamics’ in response to the real-rate shock, instead of the
more familiar deterministic impulse responses. The mean dynamics are computed as the
average of 10, 000 stochastic simulations. The initial values of the other state variables
are set equal to their respective unconditional average values. Setting them instead to
conditional average values consistent with the real-rate shock does not make a noticeable
difference.
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may require a large equity premium, e.g., historically observed in the U.S.,

or the price of physical capital may be expected to decrease.

Depicted in each plot of figure 5 are two sets of mean responses, with

the degree of inflation indexation in the economy, θ, being either 0 or the

baseline 99%. Both sets with the lower bound. The figure clarifies that with

more inflation indexation in the economy inflation and inflation promises of

the central bank rise higher above average and are kept high for longer.21 For

almost full indexation after five quarters inflation rises more than 20 basis

points annually above its long-run average value; then converges back to

average only very slowly. Interestingly, inflation is still above average a long

time after real and nominal interest rates have returned to their respective

average values. In contrast, with no (more generally, with a lower degree of)

inflation indexation in the economy inflation rises by less and returns more

rapidly, than real and nominal interest rates, to its long-run average value.

5 Traditional Loss Function

The previous section illustrated the main findings of the model when assum-

ing that the central bank follows the prescriptions of a welfare-theoretic loss

function. As a robustness exercise, in this section an alternative specification

of the loss function is employed. Table 2 summarizes the implications for the

optimal inflation buffer.

The monetary policy problem is solved replacing the welfare-theoretic ob-

jective of the central bank, equation (1), with a loss function more commonly

employed in the monetary policy literature:

max
(yt,πt,it)

−E0

∞X
t=0

βt
¡
π2t + αy2t

¢
(6)

21The mean path of inflation tells also the evolution of expected inflation, since the
average rate of inflation in period n corresponds to the average rate of inflation that in
period n0 < n is expected for period n. The same can be said for all the mean responses
of the economy.
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where it is inflation, πt, instead of the change in the rate of inflation, πt −
θπt−1, that should be stabilized around zero.

As explained in section 3.2, the weight α derived from the underlying

structure of the economy is equal to 0.003 quarterly. This is only a small

fraction of unity that instead is commonly assumed in the literature, based

on the idea that the central bank should give equal weight to its stabilization

objectives. Therefore, the monetary policy problem is solved both for the

baseline value of the weight α = 0.003 and for α = 1.

Table 2 reports the optimal inflation buffer corresponding to the three

alternative specifications of the loss function, i.e., the ‘welfare-theoretic,’ the

‘traditional’ and the traditional with ‘equal weight.’ The table shows the

inflation buffer for the baseline value of the equilibrium real-rate of 3.5%.

Also shown is the buffer for a much lower equilibrium value of 2%, implying

that the economy would be more often than usual in a situation of zero

nominal rates. With the traditional loss function the buffer is less than 1

basis point annually for the baseline calibration; rising only to 4 basis points

annually for the lower equilibrium real-rate. This is in sharp contrast with

the welfare-theoretic case where the buffer is much higher at about 0.8%

annually for the baseline calibration; it rises to almost 1.9% annually for

the lower equilibrium real-rate. The equal weight loss function appears an

intermediate case in terms of the buffer, being at about 0.1% annually for

the baseline and about 0.5% annually for the lower equilibrium real-rate.

Figure 6 displays optimal policy responses (y, π, i) to a real-rate shock,

with the traditional loss function in the left-hand panel and with the tradi-

tional loss function with equal weight in the right-hand panel. Depicted in

each plot are three sets of optimal responses. With the zero lower bound

imposed (ZLB, θ = 0 or 0.99) and with the nominal interest rate allowed

to become negative (LQ). The figure shows that with the equal weight the

maximum output losses to and adverse real-rate shock would be roughly only

one third of those with the traditional loss function. Because more volatility

of inflation is tolerated by the central bank, relative to volatility of output.
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This also explains why the inflation buffer is larger with the equal weight.

Figure 7 illustrates in greater detail the optimal nominal interest rate

response, i, and also the optimal real-rate response, i − Eπ0, to a real-rate

shock. Again, with the traditional loss function in the left-hand panel and

with the equal weight in the right-hand panel. It can be seen that the tradi-

tional loss function entails far more ‘preemptive’ easing of nominal interest

rates. This is the case since the inflation buffer is lower and the risk of hitting

the lower bound is greater.

Figure 8 depicts the dynamic responses of the economy (y, π − π̄, i, ) to

a real-rate shock, namely −3 unconditional standard deviations below its

baseline equilibrium value of 3.5% annually. Again, with the traditional loss

function in the left-hand panel and with the equal weight in the right-hand

panel. As shown, with the equal weight inflation would rise higher above its

long-run average value, then converges back to average at a lower pace. The

central bank is thus more successful in generating inflationary expectations.

6 Downward Nominal Rigidity

As a further robustness exercise, in this section the policy problem is solved

taking also into account potential downward nominal rigidity in the price-

setting behavior of firms. Table 3 summarizes the implications on the optimal

inflation buffer.

Besides the zero lower bound, another important argument for a positive

long-run average rate of inflation in the economy is a potential asymmetry

in the price-setting behavior of firms, e.g., Summers (1991) and Krugman

(1998). This reflects the view that a positive rate of inflation may facilitate

wage adjustments in the economy when workers show resistance to wage bar-

gains requiring declines in nominal compensation (even if real wages were to

remain unchanged or rise because of declining aggregate prices). Resistance

to wage declines places upward pressure on the average level of real wage
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costs to firms, that may be inclined to pass them on to their prices, leading

to higher inflation at the aggregate level.22

A direct way of capturing the effects on the economy of downward nom-

inal rigidity is to generalize the objective of the central bank, equation (1),

rendering it asymmetric as follows:

max
(yt,πt,it)

− E0

∞X
t=0

βt
¡
(πt − θπt−1)

2 + cπ2t + αy2t
¢

(7)

where c = 0 if πt ≥ 0 and c ≥ 0 if πt < 0. Therefore, if πt ≥ 0 the asym-
metric objective, equation (7), collapses to its earlier quadratic expression

(1). Instead, if πt < 0 a decline in the rate of inflation is more costly to the

economy than an equivalent increase in inflation.

In the particular case of the ‘traditional’ loss function, introduced in

section 5, the asymmetric objective is ‘piecewise quadratic’ in πt.23 As an

illustrative example, the inflation component of the loss function is depicted

in figure 9 for an extreme value of c = 1 if πt < 0. This would imply that a

decline in the rate of inflation is 100% more costly to the economy than an

equal but opposite increase.

The model is solved with the asymmetric objective, equation (7), assum-

ing c = 1 if πt < 0. Table 3 reports the optimal inflation buffer corresponding

to the three alternative specifications of the loss function, i.e., the ‘welfare-

theoretic,’ the ‘traditional’ and the traditional with ‘equal weight.’ The table

shows that taking also into account the additional distortions due to poten-

tial downward nominal rigidities in the price-setting behavior of firms can

potentially increase further the inflation buffer. However, it appears not to

22For an influential study on the sources and implications of downward nominal rigidity
see Akerlof, Dickens and Perry (1996). The authors present empirical and simulation-based
evidence supporting the prevalence of downward nominal rigidity in the U.S. economy and
its significance for the economy’s performance, suggesting that an optimal inflation target
for monetary policy is greater than zero.
23The idea of introducing a piecewise quadratic criterion function in an economic policy

optimization framework finds an earlier treatment in Friedman (1975), Ch. 7, motivated
within the context of an international balance of payments example.
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have major implications beyond the effects already due to the zero lower

bound.

7 Conclusions

This paper characterizes optimal monetary policy in a New Keynesian sticky-

price model with inflation inertia when nominal interest rates are bounded

below by zero. It is assumed that the central bank can credibly commit to

its policy plans. The model is calibrated to the U.S. economy and solved

employing nonlinear numerical methods.

A main finding is that the optimal long-run average rate of inflation

in the economy consistent with the zero lower bound is increasing in the

degree of inflation indexation. Therefore, a purely forward-looking version

of the model may severely underestimate the relevance of such an optimal

inflation buffer. For a reasonable calibration to the U.S. economy the model

prescribes a buffer of about 0.8% annually. A lower equilibrium value of

the real-rate shock, say 2% annually, could imply an even larger buffer of

about 1.9% annually. Replacing the welfare-theoretic loss function of the

central bank with a traditional objective, it appears that a less pronounced

buffer would suffice. The model is solved also introducing an asymmetry

in the inflation objective of the central bank to take into account potential

downward nominal rigidity in the price-setting behavior of firms. This seems

not to add significantly to the inflation buffer.

These results highlight a number of fruitful avenues for future research.

First, the model abstracts from cost-push shocks that would shift the aggregate-

supply relation. It would be interesting to study the practical relevance of

introducing this further distortion into the economy, but would require fur-

ther progress in the numerical methodology developed. Second, other sources

of frictions could be introduced in the model, e.g., sticky-wages, again pend-

ing improvement in the numerical methods employed. Third, the interest

rate is assumed to be the only available policy instrument. It would be

useful to study the role of the exchange rate and distortionary taxation in
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mitigating the distortions imposed by the lower bound. Fourth, comparing

the optimal nonlinear policy with the performance of simple policy rules is

clearly of interest.

A Appendix

This appendix illustrates the solution method used for solving the optimal

policy problem and the numerical algorithm employed.

A.1 Solving the Model

The optimal monetary policy problem, equations (1)-(5), is not recursive,

since constraints (2) and (3) involve forward-looking variables.24. However, a

recursive formulation can be derived based on the corresponding Lagrangian

of the infinite horizon problem.

Specifically, applying the method proposed byMarcet andMarimon (1998)

the problem can be reformulated as:

W (st) = inf
x1
sup
x2

{h (st, x1t, x2t) + βEtW (st+1)} (8)

s.t.

µ1t+1 = γ1t , µ10 = 0

µ2t+1 = γ2t , µ20 = 0

rnt+1 = (1− ρr) r̄ + ρrr
n
t + εrt+1

it ≥ 0

where s = (µ1, µ2, π−1, rn) ⊂ R4 is the state space, x1 = (γ1, γ2) and x2 =

(y, π, i) are the vectors of controls, and the one-period return is

24Solving the optimal policy problem with downward nominal rigidity in the price setting
behavior of firms, in section 6, the quadratic loss function of the monetary authority,
equation (1), is replaced with the generalized asymmetric objective, equation (7).
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h (st, x1t, x2t) ≡ −αy2t − (πt − θπt−1)
2

+γ1t

³
πt − 1

1+βθ
(θπt−1 + λyt)

´
− µ1t

1
1+βθ

πt

+γ2t (yt + σ (it − rnt ))− µ2t
1
β
(σπt + yt)

The reformulated problem, equation (8), is a recursive saddle point func-

tional equation, i.e., a generalized Bellman equation. It requires maximiza-

tion with respect to the policies x2 = (y, π, i); and minimization with respect

to the Lagrange multipliers x1 = (γ1, γ2) of the constraints (2) and (3) that

contain forward-looking variables.

Besides the two original state variables (π−1, rn), there are now two addi-

tional co-state variables (µ1, µ2), given by the lagged values of the Lagrange

multipliers. These can be interpreted as measuring the marginal value costs

of ‘promises’ that have to be kept from past policy commitments.

Associated with the policy functions are the expectation functions:

Etyt+1 =

Z
yt
¡
γ1t , γ

2
t , πt, (1− ρr) r̄ + ρrr

n
t + εrt+1

¢
f
¡
εrt+1

¢
d
¡
εrt+1

¢
Etπt+1 =

Z
πt
¡
γ1t , γ

2
t , πt, (1− ρr) r̄ + ρrr

n
t + εrt+1

¢
f
¡
εrt+1

¢
d
¡
εrt+1

¢
Etit+1 =

Z
it
¡
γ1t , γ

2
t , πt, (1− ρr) r̄ + ρrr

n
t + εrt+1

¢
f
¡
εrt+1

¢
d
¡
εrt+1

¢
where f (·) is the probability density function of the stochastic shock innova-
tion εr. Assuming normality of the innovation, the expectation functions can

be approximated by Gaussian-Hermite quadrature, as explained in appendix

A.2.

A.2 Numerical Algorithm

One has to rely on nonlinear numerical methods to solve for the value function

and optimal policy functions of the reformulated problem, equation (8). In

particular, the collocation method can be employed.25

25For more detailed expositions of the collocation method see, e.g., Ch. 11 in Judd
(1998) and Ch.s 6 and 9 in Miranda and Fackler (2002).
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In particular, the state space s = (µ1, µ2, π−1, rn) ⊂ R4 is discretized into

a set of N collocation nodes ℵ = {sn|n = 1, ..., N }, where sn ∈ s. The value

function W (·) is interpolated over the collocation nodes sn by using a four
dimensional cubic spline φ (·) and choosing basis coefficients cn such that

W (sn) ≈
NX
n=1

cnφ (sn) (9)

Equation (9) is an approximation to the left-hand side of the reformulated

problem, equation (8). Then to evaluate the right-hand side of equation

(8) one approximates the expected value EW (g (sn, x1, x2, ε)), where g (·)
denotes the state transition function, x1 = (γ1, γ2) and x2 = (y, π, i) are the

vectors of controls, and ε is the innovation of the stochastic shock process.

Assuming normality of the innovation, the expected value function can be

approximated by Gaussian-Hermite quadrature, which involves discretizing

the shock distribution into a set of quadrature nodes εm, and associated

probability weights ωm, for m = 1, ...,M .26

Substituting the collocation equation (9) for the value function W (g (·)),
the right-hand side of the reformulated problem, equation (8), can be ap-

proximated over the collocation nodes sn as

RHS (sn) ≈ inf
x1
sup
x2

(
h (sn, x) + β

MX
m=1

NX
n=1

ωmcnφ (g (sn, x, εm))

)
(10)

The minimization/maximization with respect to x = (x1, x2) in problem

(10) may be solved using a standard Quasi-Newton optimization method, by

taking into account the bounded control it ≥ 0. This delivers RHS (·) and
the policy functions x (·) at the collocation nodes sn.

Finally, equating equations (9) and (10) at each collocation node sn de-

livers an approximation to the reformulated problem, equation (8). This

26For details on applying Gaussian-Hermite quadrature see, e.g., Ch. 7 in Judd (1998).
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defines a nonlinear equations system with unknown basis coefficients cn that

can compactly expressed in vector form as the collocation equation

Φcn = RHS (cn) (11)

The collocation equation (11) may be solved using any nonlinear equation

solution method. In particular, one can rewrite the collocation equation as a

fixed-point problem cn = Φ−1RHS (cn) and employ function iteration, with

iterative update rule

cn ←− Φ−1RHS (cn) (12)

Alternatively, the collocation equation can be rewritten as a rootfinding

problem Φcn − RHS (cn) = 0 and solved using Newton’s method, which

implies the iterative update rule

cn ←− cn − [Φ−RHS0 (cn)]
−1
[Φcn −RHS (cn)] (13)

where RHS0 (cn) is the n× n Jacobian of RHS (·) at cn.

The Algorithm proceeds as follows:

Step 1: Choose the degree of approximation N andM and set the appropri-

ate collocation and quadrature nodes. Guess an initial basis coefficient

vector c0n.

Step 2: Iterate on (12) or (13) and update the basis coefficient vector ckn to
ck+1n .

Step 3: Stop if max
¯̄
ckn − ck+1n

¯̄
< τ , where τ > 0 is a convergence tolerance

level. Otherwise repeat step 2.

Once convergence is achieved the accuracy of the solution has to be

checked. For this, define the residual function
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R (sr) = RHS (cr)−
RX

n=1

cnφ (sr)

that measures the approximation error between the right- and left-hand sides

of the reformulated problem, equation (8), at an arbitrary grid of nodes

< = {sr|r = 1, ..., R }, where sr ∈ S and < ∩ ℵ = ∅. And check the

maximum approximation error, max |R (·)|, over the grid of nodes sr.

For the baseline calibration the optimal monetary policy problem is solved

using Newton’s method, settingN = 3375 andM = 9. Relatively more nodes

are placed in areas of the state space where the value and policy functions

display a higher degree of curvature and kinks, respectively. It is important

to economize in this way assigning the nodes since the problem has a four

dimensional state space and is challenging to solve. The support of the collo-

cation nodes is chosen to cover ±4 unconditional standard deviations of the
exogenous state (rn) and to insure that all values of the endogenous states

(µ1, µ2, π−1) lie inside the state space when using the solution to stochas-

tically simulate one-million model periods. Since this can only be verified

after convergence is achieved some experimentation is necessary. The data

generated by the simulation is then used to compute the statistics describing

the stochastic distribution of the optimal policy.

The initial guess for the basis coefficient vector c0n is set to the solution of

the problem without zero lower bound. The tolerance level is τ = 1.49 ·10−8,
i.e., the square root of machine precision. Convergence and the computation

of the residual function takes about 1/2 hour on a Pentium IV with 3.0 GHz.

The maximum approximation error is less than 0.0008, where < contained
more than 35, 000 nodes.
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Structural parameters
Downward nominal rigidity c (π < 0) 0
Quarterly weight on output gap α 0.003

Quarterly discount factor β
¡
1 + r̄

4

¢−1 ≈ 0.9913
Slope of AS relation λ 0.024
Real-rate elasticity of output gap σ 6.25
Degree of inflation indexation θ 0.99

Real-rate shock
Annually equilibrium value r̄ 3.5%
Annually standard deviation s.d. (rn) 1.6%
AR(1)-coefficient ρr 0.8

Table 1: Baseline calibration

r̄ Welfare-theoretic Traditional Equal weight

3.5% 79 < 1 10
2.0% 189 4 53

Table 2: Optimal inflation buffer with lower equilibrium real-rate (b.p.s)

c (π < 0) Welfare-theoretic Traditional Equal weight

0 79 < 1 10
1 79 3 17

Table 3: Optimal inflation buffer with downward nominal rigidity (b.p.s)
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Figure 1: Stochastic distribution of inflation
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Figure 3: Optimal policy responses to real-rate shocks
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Figure 6: Optimal policy responses (Alternative loss function)
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Figure 7: Preemptive easing (Alternative loss function)
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Figure 8: Mean responses (Alternative loss function)
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Figure 9: Downward nominal rigidity
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